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Abstract 

The forthcoming decade is envisioned being the era of Artificial Intelligence (AI). 

It seems that everything is at the disposal of the industry: the computing power, the 

large storage, and the Big Data. The latter is a key component of the AI systems, 

because the researchers’ community considers that more training data result in 

more accurate AI software. Therefore, the industries demand larger and larger 

amount of genetic, biometric, health, geolocation, travel, and financial etc. data. 

The European Union and the member states try to keep the pace dictating the US 

and China and tend to satisfy the needs of the industries by laws, like the European 

Health Data Space (EHDS) Regulation, the AI Regulation. Applying these laws, 

the industries can get the much-needed data for themselves. What remains unsolved 

although, is the protection of individuals with regard to the automatic processing 

of personal data relating to them. 

The requested data many times are personal data, at least once they were 

personal. Then underwent a de-identification procedure by which the natural 

identifiers were deleted. But it is not enough, because the data may still contain so-

called quasi-identifiers by which an adversary can join two completely different 

datasets together and reveal the identity of the individuals whom the data relates to. 

When we talk about joining, it many times is understood in the general sense. That 

means, it can be executed based on proximity in time or geolocation, not only on 

the basis of identical values of some quasi-identifiers. 
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The author proposes a statistical method by which data protection experts can 

investigate datasets before handing over them to the industries. The method 

provides one single number, an entropy value, characteristic to the dataset that 

shows its vulnerability against re-identification attacks. The side effect of the 

method is that it provides distribution data over the quasi-identifiers, by which the 

analysts can identify the most and least vulnerable part of the population. The 

biggest risk is an adversary has a nationwide other dataset to attack with. To arm 

ourselves, we can model this kind of situation too by studying the entropy values 

and the distribution of quasi-identifiers at national level. 

Introduction 

Since the protection of personal data became a fundamental right in the European 

Union in 2009, when all member states undersigned the TFEU (Lisbon Treaty), it 

was always a question how we can decide that a particular dataset is personal at all. 

The law protects only personal data therefore such a judgement is crucial when a 

company, clinics or a public institution etc. want to share or publicize a dataset. In 

the case of health data, the rules of professional ethics also prohibit to reveal 

personal medical information before others. 

The GDPR proposed a mean, by which the privacy rights of individuals can 

eventually be protected. It is the anonymization. The term assumes that the result 

of the process is an anonymous dataset. Since anonymity is questionable 

sometimes, therefore the de-identification is a more correct term. This latter means 

that the process intends to render the data anonymous, but it is not sure that this 

goal is achieved. Many cases were reported in the literature, for example in (Ohm, 

2010) where the allegedly anonymous data later have been broken. This shows that 

the decision on anonymity must be especially cautious and be based on strong 

statistical evidence. The HIPAA law (US Federal Government, 2022) for example 

contains that a covered entity may determine that health information is not 

individually identifiable health information only if: 

§ 164.514 b) A person with appropriate knowledge of and experience with

generally accepted statistical and scientific principles and methods for rendering

information not individually identifiable:

(i) Applying such principles and methods, determines that the risk is very

small that the information could be used, alone or in combination with other

reasonably available information, by an anticipated recipient to identify an

individual who is a subject of the information; and

(ii) Documents the methods and results of the analysis that justify such

determination
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Such type of legal regulation is not known in the EU. According to the GDPR, 

the Data Protection Officer, who is generally a lawyer will decide on the anonymity 

of a dataset. The newly passed Hungarian Act XCI of 2021 on National Data Assets 

contains this approach too. In (Alexin, 2018) the author presented two court cases 

filed by himself on medical data protection. In one case the Supreme Court of 

Hungary after several appeals finally decided that the national Itemized Medical 

Dataset (IMD) does not contain personal data, although it contains a pseudonym 

(9-digit number), the birthdate, ZIP code, gender, dates of care, institutions, 

medicines related with a patient. Consequently, data subjects have no rights to 

access, to object, to be forgotten. 

In (Higgins, 2021) the author argues that careful statistical analysis is essential 

before a research database is published. Datasets are analyzed from the point of 

view of !-anonymity and "-diversity. They quantified the risk for three scenarios: 

• friendly researcher who might inadvertently reidentify an acquaintance

• a rogue researcher deliberately attempting reidentification using public

information, and

• a rogue corporation with wide data access.

The future perspective is rather disappointing. Each day hackers stole a new 

personal database containing identification data for thousands if not millions of 

people. These databases sooner or later are being commercialized in the dark net. 

So, we must prepare for the case when any tiny identifier fragments in a de-

identified dataset can be keys for re-identification. Some years ago, the data items 

in a dataset could be divided into two parts: quasi-identifiers and such type of data 

that are considered not suitable for re-identification. As hackers can have access to 

the original databases, we must accommodate to the fact that each data item will 

become quasi-identifier. In healthcare for example, the Electronic Health Record 

(EHR) systems holding all medical information from birth to death became a 

standard, therefore any tiny data item (heart rate, bilirubin concentration in urine, 

body weigh on a particular date) can be used for re-identification of patients either 

by an insider adversary (e. g. authority, researcher) or a hacker who stole original 

data records.  

The anonymity therefore depends only on the amount of information about an 

individual stored in the de-identified dataset. The world population is 7.9 billion 

which corresponds to 33 bits of information, the population of Hungary is 10 

million, it corresponds to 24 bits (#$%!&'(')"*+,(-.). See (Chang, 2019) which is

a good attention-grabbing article on the topic. This amount of information is 

enough to identify somebody given the adversary can get such a personal database 

(a clue) that contains the complete or identical form of the quasi-identifiers exist in 

the de-identified dataset. 
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Computing the entropy of a dataset 

In the probability theory a random variable / is a measurable function / 0 121 3 14 

from a set of possible outcomes 2 to a measurable space 4. In continuous case 

could be rather difficult but in the following the discrete case is applied. The 2 will 

denote a population. It can be a whole country, like Hungary, is a finite set. The 

random variable / randomly select an individual from the population and returns 

the quasi-identifiers of that individual as a tuple, like &*5 65 75 8 ., where

*9:5 69;5 79< etc. : could be the set of ZIP codes, where the individuals live, ;
could be the set of ages, < could be the set of genders. Such a way, 4 =
:1 > ; > < > 8 . In our case :5 ;5 <5 8 all finite sets, therefore 4 also will become

finite.

The probability of some ? @ 4 is defined as 

A&/9?. 1= 1A&B9C 0 /&B. D ?. (1) 

It is assumed that every individual in the population is equally probable. Then 

A&/9?. is proportional with the number of individuals whose quasi-identifiers are 

in ?. Let the number of such individuals be !. ? may contain one single element 

(tuple) from 4. The values of A can be narrowed between 0 and 1 by dividing it 

with the number of elements in 2. Let the number of elements in C1,E1FG HCH = F.

A&/9?. = HIB9C 0 /&B. D ?JH
HCH = 1 !F (2) 

This way A&4. 1= 1K, A&L. 1= 1M. 

The probabilities of certain quasi-identifiers may differ. For example, the 

population in two ZIP code districts may differ substantially. If we select citizens 

fairly and randomly then the probability of choosing someone from a more 

populated ZIP code district is larger, as suggests formula (2). 

Claude Shannon published his well-known formula in (Shannon, 1948) by which 

one can compute the information content of telecommunication messages. 

4&NOEE*PO. = 1QRA&IS"J.
#

"$%

1 "(P!1A&IS"J. (3) 

In his formula a NOEE*PO is composed of letters S%5 S!5 8 5 S#. The probabilities

of the letters are given in advance. With the above formula (3) he can determine 

the information content (entropy) of any message. 

In this paper the author proposes a new application of the formula (3). The 

dataset being inspected is considered a NOEE*PO. We assume that it contains quasi-

identifiers of random citizens. The letters will be the quasi-identifiers (tuples). The 
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probabilities of the quasi-identifiers can be determined in advance. The best is to 

obtain data from national offices of statistics, or other official sources that are 

comprehensive and reliable. The application of the logarithm function can be 

reasoned as follows. If k individuals from the population share the same quasi-

identifier (S") such a way that they cannot be distinguished from each other. In this

case, the amount of information, the number of bits we can get to know is 

#$%!&F !T .. Because we can determine the group of ! individuals having this quasi-

identifier but cannot select one individual from the group. The #$%!&F !T . =
Q #$%!&! FT . = Q1#$%! A&IS"J..

One important note! In this paper a dataset D is considered a regular relational

dataset, which means that one individual may occur at most once among the 

records. With this assumption the formula (3) provides a real and interpretable 

measure of unorderedness (entropy) over the quasi-identifiers of the population. 

Otherwise, the following considerations may not be true, for example, the amount 

of information accumulated in the dataset may increase indefinitely. 

E(4) =1Q R A&IOJ.
&''()*+

1 "(P!1A&IOJ. (4) 

On the other hand, when we have a snapshot of quasi-identifiers, we can 

compute the entropy for the whole population. During the computation a detailed 

insight to the distribution of the quasi-identifiers is also obtained. The distribution 

of the information gain can be characterized as well, for example we can tell the 

probability (number of individuals) of gaining at least n bit information about the 

individuals for a given n. 

Figure I. The graph of the !"#$ % &# '()! # function

A plot of the function shows, that function U&S. it can be computed only for 

positive real numbers. When S1 = MGM the right limit is MGM, for S1 = 1MGVW and S1 =
1MGW U&S. will be MGW in both cases. The maximum K &O1 #X V.T  is reached when S =
1K OT .
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The author obtained a statistical research dataset from the population registry. 

The flowing computations all are demonstrated by this database. The research 

published here is considered a preliminary investigation. 

What increases and decreases the entropy? 

Lemma 1 

Let N be a fixed integer number (e. g. the population taken), then the following 

inequality is held for all M Y ,5 Z5 &, [ Z. Y F integer numbers: 

Q1 ,F1#$%!
,
F Q

Z
F #$%!

Z
F \ Q , [ Z

F 1#$%! , [ ZF (5) 

Proof 

If we substitute * = 1, F1T  and 6 = 1 Z FT  then M Y *5 65 &* [ 6. Y K we get the

following formula: 

Q *1 #$%! * Q 6 #$%! 6 \ Q&* [ 6. #$%!&* [ 6. (6) 

which is equivalent 

Q #$%! *&6, \1Q1#$%!&* [ 6.-&.,/ (7) 

since a and b are positive numbers and less than 1, K * \ 1K &* [ 6.TT \ K

#$%! ]K*^
&

]K6^
,

\ #$%! ] K
* [ 6^

&

] K
* [ 6^

,

= #$%! ] K
* [ 6^

-&.,/

(8) 

In fact, the inequality is held for all M Y *5 6 values. If either of them, for example 

b is greater than 1, then the above formula can be modified as follows: 

#$%! ]K*^
& K
6, \ #$%! ] K

* [ 6^
& K
&* [ 6., = #$%! ] K

* [ 6^
-&.,/

(9) 

From the above lemma it follows for example, that 

Q1 KF1#$%!
K
F Q

K
F #$%!

K
F Q1

K
F #$%!

K
F Q

K
F #$%!

K
F \ Q _

F1#$%!
_
F (10) 

Q ! KF1#$%!
K
F \ Q !

F1#$%!
!
F (11)
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#$%!F = Q1F K
F1#$%!

K
F ` R Q1!"F 1#$%!

!"
F

0".0#.1.0$($2

"$%3!343#

 (12) 

The formula (12) says that the entropy of any discrete random variable must be less 

than or equal to #$%!F where N is the number of elements in Ω. The maximum

value is reached if all individuals have different quasi-identifiers. In Hungary 

#$%!&F. is ~23.254 bits. The formula (12) will result in 0, if all individuals belong

to one single group of F indistinguishable individuals. 

Lemma 2 

The following inequality (13) is held for all M Y ! Y " Y F integer numbers. 

Having ! a " individuals, such that they have " different quasi-identifiers, and for 

each quasi-identifier there exist exactly ! individual who has this quasi-identifier. 

If we reverse the role of ! and ", (! different quasi-identifier and " individual who 

has it) then the entropy will decrease. That means, the entropy can be decreased if 

we increase the number of indistinguishable individuals (from k to l). 

Q"1 !F1#$%!
!
F \ Q! "F1#$%!

"
F (13) 

Q "!F 1#$%!
!
F \ Q!"F 1#$%!

"
F (14) 

The logarithm function is monotonic increasing, therefore the inequality (15) is 

held, because ! Y ". If we multiply both sides with the same negative coefficient 

Q!" FT , then the direction of the inequality will reverse.

#$%! !F Y #$%! "F (15) 

Corollary 

Qb b
F1#$%!

b
F \ Q _

F1#$%!
_
F Q

W
F1#$%!

W
F (16) 

We have 9 individuals in three groups such that we cannot distinguish them within 

a group. If we re-arrange them in two groups with 4 and 5 individuals such a way 

that they cannot be distinguished within a corresponding group, then the entropy 

will decrease. Lemma 2 is used twice for proving: 
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Q_ b
F1#$%!

b
F \ Qb _F1#$%!

_
F (17) 

QKV b
F1#$%!

b
F \ Qc _F1#$%!

_
F (18) 

QKV b
F1#$%!

b
F \ Q_ _F1#$%!

_
F Q W

_
F1#$%!

_
F (19) 

QKV b
F1#$%!

b
F \ Q_ _F1#$%!

_
F Q _

W
F1#$%!

W
F (20) 

Qb b
F1#$%!

b
F \ Q _

F1#$%!
_
F 1Q

W
F1#$%!

W
F (21) 

k-anonymity:

A dataset D is considered !-anonymous for any natural number !, if for all records

(representing a natural person) there exist at least ! Q Kother record (individual) 

that they are indistinguishable from each other considering their quasi-identifiers. 

Lemma 3 

If a dataset D is k-anonymous then its entropy E(D) < Q1#$%! &! F.T , where N is the

number of individuals in the dataset. 

Q #$%! !F ` R Q1!"F 1#$%!
!"
F

0".0#.1.0$($23(((0%50

"$%3!343#

 (22) 

Proof 

It follows from the definition of !-anonymity and from Lemma 2. In the trivial 

case, when have exactly ! individuals who share common quasi-identifiers and N 

is therefore divisible by !. Then we get the following formula: 

R Q1!F1#$%!
!
F

0.0.1.0($2

"$%3!3432 06

=1F! ]Q
!
F #$%!

!
F^ = 1Q #$%!

!
F (23)
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In general case, by applying Lemma 2 we can bring in new groups with ! [ K5 ! [
V58 indistinguishable individuals, while doing this the entropy always decreases. 
A more elaborated formal proof is not available currently. See the Corollary also! 

If the entropy of a dataset D is E(D), then we can compute an estimated ! value,

which is characteristic to the anonymity of the dataset. 

Q #$%! !F = E(D) (24) 

! = F
V+#789:; (25) 

From Lemma 3, it follows that the entropy of a V-anonymous dataset is less or equal 

to Q1#$%! &V F.T  = #$%! &F V.T  = #$%!&F. Q K. An interesting question arose here:

if we have a dataset D and its entropy falls between #$%!&F. Q K Y E(D) Y1 #$%!&F.
then how many uniquely identifiable records (singletons) must exist in the 

database? The following equation system needs to be solved. 

Qd! VF1#$%!
V
F Q d% KF1#$%!

K
F = E(D) (26.1) 

2 d! [ d% = F1 (26.2) 

By substituting d%eF by x the following equation is obtained:

&K Q S. &#$%!&F. Q K.[S #$%!&F. = E(D) (27) 

#$%!&F. Q K[S =1E(D) (28) 

x = E(D) !"K Q #$%!&F." (29) 

d% =1(E(D) "Q1&#$%!&F. Q K.. f F (30) 

It shows, that if the entropy is less than #$%!&F. Q K then no singletons are

guaranteed, but above this threshold the number of guaranteed singletons is 

increasing until it reaches N when the entropy becomes #$%!&F.. The number of

singletons can be larger, if the dataset D contains, not only pairs, but couple of sets 

of three, four, five, … indistinguishable individuals. 

-<"#=')79#< `1(E(D) "Q1&#$%!&F. Q K.. f F (31)
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The entropy computations with the Hungarian 

population registry dataset 

The author obtained a research dataset from the Central Office for Administrative 

and Electronic Public Services (in Hungarian: Közigazgatási és Elektronikus 

Közszolgáltatások Központi Hivatala, KEKKH) which contained all Hungarian 

citizens’ date of birth, ZIP code of his/her resident address and gender. Altogether 

10 004 090 people were in it, F = KM1MM_1McM. The dataset is a snapshot which 

have been taken on 31st December 2011 at midnight. Earlier, in (Alexin, 2014) the 

author investigated the dataset from the point of view of identifiability. 

The Bits column is always defined as #$%!&F !T .. The value of Entropy is:

Q! F1 #$%!&! FT .T .

The entropy of the ZIP code quasi-identifier 

Table I. Hungarian ZIP codes, population, and information content 

ZIP code Settlement Population Bits Entropy 

1011 Budapest I. 3286 11,5719 0,003800 

1012 Budapest I. 4446 11,1357 0,004948 

1013 Budapest I. 3404 11,5210 0,003920 

… 

9982 Apátistvánfalva 589 14,0519 0,000827 

9983 Szakonyfalu 769 13,6672 0,001050 

9985 Felsőszölnök 589 14,0519 0,000827 

Sum: 10004090 10,303428 

The result of the computation shows that that the entropy of ZIP codes is 10,3 bits. 

It means that statistically, for a random citizen the expected amount of information 

in his/her ZIP code is 10.3 bits. It may be more or less since it is an average. It 

corresponds to gcKh-anonymity using the formula (25). Therefore, the ZIP code 

alone does not mean any privacy risk in a database. 

When we look at the Table II. closely, we see that although, the median is about 

10 bits, the amount of information gained form a ZIP code ranges from 6 bits to 15 

bits. The reason is that the population in a ZIP code district is rather imbalanced. 

There are sparsely and densely populated districts. The range is from 100 to 

100 000. For 48 593 citizen the ZIP code means 15 bits (305-anonymity). It is an 

elevated but bearable risk. 
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Table II. The probability of gaining at least n bit information if someone’s ZIP code is known 

Bits Population Probability 

15 48593 0,49% 

14 302595 3,02% 

13 966087 9,66% 

12 2139699 21,39% 

11 3476436 34,75% 

10 5210515 52,08% 

9 7369394 73,66% 

8 8847670 88,44% 

7 9716633 97,13% 

6 10004090 100,00% 

The entropy of the date of birth quasi-identifier 

Table III. Hungarian birthdates’ distribution, and their information content 

Birthdate Population Bits Entropy 

1894.12.31. 1 23,25409 2,32446E-06 

… 

1985.01.01. 306 14,996698 0,000458711 

1985.01.02. 335 14,866069 0,000497810 

1985.01.03. 365 14,742333 0,000537875 

1985.01.04. 367 14,734450 0,000540533 

1985.01.05. 331 14,883399 0,000492439 

1985.01.06. 296 15,044633 0,000445139 

… 

Sum: 10004090 14,918582 

In this case the result of the computation shows that that the entropy is 14,918 bits. 

It corresponds to bVb-anonymity using the formula (25). Therefore, the date of 

birth alone does not mean serious privacy risk in a database. The eldest citizen was 

born in 1894. according to the dataset. It can be seen, that among those people who 

was born at the beginning of 1985, usually ca. 300 were indistinguishable. 

The distribution of the information gain is more balanced as shown in Table IV. 

It ranges from 13 to 17 bits. The number of indistinguishable citizens is decreasing 

year by year, but slowly. The number of births is quite stable and even. From the 

first line we can discover that in the case of 907 citizen the date of birth means 

unique identifiability (23 bits, 1-anonymity), for 1979 citizens the gain is 22 bits, 

2-anonymity, for 4573 21 bits, 3- or 4-anonymity. The table helps us to recognize

that we have a smaller, but vulnerable group of people who needs special attention.
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The author computed the entropy of the year and month of birth quasi-identifier 

which resulted in 9.99 bits, cibg-anonymity. This way the risk can be substantially 

reduced, but these very old citizens remain still uniquely identifiable. Their data 

shall be suppressed before transferring. 

Table IV. The probability of gaining at least n bit information if someone’s date of birth is known 

Bits Population Ratio 

23 907 0,01% 

22 1979 0,02% 

21 4573 0,05% 

20 10944 0,11% 

19 15778 0,16% 

18 38252 0,38% 

17 117105 1,17% 

16 378792 3,79% 

15 3282589 32,81% 

14 9994548 99,90% 

13 10004090 100,00% 

Cartesian products of certain quasi-identifiers 

Table V. Hungarian *+,-./0-12 3 2456278/1 distribution and the information content 

Birthdate x ZIP code Population Bits Entropy 

(1894.12.31., 3744) 1 23,254 2,324458e-6 

… 

(1975.08.04., 9400) 4 21,254 8,498159e-6 

(1975.08.04., 9407) 1 23,254 2,324458e-6 

(1975.08.04., 9473) 1 23,254 2,324458e-6 

(1975.08.04., 9523) 1 23,254 2,324458e-6 

(1975.08.04., 9600) 1 23,254 2,324458e-6 

(1975.08.04., 9700) 6 20,669 1,239640e-5 

… 

Sum: 10004090 22,79385 

The result of the computation shows dramatic changes when we examine the date 

of birth x ZIP code quasi-identifier. See Table V. The entropy became 22,7985 bits. 

It corresponds to KGbg-anonymity using the formula (25). This database poses 

substantial risk for re-identification. Must not be released or transferred. Using the 

formula (31) the ratio of singletons is greater the 54% of the population, in fact it 

was 6635838 individuals. This is clearly seen in Table VI. 
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Table VI. The probability of gaining at least n bit information if someone’s date of birth and ZIP 

code are known 

Bits Population Ratio 

23 6635838 66,33% 

22 8629982 86,26% 

21 9692881 96,89% 

20 9996707 99,93% 

19 10004090 100,00% 

Table VII. Hungarian 9+,-./0-12 3 2456278/12 3 :1;/1, distribution and the information content 

(M – male, F – female) 

Birthdate x ZIP x gender Population Bits Entropy 

(1894.12.31., 3744, M) 1 23,254 2,324458e-6 

… 

(1954.04.14., 6000, M) 1 23,254 2,324458e-6 

(1954.04.14., 6041, M) 1 23,254 2,324458e-6 

(1954.04.14., 6066, M) 2 22,254 4,448998e-6 

(1954.04.14., 6070, F) 1 23,254 2,324458e-6 

(1954.04.14., 6097, F) 1 23,254 2,324458e-6 

(1954.04.14., 6097, M) 1 23,254 2,324458e-6 

… 

Sum: 10004090 22,992721 

The last computation shows even dramatic changes when we examine the date of 

birth x ZIP code x gender quasi-identifier. See Table VII. The entropy became 

22,9927 bits. It corresponds to KGKc-anonymity using the formula (25). This 

database poses substantial risk for re-identification. Using the formula (31) the ratio 

of singletons is greater the 74% of the population, in fact it was 7845850 

individuals. This is seen in Table VIII. 

Table VIII. The probability of gaining at least n bit information if someone’s date of birth and ZIP 

code and gender are known 

Bits Population Ratio 

23 7845850 78,43% 

22 9403904 94,00% 

21 9942428 99,38% 

20 10003959 99,99% 

19 10004090 100,00% 
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Summary 

This article presented preliminary research on the entropy of certain quasi-

identifiers, and combination of quasi-identifiers based on reliable statistical data. 

The computations can be repeated by other national databases with other quasi-

identifiers. The presented approach could be an ultimate decision-support tool for 

data guardians before they decide on the transfer of a dataset to third parties. 
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