

Deliverable D3.7

PIACERE IDE - v1

Editor(s): Marc Gil, Alfonso de la Fuente, Ismael Torres

Responsible Partner: Prodevelop

Status-Version: Final – v1

Date: 23.12.2021

Distribution level (CO, PU): Public

DRAFT

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 52

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: PIACERE IDE – v1

Due Date of Delivery to the EC 30.11.2021

Work package responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Ismael Torres (PRODEVELOP)

Contributor(s):
Alfonso De la Fuente, Marc Gil and Ismael Torres
(PRODEVELOP), Elisabetta Di Nito (POLIMI), Leire Orue-
Echevarria (TECNALIA), Matija Cankar (XLAB)

Reviewer(s): Laurentiu Niculut, Lorenzo Blasi (HPE)

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP5, WP6 and WP7

Abstract: This deliverable is the output of Task 3.5 and it will also
be iterative. The deliverable will be composed of a
software prototype and a technical design document.
This outcome will present the IDE resulting from the
integration of KR1,
KR3 - KR8. The software will be accompanied by a
Technical Specification Report

Keyword List: PIACERE IDE, THEIA, EMF

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

 DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 52

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 01.10.2021 First draft version. Including desktop
version of the IDE

PRODEVELOP

V0.2 29.11.2021 second draft version. Including web
version of the IDE

PRODEVELOP

V0.3 07.12.2021 Comments and suggestions received
by consortium partners

POLIMI, TECNALIA and
XLAB,

V0.5 12.12.2021 Internal review 1 7BULLS, TECNALIA

V0.6 12.12.2021 Updated version with review 1
comments

PRODEVELOP

V0.9 20.12.2021 Final version of the deliverable PRODEVELOP

V1.0 23.12.2021 Ready for submission TECNALIA

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 52

www.piacere-project.eu

Table of contents

Executive Summary ... 7

1. Introduction .. 8

1.1. About this deliverable ... 8

1.2. Document structure .. 8

2. Analysis of possible technologies to develop IDEs .. 9

2.1. IDE Candidates .. 9

2.1.1. VS Code ... 9

2.1.2. GitHub Codespaces (VS Code Online) ... 11

2.1.3. Eclipse IDE + Eclipse Modeling Framework ... 12

2.1.4. Eclipse Theia + EMF.cloud ... 15

2.1.5. Eclipse Che ... 17

2.2. Workspaces management ... 18

2.3. IDE baseline selection.. 19

3. PIACERE IDE Implementation .. 22

3.1. Functional description ... 22

3.1.1. Requirements for the PIACERE IDE ... 22

3.1.2. Fitting into overall PIACERE Architecture .. 24

3.2. Technical description .. 25

3.2.1. Prototype Architecture ... 25

3.2.2. Components Description ... 29

3.2.3. Technical specifications ... 30

3.2.4. PIACERE IDE Next Steps ... 34

4. Delivery and usage .. 35

4.1. Package information ... 35

4.2. Installation instructions ... 35

4.3. User Manual .. 38

4.4. Licensing information .. 43

4.5. Download .. 43

5. Conclusions and future work .. 45

6. References ... 46

7. APPENDIX: PIACERE IDE based on Eclipse desktop ... 48

7.1. Technical Description ... 48

7.1.2 Components description .. 49

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 52

www.piacere-project.eu

List of tables

TABLE 1: IDES FEATURES COMPARISON (SOURCE: PIACERE’S OWN CONTRIBUTION) 19
TABLE 2: FUNCTIONAL REQUIREMENTS RELATED WITH THE IDE (SOURCE D2.1) ... 22
TABLE 3. NON-FUNCTIONAL REQUIREMENTS RELATED TO THE IDE (SOURCE D2.1) 24
TABLE 4. BUSINESS REQUIREMENTS RELATED TO THE IDE (SOURCE D2.1) ... 24

List of figures

FIGURE 1: VSC IDE SCREENSHOT (SOURCE: VSC) ... 10
FIGURE 2: GITHUB CODESPACES SCREENSHOT (SOURCE: GITHUB.COM) .. 11
FIGURE 3: ECLIPSE IDE SCREENSHOT (SOURCE: ECLIPSE) .. 13
FIGURE 4: ECLIPSE MODELING FRAMEWORK SCREENSHOT (SOURCE: ECLIPSE MODELING FRAMEWORK) 14
FIGURE 5: ECLIPSE THEIA SCREENSHOT (SOURCE: ECLIPSE) .. 15
FIGURE 6: ECLIPSE THEIA MODEL EXAMPLE (SOURCE: ECLIPSE) ... 16
FIGURE 7: THEIA PLUGINS LIST ... 16
FIGURE 8: PIACERE DESIGN TIME COMPONENTS ... 25
FIGURE 9: THEIA ARCHITECTURE CONFIGURATION. (SOURCE DESOSAL.NL [18]) ... 26
FIGURE 10: THEIA CONTAINERS (ADOPTED FROM [19]) ... 26
FIGURE 11: THEIA COMPONENTS DETAIL (SOURCE DESOSAL.NL [19]) ... 27
FIGURE 12: THEIA EXTENSION MECHANISMS (SOURCE THEIA-IDE.ORG [20]) ... 29
FIGURE 13: EXAMPLE OF A DIAGRAM USING GLSP (SOURCE ECLIPSE.ORG [22]) .. 30
FIGURE 14: DOML TRANSFORMATIONS (SOURCE: PIACERE’S OWN CONTRIBUTION) 31
FIGURE 15: PIACERE IDE – EXTENSIONS (SOURCE: PIACERE’S OWN CONTRIBUTION) 32
FIGURE 17: POSIDONIA UC JSON REPRESENTATION ... 33
FIGURE 16: POSIDONIA UC TREE EDITOR REPRESENTATION ... 33
FIGURE 18: POSIDONIA UC VALIDATION SERVICE .. 34
FIGURE 19: THEIA EXTENSION'S TYPE .. 36
FIGURE 20: PIACERE IDE - MAIN WINDOW .. 38
FIGURE 21: OPEN WORKSPACE .. 38
FIGURE 22: NEW DOML MODEL ... 39
FIGURE 23: EMPTY MODEL SPECIFICATION ... 39
FIGURE 24: DOML ELEMENT CREATION .. 40
FIGURE 25: DOML MODEL FORM .. 40
FIGURE 26: DOML INSTANCE OF POSIDONIA USE CASE .. 41
FIGURE 27: INVOCATION OF AN EXTERNAL SERVICE ... 42
FIGURE 28: VALIDATION RESPONSE FILE .. 42
FIGURE 29: AUTO SAVE OPTION ... 43
FIGURE 30: CODE EDITOR ... 43
FIGURE 31: ECLIPSE IDE COMPONENTS (SOURE : PIACERE’S OWN CONTRIBUTION) 49
FIGURE 32: GRAPHITI EDITOR EXAMPLE (SOURCE: GRAPHITI) ... 50
FIGURE 33: ACCELEO TEMPLATE EXAMPLE (SOURCE: ACCELEO) ... 50
FIGURE 34: ATL TRANSFORMATION EXAMPLE (SOURCE: ATL) .. 51
FIGURE 35: PAPYRUS INSTANCE EXAMPLE (SOURCE: PAPYRUS) .. 52

DRAFT

http://www.medina-project.eu/
file:///C:/00_TECNALIA/01_R&D/R&D%20Projects/083815_PIACERE/Doc_Tecnica_Proyecto/WP3/D3.7/D3.7%20PIACERE%20IDE_v1.0.docx%23_Toc91180518
file:///C:/00_TECNALIA/01_R&D/R&D%20Projects/083815_PIACERE/Doc_Tecnica_Proyecto/WP3/D3.7/D3.7%20PIACERE%20IDE_v1.0.docx%23_Toc91180519
file:///C:/00_TECNALIA/01_R&D/R&D%20Projects/083815_PIACERE/Doc_Tecnica_Proyecto/WP3/D3.7/D3.7%20PIACERE%20IDE_v1.0.docx%23_Toc91180528
file:///C:/00_TECNALIA/01_R&D/R&D%20Projects/083815_PIACERE/Doc_Tecnica_Proyecto/WP3/D3.7/D3.7%20PIACERE%20IDE_v1.0.docx%23_Toc91180529

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 52

www.piacere-project.eu

Terms and abbreviations

API Application Programming Interfaces

ATL Atlas Transformation Language

AWS Amazon web services

CSS Cascade Style Sheet

DI Dependency Injection

DOML DOML DevSecOps Modelling Language

DOML-E DOML Extensions

DSL Domain Specific Language

EMF Eclipse Modeling Framework

GA Grant Agreement

GLSP Graphical Language Server Platform

IaC Infrastructure as Code

ICG Infrastructural Code Generator

IDE Integrated Developed Environment

JDT Java Development Tools

JSON JavaScript Object Notation

KPI Key Performance Indicator

KR PIACERE key Result

LSP Language Server Protocol

QVT Query/View/Transformation)

RCP Rich Client Platform

REST API Representational State Transfer Application Programming Interface

SaaS Software as a Service

SVN Apache Subversion

UML Unified Modelling Language

VS Code / VSC Visual Studio Code

VT Verification Tool

XML eXtensible Markup Language

 DRAFT

http://www.medina-project.eu/
https://www.eclipse.org/community/eclipse_newsletter/2017/may/article1.php

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 52

www.piacere-project.eu

Executive Summary

This deliverable is the output Task 3.5 and it will be iterative. The current version of the
deliverable is the v1 and contains the output of the Task 3.5 after 12 months of work.

The central element of the PIACERE Framework is the IDE, by which it is possible to specify the
infrastructure of the application using a model-driven engineering approach. This deliverable is
composed of the software prototype of the PIACERE IDE and the associated technical
information.

This document starts with the analysis of possible technologies that could be used to develop
the PIACERE IDE, with an explanation of why Eclipse Theia, a recent promising technology, was
chosen for the implementation of the IDE. The key requirements considered for selecting the
best technological option were on one hand. the possibility to offer the tool as a SaaS and on
the other, to provide support to UML models and profiles.

The main contribution of this deliverable is the development of the initial version of the PIACERE
IDE together with the technological and functional description of the IDE. This initial version is
available in the PIACERE Gitlab repository along with instructions on how to install it.

The following versions v2 and v3 will be delivered in months 24th and 30th respectively. In these
deliverables, new versions of the IDE will be presented together with the corresponding updated
technical information. Those new versions of the IDE, will provide support for the new versions
of the DOML and will integrate the rest of the PIACERE Key Results (KR).

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 52

www.piacere-project.eu

1. Introduction

1.1. About this deliverable

This deliverable is the output of task 3.5 and describes the status of the Integrated Development
Environment (IDE) after 12 months of work. This is the first version of the deliverable. The
following versions are planned for months 24th and 30th respectively. In these deliverables, new
or updated versions of the IDE will be presented.

The central element of the PIACERE Framework is the IDE, by which it is possible to specify the
infrastructure of the application using a model-driven engineering approach. This deliverable
describes the analysis of possible technologies evaluated to develop the PIACERE IDE, with an
explanation of why Eclipse Theia, a recent promising technology, was chosen for the
implementation of the IDE.

The main contribution of this deliverable is the development of the initial version of the PIACERE
IDE together with the technological and functional description of the IDE. This initial version is
available in the PIACERE repository along with instructions on how to install it.

1.2. Document structure

This document is structured in the following sections:
1. Introduction: In this section an overall description of the delivery and its main goal is

provided.
2. Analysis of possible technologies to develop an IDE: This section describes the candi-

date technologies for developing an IDE. Technology is evolving very fast, and in the last
few years new technologies have appeared with which to develop IDEs. In this section,
traditional versions have been analysed along with the newer ones that allow collabo-
rative online work.

3. PIACERE IDE implementation. This section describes the architecture and the current
status of the PIACERE IDE.

4. Delivery and usage. This section contains the installation and the user manuals.
5. Conclusions and future work: Where a summary of insights gained through this deliv-

erable are presented briefly.
6. References: Where relevant additional documentation is presented as citations.

 DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 52

www.piacere-project.eu

2. Analysis of possible technologies to develop IDEs

This section describes the candidate technologies for developing the PIACERE IDE. As its name
indicates, the tool to be developed is an Integrated Development Environment and therefore it
must incorporate the typical functionalities offered by this type of tools nowadays.

As indicated in the GA, a first candidate will be Eclipse, but other options may be considered. In
particular, a special attention will be posed to the possibility to exploit a web-based approach,
that will allow the IDE to be made available as a service, for exploitability and sustainability.

The two most important features to take into account when selecting the technology to build
the IDE have been, 1) the possibility to offer the tool as a SaaS and 2) to have support UML
models and profiles. These models will be used by other PIACERE Key Results within the distinct
applications of the PIACERE framework. In addition, it must ensure that these models can be
connected in any way to follow the lifecycle of a PIACERE solution.

The different tools analysed are described below, and then some tool pairs are compared. The
section concludes with the technology selected to develop the PIACERE IDE.

2.1. IDE Candidates

Part of the information used to describe the different IDEs analysed comes from the official
website of the products.

2.1.1. VS Code

Visual Studio Code (VSC) IDE [1] is a desktop application mainly developed by Microsoft. It is an
extensible code editor heavily based on keyboard commands and web technology but deployed
on the Electron framework as a desktop application. It is written in Typescript and HTML, and it
is available for all main operating systems.

The VSC IDE is free of charge, so it can be downloaded and used for free, and it is released as
open source. Nevertheless, not all the product is open source, because it contains some parts
that are proprietary. VS code´s multi-purpose plug-in system greatly extends its functionality.
The software runs on macOS, Windows 10, and various Linux distributions.

VSC provides a very efficient and easy to use extension model, proven by the thousands of
extensions available for it. The users/developers of VSC have a marketplace where they can
share their work and obtain embedded extensions to expand the functionality of the editor so
to meet their particular needs. DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 52

www.piacere-project.eu

Figure 1: VSC IDE screenshot (source: VSC)

This IDE includes some innovations and is continuously under development thanks to its large
user’s community, most of them from Microsoft, that takes care of maintaining and improving
it.

One of the most important components in VSC is the text editor, named Monaco Code Editor
[2], that is part of the Visual Code Project, and free to use. This editor was embedded in IDEs
other than VS Code, for instance: VS Codium [3] (completely free and open source), or Eclipse
Theia [4].

Conclusions of VSC

VS Code is one of the most used IDEs by programmers today because of its large number of
extensions and the possibility to be used with many languages and purposes. However, VS Code
is not a tool intended to make tailor-specific and customized IDEs and does not support Eclipse
Modeling Framework (EMF), which is a set of Eclipse plug-ins which can be used to model a data
model and to generate code or other output based on this.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 52

www.piacere-project.eu

2.1.2. GitHub Codespaces (VS Code Online)

GitHub Codespaces [5] is an online version of Visual Studio Code, hosted by Microsoft in Azure,
their Cloud Platform. It runs fully within a software container in the server where it’s deployed.

Figure 2: Github Codespaces screenshot (source: Github.com)

This IDE includes the editor, terminal, debugger, version control, settings sync, and the entire
ecosystem of extensions. It provides a lightweight Visual Studio Code experience entirely in the
browser. The web-based editor allows to browse source code repositories from GitHub and to
make lightweight code changes. It can open any repository, fork, or pull request in the editor,
which has many of the features of VS Code, including search and syntax highlighting. For running
or debugging the code, it is however, necessary to switch to the cloud-hosted environment or
the VS Code desktop.

Itis not possible to access freely to GitHub Codespaces because itis in a beta phase where only
some GitHub users have access. GitHub Codespaces will not be free of use. Its cost will vary,
depending on the development needs [39].

GitHub Codespaces Extensions
GitHub Codespaces has an extension model called GitHub Codespaces extensions.

GitHub Codespaces extensions provide a defined API [14] which empowers the developer to
write plugins that use it to basically influence how the tool behaves. This offers the following
possibilities:

• Add menu entries
• Hook into events (file save, etc)
• Add compilers
• Add language servers
• Add new views

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 52

www.piacere-project.eu

The extensions run in a separated isolated process, so it cannot harm the stability of the tool.
Extensions can be installed at runtime and used immediately.

GitHub Codespaces provides multi-purpose cloud-hosted development environments. There
exists a marketplace where extensions can be downloaded and installed within GitHub
Codespaces. There exists a lot of extensions available to download, including the same ones than
VS Code for desktop has. Codespaces can be connected from VS Code or a browser-based editor
that has been made accessible from any online location.

The terms of use of the VS Code marketplace do not allow to install extensions from other
applications that are not VS Code.

Workspaces

The workspaces of the IDE and their configuration are hosted in the cloud, in the containers
cluster where the IDE is installed.

There exist some options that allow the developer to add and install shell scripts which execute
and install all the necessary tools needed for the development on each workspace.

Live sharing, where users can connect to instances of the tool and do a pair programming with
other developers, is supported. That is the collaborative coding approach.

License

• MIT license, governed by Microsoft. They decide who can contribute or not
• More than 400 contributors to the project. However, top contributors are affiliated with

Microsoft.

Conclusions of GitHub Codespaces

GitHub Codespaces [5] is an online version of Visual Studio Code, and it has the same issues as
VC code for developing an ad-hoc IDE based on and for models.

2.1.3. Eclipse IDE + Eclipse Modeling Framework

The Classical Eclipse IDE [6] is the most complete IDE available at this moment, completely free
of use and more powerful than any other desktop IDE.

It has more than 20 years of experience and improvements, with a lot of projects based on it,
and a lot of plugins that contribute to it by extending its functionality and providing a lot of extra
features. DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 52

www.piacere-project.eu

Figure 3: Eclipse IDE screenshot (source: Eclipse)

Eclipse IDE is a desktop application that must be installed locally. The workspaces are also stored
in the local machine of the developer. It allows the integration with code version control systems
such as SVN or GIT.

Furthermore, the Eclipse IDE exhibits many powerful integration capabilities with UML (Unified
Modelling Language) and Profiles. This part is not so well covered right now in the other IDEs,
but it is an important and critical feature for the PIACERE project.

Eclipse is an IDE that can be used to create ad-hoc IDEs/products. In turn, these products can be
extended with other plugins in order to fulfil the developers’ needs. For example, Papyrus is a
product created with Eclipse. Papyrus can be therefore downloaded and used as modelling
application, but additional plugins to develop applications in Java and others can also be
installed.

Nevertheless, the more plugins there are installed in an Eclipse instance, the more memory is
required for it to function, and the slower it becomes. Eclipse is not a light environment. Indeed,
it is a very demanding environment in terms of memory consumption. This is the reason why it
is preferable to have several instances of Eclipse products, one per development environment,
instead of only one instance with many plugins and features installed on it.

Eclipse is based on workspaces. It is possible to have a single installation of Eclipse with multiple
workspaces, each of them containing projects of distinct developments. This way, a developer
can organise their projects separately and load only those that are currently being worked out.

Regarding modelling development in Eclipse, it has a long-standing experience and many plugins
and features that make it easy and powerful against other IDEs.

Extensibility

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 52

www.piacere-project.eu

Eclipse IDE extensions are called plugins too, and there exist multiple ways to install them:

• Eclipse marketplace: itis a marketplace where the developer can select and install any
plugin available on that marketplace. This marketplace is hosted on Eclipse Foundation
severs.

• Update site: the developer can upload its solution with a certain structure and share the
URL. With it the developer can install the plugins.

• Drop-ins: the plugins can be installed locally by unzipping the content in the drop-ins
folder of the Eclipse installation. However, this is not considered the best approach.

Workspaces

Eclipse IDE workspaces are installed locally on each machine for each developer. There is no way
to share the workspace with others and deploy it in a distributed way. The user has access to all
the workspaces available in its own hard drive.

The Eclipse Modeling Framework (EMF) project is a
set of Eclipse plug-ins along with a modelling
framework and code generation for building tools
and other applications based on a structured data
model in Eclipse. EMF (core) is a common standard
for data models, which many technologies and
frameworks are based on.

Eclipse Modelling Framework [7] is the core of the model generation in Eclipse. It eases building
tools based on structured data models in Eclipse. EMF is provided by default on each Eclipse
distribution, but there is a lot of extra functionality on editors and code generation that is very
interesting to consider. It also provides transaction and validation on the models.

Figure 4: Eclipse Modeling Framework screenshot (source: Eclipse Modeling Framework)

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 52

www.piacere-project.eu

EMF is considered one of the best and more expanded modelling languages, that is the base of
the models. On top of it, other languages bring support for graphical editors, like GMF [24] or
Graphiti [25]. There also exist model-to-model and model-to-text language generators that
provide the functionality to convert models into other models, or into text or code, like ATL [28],
QVT [29], XPAND [36], or Xtext [34].

License
Eclipse IDE is free, open source and uses the Eclipse Public License.

Conclusions of Eclipse IDE + Eclipse Modeling Framework

Eclipse + EMF have been for years the favourite technologies to build IDEs based on models.
EMF was designed with the specific purpose of developing customized IDEs, as it has native
support for models and has a series of utilities and plugins for this purpose. This technology has
been on the market for almost 20 years and is well established. The solutions based on these
technologies can be offered as desktop solutions. It is not allowed to be offered in SaaS mode in
the cloud.

2.1.4. Eclipse Theia + EMF.cloud

Eclipse Theia [4] is a completely open-source project hosted by Eclipse Foundation with a
modular and flexible architecture. Theia is not a tool per se, but by definition, itis more of an
open-source platform for building web-based tools and IDEs and developing under vendor-
neutral open-source governance, which supports the VS Code Extension protocol.

Figure 5: Eclipse Theia screenshot (source: Eclipse)

It is intended to be the basis for a developer to implement tools, regardless of whether those
tools are domain-specific, adapted code, or even unrelated to the source files.

Eclipse Theia supports both local and online deployment modes. Local installations are possible
using Electron. Theia consists of a frontend, running on a browser or in the local desktop
application, and a backend running on any host or locally within the desktop application. The

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 52

www.piacere-project.eu

frontend and backend communicate through JSON RPC over web sockets. In this case, itis more
accurate to talk about a platform to build tools, and not of a product. An example of that is
Eclipse Che [8], that comes with a default IDE that is based on Eclipse Theia.

Eclipse Theia cannot be downloaded and used directly but one can download the source code
and build a desktop application with Electron, deploy it on a docker container, or try it directly
from Gitpod.

Theia Extensibility

Eclipse Theia extensions and plugins integrate textual language frameworks such as LSP,
Monaco, Eclipse JDT/CDT, Git and Xtext to support web-based and cloud-based IDEs for generic
programming languages as well as custom textual Domain-Specific Languages. This includes
features such as syntax highlighting, autocompletion, refactoring, formatting, and quick fixes.

The extensions are part of the core of Eclipse Theia [15]. Everything included in the core
platform, is an extension. There is no difference between extensions that the user adds by hand
and components that were already installed. All the extensions’ communications are handled
via dependency injection. The extensions installed in Theia are accessible through the Plugins
view (see Figure 7¡Error! No se encuentra el origen de la referencia.)

This way of extending the platform has the advantage that the developer can do whatever the
core platform can do, like accessing all the available APIs inside the core, overriding some
barriers for a dependency injection, and customizing or adapting the tool that the developer is
building.

Figure 6: Eclipse Theia Model Example (source: Eclipse)

Figure 7: Theia plugins list

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 52

www.piacere-project.eu

Theia extensions cannot be installed at runtime. The use case for Theia Extensions is to build
some extension as a product, to configure it, and then to deploy it, rather than letting developers
install their own extensions. However, recent implementations of Eclipse Theia allow to
incorporate an API to install also VS Code extensions, but not using the VS Code marketplace, as
there is another place where the developers can publish their extensions to allow them to be
installed within Eclipse Theia. This site is OpenVSX [16]. The terms of use of this marketplace are
more relaxed than VS Code marketplace.

License

• EPL license, governed by Eclipse Foundation. Itis an independent foundation where
everybody can contribute

• More than 100 contributors. Top contributors are related to different companies

EMF.cloud
 EMF.cloud [21] is an Eclipse-based modelling framework and code
generation facility for building tools and other applications based on a
structured data model. It can be said that EMF.cloud is the web and cloud
version of the classic EMF. Many of the EMF plugins have been adapted
for this new web version, although new plugins have also appeared

specifically for the web version.

This solution is licensed under the Eclipse Public License and the MIT License, therefore free of
charge. Out of its scope is any software component that is specific to a particular application
domain, including specific modelling languages or code generators for modelling browser- or
cloud-based applications.

Conclusions of Eclipse Theia + EMF.cloud

Eclipse Theia + EMF.cloud are new technologies that run in the cloud and fill a gap in the market
that is not covered by Eclipse + EMF. These technologies have the handicap that they are not
yet fully mature, however with their current state it is possible to develop tools needed in the
PIACERE project, as they are also in continuous development and have a very active community.

2.1.5. Eclipse Che

Eclipse Che [8] is not strictly speaking an IDE, it is more of a workspace server ”Kubernetes-
Native” for open-source developers that allows collaborative/multi-user work. Eclipse Che
integrates multiple kinds of IDEs for developers. Eclipse Theia is the default option, but
competes with others like VS Code, Jupyter, Classic Eclipse, or IntelliJ. From a hosting point of
view, it is more flexible because it can be hosted in any Kubernetes cluster. To achieve that it is
just needed to configure a Kubernetes installation in a server and run Eclipse Che on it. Each
workspace corresponds with a container in the Kubernetes cluster and can be shared with
multiple developers.

The workspaces can be configured in the following terms:

• Editor: an Administrator should decide which editor is used on each workspace from
those that are available

• Plugins: the Administrator decides which plugins are installed in the workspace,
meaning those that are most useful for the developers

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 52

www.piacere-project.eu

• Projects: A Team Manager can configure multiple projects in a workspace, meaning
those where their developers are required to work on. A workspace project normally is
a Git project. Just only copying the URL of the Git project is enough to get started.

Eclipse Che makes the works with Docker and Kubernetes simpler by providing a working
environment that avoids having to run local installations of Docker and Kubernetes.

Extensibility

Eclipse Che extensions are called plugins. Plugins are installed in the context of a workspace, and
there exists a reduced set of official plugins available to be installed. Available plugins also
depend on the selected editor for the workspace.

Eclipse Che uses the same syntax as Visual Studio Code for plugins, which means that most of it
can be used in both tools without modification.

Despite of this, theoretically it is possible to install any extension if it is available on GitHub,
because it is possible to configure it in the Eclipse Che workspace advanced configuration.

Workspaces

The workspaces of Eclipse Che and their configuration are hosted in the cloud, in the containers
cluster where the IDE is installed.

Though the “stack management” it is possible to configure and manage stacks, providing a
template for the developers.

• Java with Spring Boot projects
• Javascript projects
• Python projects
• ...

Workspaces can be shared simply by creating a one-click URL, configuring a GIT repository to be
checked out and the respective stack to be used by the new developers that joins these
workspaces.

License

It is completely free , open source and uses the Eclipse Public License.

Conclusions of Eclipse Che

Eclipse Che is not an IDE per se, but as it integrates with several IDEs included in this section, its
use will be discussed in the coming months, in case it is required to have and IDE with a real
multi-user feature.

2.2. Workspaces management

The situation with GitHub Codespaces, Eclipse Theia deployed remotely, or Eclipse Che, is that
there exists a container that runs on a remote location that holds all the business logic, the
source files, the compiler, the checker, the debugger, etc. Basically, everything that is headless
and that interacts with files while consuming some computation power.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 52

www.piacere-project.eu

This is called a workspace container. The Browser IDE is the User Interface that connects to this
workspace container. Therefore, the client application only displays the information, while the
server makes the calculations.

When the developers start working, they need to log in into the system and then somehow need
to decide which workspaces they are working on. The responsibility of choosing the proper
workspace is for the workspace server. It hosts all the workspaces for the developers. It also has
a sort of dashboard where developers can configure the workspaces of choice, start and stop
them, share with other people, etc. All of these are possible because these containers are
deployed on clusters with solutions like Kubernetes [9] or Docker [10].

2.3. IDE baseline selection

This section starts with a comparison of the IDEs described in the previous sections. The
considered characteristics for the comparison were:

• Free of use: If any type of fee is needed for using the tool or not

• Open source: If it is open source or not

• License type: The type of license

• Online: If the IDE can be accessible via work or locally

• Share workspaces: If the workspaces are shared and it is allowed that several users utilise
the same workspace.

• Extendable: If the IDE could be extended using any extensibility mechanism or not.

• Open developer community. If the IDE has a developer community or not.

• Support for UML: If the IDE provides support for UML

• Maturity: since which year the IDE is available.

The following table shows a comparison of the different characteristics of the technologies
analysed.

Table 1: IDEs Features Comparison (source: PIACERE’s own contribution)

 VS Code Github
Codespaces

Eclipse Theia+
EFM.cloud
(Selected)

Eclipse Che Eclipse IDE+
EMF

Free of use Yes No Yes Yes Yes

Open source Not 100% No Yes Yes Yes

Licence type MIT Private EPL EPL EPL

Online No Yes Yes/No Yes No

Share
workspaces

No Yes Yes Yes No

Extendable Yes Yes Yes Yes Yes

Open
developer
community

Yes No Yes Yes Yes

Support for
UML

No No Yes No Yes

Maturity 2015 2020 2017 2016 2001

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 52

www.piacere-project.eu

Depending on the specific aim of the project, one product or the other can be the best choice.
Some considerations are described below: .

• VS Code: if it is preferable a downloadable application for developing applications.
• VS Code Online: if it is preferable an online application for developing applications, and

Azure or GitHub are available to the developing group.
• VS/Github Codespaces: if use VS Code Online is the preferred option, or if the use of

other features than the ones offered by default is not needed.
• Eclipse IDE: if a full IDE that supports any kind of development is desired, including

modelling software approach, and if developing online is not a real need. Also supports
UML modelling and UML Profiles, and contains a lot of plugins to generate code and
models

• Eclipse Che: if the desired option is to self-host the workspaces in the user’s own
Kubernetes servers. Also, if Eclipse Theia is chosen as the default editor.

• Eclipse Theia: if an online IDE that supports any kind of development is the preferred
choice, including modelling software approach. Thanks to EMF.cloud it supports UML
modelling and UML Profiles.

After analysing the different technologies that could be used to develop the PIACERE IDE, the
viable options if we want the solution to incorporate support for models would be Eclipse Theia
and Eclipse IDE. Both technologies provide support thanks to EMF which is a set of Eclipse plug-
ins along with a modelling framework for building tools based on a structured data model in
Eclipse. EMF (core) is a common standard for data models.

On one hand, Eclipse IDE + EMF are mature technologies with stable, well-documented versions
and a complete set of plugins that would allow us to develop the IDE with minimal risk. The
solutions based on these technologies can be offered as desktop solutions. SaaS mode on the
cloud is however not supported.

On the other hand, Eclipse Theia + EMF.cloud are new technologies. At the time of writing this
document, they are not fully mature but are evolving very fast with a very active community.
These technologies allow to develop tools in a SasS mode in the cloud.

In order to have more confidence in using Eclipse Theia, at the conference Eclipsecon 2021 [17],
we had the opportunity to ask the Eclipse software architects in the session "Building (web-
based) tools with Eclipse" whether it would be possible to develop the PIACERE IDE using Theia.
Their recommendations were:

• If it is a new development, do it directly in Theia + EMF.cloud.

• Start developing the parts of the IDE that use the more mature Theia + EMF.cloud
technologies and postpone the development of the less mature Theia components. The
road map of these technologies includes several important releases in the following
months.

• We can contact the community and the developers to raise needs to be included in the
roadmap of the products.

• The idea of Eclipse is to evolve towards the web. So, if we want to make a tool that lasts
over time, the most sensible thing to do is to make it web-based.

• Follow an incremental approach and start with the headless development. It can be
reused in case we have to change to the classic Eclipse IDE.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 52

www.piacere-project.eu

Although Eclipse Theia + EMF.cloud are not yet complete mature technologies, they are
constantly evolving and are the future in the short term. Even if it costs us more effort to
develop the IDE with Theia, we are convinced that using it we can develop the IDE for PIACERE.

In the following section, the PIACERE IDE technical details will be explained, including the
information related to the Theia version (our first choice) and Eclipse IDE version that the current
version uses. This second option has been defined in case we find any blocking issue with Theia.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 52

www.piacere-project.eu

3. PIACERE IDE Implementation

3.1. Functional description

The central element of the PIACERE DevSecOps Framework (KR13) is the Integrated
Development Environment “IDE” (KR2), by which the technical user (Architect, DevOps
engineer...) specifies the infrastructure of the application using a model-driven engineering
approach. To support this activity, the PIACERE IDE integrates the DOML, a Modeling language
used for describing the infrastructure of the application using different levels of abstraction [40].

When developing the IDE for the PIACERE project, the biggest challenge has been in the choice
of the technology to be used. On the one hand, there was the possibility of developing a desktop
IDE based on the classic version of Eclipse, a mature technology in which several project partners
had a lot of successful experience developing IDEs for both R&D and industrial projects. On the
other hand, there was the possibility of realising the IDE using very promising emerging Eclipse
web technologies, which are not yet consolidated and with the aggravating factor that the
consortium lacked experience at the beginning of the project.

After analysing the pros and cons (see previous section), it was finally decided to develop the
IDE using Eclipse Theia. This section describes the solution used to develop the IDE with Theia.
The alternative solution to be used in case we prefer the classic Eclipse has been added as an
annex. This second solution was designed in case we encounter any technological impediment
that would prevent us from continuing with the web version solution.

3.1.1. Requirements for the PIACERE IDE

The requirements for the PIACERE IDE are presented as part of Deliverable D2.1. They have been
collected through multiple workshops with technical partners.

In this section, It is provided a summary of the PIACERE IDE requirements grouped in three
tables, the first one contains the functional requirements, the second one contains the non-
functional requirements and the last one contains the business requirements. For each
requirement, an explanation of how the requirement is addressed or planned to be addressed
is provided.

Table 2: Functional requirements related with the IDE (source D2.1)

REQ ID Description How IDE is addressing this requirement

REQ28

DOML should support
the modelling of
containerized
application
deployment

The DOML supports the modelling of containerized
application deployment. The initial version of the IDE
provides full support for the initial version of the DOML. If
new properties/elements related with containerization are
required and added to the DOML, the IDE will be updated
accordingly.

REQ40

The IDE should provide
a visual diagram
functionality to
visualise the different
assets defined through
the DOML and DOML
Extensions.

The current version of the IDE provides a tree editor to
manage the DOML instances. In the following versions a
visual editor will be add to the IDE. Thanks to this editor, the
user will be able to visualize main DOML assets. This editor
will not have the capability of editing the DOML.

REQ41
The IDE should be
extensible through the

The IDE is based on Theia and Theia extensions. The
integrations of the PIACERE KR will be implemented using

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 52

www.piacere-project.eu

REQ ID Description How IDE is addressing this requirement

plugin mechanism. Not
only to support
PIACERE assets (ICG,
VT) but also for third
party collaborators.

Theia extension mechanism. Any third-party
component/functionality can be integrated using the same
approach.

REQ43

The IDE should be
easily updatable to
newer software
versions.

The IDE is based on Theia and Theia extensions. All the work
made to build the IDE follows the best Theia development
practices including the Dependency Injection (DI)
framework to wire up the different components.
In the scripts for building/compiling the tool is it established
the specific versions to be included. Moreover, a node
utility called Yeoman is used for building the solution. This
utility is similar to “Maven” and allow us to choose the
libraries to be included in the project. For the above
reasons, it can be stated that the IDE is ready to easily adapt
to the new versions that appear

REQ44

The IDE could provide
an import mechanism
to automatically fulfil
partial DOML.

The current version of the IDE does not support this
functionality. In the first iteration of the IDE the efforts have
been dedicated to providing support for creating new DOML
instances. In the next release, the functionality for
importing partial IaC specifications will be provided.

REQ62
DOML must support
different views.

DOML allows models to be defined on a per-layer (view)
basis. Layers represent different viewpoints on the system.
The layers defined are the (i) application layer, (ii) the
abstract infrastructure layer, (iii) concrete layer. Currently
the IDE provides support for the different views included in
the DOML

REQ76

DOML should allow the
user to model each of
the four considered
DevOps activities
(Provisioning,
Configuration,
Deployment,
Orchestration).

The DOML supports DevOps activities. The initial version of
the IDE provides full support for the initial version of the
DOML. If new properties/elements related with DevOps
activities are required and added to the DOML, the IDE will
be updated accordingly.

REQ99
IDE to integrate with
both local and remote
Git repositories.

This requirement is not supported yet, but it is planned to
support this requirement before the month 15 of the
project (March 2022). To support this requirement, specific
Git Theia extensions will be evaluated. After this evaluation,
the most suitable one for the needs of the IDE will be
integrated.

REQ GA
Develop and IDE using
web-technologies.

This is a requirement not included in the list of requirements
of the D2.1 ,but It has been taken from the description of
the Task 3.5 in the Grant Agreement “a first candidate will
be Eclipse, but other options will be considered. In
particular, a special attention will be posed to the
possibility to exploit a web-based approach, that will allow
the IDE to be made available as-a-service “
This is the requirement that has most conditioned the
development of IDE, because after carrying out the initial

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 52

www.piacere-project.eu

REQ ID Description How IDE is addressing this requirement

study of possible technologies to develop IDE, it was
decided to use the classic Eclipse. But after a second in-
depth review of Eclipse Theia in which a prototype was
developed, it was decided to use Eclipse Theia, which allows
us to obtain a Web editor.

Table 3. Non-Functional requirements related to the IDE (source D2.1)

REQ ID Description How IDE is addressing this requirement

REQ42

The IDE should be
implemented using
open-source
software.

All the software artifacts used by the IDE are open source.

Table 4. Business requirements related to the IDE (source D2.1)

REQ ID Description How IDE is addressing this requirement

REQ64

The IDE should
provide a text-
based
representation of
DOML to ease
version control.

The IDE provides a textual representation of the DOML
instances created. For each of these instances a JSON file is
created. The user can create as many versions of an instance
as it is needed. These files are stored in the workspace of the
project, but in the future an integration with a git repository
will be added.

3.1.2. Fitting into overall PIACERE Architecture

The PIACERE IDE is a tool for modelling Infrastructure solutions based on the PIACERE DOML
(DevOps Modelling Language) and DOML-E (DOML Extensions). At the technological level, the
IDE has been developed using the Eclipse Theia Framework, a technology used to create
customized tools or IDEs.

The IDE, as the main interface for user’s interaction, is connected with other PIACERE
tools/components (Figure 8). The design time components are more tightly integrated with the
IDE as they all belong to the design phase of the solution. The runtime components are less
coupled with the IDE, but nevertheless the IDE interacts with these components.

Through the IDE, users can describe their system infrastructure according to the underlying
metamodel, which in the case of PIACERE is the DOML.

The IDE will integrate the Verification Tool (VT) and the Infrastructural Code Generator (ICG).
Thanks to the VT, it will be possible to validate the defined DOML instance. On the other hand,
the ICG tool, when triggered from the IDE, will automatically generate the corresponding IaC for
a specific target environment (e.g., Terraform, Ansible, TOSCA, …) from a DOML instance.

All the information produced at design time will be stored into the PIACERE data repository, and
after finalising the design time phase, a DOML specification will be completed, and the
corresponding IaC will be generated.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 52

www.piacere-project.eu

The runtime components of the PIACERE will be also linked with the IDE. The runtime controller
(PRC) will be invoked through the IDE. This component will be in charge of controlling the
deployments and linking them with the Infrastructure Advisor components.

A detailed description of the PIACERE Design time and Run time workflows can be found in the
Deliverable D2.1.

Figure 8: PIACERE Design time Components

3.2. Technical description

This section describes the PIACERE IDE using Eclipse Theia + EMF.cloud, the technologies finally
chosen for developing the PIACERE IDE.

3.2.1. Prototype Architecture

Eclipse Theia [18,19] is a framework for developing multi-language Cloud and Desktop
Integrated Development Environment (IDE)-like products. It is implemented in TypeScript and is
based on Visual Studio Code and stands out for its extensibility.

Theia supports multiple languages through the Language Server Protocol as well as many VS
Code extensions. The installation and deployment of Eclipse Theia depend on existing
frameworks, such as Docker and Electron. Eclipse Theia needs to be deployed on cloud
infrastructure providers [18].

Eclipse Theia has a frontend and a backend running. Their communication is through JSON RPC
over Web Sockets. Theia allows to develop an IDE and run it on browsers or native desktop
applications from a single source. It supports three architecture configurations [18], as
illustrated in the following Figure:

• Option1. Native frontend “Desktop” and Remote backend.

• Option 2. Native frontend “Desktop”, local backend.

• Option 3. Web Client, remote backend. Eclipse Theia renders a user interface on the
web browser for the frontend. The backend runs on a host.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 52

www.piacere-project.eu

Figure 9: Theia Architecture configuration. (Source desosal.nl [18])

Theia is an extensible and flexible framework that has an architecture based on components. In
Theia everything is an extension and the components are loosely coupled, allowing an easy
integration of new /updated components without affecting the others.

THEIA CONTAINER VIEW
A container is an isolated element that provides a specific functionality. Each container is a
separate deployable object or runtime environment. Theia is composed of five containers [19]:

• The frontend application provides a client User interface that runs as a single page
application, which can be hosted in browsers and in an Electron Browser Window.

• The backend runs in Node.js and can be deployed locally or remotely, communicating
with the frontend application.

• The language server dissociates language-related features and functions from the IDE.
Theia provides different language servers for each supported programming language.

• Debugger servers extend debug UI and support debug function.

• The file system container provides access to the file system that controls how data is
stored and retrieved.

Figure 10: Theia containers (adopted from [19])

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 52

www.piacere-project.eu

Eclipse Theia can be customised to offer tailor specific functionalities, which can be achieved by
updating or adding new extensions to the frontend and/or backend containers.

THEIA COMPONENT VIEW

Theia containers are made up of components. Figure 11 shows the details of the components
included in the different Theia containers. These components can be categorised into 4 types
[19]:

• Extension Component (green): extends the IDE’s functions. The extensions are done by
a developer. It depends on the platform components.

• Platform Component (yellow): main components for the IDE platform. It depends on
the Runtime components.

• Runtime Component (red): supports Theia’s runtime environment.

• External Resource Component (blue): external resources needed by Theia.

Figure 11: Theia components detail (Source desosal.nl [19])

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 52

www.piacere-project.eu

THEIA CONNECTOR VIEWS

For the communication among containers connectors are used. The connector types supported
on the container level are: JSON-RPC protocols, REST APIs, Language Server Protocol (LSP), and
some debugger protocols.

On the component level, the components in Theia are all loosely coupled. To write up the
different components, Eclipse Theia uses the Dependency Injection (DI) framework Inversify.js
[37]. The dependencies are created by the DI on creation for each component, based on some
configuration provided by the developer on start-up through so-called container modules.

THEIA EXTENSION MECHANISMS

Theia supports three extension mechanisms [20] to adapt the IDE to the needs of each project.
These extension mechanisms, described next, can be used in isolation or combine them in the
IDE.

• VS Code extensions: compatible with VS Code, limited to the VS Code extensions API,
as some use cases are not possible due to API restrictions. They are used to add features
to existing tools. Eclipse Theia provides the same extension API as VS Code, which make
extensions compatible among each other.

• Theia Extensions: Installed at compilation time, full access to Theia internals is provided
through the Dependency Injection, meaning almost no limitations in terms of accessible
API. All Theia extension have access to the same API as the core extensions. This
modularity allows to extend, adapt or remove almost anything in Theia according to the
user’s requirements. Theia project is entirely built using Theia extensions in a modular
way. These extensions, however, cannot be used within VS Code

• Theia plugins: Like VS Code extensions, additional access to some Theia-specific APIs
and the Frontend (frontend plugins). Theia plugins are a special type of VS Code
extensions that only run in Eclipse Theia.

Figure 12 depicts the extension mechanisms in Theia. VS Code extensions and Theia plugins run
in a dedicated process, can be installed at runtime and use a specific API. Theia extensions are
added during compilation time, becoming a core part of the user’s Theia application, and having
access to the full Theia API. DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 52

www.piacere-project.eu

Figure 12: Theia Extension mechanisms (Source theia-ide.org [20])

3.2.2. Components Description

In the APPENDIX: PIACERE IDE based on Eclipse desktop, the plugins that would be used for the
alternative desktop version of the IDE have been described. In Eclipse Theia the plugin concept
also exists, but the plugins developed for the desktop version are not compatible with Theia and
therefore a reprogramming process is needed in order to adapt them, especially those parts that
are UI related [41]. Furthermore, many of these plugins do not have their equivalent in Theia,
and, in addition, the Theia philosophy is different from the classic version in Eclipse. Fortunately,
there is a web version of EMF, which is one of the core components needed for PIACERE, called
EMF.cloud.

The plugins used in the PIACERE IDE are described below:

EMF.cloud

EMF.cloud [21] is the web version of EMF. Eclipse EMF.cloud comprises a set of components
that facilitate and simplify the adoption of the Eclipse Modeling Framework (EMF) in cloud-
based applications. Some of the EMF components such as the EMF-JSON Jackson mapper and
Tree editor have been used to develop the IDE. These components will be described below.

LSP

LSP [38] is a language for defining the information to be exchanged between an editor and the
corresponding “language server” used by the editor. Some of the characteristics/features of the
editors (for instance: autocompletion, find references) are provided by LSP. Theia is based on
the Language Server Protocol (LSP) and thanks to LSP, it supports a variety of programming
languages. It can be used as a desktop application, a web application or a hybrid application with
separate front-end and back-end.

GLSP

GLSP (Graphical Language Server Platform) [22] is an extensible open-source framework to build
custom diagram editors in the web/cloud. It can be fully integrated into Eclipse Theia. GLSP
defines a language server protocol (LSP) for diagrams and integrates well with an existing tool

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 52

www.piacere-project.eu

chain and business logic.

Figure 13: Example of a diagram using GLSP (Source eclipse.org [22])

GLSP provides diagram editors, including edit functionality, layouting (via CSS), shapes, palettes
and all other functionalities to build diagrams. In the case of the PIACERE IDE, this visual editor
will be used, in principle, in a read only mode, to visually represent the main concepts of the
application infrastructure. The model cannot be editable through GLSP.

Eclipse CHE

Eclipse Che is not strictly speaking an IDE, it is more of a workspace server that allows
collaborative/multi-user work. Due to the fact that Eclipse Che includes Theia as one of the
supported IDEs, the PIACERE IDE could be easily integrated in Che in the future, if the need of a
collaborative work arises.

EMF-JSON Jackson mapper

JSON binding for EMF models allows serialization and deserialization of EMF Resources in JSON.
For this the file format to store the model instances needs to be changed. Alternatively, the
JSON serialisation to transfer model data, e.g., to a web client can be used. The EMF-JSON
mapper [21] is used by the EMF.cloud model server but it can be used independently too.

Tree Editor

The EMF.cloud tree editor framework [21] allows to build data-centric editors in Eclipse Theia.
The framework provides the basic requirements of a tree editor that should be complemented
with the particularities of a specific domain, e.g., how to build the hierarchy of the domain
elements represented in the tree or the icons used for each element (see Figure 17) .

3.2.3. Technical specifications

As explained in the previous section, Theia provides three possible architecture configurations.
In the case of the PIACERE IDE, the option 3 was selected: a Web Client front-end and a remote
back-end. PIACERE IDE renders a user interface on the web browser for users. The backend runs
on a host.

DRAFT

http://www.medina-project.eu/
https://github.com/eclipse-emfcloud/emfjson-jackson
https://github.com/eclipse-emfcloud/emfjson-jackson
https://github.com/eclipse-emfcloud/theia-tree-editor
https://github.com/eclipse-emfcloud/theia-tree-editor

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 52

www.piacere-project.eu

As an IDE, the key component for Theia is the editor, which is used to create instances of a
model. In the case of PIACERE, the instances are hardware infrastructures representations.
These instances must satisfy the underlaying metamodel, which in PIACERE's case is DOML (KR1)
and DOML-E (KR4). To do this verification, some grammar checkers/validators will be used
“Verification Tool” (KR5). These instances can be transformed in other type of models or
languages. In the case of PIACERE, a code generator from DOML to text will be provided
(“Infrastructural Code Generator” [KR3]). A control version system based on GIT Technology will
be included in the IDE in the future version. The specific control version extension to be added
in not decided at this stage of the project (M12).

JSON Schema is the format used by Theia components. As a result, the editor used in the
PIACERE IDE (see Figure 14), to create DOML infrastructure instances, should work internally
with JSON and JSON Schema formats. In order to obtain the JSON Schema from the DOML Ecore
and vice versa, a transformation between both formats has to be done (step 3 -4 in Figure 14).
In the current version of the PIACERE IDE, the equivalent JSON Schema has been obtained
manually. In the future versions it is planned to use EMF.cloud / JACKSON toolset to transform
the Ecore to EMF.cloud/Json and vice versa.

The representations of the instances in these formats (XML, EObject and JSON) are equivalent,
so any extension / Key Result can use any of these formats to work with the instances. For
example, the Infrastructural Code Generator could use a JSON instance of the infrastructure to
execute the transformation. While the Verification tool could use an equivalent instance in an
XML format to run the validation.

Figure 14: DOML transformations (source: PIACERE’s own contribution)

The extension mechanisms used in the PIACERE IDE is the so-called “Theia Extension”, which
embeds the extension within the tool at compile time. This option has been selected because it
is the most powerful one since it uses the same API as the core extensions.

In the PIACERE IDE v1, three extensions have been created:

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 52

www.piacere-project.eu

Figure 15: PIACERE IDE – EXTENSIONS (source: PIACERE’s own contribution)

• DOML Tree Editor. This extension allows users to create infrastructure instances based
on the DOML. Internally, it uses a tree editor combined with forms to create the
instances. Currently, it supports 100% of the elements of the current version of DOML.
Some grammar validation checks are still pending, and it will be implemented as soon
as the DOML v1 is closed. In Figure 17, a screenshot of the DOML tree editor with an
instance of the Posidonia UC provided by Prodevelop has been included. At any
moment, it is possible to change from the tree view editor to a textual JSON
representation (see Figure 16), and vice versa.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 52

www.piacere-project.eu

Figure 17: Posidonia UC Tree Editor Representation

Figure 16: Posidonia UC JSON representation

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 52

www.piacere-project.eu

• Generator Extension. This extension is only a proof of concept to demonstrate how to
integrate a KR inside the IDE. It could be used as an example or guidance for integrating
some KR.

• Validator Extension. This extension is only a proof of concept to show how to integrate
a KR inside the IDE. The particularity of this extension is that it uses external resources.
In this case, part of the functionality to be integrated is located in an external
component which is invoked through a REST Service (see Figure 18). It could be used as
an example or guidance for integrating some KR through REST APIs.

Figure 18: Posidonia UC Validation service

CHALLENGES ENCOUNTERED IN THE IMPLEMENTATION OF THE IDE

This was the project partners' first approach in using Theia + EMF.cloud. Previous knowledge in
IDE development using classic Eclipse could not be reused because the development paradigm
of Theia is completely different, as well as the utilities available. The lack of experience in this
technology, together with the lack of information/documentation, for critical Theia aspects, has
meant that things have been slower than expected and that on many occasions a “trial and error
method” has been used.

Some functionalities required to develop the IDE are not yet supported by Theia or do not work
as expected. Alternative tools/extensions and existing workarounds had to be used. Fortunately,
the community is very active and willing to help.

3.2.4. PIACERE IDE Next Steps

The functionalities/ features to be added or improved in the next iteration of the IDE are:

• Include a GIT control version extension in the IDE.

• Package the IDE as a container using Docker.

• Develop extensions for each of the PIACERE KRs to be integrated with the IDE. The
integration of each KR will be done with the collaboration of the partners involved in its
development.

• Add a visual extension based on GLSP to represent main DOML components
(OPTIONAL).

• Adding Support to new versions of the DOML and DOML-E.

• Integrate the PIACERE IDE into Eclipse Che to allow collaborative work.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 52

www.piacere-project.eu

4. Delivery and usage

4.1. Package information

The code of the project is available in the PIACERE Gitlab repository

In the repository, there is a README file which explains how to install the tool. Moreover, there
is an “Extensions” folder with the following already created extensions:

• DOMLExt. This extension allows users to create infrastructure instances based on the
DOML. Internally, it uses a tree editor combined with forms to create the instances.

• DIMLGenerator Extension. This extension is only a proof of concept to show how to
integrate the Infrastructure Code Generator inside the IDE. It could be as an example or
guidance for integrating some KR.

• DOMLValidator. This extension is only a proof of concept to show how to integrate the
Validator Tool inside the IDE.

The Structure of these extensions follows the structure of a Theia extensions. The main software
artifacts are:

• Lib. Contains the required libraries needed to run the extension.

• Node_modules. Node.js components needed

• src: code of the extension

• README.md: information about the extension, purpose of the extension, how to install
and use.

• package.json: script for building the extension package.

4.2. Installation instructions

DOML IDE Tool Extensions

• Prerequisites

To Install the extensions, you need a clean ubuntu (physical, virtual machine or docker)
and to install the required packages

• Installation

Update the packages manager

apt update

Install some required packages

apt install -y nano curl wget pkg-config libsecret-1-dev g++ gcc

make python2.7 pkg-config libx11-dev libxkbfile-dev

Install NODE VERSION MANAGER

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 52

www.piacere-project.eu

export NVM_DIR="$([-z "${XDG_CONFIG_HOME-}"] && printf %s

"${HOME}/.nvm" || printf %s "${XDG_CONFIG_HOME}/nvm")"

[-s "$NVM_DIR/nvm.sh"] && \. "$NVM_DIR/nvm.sh" # This loads

nvm

Install NODE Version 12.18.4 (Theia ensures working with version >12 and <13)

nvm install 12.18.4

Install NODE PACKAGE MANAGER

apt install -y npm

Add some additional Node PM configuration parameters:

npm config set unsafe-perm true

Install some additional Node Packages:

npm install -g uuid yarn try-thread-sleep keytar node-gyp

npm install -g serverless --ignore-scripts spawn-sync

Note: latest versions of these node Packages are valid for this requierement.

Install Yeoman and Theia Extension Generator

npm install -g yo generator-theia-extension --unsafe-perm=true --

allow-root

CREATING A THEIA ENVIRONMENT

Create a directory for Theia

cd $HOME

mkdir TheiaExample; cd TheiaExample

Create the Theia Environment and an example Theia Extension (select TreeEditor as the
extension type to generate)

yo theia-extension

After this instruction, you have to choose “TreeEditor” option in the list of extensions

Figure 19: Theia extension's type

DRAFT

http://www.medina-project.eu/
https://eclipsesource.com/wp-content/uploads/2021/01/2.png

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 52

www.piacere-project.eu

INSTALLING DOML EXTENSIONS
Download the Extensions folder from this repository

Copy DOMLValidator, domlExt and domlgenerator folders to root TheiaExample folder

Open package.json file and add these lines to the workspaces field:

"DOMLValidator",

"domlExt",

"domlgenerator"

Open browser-app/package.json file and add these lines to the dependencies field:

"domlext": "0.0.0",

"domlgenerator": "0.0.0",

"domlvalidator": "0.0.0",

COMPILE AND LAUNCH

Compile the extensions:

cd $HOME/TheiaExample/DOMLValidator ; yarn prepare

cd $HOME/TheiaExample/domlgenerator ; yarn prepare

cd $HOME/TheiaExample/domlExt ; yarn prepare

Compile the Theia browser app

cd $HOME/TheiaExample/browser-app ; yarn prepare

Launch the Theia browser app

cd $HOME/TheiaExample/browser-app ; yarn start

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 52

www.piacere-project.eu

4.3. User Manual

Figure 20 is the main window (page) after starting PIACERE IDE. It contains several sections:
menu (1), open editors’ box (2), current workspace (3) and main working area (4).

Figure 20: PIACERE IDE - main window

The first task before start working is to create a new workspace or choose an existing one (see
Figure 21).

Figure 21: Open Workspace

After creating or selecting a workspace, it is possible to create a new project, that basically is an
instance of the DOML. To do that, the user should select the menu option “New DOML Model”
that is included in the DOML Editor main menu. This action opens a dialog to specify the name
of the project (see Figure 22).

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 52

www.piacere-project.eu

Figure 22: New DOML Model

Once the project name is specified, the project will be created with the main grouping elements
of the DOML created by default. The DOML instance is represented in a tree view, which will be
the default editor DOML instances. This tree editor allows the user to easily navigate between
the hierarchy of DOML elements/components (see Figure 23).

Figure 23: Empty model specification

From the tree view, it is possible to create new elements by clicking the “plus icon” in the tree
item emergent menu. As soon as you click the button, the element is created and appears in the
tree editor (Figure 24). At any moment, it is possible to remove a tree item from the “trash can
icon”.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 52

www.piacere-project.eu

Figure 24: DOML element creation

In addition, a form appears to fill in the properties of the newly created item. For each type of
DOML element the form is configured accordingly (Figure 25).

Figure 25: DOML model form

In Figure 26, you can see an example of an instance of the DOML after defining several DOML

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 52

www.piacere-project.eu

elements.

Figure 26: DOML instance of POSIDONIA Use Case

Integration with the validation tool

From PIACERE IDE, it is possible to launch other PIACERE tools. This section shows an example
of an integration of an external tool.

From the menu, it is possible to launch the validation tool, that is running as an independent
service. This service has a REST API that will be called from IDE when the user selects the
“Validate DOML” menu option (Figure 27).

After calling the external service, it will process the petition and will provide a response to the
IDE. The IDE will process the results of the invocation of the remote service. DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 52

www.piacere-project.eu

Figure 27: Invocation of an external service

The validation service generates a file with the result of the invocation. This file (*_res) is listed
in the open editor area. In this example, the model was correct, and the validation did not find
any problem in the DOML instance (Figure 28).

Figure 28: Validation response file

Save options

From the File menu option, the user can save the project at any time by selecting the menu
options “Save” or “Save All”. Another interesting option would be to activate the Auto Save
feature to periodically save the project. With this option, the user does not need to worry about
saving the project manually.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 52

www.piacere-project.eu

Figure 29: Auto Save option

Code Editor

If you want to see the instance of the model in plain text, you can change the view to the code
editor. This editor shows the JSON representation of the DOML instance of the project (Figure
30).

Figure 30: Code editor

4.4. Licensing information

The license is still to be defined, but being Piacere IDE a tool that uses Eclipse Theia, PIACERE
IDE license should be conditioned by the licenses permitted for products derived from Theia.

4.5. Download

The first version of the PIACERE IDE is hosted in the git repository of PIACERE under the project
name “T35 IDE”. The URL of the project is:

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 52

www.piacere-project.eu

https://git.code.tecnalia.com/piacere/private/ide_tool.

In the repository, there is a README file which explains how to install the tool. Moreover, you
have an “Extensions” folder with the “domlExt” extension created for modeling HW
infrastructures using DOML and the initial Extension prototypes “DOMLValidator” and
“domlgenator” used to validate how other tools could be integrated into the PIACERE IDE.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/ide_tool

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 52

www.piacere-project.eu

5. Conclusions and future work

This deliverable has described the initial version of the PIACERE IDE, which includes a DOML
extension that allows users to define the infrastructure of an application/services based on the
initial version of the DOML. Moreover, two extra extensions have been created as an integration
example with the Infrastructural Code Generator (KR3) and Verification Tool (KR5). The initial
version of the IDE is available in the PIACERE repository [35]

In addition to explaining the current status of the IDE, the document presented the analysis of
the different candidate technologies to develop the IDE. The selection of the technology has
been mainly based on the ability to be an online tool and the support of models/metamodels.

In the following months, the current implementation of the IDE will be used by the three
PIACERE use cases in order to model their infrastructure. This will be a good proof of concept,
as it will allow us to get feedback from real potential users and to consider such comments in
future versions.

In the following versions of the deliverable, new versions of the IDE will be presented. The new
IDE will provide support for the new versions of the DOML and DOML-E and will contain
extensions for integrating other KRs into the IDE. It is also likely that the versions of Theia and
some of the plugins used will be upgraded, as they are constantly evolving.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 52

www.piacere-project.eu

6. References

[1] «Visual Studio Code» [Online]. Available: https://code.visualstudio.com/
[2] «Monaco Editor» [Online]. Available: https://microsoft.github.io/monaco-editor/
[3] «Visual Studio Codium» [Online]. Available: https://vscodium.com/
[4] «Eclipse Theia» [Online]. Available: https://theia-ide.org/
[5] «GitHub Codespaces» [Online]. Available:

https://visualstudio.microsoft.com/es/services/github-codespaces/
[6] «Eclipse IDE» [Online]. Available: https://www.eclipse.org/eclipseide/
[7] «Eclipse Modelling Framework» [Online]. Available:

https://www.eclipse.org/modeling/emf/
[8] «Eclipse Che» [Online]. Available: https://www.eclipse.org/che/
[9] «Kubernetes» [Online]. Available: https://kubernetes.io/
[10] «Docker» [Online]. Available: https://www.docker.com/
[11] «Eclipsecon Europe 2019: Eclipse Theia and Che, explained and explored» [Online].

Available: https://www.youtube.com/watch?v=oVjAknEtlLQ
[12] «DevConf Czech Republic 2020: Eclipse Che & the future of Cloud Development Tool»

[Online]. Available: https://www.youtube.com/watch?v=zTuVpkl5FZU
[13] «ECT Tools: Eclipse Theia vs. Eclipse Che vs. VS Code» [Online]. Available:

https://www.youtube.com/watch?v=XWDArhNOXRo
[14] «Visual Studio Code Extensions API» [Online]. Available:

https://code.visualstudio.com/api
[15] «Eclipse Theia Extensions» [Online]. Available: https://theia-

ide.org/docs/authoring_extensions
[16] «Open VS Code Extension Registry» [Online]. Available: https://open-vsx.org/
[17] «Eclipsecon 2021. Virtual Event. October 25-28. » [Online]. Available :

https://www.eclipsecon.org/2021/
[18] «Theia: Product Vision. Delft Students on Software Architecture Blog. [Online]. Available

: https://2021.desosa.nl/projects/theia/posts/essayone-productvision/
[19] «Theia: From Vision to Architecture». Delft Students on Software Architecture Blog.

[Online]. Available: https://2021.desosa.nl/projects/theia/posts/essay2/
[20] «Eclipse Theia extensions and plugins. [Online]. Available: https://theia-

ide.org/docs/extensions
[21] «EMF.cloud [Online]. Available: https://www.eclipse.org/emfcloud/
[22] «Eclipse Graphical Language Server Platform . [Online]. Available:

https://www.eclipse.org/glsp/
[23] «Eclipse IDE Base plugins» [Online]. Available:

https://download.eclipse.org/eclipse/downloads/
[24] «Eclipse Graphical Modelling Framework» [Online]. Available:

https://www.eclipse.org/gmf-runtime/
[25] «Eclipse Graphiti» [Online]. Available: https://www.eclipse.org/graphiti/
[26] «Eclipse Sirius» [Online]. Available: https://www.eclipse.org/sirius/
[27] «Eclipse Acceleo» [Online]. Available: https://www.eclipse.org/acceleo/

[28] «Eclipse ATL» [Online]. Available: https://www.eclipse.org/atl/
[29] «Eclipse QVTo» [Online]. Available: https://www.eclipse.org/mmt/qvto
[30] «Eclipse UML2» [Online]. Available:

https://www.eclipse.org/modeling/mdt/?project=uml2
[31] «Eclipse M2E» [Online]. Available: https://www.eclipse.org/m2e/
[32] «Eclipse Papyrus» [Online]. Available: https://www.eclipse.org/papyrus/
[33] «Eclipse EGit» [Online]. Available: https://www.eclipse.org/egit

DRAFT

http://www.medina-project.eu/
https://code.visualstudio.com/
https://microsoft.github.io/monaco-editor/
https://vscodium.com/
https://theia-ide.org/
https://visualstudio.microsoft.com/es/services/github-codespaces/
https://www.eclipse.org/eclipseide/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/che/
https://kubernetes.io/
https://www.docker.com/
https://www.youtube.com/watch?v=oVjAknEtlLQ
https://www.youtube.com/watch?v=zTuVpkl5FZU
https://www.youtube.com/watch?v=XWDArhNOXRo
https://code.visualstudio.com/api
https://theia-ide.org/docs/authoring_extensions
https://theia-ide.org/docs/authoring_extensions
https://open-vsx.org/
https://www.eclipsecon.org/2021/
https://2021.desosa.nl/projects/theia/posts/essayone-productvision/
https://2021.desosa.nl/projects/theia/posts/essay2/
https://theia-ide.org/docs/extensions
https://theia-ide.org/docs/extensions
https://www.eclipse.org/emfcloud/
https://www.eclipse.org/glsp/
https://download.eclipse.org/eclipse/downloads/
https://www.eclipse.org/gmf-runtime/
https://www.eclipse.org/graphiti/
https://www.eclipse.org/sirius/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/atl/
https://www.eclipse.org/mmt/qvto
https://www.eclipse.org/modeling/mdt/?project=uml2
https://www.eclipse.org/m2e/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/egit

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 52

www.piacere-project.eu

[34] «Xtext» [Online]. Available: https://www.eclipse.org/Xtext
[35] «PIACERE REPOSITORY» [Online]. Available: https://git.code.tecnalia.com/piacere
[36] «Xpand» [Online]. Available: https://projects.eclipse.org/projects/modeling.m2t.xpand
[37] «InversifyJS» [Online]. Available: https://inversify.io/
[38] «Language Server Prototol» [Online]. Available: https://github.com/Microsoft/language-

server-protocol

[39] GitHub, GitHub pricing [Online]. Available: https://github.com/pricing
[40] PIACERE consortium ; D3.1 - PIACERE Abstractions, DOML, DOML-E – v1, 2021
[41] https://eclipsesource.com/blogs/2021/05/27/migrating-eclipse-plugins-to-eclipse-theia-

or-vs-code

DRAFT

http://www.medina-project.eu/
https://www.eclipse.org/Xtext
https://git.code.tecnalia.com/piacere
https://projects.eclipse.org/projects/modeling.m2t.xpand
https://inversify.io/
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
https://github.com/pricing

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 52

www.piacere-project.eu

7. APPENDIX: PIACERE IDE based on Eclipse desktop

This appendix describes the PIACERE IDE using Eclipse IDE + EMF, with these technologies it is
feasible to develop the PIACERE IDE, but finally, the use of these technologies were discarded in
favour of Theia and EMF.cloud, which is its natural evolution.

However, an effort was made to design the IDE using the classic eclipse, in order to minimise
risks in case of having any impediment with the development of the IDE using Theia. In this way,
in the situation of having to redo the IDE with the classic Eclipse, the exercise of knowing which
plugins would be necessary would already be done and we could start immediately. Part of the
work done in Theia could be reused and it would not imply having to start from scratch.

7.1. Technical Description

The Eclipse IDE is an Eclipse Rich Client Platform (RCP) application. The core functionalities of
the Eclipse IDE are provided via plug-ins(components). The PIACERE IDE functionality is based
on the concept of extensions and extension points. Section 2.1.3 describes this technology in
detail.

To build the IDE some Eclipse modelling plugins should be added. In section 7.1.2 a list of these
plugins is provided along with an explanation of the functionality provided by each one. This is
only an initial list that could vary during the development of the IDE.

Thanks to EMF, the IDE can support metamodels. In the case of the PIACERE IDE, DOML and
DOML-E will be the supported metamodels used for modeling application infrastructures.

IDE Integration mechanism

The pivotal tool of the project is the IDE and it will give support to the PIACERE Framework. The
other Key Results of the project will be integrated into the IDE using some of the integration
mechanisms that these technologies provide. The PIACERE IDE will be customized with suitable
plug-ins that will integrate the different tools, in order to minimize the learning curve and
simplify adoption of IaC approach. Not all KR/tools will be integrated in the same way. Several
integration patterns, focusing on the Eclipse plugin architecture, will be defined. They will allow
the implementation and incorporation of application features very quickly.

To integrate the other PIACERE KR into the IDE, a set of menus will be enabled to facilitate access
to these KRs. Some of these tools could be fully integrated into Eclipse and should be developed
as Eclipse plugins. On the other hand, other tools could be run in isolation and through a REST
API or any other integration mechanism could be invoked remotely. In this case, from the Eclipse
menu the tool would be invoked via a REST service.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 52

www.piacere-project.eu

Figure 31: eclipse IDE components (soure : PIACERE’s own contribution)

The IDE will use “Cheat sheets”, which is a built-in mechanism for displaying mini tutorials
“Wizards”, in order to guide users on how to use the different tools. Cheat sheets are quick-and-
dirty instructions for how to perform multi-step processes in Eclipse, displayed on the side of
the workbench where you can quickly and easily step through them.

7.1.2 Components description

This section lists some modelling plugins that could be interesting for building the PIACERE IDE.

Eclipse base
These plugins are the core of Eclipse [23] and involve the minimum plugin set to build an
executable desktop application.

The current version of these plugins is 4.21.

GMF Runtime
Graphical Modelling Framework [24] is the most used
library to develop graphical editors on Eclipse. It is
mainly based on EMF models, and generates EMF
based models too.

The current version of GMF is >= 1.9.0.

Graphiti
Graphiti [25] is another library for developing graphical editors on Eclipse, that enables rapid
development of state-of-the-art diagram editors for domain models

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 52

www.piacere-project.eu

Figure 32: Graphiti Editor Example (source: Graphiti)

The current version of Graphiti is 0.12.0.

Sirius
Sirius [26] is a tool based on EMF and GMF that allows to easily create
graphical modelling workbenches. A modeling workbench created
with Sirius is composed of a set of Eclipse editors (diagrams, tables and
trees) which allow the users to create, edit and visualize EMF models.

The current version of Sirius is 6.5.1.

Acceleo
Acceleo [27] is a template-based technology to create code generators from an EMF model, that
has been designed to be customizable, interoperable, and easy to kick-start.

Figure 33: Acceleo template example (source: Acceleo)

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 52

www.piacere-project.eu

The current version of Acceleo is 3.7.

ATL

ATL [28] is a model transformation-oriented language that helps to convert a model defined in
a Domain Specific Language (DSL) into another model defined in a distinct (or not) DSL. These
include some sample ATL transformations, an ATL transformation engine, and an IDE for ATL.

Figure 34: ATL transformation Example (source: ATL)

The current version of ATL is 4.5.0.

QVTo
QVTO [29] is another language that provides features to implement transformations between
models. Eclipse QVTo is the only actively maintained QVTo implementation, and so conversely,
QVT 1.2 has evolved to resolve issues uncovered by Eclipse QVTo and its users.

The current version of QVTo is 3.10.5.

UML2
Eclipse UML2 [30] is a set of plugins based on EMF that brings support to UML OMG Metamodel
in Eclipse. Although UML2 provides the metamodel, it does not provide UML modelling tools
itself. It is the base of other important projects like Papyrus, which incorporates these kinds of
tools.

The current version of UML2 is 5.5.2.

M2E
The M2Eclipse, or M2E [31] plugin provides Apache Maven functionality into Eclipse. It allows
building projects based on Maven within Eclipse, as well as integrated dependency management
and other features.

The current version of M2E is 1.19.0.

DRAFT

http://www.medina-project.eu/

D3.7 – PIACERE IDE Version 1.0 – Final. Date: 23.12.2021

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 52

www.piacere-project.eu

Papyrus
Papyrus [32] is the most popular open-source environment for editing UML models based on
EMF for Eclipse. It provides many editors such as the Class diagram editor, Activity diagram
editor, State Machine diagram editor, Components diagram editor, Profile diagram editor, etc.

Figure 35: Papyrus instance example (source: Papyrus)

The current version of Papyrus is 5.2.0.

EGit
EGit [33] is a set of plugins that enables to connect to GIT source code
repositories.

The current version of EGit is 5.13.0.

Xtext

 Xtext [34] is a framework for development of programming
languages and domain-specific languages. With Xtext the user can
define its own language using a grammar language. As a result a full
infrastructure can be obtained, including parser, linker, type

checker, compiler as well as editing support for Eclipse, any editor that supports the Language
Server Protocol and a web browser

The current version of Xtext is 2.25.0.

DRAFT

http://www.medina-project.eu/

	Executive Summary
	1. Introduction
	1.1. About this deliverable
	1.2. Document structure

	2. Analysis of possible technologies to develop IDEs
	2.1. IDE Candidates
	2.1.1. VS Code
	2.1.2. GitHub Codespaces (VS Code Online)
	2.1.3. Eclipse IDE + Eclipse Modeling Framework
	2.1.4. Eclipse Theia + EMF.cloud
	2.1.5. Eclipse Che

	2.2. Workspaces management
	2.3. IDE baseline selection

	3. PIACERE IDE Implementation
	3.1. Functional description
	3.1.1. Requirements for the PIACERE IDE
	3.1.2. Fitting into overall PIACERE Architecture

	3.2. Technical description
	3.2.1. Prototype Architecture
	3.2.2. Components Description
	3.2.3. Technical specifications
	3.2.4. PIACERE IDE Next Steps

	4. Delivery and usage
	4.1. Package information
	4.2. Installation instructions
	4.3. User Manual
	4.4. Licensing information
	4.5. Download

	5. Conclusions and future work
	6. References
	7. APPENDIX: PIACERE IDE based on Eclipse desktop
	7.1. Technical Description
	7.1.2 Components description

