

Deliverable D3.4

Infrastructural code generation - v1

Editor(s): Lorenzo Blasi

Responsible Partner: HPE

Status-Version: Version 1.0 – Final

Date: 26.11.2021

Distribution level (CO, PU): PU

DRAFT

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 27

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable: Infrastructural code generation - v1

Due Date of Delivery to the EC 30.11.2021

Workpackage responsible for the
Deliverable:

WP3 - Plan and create Infrastructure as Code

Editor(s): Lorenzo Blasi (HPE)

Contributor(s):
Laurentiu Niculut (HPE CDS), Debora Benedetto (HPE
CDS), Lorenzo Blasi (HPE)

Reviewer(s):
Radosław Piliszek (7BULLS)
Paweł Skrzypek (7BULLS)

Approved by: All Partners

Recommended/mandatory
readers:

WP3, WP4, WP5

Abstract1: These deliverables will present the outcome of Task T3.4.
Each deliverable will comprise both a software prototype
[KR3] and a Technical Specification Report. The
document will include the ICG technical design and will
report related research results.

Keyword List: Code generation, Infrastructure as Code

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

1 This is the same deliverable description provided in the DoA

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 27

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 20.05.2021 Definition of the ToC Lorenzo Blasi, HPE

V0.2 04.11.2021 First draft Laurentiu Niculut, HPE
CDS

V0.3 10.11.2021 Second draft Laurentiu Niculut, HPE
CDS; Debora
Benedetto, HPE CDS;
Lorenzo Blasi, HPE

V0.4 11.11.2021 Final editing. Version ready for review Lorenzo Blasi, HPE

V0.5 25.11.2021 Updated to answer reviewers’
comments

Lorenzo Blasi, HPE

V0.9 26.11.2021 Final Version accepted by internal
reviewers

Lorenzo Blasi, HPE

V1.0 29.11.2021 Ready for submission Leire Orue-Echevarria,
TECNALIA

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 27

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 5

Executive Summary ... 6

1 Introduction .. 7

1.1 About this deliverable ... 7

1.2 Document structure .. 7

2 Implementation ... 8

2.1 Functional description ... 8

2.1.1 Fitting into overall PIACERE Architecture .. 10

2.1.2 Parser experiments ... 11

2.2 Technical description .. 15

2.2.1 Prototype architecture .. 15

2.2.2 Components’ description .. 16

2.2.3 Technical specifications ... 20

3 Delivery and usage .. 21

3.1 Package information ... 21

3.2 Installation instructions ... 24

3.3 User Manual .. 25

3.4 Licensing information .. 25

3.5 Download .. 25

4 Conclusions ... 26

5 References ... 27

 List of tables

TABLE 1: RELATIONSHIP BETWEEN ICG FUNCTIONALITIES AND ICG REQUIREMENTS 9

List of figures

FIGURE 1: ICG COMPONENT REPRESENTATION ... 8
FIGURE 2: PIACERE DESIGN TIME ... 11
FIGURE 3: WORDPRESS UML DIAGRAM .. 12
FIGURE 4: ACCELEO GENERATE.MTL MAIN FILE ... 12
FIGURE 5: TERRAFORM PARAMS GENERATION .. 13
FIGURE 6: ANSIBLE PARAMS GENERATION .. 14
FIGURE 7: INTERMEDIATE_REPRESENTATION.JSON .. 14
FIGURE 8: ICG INTERNAL SEQUENCE DIAGRAM ... 15
FIGURE 9: ICG CONTROLLER CODE PIECE ... 16
FIGURE 10: INTERMEDIATE REPRESENTATION EXAMPLE .. 17
FIGURE 11: TERRAFORM TEMPLATE EXAMPLE ... 19
FIGURE 12: ANSIBLE TEMPLATE EXAMPLE .. 20
FIGURE 13: ICG FOLDER AND FILE STRUCTURE .. 21
FIGURE 14: CURRENT IMPLEMENTATION OF AWSTEMPLATEDB.TXT .. 22

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 27

www.piacere-project.eu

FIGURE 15: CURRENT IMPLEMENTATION OF GCPTEMPLATENETWORK.TXT ... 23
FIGURE 16: CURRENT IMPLEMENTATION OF AZURETEMPLATEVM.TXT .. 24

Terms and abbreviations

AWS Amazon Web Services

CSP Cloud Service Provider

DevOps Development and Operation

DoA Description of Action

DOML DevOps Modelling Language

EC European Commission

GA Grant Agreement to the project

GCP Google Cloud Platform

IaC Infrastructure as Code

ICG Infrastructural Code Generator

IDE Integrated Development Environment

IEM IaC Execution Manager

IEP IaC execution platform

IOP IaC Optimization

IR Intermediate Representation

JSON JavaScript Object Notation

KPI Key Performance Indicator

SW Software

TBCG Template-Based Code Generation

UML Unified Modeling Language

VT Verification Tool

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 27

www.piacere-project.eu

Executive Summary

This deliverable describes the first implementation of the PIACERE Infrastructure Code
Generator (ICG), which is the main output of the PIACERE Task 3.4. The state-of-the-art related
to this component has been reported in section 2.3 (Generating IaC code from a model) of the
PIACERE D3.1 deliverable.

This first prototype is more focused on the code generation functionalities than on the parsing
of the input DevOps Modelling Language (DOML). This is because Task 3.4 adopted a bottom-up
approach: instead of starting from the high-level input language (DOML), we started to analyse
which are the major DOML concepts and the possible operations that DOML would require to
be implemented in the generated Infrastructure as Code (IaC) language. Then we started
developing IaC code for those concepts and operations, also referring to a specific example
proposed in WP3 conference calls (the WordPress example reported in section 2.1.2). The
developed IaC code evolved into templates and we identified which parameters were needed
for each template to work: this was useful feedback that Task 3.4 provided to Task 3.2. At the
end of this first year, some templates have been created for the major DOML concepts, such as
VM, Network, Database, and others, along with a prototype of ICG that uses them to generate
both Ansible and Terraform code. In the bottom-up approach, the ICG component closer to the
DOML language, i.e. the Parser, has been left at the end and some experiments have been done
to evaluate a possible implementation technology, as reported in section 2.1.2. The current ICG
prototype contains only the backend part of the compiler, which generates IaC code from the
developed templates, using as input a preliminary, handcrafted, version of the Intermediate
Representation that will be created by the Parser.

The document starts by presenting, in section 2.1, the ICG internal architecture and describing
each ICG component. The same section then lists the main functionalities planned for the ICG
tool and identifies the relationship between those functionalities and the requirements
collected in deliverable D2.1 and referred to the ICG. After describing how the ICG fits into the
overall PIACERE architecture (section 2.1.1), the document reports about the experiment done
to evaluate a possible implementation of the Parser component (section 2.1.2).

Section 2.2 then offers more technical details on each internal component of the ICG, from the
Controller, managing the internal ICG workflow, to the Code Generator Plug-ins that, based on
the available templates, generate the output Infrastructural code in the target language.

The following section 3 describes the structure of the released software and the content of the
listed files, especially the Infrastructure as Code (IaC) templates, on which the code generation
is based, are listed and described. The same section then explains how the released software
can be installed and used.

Finally, section 4 reports the conclusions and indicates future steps. In particular, future releases
will complete the planned functionalities and will improve several aspects of the ICG. For
example, the Parser will be developed and a stricter relationship with the DOML will be defined;
the Intermediate Representation will be enriched; internal components' interfaces will be
cleaned up and documented, to improve ICG extensibility; and additional templates will be
added.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 27

www.piacere-project.eu

1 Introduction

1.1 About this deliverable

This deliverable focuses on the structure and functionalities of the Infrastructural Code
Generator (ICG) component of PIACERE. The document reports about what has been
implemented so far in the lifecycle of the project, how it fits into the overall PIACERE framework,
and how it can be installed and used. The state-of-the-art related to this component has been
reported in section 2.3 (Generating IaC code from a model) of the PIACERE D3.1 deliverable. The
plan for developing ICG is to have a first working prototype at M12 (this release); the next
release (M24) will consolidate the code and add more features, taking especially into account
both the Use Case requirements and the feedbacks from the integration phase; the last release
(M30) will improve the component further, also focusing on its possible exploitation.

The ICG component will get DOML models in input and generate Infrastructure as Code (IaC)
files as output, in languages such as Terraform2 and Ansible3. The code-generation strategy
adopted in the ICG component is called in the literature Template-Based Code Generation
(TBCG) [1]. This technique allows producing code from partially complete code snippets, called
templates. A template usually contains a fixed part, with some code in the target language that
will be copied as-is into the output, and a variable part, with placeholders to be substituted with
values from input parameters or even control statements to drive the generation process.

In this first year of the project, when we started working on ICG, the DOML language was not
yet defined, se the decision has been to adopt a bottom-up approach: instead of starting from
the high-level input language (DOML), we started to analyse which are the major DOML
concepts and the possible operations that DOML would require to be implemented in the
generated Infrastructure as Code (IaC) language. Then we started developing IaC code for those
concepts and operations, also referring to a specific example proposed in WP3 conference calls
(the WordPress4 example reported in section 2.1.2). The developed IaC code evolved into
templates and we identified which parameters were needed for each template to work: this was
useful feedback that Task 3.4 provided to Task 3.2 for a more detailed definition of DOML. At
the end of this first year, some templates have been created for the major DOML concepts, such
as VM, Network, Database, and others, along with a prototype of ICG that uses them to generate
both Ansible and Terraform code. In the bottom-up approach, the ICG component closer to the
DOML language, i.e. the Parser, has been left at the end and only some experiments have been
done to evaluate a possible implementation technology, as reported in section 2.1.2. The
current ICG prototype contains only the backend part of the compiler, which generates IaC code
from the developed templates, using as input a preliminary, handcrafted, version of the
Intermediate Representation that will be created by the Parser.

1.2 Document structure

Section 2 of the document describes the functionalities and the technical specifications of the
PIACERE ICG and explains what has been provided in this first prototype.
The D3.4 deliverable is a software deliverable, therefore this document also provides details
about the released software in section 3: how it is structured, how it can be installed and used.
In section 4 there are the conclusions and some indications about the next steps.

2 https://github.com/hashicorp/terraform
3 https://github.com/ansible/ansible
4 https://wordpress.org/

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 27

www.piacere-project.eu

2 Implementation

2.1 Functional description

This deliverable reports about the first implementation of the Infrastructural Code Generator
(ICG) component of PIACERE.

Figure 1: ICG component representation

The ICG, which is a command line application, takes as an input the DOML model produced by
the IDE and oversees the generation of the Infrastructure as Code (IaC) files necessary for the
deployment, configuration and orchestration of the represented user application and the
needed infrastructure.

Figure 1 shows the internal ICG architecture, which includes the following components: ICG
Controller, ICG DOML Parser, Intermediate Representation, ICG Code Generator Plug-in, and IaC
templates.

ICG Controller is the main component that is started by the user as a command line tool, it reads
and interprets the command line parameters and controls the internal flow of the other
components.

ICG DOML Parser will be activated by the Controller to parse the input DOML and to produce
the Intermediate Representation. Due to the unavailability of a clear DOML syntax definition5,
the Parser is not available in this first prototype. Nonetheless, we made some experiments,
based on our assumptions, for the Parser component implementation. The experiments are
reported in section 2.1.2.

The Intermediate Representation is created by the Parser and used both to drive the selection
of the right Code Generator to use and to provide input to the Generator itself. More details on
the Intermediate Representation are presented in section 2.2.2.3.

ICG Code Generator is the generic component, activated by the Controller, that reads the
Intermediate Representation and, based on the available IaC templates, generates the output
code in the selected language. The Code Generator can be considered a plug-in in the ICG
architecture, and a specific Code Generator is expected to be available in the ICG for each target
language. In this prototype a first release of the Ansible Plug-in and Terraform Plug-in are
available, but more plug-ins may be added in the future to generate IaC code in other languages,
for example to satisfy the Use Case requirements. The selected code generation strategy is called
in the literature Template-Based Code Generation (TBCG) [1]. Each Code Generator plug-in

5 DOML is reported in D3.1 and is being developed in parallel to the ICG.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 27

www.piacere-project.eu

selects the right templates, depending on the information read from the Intermediate
Representation, and substitutes in these templates the values read from the Intermediate
Representation itself.

The IaC templates are a collection of templates used by the Code Generator plug-ins to generate
the target IaC code. As already indicated in the Introduction, templates usually contain a fixed
part, with code in the target language to be copied as-is into the generated output, and a
variable part, with placeholders to be substituted with values from input parameters. Multiple
templates for each target language will be available: at least one for each supported DOML
resource. A list of the templates developed for this first release can be found in section 3.1.
Template examples are shown in section 2.2.2.4. In the future releases, implementing ICG
extensibility, we will provide guidelines for writing new templates, so that expert users will be
able to develop their own templates or to modify existing ones, both for supporting new DOML
concepts and for providing support for new IaC languages.

The main functionalities planned for the Infrastructural Code Generator are the following.

F1. Read the input DOML model to extract all the needed information.

F2. Generate executable code for selected IaC languages.

F3. Provide enough extensibility to support the DOML extension mechanism [KR4]

F4. Provide enough extensibility to generate code for new IaC languages

F5. Generate IaC code that supports different cloud platforms

The listed functionalities will be implemented using an incremental approach over multiple
releases. In this first release the following functionalities are implemented: F2, F5. Other
functionalities are partially implemented.

The following Table 1 details the relationship between all the requirements indicated in
deliverable D2.1 as related to ICG, and the ICG functionalities, with a description of the current
coverage for each functionality.

Table 1: Relationship between ICG functionalities and ICG requirements

Functionality Req. ID Requirement Description Coverage

F1 REQ96 ICG must be able to read
DOML language.

None. Since a parsable syntax for
the DOML language is not yet
completely defined, only an
experiment has been done in this
release, as reported in section
2.1.2.

F2 REQ31 ICG should provide
verifiable and executable
IaC generated from DOML
for selected IaC languages
(e.g.,
TOSCA/Ansible/Terraform).

An Intermediate Representation
has been created by hand and
Code Generation components
have been implemented that read
it and generate both Ansible and
Terraform code. Currently
Terraform code is generated for
the Provisioning activity and
Ansible code for the
Configuration activity.

REQ77 ICG may generate IAC code
for different
supported/target tools
according to the required

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 27

www.piacere-project.eu

Functionality Req. ID Requirement Description Coverage

DevOps activity (as listed in
REQ76).

F3 REQ41 The IDE should be
extensible through the
plugin mechanism. Not
only to support PIACERE
assets (ICG, VT) but also for
third party collaborators.

Partial. Even if the DOML
Extension mechanism is not yet
completely defined, the proposed
architecture, based on plugins,
and the selected code generation
strategy, based on templates,
allow the ICG to be extended to
support new DOML concepts.

F4 REQ41 The IDE should be
extensible through the
plugin mechanism. Not
only to support PIACERE
assets (ICG, VT) but also for
third party collaborators.

Partial. The proposed
architecture, based on plugins,
and the selected code generation
strategy, based on templates,
allow the ICG to be extended to
support new IaC languages.

REQ31 ICG should provide
verifiable and executable
IaC generated from DOML
for selected IaC languages
(e.g.,
TOSCA/Ansible/Terraform).

F5 REQ29 DOML should support the
modelling of VM
provisioning for different
platforms such as
(OpenStack, AWS) for
canary and production
environments.

The released templates supports
the major cloud platforms: AWS.6,
Azure7, GCP8. Templates for other
platforms may be added in future
releases, depending on Use Case
requirements

2.1.1 Fitting into overall PIACERE Architecture

The ICG is the PIACERE component tasked with the generation of the IaC files and as such will
be integrated with the IDE, using the IDE integration facilities available for any compiler. Other
PIACERE tools, such as the IaC Execution Manager (IEM) and the Verification Tool (VT) will access
the IaC code generated by ICG to perform their tasked activities.

From the IDE it will receive the DOML model produced by the user, possibly verified by the
Model Checker component. The model is used as an input by the ICG and contains the
specifications of the desired infrastructure and configuration.

The VT will verify the generated IaC code, especially to evaluate its security.

The IEM will execute the IaC code produced by the ICG, to provision and configure the desired
infrastructure.

6 https://aws.amazon.com/
7 https://azure.microsoft.com/
8 https://cloud.google.com/

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 27

www.piacere-project.eu

ICG is part of the PIACERE workflow executed at Design Time, as shown in the following Figure
2, which is explained in more detail in deliverable D2.1.

Figure 2: PIACERE Design Time

2.1.2 Parser experiments

The ICG DOML Parser goal is to extract information from the DOML in order to provide a suitable

intermediate representation for the ICG Code Generator Plug-In. It is an intermediary

component that decouples the DOML from the rest of the ICG components: if a modification on

the DOML language occurred, the ICG DOML Parser will generate the agreed intermediate

representation and the ICG Plugins will not have to be modified. Moreover, if a new plugin is

implemented that requires an updated intermediate representation, the DOML will not be

affected.

According to the requirements emerged from the study of the IaC files, we have identified the

information to extract from the DOML based on the following considerations:

• There are different software tools that can be used to provide and configure the
application environment, some of the most popular are Terraform for the creation of
the infrastructure elements and Ansible for the automation of the application
deployment and management.

• There are different cloud providers, such as AWS, Google Cloud or Microsoft Azure, each
one with different infrastructure elements and configuration.

• There is custom information that the user must specify for the software installation. For
example, for the installation of a database, the user will have to specify username,
password and database name for the configuration to work.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 27

www.piacere-project.eu

The very first representation of the DOML that has been available was based on a UML diagram
and the challenge was to translate this diagram to text files, so we selected Acceleo for a first
experimental implementation of the ICG DOML Parser.

Acceleo (https://www.eclipse.org/acceleo/) is an open-source template-based source code

generation technology integrated in the Eclipse IDE, suitable for parsing the DOML and

transform it into files for any kind of language. Acceleo navigates the model, extracts

information from it and produces the intermediate representation files for the other ICG

modules.

The ICG DOML Parser experiment started considering a simple example representing a

WordPress application (Figure 3). The application environment is made up by two virtual

machines, one for the database installation and the other for the WordPress application.

Figure 3: WordPress UML diagram

The model of the WordPress application is represented as an UML diagram and is parsed and

navigated by the ICG DOML Parser using Acceleo. The output of the Parser is the

intermediate_representation.json file containing the information needed by the ICG Plugins for

the IaC file generation.

The main file of the Parser is generate.mtl, shown in Figure 4, which navigates the UML diagram,

extracts information and transform it to the intermediate representation json file. Every time

the generate.mtl file runs, the output file is overwritten.

Figure 4: Acceleo generate.mtl main file

First, during the navigation of the UML diagram, the parser distinguishes the infrastructural

elements from the software elements, in order to select the right software tool to deploy them.

DRAFT

http://www.medina-project.eu/
https://www.eclipse.org/acceleo/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 27

www.piacere-project.eu

In this example the virtual machines are infrastructural elements and the

generateTerraformParams() function will take care about them, instead the WordPress

application and the database are software elements and the generateAnsibleParams() will deal

with them.

The generateTerraformParams() selects all the classes that generalize the VM class, in this

example wordpress_vm and the dbms_vm, and write into the output JSON file the instructions

for their deployment. The information extracted concerns:

• the software tool to use, that is Terraform

• the provider chosen, the default one is AWS

• the name of the virtual machines, that is the same as the ones on the UML diagram

classes

• the id of each virtual machine

• RAM and CPU details, in this case the default values are used.

Figure 5: Terraform params generation

These virtual machines will be the infrastructure on which will run the WordPress application
and the database. The generateAnsibleParams() function adds to the JSON file the information
for these three elements:

• the name of the virtual machine they are running on

• the custom parameters for the installation, such as the database username and
password and a placeholder for their future values

• the folder in which to store the IaC files. DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 27

www.piacere-project.eu

Figure 6: Ansible params generation

Finally, when all the classes are considered and all the information are extracted, the Parser
produces the intermediate representation JSON file and stores it into the target folder (Figure
7). Next, the other component of the ICG module will read this file and use the instruction for
the IaC files generation.

Figure 7: intermediate_representation.json

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 27

www.piacere-project.eu

The experiment illustrated above shows that Acceleo is a powerful tool for the transformation
of the UML diagram in one or more files of any kind of type, it could easily translate the user
model definition for an application into a textual format with structural instructions for its
creation. The Parser implementation will still evolve and move forward following the
improvement of the DOML, it will transform and provide all the data to the other ICG modules
in the intermediate representation for the generation of the IaC files.

2.2 Technical description

2.2.1 Prototype architecture

The sequence diagram representing the internal flow of the ICG is shown in Figure 8.

Figure 8: ICG Internal sequence diagram

The first component of the ICG is the ICG Controller.

The Controller is a Python module dedicated to the management of the processes of the ICG, it
is invocated from the command line and receives in input the model generated by the IDE.

The Controller then should call the second component of the ICG, the Parser, which takes as an
input the DOML model and writes the intermediate representation that the ICG is going to use
in the next steps. In this first prototype the parser is not released; we just made an experiment
to check if Acceleo would be suitable to implement the Parser, as reported in section 2.1.2.

The last component to be called by the ICG Controller is the Code Generator, which is also a
module implemented in python. It reads the intermediate representation and, using the IaC
templates available for the required resource, it generates the output code. The Code Generator
has multiple plug-ins, one for each IaC language that the ICG implements, namely the Ansible
plug-in and the Terraform plug-in.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 27

www.piacere-project.eu

Once the Code Generator plug-in has completed its task, the Controller writes on the console
the results of the code generation process and exits.

2.2.2 Components’ description

2.2.2.1 ICG Controller

The ICG Controller is the core component of the ICG and it manages all other components.

As already specified the Controller is a Python module, integrated with all the other ICG
components. In this first implementation it gets the data from the intermediate representation,
it analyses the data and based on the contents it calls the correct Code Generator plug-in.

Once the ICG DOML Parser will be complete, the interaction between it and the Controller could
be better defined.

Figure 9: ICG Controller code piece

In the Figure 9 above we can see part of the initial implementation of the Controller, which
imports the Ansible and Terraform plugins and reads the intermediate representation file which
contains the parameters.

2.2.2.2 ICG DOML Parser

The ICG DOML Parser is the component that reads the DOML model and, based on the model,
generates the intermediate representation that contains the data used by the ICG to generate
the IaC files. The Parser implementation is not yet available in this release; in section 2.1.2 we
describe the first experiment done to evaluate a possible implementation.

2.2.2.3 Intermediate Representation

The intermediate representation (IR) is an internal transcription of the essential information
from the DOML model, used by the ICG to obtain all the data needed for generating IaC code.

In Figure 10 there is an example of the current version of the intermediate representation. DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 27

www.piacere-project.eu

Figure 10: Intermediate representation example

This version of the intermediate representation used in this example was based on the
requirements of the developed IaC templates, and as such it lacks some of the DOML elements
(e. g. the interaction between the various components). Future implementations of the
Intermediate Representation will enhance the coverage of DOML elements and are expected to
be automatically generated by the Parser.

In this version of the IR we have defined a few useful characteristics:

• The various blocks to be generated are listed as a sequence of steps

• In each functional block there are general definitions useful on the operative side and
a data segment containing the parameters needed for that functionality

• An example of general definitions is the target IaC language to be used to provide the
functionality, or the path where to output the result files; some of this information can
be standardized into a default value

• Examples of data are the cloud provider, the operating system installed on the VMs or
the resources required for them

The Intermediate Representation file shown in Figure 10 is a JSON file, whose main keywords
can be documented as follows.

• steps: array of objects representing the sequence of output code blocks to be generated,
a different Code Generator plugin may be invoked for each object

• programming_language: indicates the type of Code Generator plugin to be invoked for
the current step; supported values for this release are “terraform” and “ansible”; if a
new plugin is added to generate code for a different output IaC language, the name of
the new plugin will be a new possible value for this keyword

• type: indicates the type of DOML object for which to generate code; when DOML will be
finalized, the possible values for this keyword will be finalized as well

• output_path: indicates the path to the directory where the code generated for this
object should be stored

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 27

www.piacere-project.eu

• provider: indicates which of the supported providers should be used to provision the
indicated infrastructure; supported values in this first release are: “aws”, “azure”, and
“gcp”; the template selected for code generation depends both on this value and the
type of object to be created

• data: this keyword contains objects that group the information to be substituted in the
selected template’s placeholders, in the form of key/value pairs; the key, e.g.
“vpcname”, corresponds to the name of the placeholder, whereas the value, e.g.
“piacere_vpc”, corresponds to the value to be substituted when generating code using
that template

The syntax of the Intermediate Representation will be homogenized and improved in future
releases, to possibly add a stricter relationship to the input DOML model, to simplify the creation
of new code generation plug-ins and to support the planned extension functionalities. In future
releases the Intermediate Representation will be generated automatically by the Parser.

2.2.2.4 ICG Code Generator

The ICG Code Generator is the component of the ICG that given the data contained in the model
integrates it with the IaC templates available for the required functionalities.

This component is built in Python 3.6 and has multiple separate modules to integrate the
multiple plug-ins it provides, one for each IaC language that is integrated in PIACERE. Each plug-
in reads the Intermediate Representation (IR) as input and generates the corresponding output
code in its respective IaC language. In this release each plug-in is simply called by the Controller
with the IR as an input parameter; in future releases, we plan to define a more complete and
flexible common plug-in interface, to facilitate the integration of new plug-ins targeting the
support of new IaC languages.

An essential element for the code generation is the set of IaC templates, which provide the
vocabulary for the transcription from the DOML to the destination IaC language. Each template
is composed by static text in the target IaC language and placeholders, which are substituted
with actual values at code generation time. The values are either taken from the input
Intermediate Representation or generated dynamically based on defaults.

For the scope of this prototype, we have an initial Terraform plug-in prototype and an Ansible
plug-in prototype. The selection of the right plug-in to use is done by the ICG Controller, based
on the information included in the Intermediate Representation. In this first release, we decided
to generate different languages, depending on the activity to be automated: Terraform code for
provisioning activities and Ansible code for installation / configuration activities.

2.2.2.4.1 Terraform plug-in

The Terraform plug-in is tasked with the generation of the Terraform IaC files.

In this first iteration of the prototype, the Terraform code is used for the deployment
functionalities of PIACERE. It manages provisioning for both network and virtual machines on
the selected cloud platforms (at the moment AWS, Azure and Google Cloud Platform are
supported).

In Figure 11 there is a representation of a Terraform code template, as was previously described
this is the basis for the transcription from DOML to Terraform.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 27

www.piacere-project.eu

Figure 11: Terraform template example

In this template the delimiters used to define the input parameters are the classic jinja2
delimiters, so these templates are readable and can be compiled by any jinja2 compatible
software, provided the input variables.

An example of input parameters are the {{ id }} or the {{ instance_type }}.

There are different templates for the different cloud providers and there are separated
templates for the various functionalities (e.g. Network deployment, VM deployment) a more
complete list of the currently available templates can be found in section 3.1.

2.2.2.4.2 Ansible plug-in

The Ansible plug-in is tasked with the generation of the Ansible IaC files.

In this first iteration of the prototype, the Ansible code is used for the configuration
functionalities of PIACERE. It manages the code that configures the services and applications on
the provided virtual machines (for this first prototype was implemented code for the
configuration of applications running on Docker, namely WordPress, and databases, namely
Postgres).

In Figure 12, there is a representation of an Ansible code template. DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 27

www.piacere-project.eu

Figure 12: Ansible template example

In this example template we have 2 kinds of parameters, the first kind are the parameters that
the playbook gets from the vars.yml file (which is also built by the ICG) and the second kind are
the parameters that enable the template to operate on different environments. The difference
between these 2 types of parameters is that the first ones make use of the functionalities of
Ansible in an optimal way, while the second ones allow to expand the standard capabilities of
Ansible adding functionalities that were not present before.

Here is an example of the 2 types of parameters available:

• First: {{WORDPRESS_DB_HOST}}

• Second: ###OS_PACKETS###

There are different templates for the different functionalities that are provided through Ansible;
as already stated for the Terraform plug-in, a more complete list of the currently available
templates can be found in section 3.1.

2.2.3 Technical specifications

In this section the technical specifications of the current ICG prototype are defined. Please note
that these specifications are likely to change in future releases.

The ICG Controller and Code Generator are both written in Python 3.6. As such the main
prerequisites for this prototype are:

• Python version 3.6

• Jinja2 Python library version 3.0.3

As for the output IaC code it is generated for:

• Terraform version 1.0.10

• Ansible version 4.6.0

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 27

www.piacere-project.eu

3 Delivery and usage

3.1 Package information

The structure of the files and folders of the ICG can be seen in the following Figure 13.

Figure 13: ICG folder and file structure

The folders are of two kinds, one folder contains the IaC code generated by the ICG:

• Output-code

The output directory can be configured, and its path is defined by the keyword “output_path”
in the intermediate representation.

The other folders contain the templates used to generate the IaC output files:

• Databases-templates: contains the Ansible templates to install and configure
supported databases (Postgres, MySQL) on existing Virtual Machines

• DB-templates: contains the Terraform templates to provision DB as a service on the
supported cloud providers

• Docker-services-templates: contains the Ansible templates to deploy services on
Docker containers

• Network-templates: contains the Terraform templates to provision network
infrastructure on different cloud providers

• VM-templates: contains the Terraform templates to provision virtual machines on the
supported cloud providers

Each of these folders contains multiple files. The Output-code folder contains all the Terraform
and Ansible code files that are generated by the ICG, in the Figure 13 above we can see the files
generated for the Wordpress example:

• outputdb.tf

• outputNetwork.tf

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 27

www.piacere-project.eu

• outputvm.tf

• postgres-play.yml

• postgres-vars.yml

• wordpress-play.yml

• wordpress-vars.yml

All the other folders contain the templates used by the ICG. The templates available in this first
prototype are documented below, folder by folder.

Folder 1) The first folder is Database-templates and it contains four files:

• mysql-play.tpl

• mysql-vars.tpl

• postgres-play.tpl

• postgres-vars.tpl

These four templates are used to generate the Ansible code necessary to deploy a Postgres or
MySQL database on a virtual machine. The vars templates take as an input the parameters
provided through the intermediate representation and generate the vars file useful to the
Ansible execution. The play template is instead the main code of the Ansible playbook containing
the Ansible pre-tasks and tasks.

These playbook templates, aside from the standard parameters provided through the vars file,
also have supplemental parameters that allow the ICG to generate Ansible code that can be
executed both on CentOS and on Debian operating systems.

Folder 2) The second folder is DB-templates and it contains four files:

• AWStemplateDB.tpl

• AZUREtemplateDB.tpl

• GCPtemplateDB.tpl

• templatepostgresql.tpl

These are the templates implemented to generate Terraform code that deploys database
services on the cloud providers, the templates are one for each cloud provider implemented as
of this version of the ICG (AWS, Azure and Google Cloud Platform).

In the Figure 14 below, we can see one of these templates, the AWS one.

Figure 14: Current implementation of AWStemplateDB.txt

Folder 3) The folder Docker-services-templates contains two files as of this implementation:

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 27

www.piacere-project.eu

• wordpress-play.tpl

• wordpress-vars.tpl

These two templates are used to generate the Ansible code necessary to deploy a WordPress
web application on a virtual machine. The vars template and play template have the same
functionalities as described for the MySQL and Postgres ones. They also have the supplemental
parameters that allow ICG to generate Ansible code that can be executed both on CentOS and
Debian.

The deployment strategy that was selected for this implementation is to have all applications
running on Docker, so this playbook deploys the Docker service on the VM and then deploys the
WordPress container; this solution can be easily replicated for other applications.

Folder 4) The folder Network-templates contains three files:

• AWStemplateNetwork.tpl

• AZUREtemplateNetwork.tpl

• GCPtemplateNetwork.tpl

These are the templates implemented to generate Terraform code that deploys the network
infrastructure on the cloud providers, the templates are one for each cloud provider supported
as of this version of the ICG (AWS, Azure and Google Cloud Platform).

In the Figure 15 below, we can see one of these templates, the GCP one.

Figure 15: Current implementation of GCPtemplateNetwork.txt

Folder 5) The folder VM-templates contains four files:

• AWStemplateVM.tpl

• AZUREtemplateVM.tpl

• GCPtemplateVM.tpl

• templatevm.tpl

These are the templates implemented to generate Terraform code that deploys the virtual
machines on the cloud providers, the templates are one for each cloud provider implemented
as of this version of the ICG (AWS, Azure and Google Cloud Platform).

In the Figure 16 below, we can see one of these templates, the Azure one.

Aside from this folder there are also seven separate files that are available in the package, one
of them is the parameters’ file and the remaining six contain the ICG code written in Python.

The parameters’ files is the following:

• parameters.json

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 27

www.piacere-project.eu

Figure 16: Current implementation of AZUREtemplateVM.txt

The parameters.json file contains the intermediate representation (see section 2.2.2.3 for

more details) that is used as an input for this prototype of the ICG. Due to the bottom-up
approach of the development of this prototype, this file is at the moment edited manually and
it needs further development to better represent the DOML model. In future releases this file
will be generated automatically by the Parser.

At last, the ICG source code is composed of the following files:

• aws.py

• azure.py

• gcp.py

• ansibleBuilder.py

• ansibleUtils.py

• terraformBuilder.py

• terraformUtils.py

• ICG.py

The ICG.py file is the main module of the ICG and contains all the functionalities provided by
the ICG Controller.

Then there are the two plug-ins, one for Terraform and the other for Ansible.

The main code of the Ansible plug-in can be found in the ansibleBuilder.py file, while the
main module of the Terraform plug-in can be found in the terraformBuilder.py file.

Aside from the main module, each of the plug-ins has additional files with helper functions. For
the Ansible plug-in, the file ansibleUtils.py contains all the necessary functions. Whereas
for the Terraform plug-in, the file is terraformUtils.py. Finally, other source files, aws.py,
azure.py and gcp.py, provide specific functions needed for the respective provider.

3.2 Installation instructions

The prototype provided is constructed on Python 3.6 so the environment on which it will run
shall have Python 3.6 installed.

The Python library Jinja2 is needed to run the ICG, so it shall be installed trough pip with the
following command:

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 27

www.piacere-project.eu

pip install Jinja2==3.0.3

Inside the python 3.6 environment can then be downloaded the prototype package which
contains all the folders and files needed to run the example. The package, provided the right
permissions on the GitLab repository, can be downloaded trough the following command:

git clone –b develop https://git.code.tecnalia.com/piacere/private/icg-

infrastucture-code-generator/t34-icg-controller.git

Once the package is downloaded, the prototype is ready to be executed.

3.3 User Manual

The initial step of configuring the environment and installing the package is fully detailed in the
chapter 3.1, once it is all installed the prototype ca be tested.

The ICG is a command line executable as such it is invocated either from a shell in linux or a
windows terminal.

The command to be executed from the package main folder is the following:

.\ICG.py parameters.json

The file ICG.py, as already specified, is the main module of the ICG and the parameters.json
file contains the (hand generated) intermediate representation of the model. In the next release
the intermediate representation will be generated by the DOML Parser and will be automatically
used by the Controller, without the need for specifying it on the command line.

With this invocation the ICG is going to generate the IaC code as specified in the
parameters.json file, for this prototype to get a different output code (for a different
provider, operating system, or other specifications) the parameters file has to be modified
manually.

If the execution runs correctly no output will be visible on prompt, otherwise error messages
will be printed on screen.

Once the code is executed correctly the output code files will be generated by the ICG and can
be found in the Output-code folder noted in section 3.1.

3.4 Licensing information

The plan is to release the ICG component, developed by HPE, as open-source software. For this,
HPE must follow an internal process with reviews and decisions at corporate level to decide and
approve the license under which to release the developed software. Unfortunately, this process
takes a lot of time and it is not yet even started at the time of writing, therefore the licensing
information for the released software is still to be defined.

3.5 Download

The Infrastructural Code Generation code is available in the PIACERE code repository at:
https://git.code.tecnalia.com/piacere/private/icg-infrastucture-code-generator/t34-icg-controller.

The source code will be available on the public git repository and accessible through the project’s
website https://www.piacere-project.eu/. At the time of writing this deliverable, the source
code is provided under request through an email to the address appearing on the website
(https://www.piacere-project.eu/) in the footer under “Contact Us”.

DRAFT

http://www.medina-project.eu/
https://git.code.tecnalia.com/piacere/private/icg-infrastucture-code-generator/t34-icg-controller.git
https://git.code.tecnalia.com/piacere/private/icg-infrastucture-code-generator/t34-icg-controller.git
https://git.code.tecnalia.com/piacere/private/icg-infrastucture-code-generator/t34-icg-controller
https://www.piacere-project.eu/
https://www.piacere-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 27

www.piacere-project.eu

4 Conclusions

This document described the first ICG prototype that has been implemented in the first year of
the PIACERE project. As already explained in section 1.1, the adopted bottom-up approach led
to a prototype that is more focused on the code generation functionalities than rather on parsing
the input DOML language.

The main functionalities of the ICG have been listed, along with its internal architecture, the
relationship among the planned functionalities and the requirements collected in deliverable
D2.1, and the experiment done to evaluate a possible implementation of the Parser component.

All internal ICG components have been described, along with the prerequisites for their
execution. Furthermore, the deliverable describes in detail the files included in the delivered
package and documents how to install and use the released software.

Future versions of the ICG will complete the planned functionalities and will improve several
aspects of the component. In the next version, due at M24 (deliverable D3.5), the DOML Parser
component will be developed, in order to read DOML and automatically generate the
Intermediate Representation. The syntax of the Intermediate Representation itself will be
homogenized and improved, to possibly add a stricter relationship to the input DOML model, to
enhance the coverage of DOML elements, to simplify the creation of new code generation plug-
ins and to support the planned extension functionalities. In the final release, due at M30
(deliverable D3.6), implementing ICG extensibility, we will also provide guidelines for writing
new templates, so that expert users will be able to develop their own templates or to modify
existing ones, both for supporting new DOML concepts and for providing support for new IaC
languages. The plan for extensibility is also to define a more complete and flexible common plug-
in interface, in order to facilitate the integration of new plug-ins targeting the support of new
IaC languages. Finally, more templates will be defined, already in the next version at M24, both
for improving the support of DOML elements and possibly for supporting other target platforms,
depending on Use Case requirements.

DRAFT

http://www.medina-project.eu/

D3.4 – Infrastructural code generation - v1 Version 1.0 – Final. Date: 26.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 27

www.piacere-project.eu

5 References

[1] Syriani, E., Luhunu, L., & Sahraoui, H. (2018). Systematic mapping study of template-based

code generation. Computer Languages, Systems & Structures, 52, 43-62.

DRAFT

http://www.medina-project.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure

	2 Implementation
	2.1 Functional description
	2.1.1 Fitting into overall PIACERE Architecture
	2.1.2 Parser experiments

	2.2 Technical description
	2.2.1 Prototype architecture
	2.2.2 Components’ description
	2.2.2.1 ICG Controller
	2.2.2.2 ICG DOML Parser
	2.2.2.3 Intermediate Representation
	2.2.2.4 ICG Code Generator
	2.2.2.4.1 Terraform plug-in
	2.2.2.4.2 Ansible plug-in

	2.2.3 Technical specifications

	3 Delivery and usage
	3.1 Package information
	3.2 Installation instructions
	3.3 User Manual
	3.4 Licensing information
	3.5 Download

	4 Conclusions
	5 References

