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Abstract – Nowadays, one of the key challenges in transport 
electrification is the reduction of components’ size and weight. 
The electrical machine plays a relevant role in this regard. 
Designing machines with higher rotational speeds and excitation 
frequencies is one of the most effective solutions to increase 
power densities, but this comes at the cost of increased losses in 
cores and windings. This challenge is even more pronounced in 
preformed windings, such as hairpins, which enable higher slot 
fill factors and shorten manufacturing cycle times. In this work 
an improved hairpin winding concept is proposed, aiming to 
minimize high-frequency losses while maintaining the benefits 
deriving from the implementation of hairpin windings onto 
electrical machines. Analytical and finite element models are 
first used to assess the high-frequency losses in the proposed 
winding concept, namely the segmented hairpin, proving the 
benefits compared to conventional layouts. Experimental tests 
are also performed on a number of motorettes comprising both 
conventional and proposed segmented hairpin configurations. 
Finally, these experimental results are compared against those 
collected from motorettes equipped with random windings, 
demonstrating the competitiveness of the segmented hairpin 
layout even at high-frequency operations. 
 

Index Terms— AC losses, high frequency, automotive, 
electrical machine, winding, hairpin winding, segmented 
hairpin, random, end winding, analytic model, experimental, 
mass production.. 

I.   INTRODUCTION 
Nowadays, transport electrification is one of the most 

viable solutions to reduce emissions and meet fuel economy 
requirements. Hybrid and pure electric vehicles are being 
developed for all transport applications [1],[2],[3],[4]. 
Besides these requirements, power density, efficiency and 
reliability are also objectives of primary importance to 
achieve when designing a more electric vehicle. In this regard, 
the components of the vehicle’s powertrain play a key role. 
Of these, the electrical machine is experiencing an ever-
increasing interest and research focusing on the maximization 
of their power density [5], efficiency [6] and reliability [7] is 
now underway at an unprecedented rate.  

Nevertheless, achieving all these requirements 
concurrently is a difficult task. In fact, while the operating 
speed represents the main lever to increase the machine power 
for a given volume [8], it results in higher operating 
frequencies. These, in turn, reflect on increased losses in cores 
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and windings as well as higher stresses on coil insulations, 
thus efficiency and reliability are compromised [9],[10]. An 
evident example in this regard is represented by hairpin 
windings, whose full penetration in the transportation market 
is curbed by their inherently high ohmic losses at high 
frequency operations, where skin and proximity effects occur.   

On the other hand, this technology offers higher slot fill 
factors, reduced end-winding lengths and lower low 
frequency copper losses than their random-wound 
counterpart. In addition, their manufacturing allows for 
automatized, repeatable and reliable procedures, making 
hairpin windings ideal when high production volumes are 
required, such as in automotive transportation. In this case, the 
cost minimization is another key driver. Studies carried out in 
[11] have proven that, for a production target of 1 million 
units per year, manufacturing hairpin stators is cheaper than 
manufacturing stators employing random windings. It 
becomes then clear why hairpin windings are considered by 
many scholars and industries as the way forward for next 
generation electrical machines [12]. 

However, the bottle-neck remains the ohmic loss produced 
at high frequency operation (AC losses). Therefore, to fully 
meet the green revolution requirements, hairpin designs 
should be aimed to mitigate this challenge. In the last few 
years, the focus of several researches has been on ways to 
model, estimate and reduce AC losses in hairpins. In [13], 
guidelines on how to make suitable connections for reduced 
losses have been provided, along with a 1D model for the 
evaluation of copper losses. In [14], a 2D analytical model has 
been proposed and validated via finite element analysis 
(FEA). Methods such as removing the closest conductor to the 
slot opening or reducing the conductors’ height while 
increasing the number of conductors have been proposed to 
reduce AC losses [15]. However, the first solution reduces the 
fill factor since part of the slot is left empty [16], whereas the 
second option increases the manufacturing complexity [13]. 
Asymmetric windings consisting of series-connected 
conductors featuring different cross-sections have been 
studied via FEA in [17]. Here, promising results have been 
achieved, but an experimental validation is missing. In 
addition, the method increases the DC resistance of the 
asymmetric conductors and may represent a limit to the 
maximum obtainable current density.  
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Another interesting technique to reduce AC losses in 
hairpin windings comes from the “strand” concept typical of 
random windings, where the conductor is divided in several 
parallel-connected sub-conductors (strands). In hairpins, this 
method cannot be applied as flexibly as in random windings. 
The number of parallel-connected elements should be kept 
low to avoid unfeasible solutions or excessive complications 
of the bending and welding processes [18]. Although the 
concept of parallel conductors has been widely implemented 
in large power machines equipped with pre-formed winding 
[19], to the of the authors’ knowledge the parallel-connected 
concept in hairpin windings has been proposed in [20] for the 
first time, but the analysis only focused on the 2D aspects (i.e. 
end-windings effects are neglected) and no experimental 
validation was provided.  

This work fills these gaps by including the 3D effects in 
both analytical and FE models and, most importantly, by 
experimentally validating the segmented hairpin concept. In 
particular, concerning the modelling aspects, a simplified 2D 
FE model is proposed for the analysis of the end regions, yet 
taking into account the phenomena potentially occurring at 
high frequencies. Regarding the experimental validation, a 
segmented hairpin winding is implemented onto purposely-
built motorettes. Four motorettes are prototyped and tested, 
each of them equipped with different winding arrangements 
for comparative analyses. Besides proving the benefits of the 
proposed technique in terms of loss reduction, the 
experimental results are used to demonstrate that the 
segmented hairpin winding can compete against random 
windings even at high frequency operations. This is done by 
comparing these results to those obtained in [21] on 
motorettes equipped with round wire random windings. 

II.   BACKGROUND AND PROPOSED CONCEPT 

This work considers an electrical machine designed for 
automotive traction with power and maximum speed equal to 
115 kW and 12000 rpm, respectively. As detailed in [20], the 
design and optimization process of such traction motor has led 
to select a permanent magnet assisted synchronous reluctance 
machine with 4 poles and 3 rotor barriers per pole, as shown 
in Fig 1, and the geometrical parameters are provided in Table 
I. Regarding the stator, two different numbers of slots-per-
pole-per-phase q are envisioned (i.e. q=2 and q=4), while 
fixing stator inner and outer diameters. Also in [20], both 
random and hairpin windings have been considered for the 
designed motor. In this work, the focus is on the hairpin option 
and the following layouts are considered: 1) q=2 and number 
of layers per slot k=4; 2) q=4 and k=8; 3) q=4 and k=44) q=4 
and k=6. For the sake of completeness, the main stator 
dimensions are provided in Table II, whereas the conductors’ 
dimensions are given in Table III. 

 
 

 
Figure 1: Permanent Magnet assisted SynRel motor sketch [20]. 
Table I: Motor Geometrical Parameters 

     Name Description 

𝜗!" Flux barrier angle 1 
𝜗!# Flux barrier angle 2 
𝜗!$ Flux barrier angle 3 
𝑊%& Slot opening width  
ℎ% Slot height 
𝑊'() Flux Permanent Magnetmagnet width 
ℎ'() Permanent MagnetFlux magnet height 

 
In reality, layouts 3) and 4) are electrically identical, i.e. the 

number of equivalent conductors in series per slot is four for 
both layouts. However, layout 4) implements the proposed 
segmented hairpin concept, consisting of splitting some of the 
conductors in two or more layers. This concept can be 
extended to any hairpin winding configuration (i.e. different 
number of layers or different parallel paths), and does not 
impact the equivalent number of turns per phase but only 
splits one or more conductors in two or more smaller parallel-
connected conductors, with the aim of reducing the AC 
copper losses. To better envisage this concept, in Fig. 2a the 
conventional solution corresponding to option 3) is modified 
by segmenting the two closest conductors to the slot opening 
in two sub-layers having identical cross sections. This 
modified layout is named “proposed solution” in Fig. 2a and 
corresponds to the aforementioned option 4), where the 
number of conductors is series per slot is four, but the number 
of layers per slot is six. For this reason, this layout can be 
labelled with “k=4 segmented”, as seen in Table III. Thanks 
to Table III we can note that both solutions have the same fill 
factor, the segmented layers result placed nearer to the slot 
opening zone because the physical gap needed between the 
layers. The electrical connections of the segmented hairpin 
winding are shown in Fig. 2b, where each of the last two 
conductors (namely 3 and 4) are subdivided in two sub-layers 
(3.1 and 3.2, and 4.1 and 4.2), whereas in Fig. 2c the 
connections typical of a standard hairpin layout are illustrated 
to highlight the major differences.  

 
Table II: Motorette Geometrical Parameters  

 
Description 

Value(mm) 
q=2                      
q=4                                                                    

Stator Inner Radius                                     70 
Stator Outer Radius                                     111 
Stack length  92 
Slot width                                     9.1                      4.4 
Slot height                                    23                       20 

 



 

 

 

Table III :Bar Cross Section Parameters  
 

Description 
Value(mm) 

  Width            Height                           
Layout 1): q=2, k=4                                        8.2               4.3                                

Layout 2): q=4, k=8                                         4               1.75                           

Layout 3): q=4, k=4                                         4               3.5                                  

Layout 4): q=4, k=4  
(k=4 segmented)                                     

    4               1.75              

 

 
a) 

 
b) 

 

c) 
Fig. 2. a) the proposed segmented hairpin concept and b) circuital schematic; 
c) conventional hairpin circuital schematic 
 

A. Manufacturing considerations 

In theory, each segmented conductor can be composed of 
more than two parallel-connected layers. However, using 
more than two sub-layers may complicate the manufacturing 
process, taking into account that 1) a transposition is needed 
to make the segmented technique effective, 2) the number of 
welding points increases and 3) the total number of layers per 
slot increases too. Therefore, in this work, it is deemed 
sufficient to segment only two conductors. These are 
obviously the closest to the stator slot openings, being the 
most critical ones from a loss perspective. Additionally, the 
number of sub-layers is chosen equal to two, thus minimizing 
the impact on the manufacturing. 

Assuming a high-volume production context, the hairpin 
manufacturing would be a fully automated process. Thanks to 
the technology progress in hairpin manufacturing lines, the 
segmented hairpin winding will not have a significant impact 
on the manufacturing process and cost. In fact, even if the 

number of elementary pins to use increases, nowadays several 
configurable tooling can be used to bend and twist them, and 
this allows to use the same manufacturing line for all the types 
of pins. Attention must be paid to the constraints related to the 
hairpins’ width-to-height ratio during the bending process. 
Additionally, the number of conductors must be kept below 
the current manufacturing limitation. In other words, as long 
as the width-to-height ratio and the number of layers per slot 
are kept below the current limits, then no complications are 
seen when implementing the segmented technology. 
Regarding the welding points, if a standard hairpin winding 
was to be considered for the application at hand, then the 
number of welding points would have been 15, whereas the 
proposed segmented layout presents 22 welding points. This 
does not represent a significant complication. Moreover, the 
technology progress in manufacturing lines is leading to 
manage the welding process in a very reliable way, thus 
avoiding the risk of short circuits in actual applications.  

An example of these technology progresses is represented 
by AUTO-MEA (Automated Manufacturing of wound 
components for next generation Electrical machines) [22], a 
Clean Sky 2 project which aims to develop novel 
methodologies for winding design and to deliver an 
innovative and flexible coil fabrication system, which can 
provide programmable 3D formed coil shapes suitable for 
high frequency operation, effective coil insertion and 
automated welding strategies to form a complete winding 
system for aerospace and automotive wound components.  
Although a detailed cost-benefit analysis is impossible to 
carry out if the volume production is not specified, it is 
anyway clear that the segmentation concept will not bring a 
significant cost increment to the overall process, while the 
benefits in terms of loss reduction and energy savings can be 
impressive. This would lead to a series of additional benefits 
such as higher efficiencies, lower temperatures, increased 
insulation lifetimes, etc. 

III.   ANALYTICAL MODEL 
To exploit the benefits of the proposed methodology vs. 

conventional ones, a 1D analytical model for AC loss 
estimation is developed and described in this section.  

AC losses are those occurring above the frequency level 
where the current is no longer uniformly distributed within the 
conductors. These losses are mostly due to skin and proximity 
effects, assuming that circulating currents are zeroed by a 
suitable transposition. Usually, the AC losses PAC are 
quantified through the product of DC losses and a non-
dimensional factor KAC, which is defined in (1). The DC loss 
PDC is found through the simple relationship reported in (2), 
where lc and Ac are respectively the conductor length and its 
cross section, while σ is the electric conductivity of the 
material. When skin and proximity effects occur, the cross 
section where the current flows is a fraction of Ac, thus the 
equivalent resistance (namely the AC resistance) increases 
and AC losses are consequently enhanced by the factor KAC. 
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These high-frequency phenomena can be significant 
especially in the slot region, but they may have some 



 

 

 

influence also in the end-winding regions. Hence, both 
regions are modelled analytically aiming to accurately 
estimate the overall AC losses.  

A .Slot Region Model 

A 1D model is developed leveraging on the discretization 
of the domain under investigation. This allows to achieve an 
acceptable accuracy while minimizing the calculation effort. 
The slot domain under analysis is shown in Fig. 3 and consists 
of a single slot comprising k conductors (hairpin legs). This 
domain can be analyzed using the discretization layer 
approach, where each conductor is located in a layer. The 
magnetic field inside the slot produced by the current flowing 
in the conductors is considered parallel to their width Wck, 
meaning that the field component parallel to their height hc is 
neglected. 

 
Fig. 3.  Discretized domain. 
 

Under the assumptions of linear behavior of the 
ferromagnetic materials, the application of the Ampere’s law 
to any of the red circuits Yk shown in Fig. 4 leads to obtain 
(3). Here, H is the magnetic field strength, Wsk is the slot 
width, Jk is the current density in the k-th layer, yk-1 and yk 
are the (k-1)-th and k-th layers and Ik-1 is the total current 
linking the (k-1)-th loop. 

 
Exploiting (3) leads to the partial differential equations 

provided in (4) and (5), where the physical quantities can be 
expressed by phasors thanks to the hypothesis of sinusoidal 
current feeding the conductors. In (5), ω is the supply electric 
pulsation, while μ is the magnetic permeability of the 
conductive material. 
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Combining (4) and (5) leads to obtain (6), the general solution 
of which is provided in (7). Here, the quantity η is the skin 
depth which is defined as in (8).  
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𝛿𝑟$ −

𝑗	𝜔	𝜇	𝜎	𝐻	𝑊('	

𝑊*'
= 0 

(6) 

𝐻 =	𝐴+	𝑒
,-+./0 12 +	𝐴$	𝑒

-+./0 12 
(7) 

η = 	8
𝑊*'	2

𝑊('	𝜔	𝜇	𝜎			
 

 
(8) 

 
The constant terms A1 and A2 involved in (7) are found 
through the boundary conditions (9) and (10), where h is the 
height of the considered layer (see Fig. 3). 
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The current density in the k-th layer is finally obtained as in 
(11), whereas the associated losses are finally determined as 
in (12). In (12), lck is the length of the k-th conductor in the 
slot region, while vol is its volume. 
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B .Slot Region Model 

In the end-winding region, the model described above 
cannot be directly used since the ferromagnetic material 
surrounding the conductors is no longer present and the 
geometry of the end-windings is rather complex. However, 
since the end-windings are basically surrounded by air, the 
magnetic field magnitude is much lower than the slot region. 
It becomes then reasonable to neglect the proximity effect 
[23], meaning that the only contribution to AC losses is due 
to the skin effect. As a first approximation, the skin effect can 
be considered invariant along the direction of the conductor 
length, thus leading to tackle the loss determination problem 
as a 1D one also in the end-winding region. Equation (13) is 
then used for determining the skin effect resistance Rskin [24], 
which depends on the parameter ξ the expression of which is 
provided in (14). 
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IV.   FE MODEL 
As per the analytical approach, FE models of both slot and 

end-winding regions are developed to evaluate the AC losses 
using MagNet® from Simcenter. For both regions, the 
solution mesh is defined according to a detailed sensitivity 
analysis aimed at finding the best trade-off between accuracy 
and computational effort. Time harmonic simulations are used 
for the sake of resolution speed and consistency with the 
sinusoidal supply assumption. According to the [25] only the 
stator model is needed to reduce the computational effort 
without losing accuracy in estimating the AC losses, being the 
latter mainly dependant on the slot flux leakage [20].  
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A .Slot Region Model 

Contrarily to the analytical approach, for the slot region the 
FE models consist of 2 poles being analyzed for any of the 4 
configurations introduced in Section II. Only one phase and 
only the stator is modelled, as shown in Fig. 4 for one of the 
considered layouts, i.e. the case with q=2 and k=4. 

 
Fig. 4.  FE slot region model for the case study with q=2 and k=4. 
 
B .End Winding Region 

  
The estimation of AC losses in hairpin windings including the 
end-windings is an inherently 3D problem. Also, the end 
regions of hairpin windings are rather complex and only a 3D 
analysis would be fully accurate. However, a 3D model would 
be very consuming in terms of both modeling and simulation 
times. To enable an 2D analysis, first of all the proximity 
effect is neglected and only the skin effect is taken into 
account, consistently to the analytical approach discussed in 
Section III. To simplistically evaluate the influence of the 
end-winding geometries, two conductors with different 
shapes are considered, as reported in Fig. 5. The two 
conductors have identical cross sections and lengths, but the 
first one is obtained through axial extrusion (see Fig. 5a), 
whereas the second one is extruded angularly (see Fig. 5b). 
Apart from the major bends typical of hairpin windings, the 
conductor shown in Fig. 5b reproduces a shape close 
approximation to the ones that can really be found in this 
region. This conductor is modelled through a 3D FEA, 
whereas the one shown in Fig. 5a is studied as a 2D problem. 
The FE evaluations for both conductors’ shapes are carried 
out at 1000 Hz to enhance the high frequency effects. The 
comparison is shown in Table IV and highlights a 1.5% 
mismatch between the results in terms of losses. In Table IV, 
the number of mesh elements and the solution times are also 
reported to emphasize and justify the use of the 2D models for 
the analysis of the end-winding regions. 

Fig. 5.  End Winding Region Models: a) Axially-extruded conductor (2D 
analysis) and b) Angularly-extruded conductor (3D analysis). 
 
 
Table IV : Comparison AC Losses at 1kHz between 2D and 
3D End Winding Models 

Model Losses 
[mW] 

Mesh 
Elements 

(units) 

Computational 
Time (sec) 

2D 5.15 226 6 
3D 5.23 711358 67 

 

Considering the above and passing to the analysis of the study 
cases at hand, it is worth mentioning that a full 3D CAD 
model is usually available for a hairpin winding design ready 
to be manufactured. Hence, it would be straightforward to 
determine cross sections and lengths of all conductors to use 
in the simplified 2D FE models. However, since motorettes 
are manually built to prove the concepts proposed in this 
article, a full 3D CAD model is not available. Therefore, to 
estimate the end-winding length for the FE evaluations, first 
the overall DC resistance RDCmeasured is measured with an 
impedance analyzer and then, knowing the winding 
characteristics in the slot region, it becomes possible to extract 
the 2D resistance RDC2D and the end-winding resistance and 
length Rend and Lend. To such purposes, (14) and (15) are used, 
where σCu is the copper conductivity and ACu is the conductor 
cross section  

𝑅!"# = #𝑅$%<=>?@A=B −	𝑅$%CD&	
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In Table V, the end-winding lengths calculated in this way are 
reported for each investigated case study. Finally, using such 
lengths, the simplified models shown in Fig. 6 are built to 
estimate the AC losses in the end-winding region of each 
considered winding layout. 
 
Table V : End Winding Lengths  

Winding Layout End Winding Length    
[mm] 

q=2 and k=4                              396 
q=4 and k=4                                                         306 
q=4 and k=4 Segmented 172 
q=4 and k=8                                                         13.4 

 

  
                       
a) 

                     
b) 

  
                      
c) 

                    d) 

Fig. 6.  End winding region model: a) q=2 and k=4; b) q=4 and k=4; c) 
q=4 and k=4 segmented; d) q=4 and k=8. 

V.   COMPARISON BETWEEN ANALYTICAL AND FE MODEL     
RESULTS 

In this section the results obtained with the analytical and 
FE models described above are presented and compared. 
These results aim to highlight the accuracy of the analytical 
model and the importance of including the end-winding 
effects in the evaluation of the overall AC losses. 

 Slot Region Model: Analytical vs FE results 

The results obtained from the developed slot region 
analytical and FE models are compared in Fig. 7, which shows 
the trend of the parameter KAC (defined in (1)) vs. frequency. 
The machine electrical frequency at the maximum speed of 

 
 

a) b) 



 

 

 

12000rpm is equal to 400Hz. However, the analysis is carried 
out for a frequency range up to 1200 Hz for a better 
understanding of the losses behaviour of the studied 
topologies and for potential applications at higher speeds 
and/or frequencies.. For the sake of clarity, the results relative 
to the four study cases have been split in Figures 7a and 7b. 
The match is very positive for all the conventional winding 
schemes, with a maximum error lower than 3% over the whole 
frequency range analyzed. Regarding the segmented layout, 
the error becomes ≈50% at 1200 Hz (see Fig. 7b), since the 
developed model does not take into account the updated 
boundary conditions resulting from such an unconventional 
arrangement [18]. On the other hand, both the analytical and 
FE results prove the perceived benefits of the segmented 
layout, with a significant loss reduction achieved compared to 
the conventional q=4, k=4 configuration. 

 
a) 

 
b) 

Fig. 7.  Slot region models: analytical vs. FE results -a)  q=2, k=4 and 
q=4, k=8; b) q=4, k=4 and q=4, k=4 segmented. 

 Complete Analytical Model vs. Complete FE Model 

To evaluate the effects of the end winding regions on AC 
losses, the FE results shown in the section III(labelled as “Slot 
Region FEM”) are compared against the complete FE model 
(labelled as “Complete FEM”), which includes both the 
contributions from the slot and end winding regions. The 
discrepancies can be very high, thus proving the need of an 
accurate end winding region model. The last comparison of 
this sensitivity study is carried out between analytical and FE 
models, when both include the overall effects (slot and end-
winding regions) into account. The results are reported in Fig. 
8, where the segmented hairpin is not reported as the 
discrepancy would be excessive due to the reasons given in 
Section V.A. It can be noticed that the analytical model is not 
as accurate as in the slot region. For the study cases q=4 with 
k=4, q=4 with k=8 and q=2 with k=4 the maximum errors are 
28%, 15% and 17%, respectively. 

Despite these discrepancies, it is worth underlying again 
the need of including the 3D effects also in the analytical 
model. In fact, this is faster than the FE evaluations and this 
can lead designers and researchers to prefer the analytical 

approach in some specific cases (e,g. when long optimization 
processes are used), yet accepting the inherent limitations and 
inaccuracies. 

 
Fig. 8.  Complete analytical model vs. complete FE model: comparison of 
results relative to the investigated conventional arrangements. 

VI. THERMAL ANALYSIS 
The loss reduction achieved by the segmented hairpin 

winding would lead to a temperature reduction which could 
lead either to increase the power rating of the electrical 
machine or to operate it at a lower temperature in order to 
extend the insulation lifetime. For the sake of completeness, a 
thermal analysis via Simcenter MAGNET Thermal is 
performed on the segmented hairpin and its conventional 
version. The environmental condition boundaries are set in the 
surfaces in contact with the ambient air, imposing an 
environmental temperature of 20°𝐶  and a convective heat 
transfer coefficient of 20W/(𝑚$  °𝐶 ) according to [26]. 
Coupled simulations are carried out using the electromagnetic 
field simulation software Simcenter MagNet and the thermal 
tool MAGNET Thermal. First, 2D time harmonic simulations 
are made to evaluate the losses, and then these are 
automatically acquired by the thermal software and used as 
heat sources for the 2D static thermal simulations. A 
significant operating point at a frequency equal to 1kHz is 
chosen for the comparison, with the current set at 40A to 
achieve reasonable temperature levels. Figure 9 shows the 
temperature distribution for the standard solution (Fig. 9a) 
and for the proposed concept (Fig. 9b). 

  

a) b) 

Fig.9. Temperature distribution for a) the conventional winding topology and 
b) the proposed winding topology. 
 
With the proposed solution the peak temperature registered in 
the conductors is 67.8 °𝐶, whereas with the standard solution 
the peak temperature is 141.9 °𝐶. These values are justified 
by the significantly different values of copper losses produced 
with the conventional and the segmented configurations, 
being respectively equal to 119W and 52.9W. The ratio 



 

 

 

between losses is consistent with what is reported in Fig. 7.b 
where, at 1kHz, for the conventional hairpin winding KAC is 
about twice that of the segmented layout. 

VII. EXPERIMENTAL RESULTS 
Aiming at demonstrating the proposed segmented concept 

as a means to reduce AC losses in hairpin windings, as well 
as to prove the methodologies presented in the previous 
section, four motorettes (i.e. stator portions corresponding to 
one pole pair) are built according to the dimensions provided 
in Tables II and III. As mentioned in Section IV.B, these 
motorettes are manually wound for the sake of simplicity, i.e. 
to minimize costs, resulting in oversized end-windings as 
observed in the figure. The motorettes are shown in Fig. 10 
and are representative of the four study cases investigated in 
this work. Therefore, one of these implements the segmented 
hairpin winding concept, i.e. the one labelled as “q=4, k=4 
Seg” in Fig. 10. For the sake of consistency with the 
sinusoidal supply assumptions used in both analytical and FE 
evaluations, the signal feeding the motorettes is first produced 
by a SiC Voltage Pulse generator with 60 kHz switching 
frequency and, then, filtered by a low pass LC filter with a 
cutoff frequency at 2 kHz to obtain an output signal as close 
as possible to a pure sinusoidal waveform. The power loss is 
measured by a precision power analyzer (PPA 5530) and an 
oscilloscope is used to double check the losses value and the 
signal waveforms. All measurements are taken at the same 
temperature (20 °𝐶 ).  and the winding temperatures are 
monitored with a thermal camera during testing. The whole 
test setup is shown in Fig. 11a, whereas the relevant circuital 
schematic is illustrated in Fig. 11b. 

 
Fig. 10.  Built motorettes. 
 

 
a) 

 
b) 
 

Fig. 11.  a) Experimental setup and b) corresponding circuital schematic. 
 
The experimental tests are performed ranging from 0 Hz to 
1200 Hz and the relevant results are compared in terms of KAC 
against the complete FE simulation results. This comparative 
exercise is reported in Fig. 12, where an excellent match 
between FE and experimental results is achieved in the whole 
frequency range considered. The maximum error is less than 
15% and this could be justified by the additional resistance 
introduced by the welded connections. 

 
a) 

 
b) 

Fig. 12.  Comparison between FE and experimental results: a)  q=2, k=4 
and q=4, k=8; b) q=4, k=4 and q=4, k=4 segmented. 
 

Apart from the match accuracy between FE and 
experimental results, the main achievement here is the proof 
of the effectiveness of the segmented hairpin concept. 
Compared to the conventional q=4, k=4 layout, its modified 
segmented version, i.e. q=4, k=4 segmented, achieves an 
experimental loss reduction by more than 20% starting from 
600 Hz, with a peak reduction of 28% registered at 1000 Hz. 
It is worth mentioning that, as done for the analytical and FE 
evaluations, the same magneto-motive force is used to feed 
the hairpin layouts to make the comparison fully fair.  

Having proven the effectiveness of the proposed technique, 
the last step is to demonstrate that the segmented hairpin 
windings can compete against random windings envisioned 
for the same application. This is the focus of the next section. 

 



 

 

 

VIII. COMPARISON BETWEEN HAIRPIN AND RANDOM 
EXPERIMENTAL RESULTS 

For the same application (see Section II), motorettes with 
trapezoidal slots hosting a random winding with round 
conductors are built and tested in order to identify the trend of 
the parameter KAC vs. frequency. The full analysis and 
experimental campaign are detailed in [22], where different 
winding topologies were proposed with the goal of achieving 
an optimal solution for reduced copper losses. The built 
motorettes are shown in Fig. 13, with two configurations 
being realized: q=2 and q=4. The winding details are 
summarized in Table VI.  

In [22], it was found that the AC losses are significantly 
dependent on the position of the various strands, especially 
for high frequency operating points. Hence, in this work, 
where the results have to be compared against those relative 
to the hairpin motorettes, the trend of KAC is plotted 
considering a mean value µESM and a standard deviation σESM 
found out leveraging on the experimental statistical method 
[22].  

 
Fig. 13.  Motorettes with random windings. 
 
 
Table VI : Winding Details  

              Parameter  Value 
Q2        Q4 

Strands  in hand  32         32 
Turns per phase 

Strand (copper) diameter (mm) 
Slot Filling Factor (%) 

 16          8 
0.56      0.56 
44          44 

 
Fig. 14 shows the experimental comparison between hairpin 
and random windings in terms of KAC vs. frequency, up to 1 
kHz. For the random winding, the minimum and maximum 
KAC values that give the 66% probability of having a value 
inside the range µESM ∓	σESM are considered. It can be noticed 
that the hairpin solutions perform better than the random ones 
in the low frequency range. This is due to the higher slot fill 
factor and the ensuing lower DC resistance. Most importantly, 
Fig. 14 highlights that the 2 hairpin solutions q=4, k=8 and 
q=4, k=4 segmented achieve lower losses than the 66% of the 
possible solutions that can happen with random windings up 
to ≈900 Hz. These results, besides proving that some hairpin 
layouts (including the proposed segmented one) can present 
lower losses than random windings even at high frequency 
operations, also demonstrate that the segmented layout 
presents similar performance to the 8-layer hairpin 
configuration, albeit with a reduced number of layers per slot, 
thus potentially leading to a simplification of the 
manufacturing process. 

 
Fig. 14.  Experimental results: random vs. hairpin windings. 
 

IX. CONCLUSIONS 
In this work, an improved hairpin winding topology was 

proposed to reduce ohmic losses at high frequency operations. 
This concept, named as segmented hairpin, consists of 
splitting one or more slot conductors in two or more sub-
conductors, similarly to the “strand” concept usually 
implemented in random windings. In this paper, it was 
decided to split two conductors in two sub-conductors, as this 
was deemed to be the optimal solution in terms of loss 
reduction and minimization of the manufacturing 
complexities.  

The losses produced at various frequency operations within 
the proposed segmented hairpin winding were assessed 
against conventional hairpin and random solutions. Analytical 
and finite element models were used to such purposes, taking 
into account both slot and end-winding regions. A simplified 
2D finite element model was implemented to predict losses in 
the end-windings, thus avoiding the need of building an 
accurate but very computationally-expensive 3D model. The 
relevant findings proved that the AC end-winding losses can 
be significant is some cases, whereas they are regularly 
overlooked in previous literature.  

In terms of loss reduction, promising analytical and finite 
element results were obtained for the proposed segmented 
concept. These perceived benefits were then validated by 
building and testing stator motorettes featuring various 
winding arrangements. Compared to conventional hairpin 
layouts, the segmented hairpin solution achieved a loss 
reduction always higher than 20% starting from ≈600 Hz, 
reaching a peak reduction of 28% at 1 kHz, thus proving its 
potential. 

Finally, a comparison between random and hairpin 
windings designed for the same traction application was 
performed. Both conventional and segmented hairpin layouts 
provided lower losses than random windings at low 
frequency, as expected. Additionally and importantly, the 
proposed segmented hairpin solution achieved loss values 
similar to random windings up to 900 Hz, thus proving its 
competitiveness for a broader range of operational 
frequencies. 
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