
Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D3.1: Multimodal and privacy-aware audio-visual
intelligence – initial version †

Abstract: This document describes the initial version of the methodologies pro-
posed by MARVEL partners towards the realisation of the Audio, Visual and Multimodal
AI Subsystem of the MARVEL architecture. These include methods for Sound Event De-
tection, Sound Event Localisation and Detection, Automated Audio Captioning, Visual
Anomaly Detection, Visual Crowd Counting, Audio-Visual Crowd Counting, as well as
methodologies for improving the training and efficiency of AI models under supervised,
unsupervised, and cross-modal contrastive learning settings. The effectiveness of these
methods is compared against recent baselines, towards achieving the AI methodology-
related objectives of the MARVEL project.

Contractual Date of Delivery 30/06/2022
Actual Date of Delivery 30/06/2022
Deliverable Security Class Public
Editor Alexandros Iosifidis (AU)
Contributors AU, TAU, FBK, UNS
Quality Assurance Toni Heittola (TAU)

Nikola Simíc (UNS)

† The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957337.

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

The MARVEL Consortium
Part.
No.

Participant organisation name Participant
Short Name

Role Country

1 FOUNDATION FOR RESEARCH
AND TECHNOLOGY HELLAS

FORTH Coordinator EL

2 INFINEON TECHNOLOGIES AG IFAG Principal
Contractor

DE

3 AARHUS UNIVERSITET AU Principal
Contractor

DK

4 ATOS SPAIN SA ATOS Principal
Contractor

ES

5 CONSIGLIO NAZIONALE DELLE
RICERCHE

CNR Principal
Contractor

IT

6 INTRASOFT INTERNATIONAL
S.A.

INTRA Principal
Contractor

LU

7 FONDAZIONE BRUNO KESSLER FBK Principal
Contractor

IT

8 AUDEERING GMBH AUD Principal
Contractor

DE

9 TAMPERE UNIVERSITY TAU Principal
Contractor

FI

10 PRIVANOVA SAS PN Principal
Contractor

FR

11 SPHYNX TECHNOLOGY
SOLUTIONS AG

STS Principal
Contractor

CH

12 COMUNE DI TRENTO MT Principal
Contractor

IT

13 UNIVERZITET U NOVOM SADU
FAKULTET TEHNICKIH NAUKA

UNS Principal
Contractor

RS

14 INFORMATION TECHNOLOGY
FOR MARKET LEADERSHIP

ITML Principal
Contractor

EL

15 GREENROADS LIMITED GRN Principal
Contractor

MT

16 ZELUS IKE ZELUS Principal
Contractor

EL

17 INSTYTUT CHEMII
BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal
Contractor

PL

MARVEL - 2- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

Document Revisions & Quality Assurance

Internal Reviewers

1. Toni Heittola, TAU
2. Nikola Simić, UNS
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GPU Graphics Processing Unit
HPC High-Performance Computing
KD Knowledge Distillation
KPIs Key Performance Indicators
KWS Keyword spotting
MAC Multiply-Accumulate
MCU Microcontroller Unit
MEMS Microelectromechanical
MFCC Mel-Frequency Cepstral Coefficients
ML Machine Learning
MVP Minimum Viable Product
RNN Recurrent Neural Network
SA Self-Attention
SDK Software Development Kit
SER Speech Emotion Recognition
SED Sound Event Detection
SELD Sound Event Localisation and Detection
SL-ViT Single-Layer Vision Transformer
SSL Sound Source Localisation
SGD Stochastic Gradient Descent

MARVEL - 12- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

SVM Support Vector Machine
TF-IDF Term-Frequency Inverse-Document-Frequency
TP True Positive
TN True Negative
VAD Voice Activity Detection
VCC Visual Crowd Counting
ViAD Visual Anomaly Detection
VideoAnony Video Anonymisation component
WP Work Package
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Executive summary
This document provides a description of methodologies for multimodal and privacy-
aware audio-visual intelligence in the MARVEL project. This is the initial version of the
document reporting work conducted in T3.3 Multimodal audio-visual intelligence, and
it includes audio-visual data analysis methodologies proposed by MARVEL partners
within the first 18 months of the project towards achieving the project objectives. The
final version of the multimodal and privacy-aware audio-visual intelligence in MARVEL
will be documented closer to the end of the project (M30) in D3.5, and it will contain
the enriched set of methodologies further improving the Artificial Intelligence (AI) ca-
pabilities in MARVEL. These methodologies belong to the audio, visual, and multimodal
AI subsystem of the MARVEL architecture (as reported in D1.3 [5]), and they target the
third objective of WP3, i.e., to train new or updated ML algorithms for audio-visual
classification and analytics. Work reported in this deliverable contributes to Objective
2 of the project, i.e., to deliver AI-based multimodal perception and intelligence for
audio-visual scene recognition, event detection, and situational awareness in a smart
city environment. Some of the methods described in this document were integrated in
the Minimum Viable Product (MVP), as reported in D5.1 [6]. The document starts with
a general introduction, providing the purpose and scope of this document, the contri-
butions of the work conducted so far in T3.3 to WP3 and to the project objectives, and
its relation to other WPs and deliverables, followed by a description of how the new
methodologies proposed so far meet the Key Performance Indicators (KPIs) related to
the AI functionalities in MARVEL. Then, the methodologies proposed by MARVEL part-
ners are described in more detail.

Specifically, methodologies targeting audio data analysis tasks are described in Sec-
tion 2. These include methodologies for Sound Event Detection at the Edge, Sound
Event Detection at the Cloud, Sound Event Localisation and Detection, and Automated
Audio Captioning. Moreover, the description includes an audio data processing method
for learning from unlabelled data and a new concept on how Citizen Science projects
can be enhanced through contextual and structural game elements realised through
augmented audio interactive mechanisms. Methodologies targeting visual data analy-
sis tasks are described in Section 3, including methodologies for unsupervised Visual
Anomaly Detection and rule-based Visual Anomaly Detection. Moreover, a methodol-
ogy for vision-based social distance estimation and methods for improving performance
and/or efficiency of visual data analysis methods based on dynamic inference and dy-
namic split computing are described, along with methods targeting better training of
deep learning models applied to visual data. Methodologies targeting multi-modal data
analysis tasks are described in Section 4, including a methodology for Audio-Visual
Crowd Counting, and a methodology for learning enhanced audio representations by
combining multiple types of information.

The document concludes by providing plans for future work for enriching and fur-
ther improving the AI methodologies in the remaining period of the project (up to M30)
in Section 5 and by providing a summary of the work conducted so far in Section 6.
The work included in this deliverable has been reported in 4 journal articles, 6 con-
ference papers, 4 workshop papers, and 1 preprint. The corresponding articles, papers
and preprints are included in Appendices 7.1 - 7.15.
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1 Introduction

1.1 Purpose and scope of the document

Deliverable 3.1, entitled “Multimodal and privacy-aware audio-visual intelligence – ini-
tial version”, reports on the activities carried out within Task 3.3 Multimodal audio-
visual intelligence in the period of M08 (August 2021) to M18 (June 2022). The contri-
butions in this Task are in the form of methodologies that target addressing limitations
of existing AI solutions in the context of Smart Cities. These methodologies aim at im-
proving performance and/or efficiency in tasks involving the analysis of audio, visual,
and multi-modal data, towards achieving the objectives of the project, and specifically
Objective 2. This objective targets to deliver AI-based multimodal perception and intel-
ligence for audio-visual scene recognition, event detection and situational awareness in
a smart city environment. Addressing Objective 2 will be implemented by achieving the
third objective of WP3, i.e., train new or updated ML algorithms for audio-visual classi-
fication and analytics. The report provides a detailed description of the methodologies
proposed by the project partners, along with performance evaluations comparing these
methodologies with baselines and state-of-the-art methodologies considering the re-
strictions set by the application scenarios in MARVEL, such as the need of applying
the inference on computationally restricted processing units, and time constraints for
providing an inference result. The methodologies described in this deliverable will be
enriched by work conducted in the remaining period of the project (up to M30), which
will be reported in D3.5.

1.2 Contribution to WP3 and project objectives

The work conducted so far in T3.3 and reported in this deliverable contributes to the
third objective of WP3 AI-based distributed algorithms for multimodal perception and sit-
uational awareness, i.e., to train new or updated Machine Learning (ML) algorithms for
audio-visual classification and analytics. Methodologies in this task target addressing
limitations of existing solutions, and providing state-of-the-art capabilities to the Au-
dio, Visual and Multimodal AI Subsystem of the MARVEL architecture. This subsystem
includes functionalities that are implemented in the following components:

• Visual Crowd Counting (VCC), a component estimating the number of people
being present in the field of view of a camera;

• Visual Anomaly Detection (ViAD), a component detecting novelties in the con-
tents of the scene based on visual information captured by a camera;

• Sound Event Detection (SED), a component recognising event types based on an
audio signal;

• SED@Edge, a component performing SED at edge devices;

• Sound Event Localisation and Detection (SELD), a component detecting the loca-
tion of events and recognising their types based on audio signals;

• AudioTagging, a component outputting activity of multiple simultaneous sound
classes without temporal activity;
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• Automated Audio Captioning (AAC), a component generating a caption which
describes the information appearing in an audio signal;

• Automated Audio-Visual Captioning (AAVC), a component generating a caption
describing the content in a scene captured by a camera (visual) and a microphone
(audio);

• Audio-Visual Crowd Counting (AVCC), a component estimating the number of
people being present in a scene based on the enriched information provided by a
camera (visual) and a microphone (audio);

• Audio-Visual Anomaly Detection (AVAD), a component detecting novelties in the
contents of a scene based on audio-visual information captured by a camera and
a microphone;

• devAIce, a C++ SDK used to wrap all of AUD’s intelligent audio analysis mod-
ules, including voice activity detection and acoustic scene classification, which are
relevant for MARVEL.

• CATFlow, a system developed by GRN to analyse video footage of road traffic
(possibly in real-time) to determine how road users use the given infrastructure.

Fig. 1 illustrates the MARVEL architecture, in which the Audio, Visual and Multi-
modal AI Subsystem is highlighted. This subsystem, using the above-described compo-
nents provides the decision-making capabilities based on audio-visual data analysis in
the overall MARVEL architecture. As such, the new methodologies developed within
T3.3 primarily contribute to Objective 2 of MARVEL, i.e., to deliver AI-based multi-
modal perception and intelligence for audio-visual scene recognition, event detection,
and situational awareness in a smart city environment.

Work performed during the first 18 months of the project proposed methodologies
for improving performance and/or speed of AI models targeting eight of the function-
alities included in the Audio, Visual and Multimodal AI Subsystem, and specifically,
Sound Event Detection (SED), SED@Edge, Sound Event Localisation and Detection
(SELD), Audio Tagging (AudioTagging), Automated Audio Captioning (AAC), Visual
Crowd Counting (VCC), Visual Anomaly Detection (ViAD), and Audio-Visual Crowd
Counting (AVCC). Moreover, a number of methodologies for improving the training of
deep learning models for visual data analysis were proposed. Work targeting the Au-
tomated Audio-Visual Captioning (AAVC) and Audio-Visual Anomaly Detection (AVAD)
functionalities has been planned to be conducted during the remaining part of the
project, mainly due to the lack of well-established benchmark datasets which makes
methodology development and comparisons with other approaches difficult.

1.3 Relation to other work packages and deliverables

Within WP3, work conducted in T3.3 is connected to work in T3.1 AI-based methods
for audio-visual data privacy, as the result of data anonymisation (VideoAnony and
AudioAnony components) will be used by the AI components of T3.3 when necessary.
AI models in T3.3 will be used within the personalised federated learning framework
in T3.2 MARVEL’s personalised federated learning realisation for extreme-scale analytics,
and distributed Deep Learning (DL) architectures will be used in T3.4 Adaptive E2F2C
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Figure 1: The Audio, Visual and Multimodal AI Subsystem (highlighted) in the MARVEL
architecture.

distribution and optimisation of AI tasks for adaptive E2F2C distribution and optimised
deployment of AI tasks. ML models in T3.3 will also be optimised in T3.5 Edge-optimal
ML/DL deployment for multimodal processing, when needed for being deployed at the
edge.

Work in T3.3 is also related to multiple tasks belonging to other work packages.
Specifically, it is related to tasks T1.1 The critical role of multimodal analytics in address-
ing societal challenges, and T1.2 Extreme-scale multimodal analytics: progress beyond the
state-of-the-art, which as reported in D1.1 set the scene and describe the advancements
in multimodal data analytics required in the context of smart cities. Its results will
be contributing to the experimental protocol of the MARVEL project which is defined
in T1.3 Experimental protocol – real life societal trial cases in smart cities environments,
as reported in D1.2. The audio-visual intelligence functionalities in T3.3 and the re-
spective AI components are described in T1.4 Technology convergence: specifications and
E2F2C distributed architecture, which refines the specification of the conceptual archi-
tecture of the MARVEL E2F2C ubiquitous computing framework as reported in D1.3.

The AI models in T3.3 will be trained on the MARVEL data corpus, which will be
collected, analysed, managed, and distributed according to WP2 MARVEL’s multimodal
data Corpus-as-a-Service for smart cities, as well as in T4.1 Optimised audio capturing
through MEMS devices. Moreover, AI functionalities in T3.3 will add to those in T4.2
openSMILE platform for audio-visual analysis and voice anonymisation, and will be used
in T4.4 MARVEL’s decision-making toolkit implementing the interactive visualisation and
audio-visual analytics tools.

The AI functionalities developed in T3.3 through the components mentioned above
will be integrated into the MARVEL architecture, WP5 tasks T5.1 HPC infrastructure,
T5.2 Resource management and optimised automatic usage, T5.3 Continuous integration
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towards MARVEL’s framework realisation. The effectiveness of the provided AI solutions
will be evaluated in T5.4 Quantifiable progress against societal, academic, and industrial
validated benchmarks and in T5.5 From the prototype to the final solution. Three compo-
nents (SED, VCC, and AVCC) were included in the MARVEL Minimum Viable Product
(MVP) as reported in D5.1 [6], and the initial technical evaluation and progress against
benchmarks were reported in D5.2 [7]. Finally, the work in T3.3 is connected to WP6
Real-life societal experiments in smart cities environment, where the above-mentioned AI
components will be used for decision-making in real smart city environments.

1.4 Connection to Key Performance Indicators

Work within T3.3 is connected to a number of methodology-related Key Performance
Indicators (KPIs) set to achieve Objective 2 of the MARVEL project and impact-related
KPIs (iKPIs). Work conducted so far by project partners contributes to addressing them
as summarised in the following. All numbers refer to experimental results conducted
on specific datasets, as described in Sections 2, 3 and 4, and the corresponding research
papers and preprints copied in the Appendices. The work towards achieving all set KPIs
will continue in the second half of the project, and will be reported in D3.5 Multimodal
and privacy-aware audio-visual intelligence – final version which will be delivered in
M30.

KPI-O2-E2-1: Average accuracy enhancement for audio-visual representations and mod-
els at least 20%

AU developed a method for Audio-Visual Crowd Counting (AVCC) which pro-
vides 3.06% improvement (in mean absolute error) against the state-of-the-art
(Section 4.1). AU also developed an efficient method for Visual Crowd Counting
(VCC) employing Early Exit Branches to reduce the parameter count of the re-
sulting model (Section 3.1). The resulting models achieved improvement up to
11.11% (in mean absolute error) compared to the competing baseline. Moreover,
AU developed methodologies for improving the training of deep neural networks
through better initialisation of their parameters (Section 3.6) and by increasing
the diversity of representations learned by different neurons in each layer (Sec-
tion 3.7), which improved performance compared to the baselines on visual data
classification.

KPI-O2-E3-1: Increase the average accuracy for audio-visual event detection by at least
10%.

TAU developed a Sound Event Detection (SED) method based on a light-weight
Convolutional Recurrent Neural Network (CRNN) obtained by replacing Convo-
lutional Neural Network blocks with depth-wise separable convolutions, and re-
placing recurrent neural network blocks with dilated convolutions, and by utilis-
ing data augmentation techniques to diversify data (Section 2.2). The resulting
model led to 56% increase (in macro-averaged F1-score) compared to the compet-
ing method. TAU developed SED method based on audio tagging approach, where
tagging is applied inside consecutive segments to get sound event detection out-
put. The system was based on Convolutional Neural Network (CNN) architecture
(Section 2.2), and the resulting model led to 76% increase (in macro-averaged
F1-score) compared to the competing method.
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KPI-O2-E3-2: Increase the average accuracy for unsupervised audio-visual event detection
at the edge by at least 10%.

AU developed an Unsupervised Visual Anomaly Detection (ViAD) method based
on structured parameter pruning on Memory-augmented Deep Autoencoder (Sec-
tion 3.2) which improves performance by 1.2% while reducing the model size and
its number of floating point operations (FLOPs) by 71.78% and 21%, respectively.

KPI-O2-E3-3: Decrease the time needed to identify an event by at least 30% of current
time

FBK developed edge solutions for SED based on compact neural models with low
parameter and parameter count (Section 2.1). These solutions are suitable for
low-resource pervasive devices. Being able to detect sound events very close to
the microphones they eliminate the latency due to data transfer to the cloud.

TAU developed a Sound Event Localisation and Detection (SELD) method based
on self-attention on learned audio features (Section 2.3). The resulting mod-
els have almost double the number of parameters compared to the competing
method. However, they were benchmarked to be 2.5 times faster than the compe-
tition during the inference due to parallelisation achieved with the self-attention
blocks, i.e., they lead to a decrease in the inference time of 40%.

AU developed an efficient method for Visual Anomaly Detection (ViAD) which
employs structured pruning for reducing the parameters of a Memory-Augmented
Deep Autoencoder network (Section 3.2). The resulting model led to a reduction
of the parameter count equal to 71.76% and a decrease of the FLOPs equal to
21%, while slightly improving accuracy (AUC).

AU and UNS developed a Dynamic Split Computing method (Section 4.3) which
determines the optimal neural network split for achieving the fastest execution
time considering the structure of the neural network, the data batch size, and the
transmission channel data rate.

iKPI- 3.2: At least 20% reduction in code complexity (lines of code, amount of scripts, data
handling) required due to the adoption of programmer-friendly public frameworks
providing implementations of new deep learning models.

All developed software implements easy-to-use implementations and interfaces
based on widely-adopted ML and DL libraries to reduce the number of lines
needed for model training and for deploying the resulting models.

iKPI-3.3: At least three (3) approaches tested for ML training algorithms.

FBK investigated the use of Knowledge Distillation for training edge neural mod-
els (Section 2.1).

TAU employed data augmentation techniques specAugment and mixup to improve
the training of the Sound Event Detection (SED) models (Section 2.2). TAU also
proposed a continual learning methodology for training Automated Audio Cap-
tioning (AAC) models (Section 2.4), an active learning method for unsupervised
training of deep learning models (Section 2.5), and a cross-modal contrastive
learning method for improving performance in audio data analysis using other
data modalities (Section 4.2).
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AU employed curriculum learning (Section 3.5) and Copycat finetuning (Section
3.5) for training deep learning models with early exit brances, and unsupervised
learning of Convolutional Autoencoders (Section 3.2). AU also developed meth-
ods for improving the parameter initialisation of deep learning models based on
Discriminant Learning (Section 3.6), as well as training the deep learning model
parameters by increasing their diversity (Section 3.7).

1.5 Structure of the document

The structure of this document is as follows: Section 2 provides a description of the
audio data analysis methodologies, Section 3 a description of the visual data analysis
methodologies, and Section 4 a description of the multimodal data analysis methods
proposed by MARVEL partners. Section 5 discusses future plans for further enriching
the AI methodologies in the remaining period of the project, and Section 6 provides a
summary of the work conducted so far. The work included in this deliverable has been
reported in 4 journal articles, 6 conference papers, 4 workshop papers, and 1 preprint.
The articles, papers and preprints reporting the detailed description and evaluation of
the new methodologies included in this deliverable are appended at the end of the
document.
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2 Methodologies for audio data analysis

In this Section, methodologies developed by MARVEL partners targeting audio data
analysis are described. These include methodologies for Sound Event Detection at the
Edge (Section 2.1), Sound Event Detection at the Cloud (Section 2.2), Sound Event
Localisation and Detection (Section 2.3) and Automated Audio Captioning (Section
2.4). Moreover, the description includes an audio data processing method for learning
from unlabelled data (Section 2.5), and a new concept on how Citizen Science projects
can be enhanced through contextual and structural game elements realised through
augmented audio interactive mechanisms (Section 2.6).

2.1 Desing and Optimisation of Scalable Neural Network for end-
to-end environmental sound classification on low-end devices
(SED@Edge)

2.1.1 Introduction and objectives

The goal of Sound Event Detection (SED) is to identify and classify relevant events in
audio streams with application in the smart city domain (e.g., crowd counting, alarm
triggering), thus is an asset for municipalities and law enforcement agencies. Given
the large size of the areas to be monitored and the amount of data generated by the
IoT sensors, large models running on centralised servers are not suitable for real-time
applications. Conversely, performing SED directly on pervasive embedded devices is
very attractive in terms of energy consumption, bandwidth requirements, and privacy
preservation. In this section, we describe the use of scalable neural network backbones
from the PhiNets architectures’ family for the design of real-time sound event detection
on low-power low-resource devices (e.g. microcontrollers). The corresponding papers
are listed below, and can be found in Appendices 7.1 and 7.2:

• [8] F. Paissan, A. Ancilotto, A. Brutti, E. Farella, “Scalable neural architectures for
end-to-end environmental sound classification”, IEEE International Conference on
Accoustics, Speech, and Signal Processing (ICASSP), 2021.

• [9] A. Brutti, F. Paissan, A. Ancilotto, E. Farella, “Optimizing PhiNet architectures
for the detection of urban sounds on low-end devices”, European Signal Process-
ing Conference (EUSIPCO), 2022.

As described better in the performance evaluation of the method provided in subsec-
tion 2.1.4, SED@Edge performs segment-wise classification and is therefore evaluated
here in terms of classification accuracy. This is mostly related to the nature of the
datasets used in the evaluation of the component, like UrbanSound8K, and simplifies
the benchmarking against state-of-the-art solutions for urban sound classification and
detection and the KPIs evaluation. It is worth clarifying that, in the current configu-
ration, the component performs classification of isolated events. In order to achieve
actual sound event detection, the component will have to be applied on consecutive
(overlapping) segments.
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2.1.2 Summary of the state-of-the-art

In literature, many architectures for SED have been proposed, driven by the recent
DCASE series [10, 11, 12]. This section will briefly review the state-of-the-art tech-
niques with a specific focus on solutions for embedded platforms.

The most common approaches use convolutional neural networks (CNNs) to pro-
cess spectrograms, obtained as stacked Fourier transforms [13]. The best perform-
ing approaches so far are VGGish [14], PiczakCNN [15], and SB-CNN [16]. These
three neural network architectures have different structures but share a high parame-
ter count, with the smallest one being SB-CNN which counts 241K parameters. SB-CNN
was presented in [16] alongside data augmentation techniques, which proved to be the
most effective technique to train networks on the UrbanSound8K benchmark, given
the small size of the dataset. Overall, these architectures are constituted by a massive
number of parameters that could not fit on off-the-shelf Microcontroller Units (MCUs).

An emerging trend in audio classification is exploiting one-dimensional convolu-
tions (1DConvs) directly on the audio waveforms. In this case, neural networks learn
the filters to be applied to the input audio signal directly. Many approaches that inject
previous knowledge into the filter shape are proposed to ease the training. In SincNet
[17] the filters of the first convolutional layer are forced to be band-pass filters. In [18]
the proposed architecture exploits the Gammatone filter initialisation. In ENVNET-V2
[19], 1DConvs are employed with bi-dimensional convolutions on the feature map. De-
spite the good performance, this comes with a high cost in computational requirements
(more than 1M parameters). AudioCLIP [20] learns a bi-dimensional representation of
the waveform with a custom neural network backbone [21] and is currently the best
performing model on the UrbanSound8k benchmark [22]. However, this high accuracy
is achieved by employing extremely large architectures, counting up to 30M parameters
only for the feature extraction. In Wavelet Networks [23], instead, the architecture re-
sembles the wavelet transform to maximise the sound event detection performance by
reducing the impact of phase shifts in the signal. Overall, models working on the wave-
form are less accurate in classifying acoustic events, mainly due to the higher variability
of the signals in the time domain. On the positive side, the 1DConv-based models have
a higher parameter efficiency given that they need to run in only one dimension.

Audio processing at the edge (i.e. on embedded platforms) is relevant for both re-
search and industrial applications. Many approaches targeting embedded platforms are
already available in the literature for a variety of audio tasks, namely keyword spotting
(KWS) [24, 25] and SED [26, 27]. In [26], a student-teacher approach is presented
for model compression via knowledge distillation based on the joint alignment of the
latent representations and cost function optimisation for classification. This approach
shows promising results in compressing architectures. However, there is an implicit
upper bound to the network’s performance since it is empirically shown that the per-
formance of the student network will not surpass that of the teacher. [27] proposes
a novel architecture where a dilated convolution replaces the recurrent unit. More-
over, the implementation exploits depth-wise separable convolutions [28], which are
well-known for their parameter efficiency. Despite this, the parameter count of the ar-
chitecture is still higher than what could fit on an MCU. Network quantisation offers
another popular approach [29]. The most computationally efficient systems use Binary
Neural Networks (BNNs) [30] but compromises classification performance.
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Figure 2: Illustration of the 1D and 2D convolutional blocks. The input map is fed into
the expansion convolution, which affects only the number of channels in the feature
map. The feature map is fed into a depth-wise convolution followed by a squeeze-
and-excite block. The output of the squeeze-and-excite is projected in a lower dimen-
sionality space via a bottleneck layer. At the end of the 1D block, there is an optional
downsampling - implemented using average pooling - and a skip connection - either
ADD or CONCAT depending if the layer realises a downsampling operation or not. For
the 2D block, the skip connection always uses an ADD operation. In the illustration, B
is the number of blocks and N is the ID of the current block.

2.1.3 Description of work performed so far

When bringing neural architectures on MCUs, one of the most efficient approaches is
hardware-aware scaling [1]. Using this paradigm, it is possible to optimise the neural
network architectures to fit on embedded platforms with a negligible drop in perfor-
mance. However, in order to exploit this scaling principle, we need to avoid an expo-
nential decay of the performance with respect to computational requirements, as often
occurs [31]. For these reasons, we present two different architectures (PhiNets 1D and
PhiNets 2D) that are in line with the hardware-aware scaling paradigm and work on two
different multiply–accumulate (MAC) and memory ranges. We exploit the scalability
principles of PhiNets [1], a scalable neural network backbone based on a sequence of
inverted residual blocks (depicted in Fig. 2), where the shape of each block depends
on three hyper-parameters α, β, t0 that control disjointly the MAC count and memory
requirements (FLASH and RAM), respectively, as described in [1].

PhiNets on spectrograms: We introduced some modifications to the original PhiNets
architecture to tailor it to the SED task and improve the classification performance. In
particular, we propose down-sampling the feature map using max-pooling instead of
strided convolutions. We also replace the original input block with a standard 2D con-
volution. Max-pooling improves the network’s overall performance by close to 5% on
the UrbanSound8K dataset, and changing the input block showed a similar trend. We
observed that networks with lower than 2K parameters and 5M MAC perform better
using a strided convolution for downsampling and a depth-wise separable input block.
Despite this small change, the computational load of the PhiNets architectures does not
change and is analytically described in [1].

PhiNets on waveform: To further reduce the computational cost of the PhiNets, we
propose a variation of the architecture that works on waveforms, thus exploiting one-
dimensional convolutions (1DConvs). By doing this, the relationship between the com-
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Figure 3: Illustration of the input 1D convolutional block. The stacked convolutions
work on the features, which are time-stretched with different phases. In the illustration,
f represents the number of filters, while s represents the stride of the convolution.

putational requirements and the number of filters used in each convolutional block is
linear instead of quadratic. Moreover, the overall parameter count is lower.

The network architecture is split into three main blocks. The first block is a convo-
lutional block that aims at reducing the shape of the input tensor allowing for a trade-
off between accuracy and MAC count. This block consists of four vertically stacked
1DConvs with different kernel sizes (namely 32, 64, 128, and 256 points), which work
on time-stretched versions of the waveform to avoid losing information in the striding
process, as described in Fig. 3. This first convolutional block is followed by a sequence
of convolutional blocks composed of a point-wise convolution to up-sample the fea-
tures, a depth-wise convolution, a squeeze-and-excite block, and another point-wise
convolution to restore the same number of features as the input. At the end of the net-
work, a fully-connected layer for classification compresses the extracted features and
outputs the logits for each class. To decrease the computational complexity and to help
the convergence of the network [32], we exploit skip connections in the convolutional
blocks. In particular, we either (i) concatenate the input and output tensors to double
the number of features used in the following layers (instead of increasing channels by
means of e.g. a point-wise convolution) or (ii) sum the input and output tensors. Fig.
2 shows the convolutional block of the PhiNets and how it is performed both in one and
two dimensions.

To scale the computational requirements of PhiNets 1D, we can change the num-
ber of convolutional blocks, the depth-multiplier, and the number of filters in the first
convolution or the stride of the input convolution. In particular, changing all of the
above parameters has a linear impact on both computational costs (i.e., MAC count
and parameter count) except for the number of filters in the first convolutional block.
The latter has a quadratic impact on both parameter and MAC count. Such scalabil-
ity features allow for extreme model compression and optimisation, while decoupling
parameter count and computational cost in alignment with the harware-aware scaling
paradigm.

2.1.4 Performance Evaluation

We benchmarked the two proposed architectures, for waveforms and spectrograms, on
the UrbanSound8K dataset [22]. The dataset consists of a collection of 8,732 samples
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of 4-second long typical urban sound events, equally distributed among ten different
classes (air conditioner, car horn, children playing, dog bark, drilling, engine idling,
gunshot, jackhammer, siren, and street music). The sampling rate of the original audio
sample varies, so we re-sampled each event at 16kHz resulting in 64,000 timepoints
per sample. We used the standard 10-fold benchmarking procedure for this dataset by
averaging the test score after training on eight folds and using one for validation. We
augmented the dataset with pitch shift, time-stretching, and Gaussian noise. The model
input consists of 40 mel-spectrograms computed on the 4s sample using 2,048 sample
windows with a hop-length of 512, resulting in 120 frames for each sound event. For
the waveform model instead, we used the re-sampled signal, thus leading to a 64,000
entries input vector.

We trained the models on spectrograms for 100 epochs, with a 1 × 10−3 learning
rate, 1 × 10−2 weight decay and 0.05 dropout rate in the convolutional blocks. More-
over, we also added label smoothing to help the network avoid over-fitting. For the
waveform model, we decreased the learning rate starting from 6× 10−4 every time the
validation accuracy was not improving for 15 consecutive epochs. Moreover, we used
L2 regularisation as for the other approach.

Tables 1 and 2 report the performance of the proposed method compared against
state-of-the-art architectures using spectrograms and waveforms as input features. The
central column reports the parameter count. The 10-fold accuracy is taken from the
original papers. When the standard deviation is not available in the paper, it is not
reported in the Tables. The notation for the models is taken from the original papers.
In particular, M20k in [33] refers to the order of magnitude of the parameter count.

Table 1: Comparison between PhiNets and other state-of-the-art architectures, using
spectrograms as input features.

Input Model Params (K) 10-fold acc

Sp
ec

tr
og

ra
m

PICZAKCNN [15] 26 000 73.7
SB-CNN [16] 241 73.11
VGG [14] 77 000 70.74
Cerutti M20k [33] 30 69
Cerutti M200k [33] 200 72
Cerutti M2M [33] 2 000 75
Cerutti M20M [33] 70 000 76
PhiNets M40 27.1 76.3 ± 5.6
PhiNets M15 32.2 76.1± 5.0
PhiNets M5 3.80 68.8± 3.1
PhiNets M3 2.18 65.3± 1.6
PhiNets M1.5 2.00 62.3± 3.9

To demonstrate that scaling PhiNets has a marginal impact on the classification ac-
curacy with respect to the compression factor, we benchmarked models in the 0.1-20
MMAC range and with 0.7-30 thousand parameters, which is a typical range for real-
time operation with off-the-shelf MCUs. For reproducibility, the generated models are
enumerated in Table 3.

For a better understanding of the impact of the scaling parameters on model size
and performance, we carried out an empirical study to highlight the effects of α and
t0. β will be kept at the default value (β = 1), as all networks tested require so few
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Table 2: Comparison between PhiNets and other state-of-the-art architectures using
waveforms as input features.

Input Model Params (K) 10-fold acc

W
av

ef
or

m

AudioCLIP [20] >30 000 90.01
ENVNET-V2 [19] 101 000 78
W11-NET-WL [23] 1 806 68.47± 4.914
W18-NET-WL [23] 3 759 65.01 ± 5.431
W34-NET-WL [23] 4 021 66.77± 4.771
1DCNN [18] 453 62± 6.791
W-1DCNN-WL [23] 458 62.64± 4.979
PhiNets 1D M1 11.5 59.3± 3.7
PhiNets 1D M0.5 5.91 56.4± 6.4
PhiNets 1D M0.2 2.11 48.4± 2.5
PhiNets 1D M0.1 1.15 46.3± 4.2
PhiNets 1D M0.07 0.766 43.3± 2.6

Table 3: Parameters for generating the neural network architectures. For the spectro-
gram classification model, the notation is the same as in [1]. For the waveform model,
d refers to the depth multiplier while n refers to the number of blocks.

Model name Conv Type α B t0 MMAC Param. (k)

Sp
ec

tr
og

ra
m PhiNets M40 Conv2D 0.5 3 4.0 43.00 27.1

PhiNets M15 SeparableConv2D 0.5 2 5.0 14.43 32.3
PhiNets M5 Conv2D 0.2 2 2.0 4.72 3.80
PhiNets M3 Conv2D 0.1 2 4.0 2.71 2.18
PhiNets M1.5 SeparableConv2D 0.1 2 2.0 1.59 2.00
Model name Conv Stride Conv Filt n d MMAC Param. (k)

W
av

ef
or

m

PhiNets 1D M1 300 3 4 4.5 1.34 11.50
PhiNets 1D M0.5 500 2 4 4.5 0.40 5.91
PhiNets 1D M0.2 1600 2 3 2.5 0.06 2.11
PhiNets 1D M0.1 300 1 4 1.5 0.15 1.15
PhiNets 1D M0.07 500 1 3 1.5 0.07 0.766

parameters that even the smallest MCUs can store them with a considerable margin.
We vary α considering [0.20, 0.35, 0.50] possible values and t0 in [2, 4, 6]. Note that
in this way, we cover different architectures with a very similar number of parameters.
Given the small sizes of the resulting PhiNet models, besides training them from scratch,
we also investigate the use of Knowledge Distillation (KD) from a larger plain-conv2d
model, using both soft and one-hot labels. Table 4 reports the sound event detection
accuracy obtained by training the models from scratch, as well as using knowledge
distillation, considering different configurations. The table also reports the parameter
count for each configuration.

While the performance of the models trained from scratch decays rather linearly
with the number of parameters, the specific configuration of the hyper-parameters α
and t0 does not seem to have a direct and evident impact on the performance. Over-
all, this was expected as the PhiNet architectures are designed to scale efficiently in
the MCU range without significantly compromising the network’s performance. How-
ever, it is worth noting that, in some cases, using larger values of t0 is preferable with
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Table 4: Accuracy on UrbanSound8K varying the α and t0 scaling parameters, with and
wihtout KD. The table reports also the model parameter count.

α t0 Acc Acc-KD # Parameters
0.20 2 64.87 49.68 4,779
0.35 2 64.64 64.82 12,479
0.50 2 63.90 67.61 24,507
0.20 4 65.85 59.58 8,893
0.35 4 71.80 67.14 23,797
0.50 4 72.25 70.15 47,349
0.20 6 66.05 70.95 13,007
0.35 6 68.02 71.05 35,115
0.50 6 70.39 71.20 70,191

respect to α given a target hyper-parameter count (compare for example the two mod-
els (0.5;2) and (0.35;34)). This could be related to the fact that larger convolutional
blocks can better represent the information, easing the learning task. Finally, note that
the best accuracy (72.25%) is achieved using a medium-size architecture (47K param-
eters obtained with α = 0.5 and t0 = 4). PhiNets are actually designed to be efficient in
the MCU range. Therefore, they tend to overfit easily when the model size increases.
This issue is further accentuated by the relatively small size of the dataset used in our
experiments.

2.1.5 Future Work

As future work, we plan to expand the 1DConv model with different input convolutional
layers shapes (e.g., Sinc, Wavelet) to boost the models’ performance. Finally, in terms of
component deployment, we will focus on adapting the component in order to achieve
actual sound event detection by processing consecutive overlapping fixed-length audio
segments.

2.2 Sound event detection methods for smart city applications

2.2.1 Introduction and objectives

The aim of sound event detection (SED) system is to provide a textual label, a start and
end time to each sound event instance it recognises in an acoustic scene [34]. Overview
of sound event detection is shown in Figure 4. A sound event is defined to be a textual
label that humans would use to describe a sound-producing event, and these labels
allow people to understand the concepts behind events and associate these events with
other known events. Therefore, the detection of sound events can be used to gain an
understanding of the content of audio recordings in the smart city domain.

Sound event detection systems can be roughly categorised based on their ability to
handle simultaneous sound events. A monophonic sound event detection system is able
to output only a single sound event at a time, while a polyphonic sound event detection
system is capable of outputting multiple simultaneous sound events. Currently, the
state-of-the-art SED systems are not able to output multiple sound event instances of the
same class at the same time so the polyphony is here defined in terms of distinct event
classes used in the system. The audio content analysis systems which are outputting
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Figure 4: Overview of sound event detection.

activity of multiple simultaneous sound classes without temporal activity are called
audio tagging systems. These systems are closely related to SED systems and they can
be easily extended to output temporal activity by applying audio tagging in consecutive
short time segments. Often the distinction between SED and audio tagging depends on
the application [35].

Sound event detection methods discussed in this section directly contribute to the
SED component in the MARVEL project. The methods are focusing on approaches suit-
able for smart cities and to be deployed in an HPC environment. The focus of the study
was on approaches for the detection of different vehicle types and overall systems which
could be deployed for real-time sound event detection with CPU-only configurations in
HPC. The previously discussed sound event detection approach SED@Edge (see Sec-
tion 2.1) focuses on approaches suitable for edge devices with limited computational
resources.

2.2.2 Summary of the state-of-the-art

The state-of-the-art on sound event detection is based on deep learning, and neural
network architectures such as CNN [36] and Convolutional Recurrent Neural Network
(CRNN) [37] are often used. Generally, these works use handcrafted acoustic features,
such as mel-band energies, or directly raw audio signal as input [38]. Deep learning
methods require large datasets for robust learning, however, detailed annotations with
exact timestamps for start and end of sound events will become soon impractical to pro-
duce when dataset sizes are getting larger. Because of this, most open datasets available
for SED development are relatively small. Some works utilise data augmentation tech-
niques to increase data diversity while training neural networks. Regularly utilised data
augmentation techniques include audio signal manipulation (e.g. time stretching, pitch
shifting, and dynamic range compression) [39], simulation of various microphones
and acoustic environments (convolution with impulse responses) [40], simulation of
various noise conditions (adding background noise) [39], specAugment (time and fre-
quency masking spectrograms) [41], block mixing (mixing additively blocks of audio
and their annotations) [42], and mixup (combining blocks of audio as a weighted sum)
[43, 44]. In addition to data augmentation techniques, some works use transfer learn-
ing techniques to cope limited amount of learning examples from target sound event
classes. In these techniques, the acoustic model is first trained to solve a secondary
task using a large amount of data and the outputs of this pre-trained model are then
used to produce new features, embeddings, that are used in the actual target task as
input features [45, 36, 46]. Most recent sound event datasets contain only segment
or recording level annotation for the sound event activity (weak annotation) as they
are easier to produce in larger volumes. To use such datasets for the training of sound
event detection systems requires weakly-supervised learning approaches [47, 48].
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The target application for the method development was vehicle type detection. This
was selected to be aligned with the requirements of use case GRN4 Junction Traffic
Trajectory Collection. There has been limited prior work in the literature on this appli-
cation domain [49, 50]. Zinemanas et al. [49] presented the MAVD-traffic dataset with
2.5 hours of annotated audio together with two solutions for vehicle recognition where
analysis is done in one-second segments. The dataset is later used in the performance
evaluation for our SED system. The first proposed solution in [49] is based on mel-
frequency cepstral coefficients (MFCCs) acoustic features extracted on segments and
random forest classifiers and the second solution using mel spectrograms as acoustic
features and classification is utilising neural networks with CNN architecture [51]. The
CNN model is pre-trained with material from the URBAN-SED dataset [51], and the
acoustic model is fine-tuned with the MAVD-traffic dataset for the vehicle recognition
task. These systems were evaluated for vehicle recognition task with three classes (car,
bus, and motorcycle). In [50], a benchmark dataset IDMT-Traffic for acoustic traffic
monitoring research was proposed. The dataset contains 4,718 2-second long audio
segments (in total 2.5 hours of audio) captured next to the road. The data is annotated
by labelling segments with vehicle type (car, bus, motorcycle, truck), traffic direction,
speed limit (30, 50, or 70 km/h), and weather conditions (wet or dry road). The
neural network-based vehicle type classifier is proposed and experiments show a good
performance was achieved with VGGnet and ResNet network architectures. The most
prominent misclassification was observed between truck and car classes. In this stage,
the IDMT-Traffic dataset was not used in our SED component development as it does
not contain an exact timestamp for the event starts and ends (weak annotations), and
we did not want to limit the selection of our sound event detection approaches based on
the style of the annotation. The MAVD-traffic contains exact annotations for the event
starts and ends (strong annotations), and it can be used to test direct sound event detec-
tion approaches as well as sound event detection implemented through audio tagging
in fixed-length audio segments.

2.2.3 Description of work performed so far

Vehicle type detection was selected as the target application for the development, and
the method development focused on approaches relying on supervised learning. For
training these methods, audio material with exact start and end timestamps for the
active sound events is required. As the open datasets suitable for vehicle type detection
research are relatively limited, in the initial stage of the development we studied the
possibility of using transfer learning-based approaches. Most of the pre-trained audio
embeddings are designed for near-field sounds and for full bandwidth signals (32kHz-
44.1kHz). Furthermore, current state-of-the-art pre-trained audio embeddings are also
computationally heavy and not well-suited to be used in CPU-only configurations in
HPC. As our target material in the use case GRN4 has mostly sounds that are in far-field,
the audio signal has a low sampling rate (16kHz), and the computational resources are
part of the consideration, the development focused on methods that are learned fully on
target data so that we have full control of neural architecture during the development.

Two approaches for sound event detection are studied; one processing consecu-
tive non-overlapping 10-second segments and applying sound event detection on them
(later called as detection approach), and one processing consecutive non-overlapping
one-second segments and applying sound event activity recognition inside the seg-
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ments (later called as tagging approach). The first approach will produce better time-
resolution for event activity start and end times, resolution effectively being the hop
length of the feature extraction. At the same time, the overall detection latency of the
system in the real-time situation will be longer. The second approach simplifies the
problem into audio tagging within one-second segments. The time-resolution of the
event activity start and end is relatively rough (one second) in this case, but at the
same time, the overall detection latency is lowered to one second. Because of this, the
approach is suitable for use cases where the system needs to perform under real-time
constraints and lower time-resolution can be tolerated.

In the detection approach, the CRNN network architecture is used. CRNN is a
general-purpose network architecture for sound event detection containing convolu-
tional and recurrent layers [37]. In this architecture, the convolutional layers act as
feature extractors, recurrent layers have the role of learning the temporal dependen-
cies in the sequence of features extracted by the convolutional layers, and the final
fully-connected layer will produce the output with sigmoid activation. Input data for
the model is log mel energies (40 mel bands) extracted in 80ms analysis windows with
40ms hop length. The model produces output at the same time resolution as the in-
put is (40ms). The model consumes 256 consecutive feature vectors (10.24-second
segment). A typical CRNN neural model has 3.5M parameters, and parameters of the
convolutional layers (e.g., number of channels) and weight matrices of recurrent lay-
ers contribute directly to this. A computationally lighter CRNN model is produced by
replacing convolutional neural network blocks with depthwise separable convolutions,
and replacing recurrent neural network blocks with dilated convolutions [52]. The
resulting neural network model has only 290K parameters. These two methods are
denoted as CRNN and CRNN-DESED.

In the tagging approach, the convolutional neural network (CNN) network archi-
tecture is used. In this architecture, the convolutional layers act as feature extractors,
global pooling summarises the feature maps into a fixed-length vector, and fully con-
nected is used to produce the output with sigmoid activation. Input data for the model
is log mel energies (64 mel bands) extracted in 40ms analysis windows with 20ms
hop length. The model produces one output vector for 50 consecutive feature vectors
(1-second segment). Two network structures introduced for PANNs audio embeddings
[36] were studied in this work: a 6-layer CNN with four convolutional layers (kernel
size 5*5) based on AlexNet [53], and a 10-layer CNN with 4 convolutional layers based
on VGG-like CNNs [54]. These two methods are denoted as CNN6 and CNN10, and the
resulting neural network models have 4.57M and 4.95M parameters.

During the training, data augmentation techniques specAugment [41] and mixup
[43] are used to diversify the data.

2.2.4 Performance evaluation

The MAVD-traffic dataset [49], later denoted as MAVD, was used as an application-
specific dataset during the development until use case-specific datasets become avail-
able. The dataset contains 47 5-minute long recordings (in total 2.5 hours of audio)
with 4,718 manually annotated passing vehicles. The dataset is released with a cross-
validation setup where 24 audio recordings captured in one location are used for train-
ing, 7 audio recordings captured in the same location are used for validation, and 16
audio recordings captured in the other three locations are used for testing. Three event
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label classes (bus, car, motorcycle) are used from this dataset in the evaluations to align
the performance measurements with results reported in [49]. Audio signals have been
captured with a 44.1kHz sampling rate. The dataset does not contain recording with
the wind in the microphone, as these sections were removed in the data preparation
stage.

The dataset collected from the use case GRN4, denoted later as GRN-SED, was
used in a later stage of the development. This dataset contains 2 hours of audio data
captured from traffic surveillance cameras in Malta in three locations, with manually
annotated activity for four vehicle classes (bus, car, truck, motorcycle). The audio was
captured with microphones inbuild into the surveillance cameras, and the cameras were
positioned high to oversee the monitored street. In relation to the microphones, the
sound sources can be considered to be relatively far and there are inferring noises
such as construction noise and wind in the microphone. Audio signals were captured
with a 16kHz sampling rate. An additional dataset, GRN-SED-Mobile, was collected in
Malta using smartphones as a recording device to collect material specific to the traffic
in Malta. The recording was done from the side of the road, so in this case, sound
sources can be considered to be near-field part of the time. Dataset statistics for the
used datasets are shown in Table 5.

Table 5: Dataset statistics for MAVD-traffic dataset and GRN4 use case-specific dataset.

MAVD GRN-SED GRN-SED-Mobile
Event Total Event Total Event Total

Event labels instances duration instances duration instances duration
bus 1013 116 min 25 5 min 103 10min
car 1661 304 min 958 281 min 774 61 min
motorcycle 421 43 min 82 10 min 107 8 min
truck 60 6 min 123 41 min 27 3 min
Total 3155 1188 1011

Segment-based F-score and error rate (ER) metrics are used as evaluate performance
[55]. The metrics are calculated in one-second segments, and the sound event activity
is compared between reference annotation and the output. Intermediate statistics, true
positive (TP ), true negative (TN), false positive (FP ), and false negative (FN), are
calculated within non-overlapping segments. F-score is calculated by first accumulating
the intermediate statistics over the evaluated segments for all classes and summing
them up to get overall intermediate statistics (instance-based metric, micro-averaging).
F-score value is calculated as P = TP/(TP + FP ), R = TP/(TP + FN), F = (2 ∗
P ∗ R)/(P + R). The F-score is mainly determined by the number of true positives,
which in turn is dominated by the performance in the classes with a large number of
tested items. In the case of very unbalanced evaluation datasets, it is preferable to use
class-based averaging (macro-averaging) as an overall performance measurement. This
F-score is calculated for each class based on the class-wise intermediate statistics, and
the overall F-score is get by averaging the class-wise F-scores. F-score is commonly used
to evaluate the system performance in sound event detection.

Error rate (ER) measures the number of errors in terms of substitutions (S), inser-
tions (I), and deletions (D) that are calculated per segment from intermediate statis-
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tics. ER is calculated by summing the segment-wise counts for S, D, and I over the
evaluated segments and normalising with the total number of segments.

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)∑K

k=1N(k)
. (1)

The error rate metric is commonly used to evaluate the system performance in
speech recognition, speaker diarisation, and sound event detection. Interpretation of
the metric can be difficult sometimes, as the metric value is a score and can be over 1 if
the evaluated system produces more errors than correct estimations. Furthermore, the
exact value of 1.0 is a trivial case as it can be achieved with the system outputting no
active events. Therefore sound event detection evaluation in this work is done by us-
ing segment-based F-score and ER together to get a more comprehensive performance
estimate for the system.

Table 6: Sound event detection performance on MAVD dataset (3 sound event classes)
with varying approaches and audio sampling rates.

Micro-avg Class-wise F1 Macro-avg
Model F1 ER Bus Car Motorcycle F1
44.1 kHz signals
Baseline (S-CNN [49]) 55.5 0.51 8 68 0 25.3
CRNN 56.5 1.08 40 70 11 40.3
CRNN-desed 52.9 1.34 36 68 15 39.6
CNN6 59.3 0.99 47 71 21 46.5
CNN10 57.4 1.03 44 71 19 44.6
16 kHz signals
CRNN 52.9 1.21 34 70 16 39.9
CRNN-desed 50.7 1.56 36 68 15 39.5
CNN6 54.6 1.16 38 71 18 42.6
CNN10 56.4 1.03 40 73 18 43.3

Results for the MAVD dataset are summarised in Table 6. Two signal setups are eval-
uated to show the effect of a narrow band signal (sampling rate 16 kHz) in comparison
to a full-band signal (sampling rate 44.1 kHz). The performance is measured with
segment-based F1 and ER. The micro-averaged F1 is largely affected by the unbalanced
nature of the data, and because of this class-wise F1 scores are reported together with
macro-averaged F1-score. The results show that the proposed methods outperform the
baseline system proposed in [49], especially when regarding macro-averaged F1-score.
The relatively high error rate for the proposed methods is caused by the high insertion
rate, approximately 85% of the errors are caused by insertions. This aspect of the sys-
tem can be controlled by selecting an application-specific operation point. The systems
reported in the table are not tuned for this aspect and the binarisation threshold is set
to 0.5. For example, the performance of the system CNN10 (full-band signal) can be
increased in micro-averaged ER from 1.03 to 0.60 and F1 from 57.4 to 62.7 by tun-
ing the system to produce a lower amount of active events by setting the binarisation
threshold into 0.85. Operation points for the SED systems will be selected based on the
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Table 7: Sound event detection performance on GRN-SED dataset (4 sound event
classes).

Micro-avg Class-wise F1 Macro-avg
Model F1 ER Bus Car Motorcycle Truck F1
System training with GRN-SED dataset
CRNN 74.7 0.45 0 79 4 47 32.5
CRNN-desed 75.7 0.45 11 80 9 57 39.3
CNN6 77.0 0.43 7 80 22 62 42.8
CNN10 76.5 0.45 14 80 25 62 45.3
System training with GRN-SED, and GRN-SED-Mobile datasets
CRNN 74.8 0.46 0 79 4 50 33.3
CRNN-desed 75.4 0.46 0 79 10 58 36.8
CNN6 76.9 0.43 11 80 24 63 44.5
CNN10 77.3 0.43 16 80 30 66 48.0

application specifications. The effect of the narrow-band signal can be regarded as lim-
ited based on the results. The results show good overall performance across evaluated
systems. Motorcycle event class shows low performance across the systems, and this is
due to the relatively low amount of learning examples available in the MAVD dataset
for such a diverse sound event class. These results complete KPI-O2-E3-1 (increase the
average accuracy for audio-visual event detection by at least 10%) by obtaining a 76%
increase (in macro-averaged F1-score).

Results for the GRN-SED application-specific dataset are summarised in Table 7.
Two training data setups are evaluated to show the effect of training data size and
diversity. The results show again good overall performance across evaluated systems.
Two sound event classes with a low amount of learning examples, bus and motorcy-
cle, show limited performance. When adding the GRN-SED-Mobile dataset as learning
examples, the performance of the motorcycle sound event class is slightly increased.

2.3 Self-attention on learned features for sound event localisation
and detection

2.3.1 Introduction and objectives

The aim of sound event localisation and detection (SELD) is a spatiotemporal analysis
of acoustic scenes while providing temporal activity information of sound events along
with their spatial directions/locations (elevation and azimuth) while they are active
[56, 57]. Multichannel audio captured with a microphone array is required as input
in order to implement sound localisation. Overview of sound event localisation and
detection is shown in Figure 5. Sound event detection provides information about the
acoustic environment, and the spatial locations of events bring more detailed informa-
tion about the sound sources that can be valuable for many applications. SELD can be
utilised in many machine listening tasks such as tracking sound sources of interest [58],
and audio surveillance [59]. The SELD joins to well-established research problems in
acoustical signal processing, i.e., sound event detection (SED) and sound source lo-
calisation (SSL). Formulating and addressing these problems as joined SELD problem
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Figure 5: Overview of sound event localisation and detection. Multi-channel input is
processed in the sound event localisation and detection system into sound event activity
and localisation information (elevation and azimuth).

enables new possibilities in machine listening. Methods discussed in this section di-
rectly contribute to the SELD component in the MARVEL project, and the methods are
focusing on approaches suitable for smart cities and real-time usage. Here we describe
a summary of work on making neural network architectures used in SELD more suit-
able for faster inference. The corresponding paper is listed below, and can be found in
Appendix 7.3:

• [60] P. A. Sudarsanam, A. Politis and K. Drossos, “Assessment of Self-Attention
on Learned Features For Sound Event Localization and Detection”, Workshop on
Detection and Classification of Acoustic Scenes and Events (DCASE), 2021

2.3.2 Summary of the state-of-the-art

The state-of-the-art works on sound event localisation and detection are based on deep
learning and CRNN-based neural network architectures. SELDnet [56] proposed for the
task is based on a CRNN architecture where convolutional layers are used as feature ex-
tractors for multichannel spectrograms, and recurrent layers have the role of learning
longer temporal dependencies in the sequence of features extracted by the convolu-
tional layers. In comparison to the CRNN structure used for SED [37], an additional
localisation inference output branch is introduced to predict the frame-wise direction of
arrival (DOA) of each detected sound event class using a regression. Even though many
alternative architectures such as ResNet [61], TrellisNet [62], and R3Dnet [63] have
been proposed for SELD, the CRNN was the most popular method for the problem in
DCASE2019 and DCASE2020 challenges. Many latest works have been concentrating
on improved input features [64], a fusion of SED and SSL tasks [64, 65], and improved
SELD representations and loss functions [66, 63].
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The Transformer [67] architecture uses self-attention (SA) layers to model longer
temporal or spatial dependencies similarly to recurrent layers used in CRNN architec-
ture. Self-attention layers can be efficiently parallelised and thus making inference us-
age of the model significantly faster than one using recurrent layers. Transformers have
been proposed for SED [68], however, their usage for SSL and SELD has been limited.
In [69], self-attention was integrated into outputs of recurrent layers of CRNN-based
architecture in a sound source localisation system for increased performance. In [70]
this work was extended by replacing recurrent layers with transformers layers for fur-
ther performance increase. For SELD, work presented in [66] included SELDnet-like
architecture augmented with self-attention layers.

2.3.3 Description of work performed so far

The work investigates the effect of self-attention in a SELD task. The baseline SELD
method used in the study is based on learnable feature extraction and learnable tem-
poral pattern identification [56]. The proposed method replaces the temporal pattern
identification with a self-attention mechanism. The baseline system has three convolu-
tional neural network (CNN) blocks to learn high-level representations that are used as
input to two recurrent neural network blocks (RNN). The output of RNN blocks is fed
to a fully connected layer to combine the learned temporal relationships and the regres-
sor layer is used to predict the detection and direction of arrival information at analysis
time resolution. The system output is ACCDOA representation, where the sound event
detection probability score is represented as the magnitude of the predicted localisation
vector. The system is trained in a supervised manner with data having annotations for
event activity and sound source location in relation to the capturing microphone array.

The work studied the effect of replacing the RNN block in the baseline system with
self-attention blocks while keeping the rest of the architecture the same. The effect
of the number of self-attention block, number of attention heads in each self-attention
block, positional embeddings for each time step, and the effect of layer normalisation
was studied systematically.

2.3.4 Performance evaluation

The systems were trained and evaluated using the development dataset published for
the SELD challenge task in DCASE2021 Challenge [71]. The dataset contains 600 one-
minute recordings with active sound events from 12 classes. In this work, the multi-
channel audio is utilised in a 4-channel first-order ambisonics format with a 24kHz
sampling rate. The data was split into 6 folds, each fold having 100 recordings, and
four folds are used for training and single folds for validation and evaluation.

The sound event detection performance is measured with F1-score (F20) and error
rate (ER20) metrics calculated location-dependent manner using a spatial threshold
for true positives as defined in [57]. The true positives are defined to occur when the
event is detected correctly and localised within 20◦ the ground truth. The localisation
performance is measured in a class-dependent manner with localisation error (LECD)
and localisation recall (LRCD).

The main results are summarised in Table 8. The evaluated system was trained ten
times and average metric values along with standard deviation were reported across
these. Eight attention heads produce the best performance, together with positional
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embeddings for each time step and layer normalisation. Table 8 shows three topolo-
gies: system 1 is using two 128 dimensional self-attention, system 2 is using three
128 dimensional self-attention, and system 3 is using a configuration with three self-
attentions with dimensions 128-256-128. The proposed systems outperformed the
baseline with all metrics. The proposed systems have almost double the number of
parameters compared to the baseline. However, the proposed systems were bench-
marked to be 2.5 times faster than the baseline system during the inference due to
parallelisation achieved with the self-attention blocks. These results complete KPI-O2-
E3-3 (decrease the time needed to identify an event by at least 30% of the current time)
by decreasing the inference time by 40%.

Table 8: Sound event localisation and detection performance on DCASE2021 SELD
task’s development dataset.

Model Params ER20 F20 LECD LRCD

Baseline 0.5M 0.69 33.9 24.1 43.9
Proposed 1 1.1M 0.61±0.01 45.84±1.06 21.51±0.74 54.99±1.87
Proposed 2 1.6M 0.62±0.01 44.63±1.14 21.56±0.46 54.46±0.94
Proposed 3 2.2M 0.62±0.01 45.14±1.03 21.67±0.41 55.29±1.23

2.4 Novel architectures and continual learning for automated au-
dio captioning

2.4.1 Introduction and objectives

Automated audio captioning (AAC) aims at providing textual descriptions for a segment
of audio. The AAC system will provide a textual description in form of sentences to de-
scribe what is happening in the audio, for example, “People talking while music playing
in the background and cars passing by”. The length of a given audio segment can be,
e.g. 30 seconds or 1 minute. The audio captioning system can be used to collaborate
and enhance the predictive behaviour of other systems by providing high-level infor-
mation given the audio signals. The descriptions can be used as extra and indicative
information to assist the decision-making process by the corresponding MARVEL com-
ponents. The development of audio captioning requires an audio captioning dataset,
which consists of audio signals having captions as annotations. In the learning stage,
the system learns to map the input audio signals to the corresponding captions. In the
prediction stage, the system takes as an input the audio signals and produces the tex-
tual descriptions that describe the content. An illustration of an AAC system is shown
in Figure 6.

Methods discussed in this section are contributing to the AAC component in the
MARVEL project. Here we provide a summary of work on novel architectures for AAC
and on continual learning for AAC using the learning without forgetting approach. The
corresponding papers are listed below, and can be found in Appendix 7.4 and Appendix
7.5:

MARVEL - 36- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

Audio 
encoder

Encoded
audio

Word
decoder

Word
predictor

Word
predictor

People yelling 
while a siren 
wails

Encoded cap�on 
informa�on

Audio

Input

Cap�on

Output

Figure 6: Overview of automated audio captioning. Input audio is processed with an
audio encoder, and encoded audio is fed to the word decoder to get encoded caption
information. Word predictor is applied to get a textual caption at the output.

• [72] An. Tran, K. Drossos and T. Virtanen, “WaveTransformer: An Architecture for
Audio Captioning Based on Learning Temporal and Time-Frequency Information”,
European Signal Processing Conference (EUSIPCO), 2021

• [73] J. Berg and K. Drossos, “Continual Learning for Automated Audio Captioning
Using the Learning without Forgetting Approach”, Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE), 2021

2.4.2 Summary of the state-of-the-art

The state-of-the-art for automated audio captioning systems utilise deep learning ap-
proaches with extremely large neural networks (over 100M parameters). Various ap-
proaches have been proposed for AAC in the literature. Input audio encoding has
been implemented with recurrent neural networks [74, 75, 76], 2D convolutional neu-
ral networks [77], or Transformer model [67, 78]. The caption generation has been
mostly implemented with Transformer decoder [77, 78] or recurrent neural networks
[79, 74, 75]. The alignment of input audio and output captions is implemented with
an attention mechanism [80].

2.4.3 WaveTransformer

The method proposed in [72] is using two different audio encoders for representing au-
dio in an audio captioning task. One of the encoders uses 1D-CNNs that model temporal
context, whereas the other encoder uses 2D-CNNs that model spectro-temporal context.
The output of these two encoders is merged by learnable neural network layers. The
proposed methods are applicable in MARVEL tasks that require audio captioning, es-
pecially those where it will be beneficial to model both temporal and spectro-temporal
contexts.

Performance evaluation: Audio captioning performance is generally evaluated with
a set of metrics originally proposed for image captioning (CIDEr, SPICE, and SPIDEr),
and for machine translation (BLEU1 to BLEU4 scores, METEOR, and ROUGEL). CIDEr
calculates a weighted cosine similarity of n-grams while using term-frequency inverse-
document-frequency (TF-IDF) weighting [81]. SPICE evaluates how well the predicted
caption recovers objects, attributes, and their relationships [82]. SPIDEr takes advan-
tage of both CIDEr and SPICE by calculating an average of these two metrics [83]. The
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metrics originally proposed for image captioning correlates better to the human ratings
of caption quality, and thus only these metrics are reported below.

Clotho is a state-of-the-art dataset for captioning research [76]. It consists of 5,000
audio examples (15 to 30 seconds long), each example is manually annotated by hu-
mans with five captions (8-20 words). The total amount of annotations in the dataset
is 25,000.

The main results are summarised in Table 9. Since the proposed method is not
using multi-task learning or data augmentation, the results for the baseline systems
[77] and [84] are reported without using them. The proposed method outperformed
the baselines and showed the benefits of learning time-frequency information in the
AAC task.

Table 9: WaveTransformer results for Clotho dataset.

Model CIDEr SPICE SPICEr

Baseline 1 [77] 23.3 9.1 16.2
Baseline 2 [84] 23.2 8.5 15.8
WaveTransformer, learning temporal information 19.8 8.7 14.2
WaveTransformer, learning time-frequency information 24.7 9.3 17.0
WaveTransformer, using greedy decoding 24.7 9.9 17.3
WaveTransformer, using beam searching 26.8 9.5 18.2

2.4.4 Continual Learning

The method proposed in [73] investigates novel audio captioning methods where an
audio captioning model trained using existing data is further trained using new data
that becomes available for training. Such a scenario is typical in many machine learning
applications including those studied in MARVEL, where a model is first trained and
deployed, and then there is the possibility to further optimise the model once new data
becomes available.

The work uses pre-trained AAC model [72] trained with Clotho dataset [76] while
introducing data from another audio captioning dataset, AudioCaps [85]. Work pro-
poses the use of continual learning without forgetting approach [86] and knowledge
distillation [87] in an iterative process to learn the new information from a stream of
new audio data. The aim is to learn new information about degrading the system’s
performance on the original data.

Performance evaluation: The main results are summarised in Table 10. Results show
that the proposed method retains the system’s performance on the original AAC dataset
while at the same time manages to distill information from the new AAC dataset.

2.5 Learning from unannotated data with active learning and do-
main adaptation

2.5.1 Introduction and objectives

The purpose of the work was to develop a speech emotion recognition (SER) system to
analyse initially unannotated recordings from a hospital environment while focusing on
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Table 10: Continual learning results with varying value α to control the contribution of
new information at each learning step.

Testing data
Original data New data

Setup SPICEr SPICEr

Training with original data 0.182 0.108
Training with new data 0.318 0.102
Training with original and fine-tuning with new data 0.065 0.247
Continual learning setup 1 (α = 0.7) 0.109 0.211
Continual learning setup 2 (α = 0.8) 0.186 0.157
Continual learning setup 3 (α = 0.9) 0.182 0.153
Continual learning setup 4 (α = 1.0) 0.176 0.115

babies’ auditory environments. The aim of the SER system is to analyse the emotional
content of speech in these environments. Methods discussed in this section are not
directly contributing to any component in the MARVEL project, however, the learning
from a large set of unlabelled data is very much related to the development of AI
components in the project.

The paper providing details about the work on automatic analysis of unannotated
audio material from daylong child-centered recordings to produce a speech emotion
recognition system is listed below, and can be found in Appendix 7.6:

• [88] E. Vaaras, S. Ahlqvist-Björkroth, K. Drossos and O. Räsänen, “Automatic anal-
ysis of the emotional content of speech in daylong child-centered recordings from
a neonatal intensive care unit”, Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2021

2.5.2 Summary of the state of the art

The cross-corpus generalisation (CCG) is the most straightforward method to deploy
SER for unlabeled datasets. However, this approach can suffer from domain mis-
match. In [89], CCG was shown to be feasible only with certain datasets and emotional
classes highlighting the problems with cross-domain SER model generalisation to out-
of-domain data. Domain adaptation methods have been proposed for SER to tackle
the domain mismatch [90, 91, 92, 93, 94]. In [90], an unsupervised deep denoising
autoencoder (AE) was combined with supervised learning objective to create a semi-
supervised domain adaptation method for SER. In [91], an unsupervised deep neural
network-based adversarial domain adaptation was proposed to learn domain-invariant
feature representations between labeled source data and unlabeled target-domain data
and to maintain good performance on the SER task. Active learning-based methods
have been proposed for SER tasks. In [95], an iterative learning algorithm was pro-
posed to utilise conditional random fields to determine the level of uncertainty of each
unlabeled data sample, and the most uncertain ones were selected for manual annota-
tion. There is a limited amount of studies related to SER on large-scale dataset [96, 97].
Work in [97] showed that existing state-of-the-art models are prone to overfit to small-
scale datasets limiting their abilities to generalise for real-life data.
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2.5.3 Description of work performed so far

The work utilises an active medoid-based learning approach [98] to iteratively query
human annotations for data points by starting the largest cluster. The Wasserstein
distance-based domain adaptation [99] is used to adapt the source model to a target
corpus by using labelled data from the source domain corpus.

2.5.4 Performance evaluation

Work included experiments on active learning, cross-corpus generalisation, and domain
adaptation. In the active learning experiment, the aim was to study the performance of
the support vector machine (SVM) model learned for SER through an active learning
approach while using unlabeled material from the NICU-A dataset. In the cross-corpus
generalisation experiment, the aim was to study 1-to-1 and 4-to-1 approaches where
one or four source corpora were used for SVM training. In domain adaptation exper-
iments, 1-to-1 and 4-to-1 adaptation conditions were examined. Active learning was
observed to be the most consistent performer across the studied conditions. Detailed
results can be found in [88] and in Appendix 7.6.

2.6 Contextual and structural game elements in citizen science projects
applied on smart cities infrastructure

2.6.1 Introduction and objectives

The purpose of the work was to study how engagement in Citizen Science projects
applied to Smart Cities infrastructure can be enhanced via contextual and structural
game elements realised through augmented audio interactive mechanisms. An inter-
disciplinary framework was introduced based on the paradigm of a collaborative bird
call recognition game. In this game, users collect and submit audio recordings, and
these recordings are then classified and used for augmenting physical space. The work
discussed in this section is not directly contributing to any component of the MARVEL
project. The work deals with Smart Cities infrastructure and proposes a way to inte-
grate Citizen Science projects into this. This addresses one of the major problems in AI
development: how to collect and annotate learning examples. The paper that provides
details about the work is listed below and can be found in Appendix 7.7:

• [100] E. Rovithis, N. Moustakas, K. Vogklis, K. Drossos and A. Floros, “Design
Recommendations for a Collaborative Game of Bird Call Recognition Based on
Internet of Sound Practices”, Journal of the Audio Engineering Society, vol. 69,
no. 12, pp. 956-966, 2021

2.6.2 Summary of the state of the art

The concept of Citizen Science is used to describe the projects where volunteers con-
tribute to a scientific work by gathering and managing information [101]. In these
projects, volunteers can have a variety of roles, including providing information to au-
thorities and participating in making and implementing decisions [102]. Smart Cities
can host large-scale Citizen Science projects, where Smart Cities’ technological infras-
tructure is used to host Citizen Science targeting the citizens’ well-being. Design princi-
ples for the work are playful learning, the internet of audio things, and bird monitoring.
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The playful learning concept incorporates game elements into non-game learning envi-
ronments [103]. Internet of audio things is an emerging field where computer devices
embedded in physical objects are used for reception, processing, and transmission of
audio information [104]. The bird monitoring projects usually target bird inventory,
monitoring, and research, and one example of such project is the collaborative eBird
project [105].

2.6.3 Description of work performed so far

The work suggests that motivation and understanding can be enhanced through an in-
terdisciplinary approach that combines structural and contextual game elements with
the Internet of Audio Things technologies [106] when implementing Citizen Science
projects in Smart Cities environments. The work includes recommendations for devel-
oping an appropriate design framework for an augmented reality audio-based game
through the paradigm of bird call recognition. The scenario consists of the following
stages: a collection of vocalisations of birds and matching them to the corresponding
bird species, submitting bird sound entries along with meta information to the server
to create a 2D map representing bird presence in the urban environment, augmented
version of the map is created through data sonification and sound spatialisation tech-
niques. In the final stage, the bird sounds are presented in a location-specific virtual
soundscape for better user engagement and collaboration. This paradigm is enhanced
through game elements and citizen scientists become players of a large-scale participa-
tory game where a level advancement, badges and rewards, and collaboration play an
important role. The work suggests the following game scenarios: a quiz to recognise
birds based on sounds, a treasure-hunting where specific bird species are located with
limited time, time travel where players follow past observation locations to study mi-
gratory mobility, a bird adoption where players monitor the activity of specific bird for
days and information about the bird species are relieved gradually.

A more detailed description of the design architecture of the framework and techni-
cal specifications can be found in [100] and in Appendix 7.7.
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3 Methodologies for visual data analysis

In this Section, methodologies developed by MARVEL partners targeting visual data
analysis are described. These include methodologies for Visual Crowd Counting (Sec-
tion 3.1), Visual Anomaly Detection (Sections 3.2 and 3.3), and vision-based social
distance estimation (Section 3.4). Moreover, the description includes an efficient visual
data analysis method based on dynamic inference (Section 3.5), and two methodolo-
gies for improving performance of deep learning models for visual data analysis (Sec-
tions 3.6 and 3.7).

3.1 Efficient Visual Crowd Counting with Multi-Exit Vision Trans-
formers

3.1.1 Introduction and objectives

Crowd counting is the problem of identifying the total number of people present in a
given image. The applications of crowd counting include monitoring the safety of gath-
erings, managing natural disasters, improving the design of public spaces, gathering
and analysing intelligence, creating virtual environments based on data from the real
world, forensic search, and many others [107]. The input to a crowd counting model
is a color image, and the expected output is a number representing the total number
of people present in that image. Optionally, the output of a crowd counting model can
be a density map which specifies the density of the crowd for each pixel of the input
image, and the total count can be calculated by summing up all the density values for
all pixels. Figure 7 provides an example of a crowded scene and its corresponding den-
sity map. Methods discussed in this section directly contribute to the VCC component
in the MARVEL project, and the methods are focusing on efficient approaches suitable
for real-time usage.

Here we describe seven different architectures for early exit branches placed on
crowd counting models, that can lead to higher performance. A summary of this work
is provided hereafter. The corresponding paper is listed below, and can be found in
Appendix 7.8:

• [108] A. Bakhtiarnia, Q. Zhang, and A. Iosifidis, “Multi-exit vision transformer for
dynamic inference”, British Machine Vision Conference (BMVC), 2021

Figure 7: An example image (from the Shanghai Tech crowd counting dataset) and its
corresponding ground truth density map.
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3.1.2 Summary of the state-of-the-art

Most crowd counting models consist of many layers of interconnected neurons, which
makes them computationally expensive and slow. This issue is exacerbated by the fact
that the input images given to crowd counting models have a high resolution, typi-
cally HD or higher. This means that existing state-of-the-art crowd counting models
cannot be used for inference at the edge out-of-the-box for every single input image.
One approach for dealing with this problem is dynamic inference where the computa-
tion graph of the neural network is modified during execution in order to fit time and
resource constraints that vary in an edge computing environment based on the state of
the communication channels and the workload of edge servers.

Early exiting (also known as multi-exit architectures) is one method for dynamic in-
ference where early exit branches are added after intermediate layers of a deep neural
network in order to provide faster but inevitably less accurate results. Figure 8 illus-
trates a multi-exit architecture.

Figure 8: Schematic illustration of a multi-exit architecture with two early exits.

Vision Transformer (ViT) [109] is a recently proposed architecture for image classi-
fication which can be used as an alternative for convolutional neural networks (CNN)
for other computer vision problems as well, including crowd counting. For instance,
TransCrowd [110] is a ViT-based model for crowd counting. The Vision Transformer
architecture is depicted in Fig. 9. Vision Transformers are massive models that are
computationally expensive, however, due to their novelty with respect to CNNs, there
has been limited work on dynamic inference in Vision Transformers, which limits their
application in edge computing environments.

3.1.3 Description of work performed so far

Our method titled Multi-Exit Vision Transformer [108] includes 7 different architectures
for early exit branches placed on Vision Transformer backbones. The proposed archi-
tectures include:

• MLP-EE: The baseline approach, consists of a handful of dense layers. The archi-
tecture of MLP-EE is shown in Fig. 10.

• CNN-Ignore-EE, CNN-Add-EE and CNN-Project-EE: These architectures reshape the
representations in the ViT backbone based on the locality and neighborhood of
the corresponding image patches, and process them using a convolutional filter.
The three different variants handle the classification token of the ViT backbone in
different ways. The architectures of CNN-based early exits are shown in Fig. 11.
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Figure 9: Vision Transformer architecture.

• ViT-EE: This architecture uses the building blocks of the ViT backbone (i.e. Trans-
former encoder) itself. The architecture of ViT-EE is shown in Fig. 12.

• MLP-Mixer-EE and ResMLP-EE: Several attention-free MLP-based architectures have
been proposed in the literature as an alternative for Vision Transformer that
preserve their advantage in terms of the global receptive field, yet are more
lightweight since they do not contain the self-attention mechanism present in
ViTs. We use the building blocks of two such methods, namely MLP-Mixer [111]
and ResMLP [112], in order to obtain lightweight high-performance early exits.
The architectures of these attention-free MLP-based early exits are shown in Fig.
13.

Figure 10: MLP-EE early exit branch architecture.

3.1.4 Performance evaluation

We investigate which architecture is optimal in which scenarios. Our experiments use
TransCrowd [110] as the backbone. We use DISCO as the crowd counting dataset,
which contains 1935 Full HD images. DISCO is an audiovisual dataset, meaning that
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(a) (b) (c)

Figure 11: (a) CNN-Add-EE; (b) CNN-Project-EE and (c) CNN-Ignore-EE early exit
branch architectures.

Figure 12: ViT-EE early exit branch architecture.

(a) (b)

Figure 13: (a) MLP-Mixer-EE and (b) ResMLP-EE early exit branch architectures.
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it contains audio clips corresponding to each image. However, we discard the audio
clips for these experiments. Our results are summarised in Table 11. The performance
of early exit branches is measured using mean absolute error (MAE) where lower is
better.

Table 11: Multi-Exit Vision Transformer: Performance on the DISCO dataset, floating
point operations (FLOPS), parameter count, and maximum allocated memory at infer-
ence.

Model MAE Improvement
MLP-EE at 3rd layer (Baseline) 13.77 -
MLP-Mixer-EE at 3rd layer (Ours) 12.24 11.11%
MLP-EE at 6th layer (Baseline) 11.54 -
ViT-EE at 6th layer (Ours) 11.2 2.95%
MLP-EE at final layer (Baseline) 11.44 -
ResMLP-EE at final layer (Ours) 11.09 3.06%

3.2 Unsupervised Visual Anomaly Detection with Pruned Memory-
Augmented Deep Autoencoder

3.2.1 Introduction and objectives

Visual Anomaly Detection can be defined as the task of identifying novel situations in
a scene based on the visual information captured in an input video or image. Models
are trained to learn and replicate a situation considered normal in a certain setting,
e.g., pedestrians on a pathway. Situations that do not occur often, for example, a car
on the pathway, are not present in the data used to train the model to identify as nor-
mal and, thus, they will be detected as anomalies. One of the key challenges posed
for the Anomaly Detection use cases in the MARVEL project is their ability to operate
efficiently on the edge, fog, and cloud. The lower computing capabilities of the edge
and fog devices necessitate the development and adjustment of efficient methods to
enable real-time operation on restricted computing resource devices while maintaining
performance levels as close as possible to the original and more computationally com-
plex models. Methods discussed in this section directly contribute to ViAD component
in the MARVEL project, and the methods are focusing on efficient approaches suitable
for real-time usage.

3.2.2 Summary of the state-of-the-art

The problem of Visual Anomaly Detection is well studied in the literature. In unsu-
pervised learning settings, the most common approach, and one that reliably performs
the best, is to employ autoencoders followed by the application of thresholding to the
attained regularity scores. Multiple notable works exist that follow this direction. One
of those that effectively combine accuracy with efficiency, required in MARVEL for real-
time operation, is Memory-augmented Deep Autoencoder for Unsupervised Anomaly
Detection (MemAE) [113]. The MemAE method receives as input a sequence of video
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frames. Input video frame sequences can vary in length, depending on the required
trade-off related to the method’s properties, like processing speed, detection accuracy,
and optimal hyperparameters. The output of the method is a list of regularity scores
for all frames in the sequence.

The CNN-based Autoencoder (AE) is a model capable of reproducing high-dimensio-
nal data, such as images or videos, in an unsupervised setting. The encoder obtains a
compressed description of the input, and the decoder learns to reconstruct the input
from that compressed form. The encoding thus forms an information bottleneck, which
incentives the network to learn the typical patterns in the presented input. However,
along with the advances in the computational power of modern GPUs, the CNN net-
works can learn to reconstruct normal frames even when presented with an anomalous
input. This violates the assumption that reconstructing an anomalous frame would re-
sult in a higher reconstruction error, which in turn results in less obvious anomalies, or
those highly resembling normal situations, slipping past the anomaly detector.

To alleviate that problem, MemAE uses a version of AE augmented with a mem-
ory module. The idea behind this choice can be seen in Fig. 14. After training the
neural network on normal video frame sequences, prototypical normal patterns are en-
coded in the feature space defined in the bottleneck layer of the AE architecture. Given
an abnormal input, MemAE retrieves a relevant normal pattern in the memory for re-
construction. This leads to an output that is different from the network input. The
introduction of memory modules that hold the prototypes of the normal images and
then use them to guide the AE to reconstruct a frame that is closer to a prototype de-
creases the AE’s ability to create a normal image from an anomalous input. This means
that its sensitivity to anomalous frames is increased, which will lead to higher anomaly
detection performance.

Figure 14: Anomaly detection via MemAE.

For testing purposes, the Area Under the Receiver Operating Characteristic (AU-
ROC) is calculated. For deployed application, this is of course neither feasible nor
meaningful. The model will produce the regularity scores for each frame as during
the testing. But instead of calculating AUROC, these scores can then be thresholded to
achieve binary anomaly labels for each frame. One method that can be used for this
purpose is Persistence1D [114].
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3.2.3 Description of work performed so far

A key aspect of the Anomaly Detection component for the MARVEL project is its appli-
cability in real-time operation on the edge, fog, and cloud. To assure that capability on
less powerful hardware than desktop or server-grade CPUs and GPUs available when
conducting experiments, we have undertaken experiments with pruning the MemAE
network to a varying degree, and then measuring the model’s inference time, size and
accuracy. It was shown [86] that in many deep networks a significant portion of pa-
rameters can be eliminated without adversely affecting the performance of the net-
work. AE-based anomaly detectors for which the problem, as resolved by MemAE, is
not the lack of the network’s capacity, but rather its relatively too powerful generalisa-
tion capability, can be expected to be able to achieve substantial reduction in size while
maintaining similar levels of performance.

The pruning method introduced in [86] prunes filters across multiple convolutional
layers, i.e. when filters in a layer are removed, it takes into account the filters in
the following layers that will be affected. Fig. 15 provides a graphic overview of
that method. The user decides which layer of the network will be pruned, and the
information about the removed layer filters is propagated through the network leading
to the removal of filters in the remaining layers that are affected by the pruning process.
This approach has the advantage of performing the retraining only once while still
providing robust pruning capabilities. Then, the whole network can be retrained. This
process can be applied for pruning multiple layers in a sequence. This is a suitable
process for our case since the MemAE model is rather small and its training is relatively
quick.

Figure 15: Pruning a filter results in removal of its corresponding feature map and
related kernels in the next layer.

When it is applied to the l-th layer of the network, the pruning process applies the
following processing steps:

1. For each filter calculate the sum of its absolute kernel weights.

2. Sort the filters based on the calculated weights.

3. Prune m filters with the smallest sum values and their corresponding feature
maps. The kernels in the next convolutional layer corresponding to the pruned
feature maps are also removed.

4. A new kernel matrix is created for both the l-th and (l + 1)-th layers, and the
remaining kernel weights are copied to the new model.
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The MemAE network consists of four 3-dimensional convolutional layers, forming
the encoder, and four 3-dimensional deconvolutional (performing transposed convolu-
tion) layers, forming the decoder. The model also contains batch normalisation layers,
placed between the convolutional layers. During our experiments, we do not directly
prune the first and last layers. For the six remaining layers, starting with the second
to last 3-D deconvolutional transpose layer, we apply pruning in 5% increments. The
percentage here means the fraction of the total nodes in a layer. After each pass, the
network is retrained for 5 epochs. After the layer has been pruned up to 95% of its
starting nodes, we proceed to prune the layer before it. But this time we start from the
best performing pruned model from the last iteration.

3.2.4 Performance evaluation

Fig. 16 presents the per layer impact of pruning on the performance of the model, along
with its impact on the model’s FLOPs. For reading convenience, on each plot values
visible for 0% of pruned units show the performance of the original, unpruned model.
It can be seen that retraining for 5 epochs after each pruning is not enough to provide
a resilient and reliable change in performance. However, even with this insufficient
amount of retraining, the per layer results show that for most layers removing 40 to 60
% of nodes can still provide a high area under the curve (AUC).

Table 12 presents the experimental results in terms of the impact the pruning pro-
cess has on the accuracy of the model and the resulting gains in FLOPs, number of
parameters, and model size. The best model in terms of performance, reduction in
size, and computing complexity, together with the increase in throughput for the opti-
mally pruned model was pruned, layer by layer, by 45%, 60%, 10%, 80%, 45% and 25%.

Table 12: MemAE: Performance on UCSD pedestrian 2 dataset, floating point opera-
tions (FLOPs), parameter count, and maximum allocated memory of method at infer-
ence.

Model Performance (%) FLOPs (G) Parameters (M) Memory (MB)
Original MemAE 97.8% 284.76 6, 492, 801 25.97
Pruned MemAE 99% 255.06 1, 833, 368 7.33

By comparing the original model with the pruned model determined by applying
the above-described process, we observe the following:

• Number of parameters: 6, 492, 801 → 1, 833, 368, improvement of 71.76%

• Model size: 25.97MB → 7.33MB, improvement of 71.78%

• Forward pass size: 991.76MB → 574.83MB, improvement of 42.04%

• GFLOPs: 284.66 → 225.06, improvement of 21%

• AUC: 97.8% → 99%, improvement of 1.2%

The increase in the model’s AUC can be explained by the relatively small size of the
test set, and the experiment methodology. In effect, it amounts to iterative transfer
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Figure 16: Impact of pruning on model’s AUC and evaluations per second measured on
RTX 2080 GPU.
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learning. However, it shows that despite the reduction of the number of parameters by
almost 75% and computing complexity by over 20%, the model is capable of producing
retaining performance at levels similar to those of the original model. Furthermore, it
is possible to prioritise different aspects of the model’s characteristics. This experiment
has been performed by prioritising the model’s size reduction while maintaining the
highest possible accuracy. But it is also possible to prioritise the decrease in computing
complexity, or any other measurable metric.

3.2.5 Future work

As future work, we plan to evaluate the performance of the adopted structure parame-
ter pruning methodology to other publicly available visual anomaly detection datasets,
as well as data in the MARVEL Data Corpus.

3.3 Rule-based Visual Anomaly Detection based on object detection

3.3.1 Introduction and objectives

As an alternative solution for the Visual Anomaly Detection problem, a rule-based
method that employs a pre-trained object detector and a binary scene mask created
by users to indicate image locations where the rules are applied was developed, which
is called Rule-based Visual Anomaly Detection (RviAD). The founding assumption be-
hind this approach is that for some use cases in the MARVEL project, the problem of
anomaly detection can be defined in the form “if object X is in area Y, this corresponds
to an anomaly”. This problem can be thus split into two subproblems, i.e., a) object
detection, classification, and localisation of that object within a frame, and b) a rule
check on whether that object is allowed to occupy that location in a frame. Thus, an
objective for such a visual anomaly detection method is to create an interface that can
allow the introduction of new rules in an easy and intuitive way. The method discussed
in this section does not currently directly contribute to the MARVEL project, but it can
potentially be used as an alternative to the approach described in Section 3.2.

3.3.2 Description of work performed so far

The first part of the method, i.e., object detection, is an exhaustive research field, with
many state-of-the-art pre-trained models achieving reliable performance. This means
that open source, pre-rained state-of-the-art object detectors can be used with only
limited finetuning for each use case, and good accuracy can be expected. The second
part, i.e., assigning rules to regions along with connecting those pieces into a working
pipeline, was created by researchers in AU.

The main and significant advantage of that system is its flexibility and ability to
dynamically adapt to changing situations, when new rules are added. The same model
can be used to detect any combination of anomalous objects in regions. Using the
developed binary scene mask creation tool, the object detector and rule-based setup
implement many useful functionalities:

• Ability to apply several rules to the same video frame and detected objects. The
rules can be prioritised, or have any possible interaction between them.
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• Completely changing the nature of the anomaly, e.g., changing allowed objects
on the roads from only cars to only motorbikes takes a few minutes and can be
deployed instantly.

• Extending or temporarily changing rules can be applied in the same manner. For
example, when for a certain period the road on which usually cyclists are not
allowed is designated to host a cycling race, the anomaly detector can be adapted
to that use case within minutes, or even scheduled to do so at a certain time and
return to normal at a certain time.

• When the setup of the road under surveillance changes, only adjustment of the
binary scene mask regions is required. For example, if a new lane is added to
the road, the standard anomaly detection model will need to be retrained from
scratch, while the rule-based anomaly detection model requires only a change of
the binary scene mask. The difference in time and effort required to do that is
substantial.

A disadvantage of this approach compared to the unsupervised anomaly detection ap-
proach described in Section 3.2 is that, if the object detector needs to be finetuned on
data from the specific scene for improving its performance, it requires a time-consuming
data labeling process as every object in each video frame needs be labeled and anno-
tated with a bounding box. The amount of such labeled data that would be required to
finetune the already pre-trained state-of-the-art object detection model to achieve the
required performance is an open question.

The RViAD implementation uses Centernet [115] as its object detector, and a web
browser-based tool for an-easy-to-use binary scene mask creation process. The tool
along with an example created binary scene mask applied on the scene from the GRN3
use case (Traffic Conditions and Anomalous Events) are shown in Fig 17. This use case
focuses on monitoring the traffic and detecting anomalous events in road junctions for
assisting short term decision-making.

Figure 17: Web browser-based tool for creating visual anomaly detection rules and
binary scene masks.
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Fig 18 shows how the tool works underneath. From top left to bottom right, the
figure presents:

• The original video frame.

• The raw binary scene masks created by the user-drawn shapes using the web tool.
White regions represent the foreground regions, i.e., in that area appearance of
the chosen object or objects is anomalous will be detected as an anomaly. Black
regions represent the map background regions, i.e., in that area the chosen object
or objects can appear without indicating an anomaly.

• The binary scene mask obtained after applying Alpha Matting [116, 117] in order
to adjust the user-defined binary scene mask to the contents of the scene.

• The binary scene mask over the original frame. This mask can be described as a
‘filter’ for the object detector.

Figure 18: The processing sequence of a binary scene mask.

Finally, Fig 19 demonstrates a video frame from the GRN3 use case, with the binary
scene mask and rules defined in Fig 18 applied to it. The rule assigned to that mask
was “appearance of people and cars in the pre-specified region corresponding to the road
is an anomalous event”. We can see that the single person at the bottom-left side of the
video frame standing entirely on the disallowed region is marked as an anomaly, while
the remaining people in the video frame are not. This is because their bounding box
is also inside the background part of the mask. If that is not the expected behaviour, a
simple mask region change in that region could include those people as anomalies. The
car present at the centre of the video frame is correctly identified as an anomaly. The
truck at the upper center-right is not identified as an anomaly, as the rule mask allows
trucks to be present in that region. All detected objects outside the mask foreground
have been discarded.
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Figure 19: Example frame from the rules based anomaly detector.

3.3.3 Future work

As future work, we will evaluate the effectiveness of the above-described rule-based
visual anomaly detection methodology in connection to the MARVEL use cases.

3.4 Social Distance Estimation in Uncalibrated Images based on
Pose Estimation and Projective Geometry

3.4.1 Introduction and Objectives

Automatic social distance estimation from images and videos can find many applica-
tions in the context of smart cities. One of the recently emerged applications where
such an automatic and non-invasive functionality can lead to improved services for
citizens is through public recommendations for avoiding crowded places. Social dis-
tancing has recently received a lot of attention due to the outbreak of the SARS-CoV-2
virus [118], as it has been one of the measures used for slowing down the spread of the
the virus. Moreover, automatic social distance estimation can be used for analysing the
behavior of people in various public places. For such cases, it is possible to use fixed
camera setup and location, and exploit 3D scene information by, for instance, using
multiple camera setups or depth or thermal cameras. However, such setups will require
careful calibration of the multi-camera system, or increase the operation cost. In addi-
tion, most of the existing surveillance systems are based on low-cost cameras which are
used to capture areas having low overlap with the field of view of other cameras. While
the use of social distance estimation methods based on uncalibrated single cameras can
lead to lower performance compared to calibrated multi-camera setups, they can lead
to a reliable solution for a wide range of applications. We proposed a social distance es-
timation method that can be applied to uncalibrated images taken by a regular camera
as long as the focal length and the camera sensor size are known. To do so, we combine
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object detection and human pose estimation methods with projective geometry using
the intrinsic parameters of the camera. The work deals with social interactions in Smart
Cities and proposes a way to visually estimate social distances between people. This
problem is related to the Visual Crowd Counting functionality in MARVEL.

A summary of this work is provided hereafter. The corresponding preprint is listed
below, and can be found in Appendix 7.9:

• [119] M. Seker, A. Mannisto, A. Iosifidis and J. Raitoharju, “Automatic Social
Distance Estimation From Images: Performance Evaluation, Test Benchmark, and
Algorithm”, 10.5281/zenodo.6737051, pp. 1-14, 2022.

3.4.2 Summary of the state-of-the-art

Most existing methods approach the automatic social distance estimation problem for
preventing social distance regulation violations (motivated by the COVID-19 social dis-
tance estimation scenario). That is, they try to solve a binary classification problem
where the goal is to classify the pair-wise distances between people either as safe or
unsafe, depending on a given threshold distance value. Such methods employ deep
learning based methods that detect and track people [120] or keypoints correspond-
ing to the human body joints obtained by applying a pose estimation algorithm [121]
and use some form of scene information to perform binary classification. For example,
[121] requires manual input to estimate the homography matrix of the image plane
to the ground plane. The homograph matrix is also used in [122] which is obtained
through calibration and person detected bounding boxes obtained by applying deep
learning-based object detectors [123, 124]. The intrinsic parameters of the camera are
also used in [125] along with keypoints obtained by a pose estimation model to train a
feedforward network. This is used to predict the 3D locations of people and detect dis-
tance violations. 2D keypoints obtained by a pose estimation method are also used in
[126], where a regressor block is trained on public datasets containing both 2D and 3D
visual information, in order to estimate pair-wise distances. The method can be applied
to uncalibrated images. The method in [127] uses a person detection method based
on the deep neural network YOLOv3 [128] to monitor social distancing violations from
overhead view cameras.

3.4.3 Description of work performed so far

The method starts by performing person detection using the YOLOv4 [123] object de-
tection model. Bounding boxes are cropped and they are introduced to OpenPose [129]
human pose estimation model to extract human body skeleton keypoints. The pixel lo-
cations of these keypoints are used in our distance estimation algorithm to obtain 3D
location estimates for each person in the image. We use both person detection and hu-
man body pose estimation to eliminate false positives which may be detected by each
of these methods independently. From the extracted keypoints obtained by the human
body pose estimation method, we select a subset of them based on the following cri-
teria: a) mutual distance is independent of the person’s pose, b) average distance is
available in the literature, c) angle towards the lens is as constant as possible, and d)
are visible in most of the photos. Based on these criteria, we selected the following three
key point pairs: 15-16 (these are the indices of the keypoints based on the OpenPose
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output) for pupillary distance, 2-5 for shoulder width, and 1-8 for torso length. We as-
sume average adult body proportions for the three keypoint pairs: 389 mm for shoulder
width [130], 63 mm for pupillary distance [131], and 444 mm for torso length [132].
The extracted keypoint pairs are then processed by our distance estimation algorithm
that estimates 3D positions with respect to the camera for each person.

We use the pinhole camera model [133] and assume that every keypoint pair is
parallel to the camera’s sensor plane. We make these assumptions because the subjects’
poses and camera’s exterior orientation parameters [134] are not known. Estimating
the exterior orientation parameters [134] of the camera from single images is an ill-
posed problem [135], but in most cases, the angle between a person’s torso and the
camera’s sensor plane is negligible for our calculations. We use the intrinsic camera
parameter values and the pixel locations of the selected keypoints to estimate the 3D
coordinates of the keypoints in the world coordinate system. Then, the middle points of
each detected keypoint pair are used to represent the 3D location of the person. Finally,
the distances between all the pairs of detected people are calculated.

3.4.4 Performance Evaluation

We conducted experiments on the KORTE Social Distance Estimation dataset [119].
Table 13 shows the person detection rates and pair-wise percentual distance estimation
errors for different focal lengths included in the dataset. The most reliable body part
to estimate the 3D locations is the torso. When all pairs of keypoints corresponding to
the three body parts are used, the estimated distance error is lower.

Table 13: Person detection rates and pair-wise percentual distance errors when using a
single body part (shoulder, pupil, and torso) and when combining all of them.

Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-
tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-
tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-
tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-
tion
Rate

Pair-wise
Percent
Distance

Error
16 28 0.75 333.42 0.55 39.79 0.82 36.30 0.89 28.80
24 46 0.81 346.05 0.55 39.52 0.91 33.22 0.94 24.68
35 48 0.81 450.49 0.58 65.63 0.91 48.52 0.92 34.68
50 84 0.80 306.56 0.44 72.37 0.91 39.29 0.94 35.03
105 69 0.72 332.72 0.57 110.50 0.79 73.29 0.89 52.50
200 7 0.69 105.28 0.73 52.28 0.69 93.53 0.78 53.66
300 18 0.70 1244.59 0.60 52.88 0.61 148.94 0.78 52.51
All 300 0.78 385.22 0.54 68.56 0.84 51.01 0.91 38.24

3.5 Improving performance of Multi-Exit Deep Learning models for
Dynamic Image Classification

3.5.1 Introduction and Objectives

As mentioned in Section 3.1, when using a deep neural network for performing image
classification, incorporating early exit branches at intermediate neural network layers at
different locations in the neural network topology leads to a dynamic inference model.
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The early exit branches can be used to provide an early classification result following
the just-in-time classification paradigm. This is an essential part of the Edge Intelli-
gence framework, as the edge, fog, or cloud computing component may receive the
image to be classified with a varying delay which can be caused by, e.g., delays in the
communication channel. Exit branches placed early in the network are inevitably less
accurate than the final exit. In Section 3.1, we focused on architectural designs for early
exit branches that can improve their accuracy. However, accuracy can also be improved
by a better training procedure. Here we describe two different approaches for training
early exit branches that can lead to higher performance. The methods discussed in this
section are not directly contributing to any component of the MARVEL project. The
methods are contributing to the general development of visual representation learning
and apply to the project from that point of view.

A summary of this work is provided hereafter. The corresponding papers/preprints
are listed below, and can be found in Appendices 7.10 and 7.11:

• [2] A. Bakhtiaria, Q. Zhang and A. Iosifidis, “Improving the Accuracy of Early Exits
in Multi-Exit Architectures via Curriculum Learning”, International Joint Confer-
ence on Neural Networks, Virtual, 2021.

• [136] A. Bakhtiarnia, Q. Zhang and A. Iosifidis, “Single-layer vision transformers
for more accurate early exits with less overhead”, accepted to Neural Networks
journal (10.5281/zenodo.6737408), 2022.

3.5.2 Summary of the state-of-the-art

Curriculum learning is a machine learning strategy that draws inspiration from the way
humans learn new subjects throughout their formal education. For studying a new
topic, a teacher determines which notions of the subject are simplest and easier for the
students to grasp, then more difficult aspects are introduced with an increased level of
difficulty during the learning process. Curriculum learning treats the problem of train-
ing a machine learning model in a similar manner, by using a dataset as the topic and
introducing training samples progressively based on their difficulty. Several strategies
exist for measuring the difficulty of the training samples. Automatic sorting functions
include those belonging to the category of self-paced learning, transfer teacher, and
reinforcement learning teacher [137].

There exist several theoretical analyses showing why curriculum learning can im-
prove the training procedure of a neural network. The connection between curriculum
learning and continuation methods was shown in [138]. Continuation methods are
optimisation strategies for non-convex problems that start with a smooth objective and
gradually introduce less smooth versions, hoping that this will lead to approaching a
more suitable location in the parameter space by exploiting a more global perspective
of the optimisation process [137]. The study in [139] reached the conclusion that
curriculum learning modifies the optimisation landscape to highlight the optimal pa-
rameter vector in comparison to all other candidate solutions. While several methods
for improving the performance of neural networks based on curriculum learning have
been proposed [139, 137], the adoption of this learning paradigm for training multi-
exit branches has not been studied. However, other strategies, such as knowledge
distillation have recently been shown that can improve the accuracy of early exits.
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In the copycat training strategy [140], a “fake” dataset is created by taking images
from a different domain and given to a model trained on the target domain. The output
of the model is then recorded as ground truth labels for that image. For instance,
if images from the ImageNet dataset are given to a model trained on the CIFAR-10
dataset, a camel may be labelled as a dog, since there are no labels for camel in CIFAR-
10. Finally, this fake dataset is mixed with the main dataset and used for training. The
intuition behind this approach is that the fake data can increase the number of training
examples without introducing too much noise and thus improve the accuracy of deep
learning models which are data-hungry. Experimental results are presented in Table 14.
From these results, it can be observed that in all cases, our approach (i.e. curriculum
learning and anti-curriculum) obtains a higher accuracy compared to the baseline (i.e.
applying a standard training process, referred to as vanilla).

Table 14: Comparison of the Final Test Accuracy of Early Exit Branches using Different
Training Methods.

Backbone Dataset BN∗ Vanilla Curriculum AC† RC§ Opt. LR¶ Teacher Pacing
DenseNet CIFAR-10 1 71.71% ± 0.47 71.59% ± 0.57 71.75% ± 0.75 71.58% ± 0.57 Adam 10−4 EfficientNet FEP(100)

2 77.43% ± 0.64 77.91% ± 0.03 77.21% ± 0.80 77.25% ± 0.35 SGD 0.12 EfficientNet FEP(100)
CIFAR-100 1 38.36% ± 0.31 39.56% ± 0.57 35.32% ± 2.06 38.74% ± 1.37 SGD 0.12 EfficientNet FEP(200)

2 61.72% ± 1.26 64.05% ± 1.18 58.78% ± 1.68 62.95% ± 0.78 Adam 10−4 EfficientNet FEP(300)
MobileNet CIFAR-10 1 67.30% ± 0.25 67.33% ± 0.31 67.04% ± 0.45 67.02% ± 0.48 Adam 10−4 EfficientNet SSP(300)

2 79.06% ± 0.65 79.47% ± 0.05 79.04% ± 0.43 78.55% ± 0.41 Adam 10−4 Inception FEP(100)
CIFAR-100 1 44.26% ± 0.69 44.83% ± 0.19 44.89% ± 0.26 44.84% ± 0.45 Adam 10−4 Inception FEP(300)

2 47.48% ± 0.99 48.39% ± 0.66 47.54% ± 0.45 48.34% ± 0.74 Adam 10−4 EfficientNet FEP(200)
ResNet CIFAR-10 1 67.87% ± 0.76 68.75% ± 0.16 67.78% ± 0.26 67.44% ± 0.74 Adam 10−4 EfficientNet FEP(100)

2 76.25% ± 0.25 76.24% ± 0.28 76.32% ± 0.25 76.29% ± 0.11 Adam 10−4 EfficientNet FEP(100)
CIFAR-100 1 35.53% ± 0.74 36.57% ± 1.07 36.46% ± 0.82 36.08% ± 0.70 Adam 10−4 EfficientNet SSP(300)

2 41.26% ± 0.56 41.30% ± 1.02 41.45% ± 0.73 40.89% ± 0.36 Adam 10−4 EfficientNet FEP(100)
Inception CIFAR-10 1 76.91% ± 0.58 77.34% ± 0.27 77.13% ± 0.07 77.19% ± 0.17 Adam 10−4 EfficientNet FEP(300)

2 79.06% ± 0.37 79.18% ± 0.12 79.47% ± 0.52 79.42% ± 0.15 Adam 10−4 Inception FEP(100)
CIFAR-100 1 44.24% ± 0.70 44.56% ± 0.44 44.53% ± 0.42 44.07% ± 0.75 Adam 10−4 Inception FEP(200)

2 45.86% ± 0.21 46.50% ± 0.21 45.13% ± 0.92 46.11% ± 1.28 Adam 10−4 Inception FEP(300)
∗Branch Number
†Anti-Curriculum
§Random Curriculum
¶Learning Rate

3.5.3 Curriculum Learning for improving performance of Multi-Exit Convolu-
tional Neural Networks

We assume that an already trained deep neural network is given at the beginning,
which is augmented with a set of early exits. We keep the parameters of the trained
neural network fixed and we train only the parameters of the early exit branches based
on curriculum learning, in order to improve their accuracy. We use a pre-trained neural
network as a teacher network and the categorical cross-entropy loss of this teacher for
sorting the training samples based on their difficulty. We use two different teachers,
InceptionV3 [141] which is the same teacher used in Hacohen et al. [139], and the
more recent EfficientNetB7 [142]. Both these teacher networks are pre-trained on the
ImageNet dataset [143] and then fine-tuned to the dataset of interest by removing the
top layer and adding two dense layers with a Dropout layer [144] to match the number
of classes in the output layer.

We use two variants of the baby step pacing function [139], the fixed exponential
pacing function and the single step pacing function depicted in Fig. 20. These pacing
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functions introduce the entire dataset fairly quickly, leading to a curriculum that is
introducing only simple examples to the neural network in the first few epochs.

We use four different backbone networks in our experiments, namely DenseNet201
[145], MobileNetV1 [146], ResNet152 [147] and InceptionV3 [141]. We train these
networks on the CIFAR-10 and CIFAR-100 datasets [148] using transfer learning in the
exact same way as the teacher networks. We place two early exit branches at two differ-
ent layers on each backbone network, as shown in Table 15. All early exit branches have
the same architecture, which is a convolution layer, followed by a maximum pooling
layer, and three dense layers with a Dropout layer between each pair, as shown in Figure
21. We use the classifier-wise training strategy for training the multi-exit architecture.
During the training of each branch, first we test both stochastic gradient descent and
Adam [149] optimisers with different learning rates of {10−1, 0.12, 10−2, 10−3, 10−4, 10−5}
to obtain the highest accuracy for the normal training method without any curriculum,
which we call vanilla. We chose to test the 0.12 learning rate in addition to 10−1 since
it was the best case discovered for the experiments in Hacohen et al. [139]. With
both optimisers, the learning rate is automatically reduced when the validation accu-
racy plateaus. Subsequently, using the same optimiser, we train the branch using the
curriculum and anti-curriculum training methods.

Figure 20: Fixed exponential pacing function (left) and Single step pacing function (right)
used in our experiments.

Figure 21: Architecture of Early Exit Branches (taken from [2]).

3.5.4 Copycat Fine-Tuning for improving performance of Multi-Exit Vision Trans-
formers

We use Copycat [140] as a fine-tuning strategy for Transformer-based early exits [136].
In our experiments, we give images trained on the Tiny ImageNet dataset to a network
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Table 15: Placement of Branches for Each Backbone Network.

Backbone Dataset BN∗ Branch Placed After
DenseNet201 CIFAR-10 1 Layer 15 of 201

2 Layer 40 of 201
CIFAR-100 1 Layer 40 of 201

2 Layer 137 of 201
MobileNet CIFAR-10 1 Layer 8 of 28

2 Layer 14 of 28
CIFAR-100 1 Layer 8 of 28

2 Layer 14 of 28
ResNet152 CIFAR-10 1 Layer 13 of 152

2 Layer 38 of 152
CIFAR-100 1 Layer 13 of 152

2 Layer 38 of 152
InceptionV3 CIFAR-10 1 1st Filter Concat

2 2nd Filter Concat
CIFAR-100 1 1st Filter Concat

2 2nd Filter Concat
∗Branch Number

trained on CIFAR-10 and mix the resulting fake dataset with the original CIFAR-10
dataset with a 2-to-1 ratio, and use this new dataset to train Transformer-based early
exit branches. The results of our experiments are shown in Table 16 where B1 and
B2 represent branch locations 1 & 2. These results impact iKPI-3.3 (At least three (3)
approaches tested for ML training algorithms) by providing an alternative approach for
training.

Table 16: CC-SL-ViT: Performance on CIFAR-10, floating point operations (FLOPs), pa-
rameter count and maximum allocated memory at inference.

Model Performance (%) FLOPs (G) Parameters (M)
SL-ViT, B1 (baseline) 71.06 1.64 0.59
CC-SL-ViT, B1 (ours) 71.61 1.64 0.59
SL-ViT, B2 (baseline) 81.18 5.26 0.79
CC-SL-ViT, B2 (ours) 83.41 5.26 0.79

3.6 Discriminant Learning-based initialisation of Feedforward Neu-
ral Networks

3.6.1 Introduction and Objectives

Initialisation of the parameters of neural networks is an important aspect in training
them efficiently and achieving good performance. While a common practice is to ini-
tialise the neural network parameters by random sampling from an appropriate multi-
dimensional distribution, it has been shown that the use of data-driven initialisation
strategies can lead to faster training and some times to increased performance of the
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trained network. An explanation for such improved performance and training speed
comes from the properties of the training processes used to train deep neural networks,
which is commonly done by using a type of gradient-based iterative optimisation, like
the error Backpropagation. Since the loss function used to train the neural network
is defined on a set of parameters with an enormous size (i.e., equal to the number
of the parameters of the neural network) and is non-convex, gradient-based optimisa-
tion leads to local minima solutions. Thus, starting the optimisation from a point in
that high-dimensional space that considers the properties of the problem at hand can
lead to faster convergence to a (hopefully better) local minimum, compared to a ran-
dom point in the same high-dimensional space. Thus, the objective here is to define a
way to use the training data for determining a good starting point to further perform
gradient-based optimisation of the network parameter values. The methods discussed
in this section are not directly contributing to any of the MARVEL components. The
methods are contributing to the general development of visual representation learning
and apply to the project from that point of view.

A summary of this work is provided hereafter. The corresponding paper is listed
below, and can be found in Appendix 7.12:

• [3] K. Chumachenko, A. Iosifidis and M. Gabbouj, “Feedforward Neural Networks
Initialization based on Discriminant Learning”, Neural Networks, vol. 146, pp.
220-229, 2022.

3.6.2 Summary of the state-of-the-art

Widely adopted methods for initialising the parameters of a neural network based on
random sampling use controlled parameters. For example, Glorot [150] initialises the
parameters of a neural layer j by randomly sampling weights from a uniform distribu-
tion U [−α, α], where α =

√
6/
√
nj + nj+1, and nj, nj+1 denote the number of neurons

at layer j and j+1, respectively. Another commonly used random initialisation method
using control parameters is He initialisation [151] which randomly samples weights
from a Gaussian distribution with zero mean and 2/nj variance, i.e., Wj ∼ N

[
0,

√
2√
nj

]
.

A popular approach for initialising the weights of a neural network is based on
Transfer Learning [152]. In this case, the neural network is pre-trained on a larger
dataset of similar properties, like ImageNet [153] for Computer Vision problems, and
the trained network is further finetuned using the training data of the task at hand.
Even though this is currently a very common practice, its effectiveness was questioned
in [154]. In that study, it was shown that initialising the parameters of a neural network
using those obtained by training on another task can lead to faster convergence, but not
necessarily better performance when compared to using randomly initialised network
parameters. Unsupervised network initialisation based on clustering was also shown
to perform well [155, 156, 157], while the use of Principal Component Analysis (PCA)
has also been proposed in [158]. For the case where the parameters of the network that
we want to initialise are not vectors, e.g., when the parameters correspond to filters of
Convolutional layers, appropriate vectorisation and tensorisation steps are performed.

The use of network weight initialisation is interesting, as it casts the weight ini-
tialisation problem as a subspace learning problem from one layer to the next one.
This approach lead also to methods that employ supervised subspace learning methods
for network weights initialisation, most of which employ Linear Discriminant Analysis
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(LDA) [159, 160, 161]. However, all these approaches set limitations on the size of
layers that can be used to form the neural network. Specifically, methods exploiting
PCA to determine the parameters connecting layers j and j + 1 the number of neurons
in layer j + 1 to be at most equal to the number of neurons in layer j, i.e., nj+1 ≤ nj.
When LDA is used, the number of meaningful weights (i.e., those corresponding to
the discriminant directions) determined by the method is restricted by the number of
classes, i.e., nj+1 ≤ C − 1, where C is the number of the classes forming the classifi-
cation problem defined at the image level. However, existing high-performing neural
networks often do not follow these assumptions, as the appearance of bottleneck layers
is very common. To account for this situation, these methods use random sampling
schemes for initialising the remaining weights.

3.6.3 Description of work performed so far

A standard dense feedforward neural network receiving as input a vector x ∈ RD per-
forms a hierarchical transformation through L layers

y = fL
a (W

T
Lf

L−1
a (WT

L−1 ... f
1
a (W

T
1 x+ b1) + bL−1) + bL), (2)

where f l
a(·) is the (element-wise) activation function at layer l, Wl ∈ RDl×Dl+1 is the

corresponding weight matrix, and bl is the bias term. A fully-Convolutional Neural
Network performs a hierarchical data transformation of the form

y = fL
a (ŴL ∗ fL−1

a ( ŴL−1 ∗ ... ∗ f 1
a (Ŵ1 ∗ x+ b1) + bL−1) + bL), (3)

where Ŵl is a set of convolutional filters at layer l, bl is the bias term, and f l
a(·) is

the activation function. For some Convolutional Neural Networks (CNNs), layers per-
forming convolution data transformation of the form in (3) are combined with affine
transformations of the form in (2) in a hierarchical manner.

For initialising the neural network parameters, we follow a progressive training pro-
cess in which the parameters of one layer are initialised one after the other. In order to
address limitations of existing network initialisation methods that employ supervised
subspace learning, we propose the use of Subclass Discriminant Analysis (SDA) [162]
in which each class (defined at the input image level) is allowed to form subclasses and
the objective is to find a linear mapping to a new space where subclasses from different
classes are well-discriminated. In the following, we use the abbreviation fastSDA to re-
fer to this method. This approach has two advantages, the first being that by using this
formulation one can define a mapping with an increasing number of dimensions as the
dimensionality of the new space is restricted by the number of subclasses which is de-
fined by the user. The second advantage is that the use of subclasses can allow for image
patches corresponding to different locations, like different parts of the object/class of
interest and different appearances of the background, in the input image to be grouped
together. To make the process efficient, we employ a Spectral Regression-based solution
of SDA which has been shown to lead to fast and accurate solutions [163]. Moreover,
we proposed a vector batch normalisation process that allows for the use of the fast
solution in [163] to be adopted for the network parameters optimisation.

3.6.4 Performance Evaluation

Experiments on image classification were conducted on three datasets, CIFAR-10 [148],
MNIST [164], and Linnaeus-5 [165]. Experiments on vector classification problems,
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where dense feedforward neural networks are used can be found in the paper in Ap-
pendix 7.12. CIFAR-10 dataset contains images of 32 × 32 pixels with 3 channels and
10 object categories: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. MNIST dataset contains grayscale images of size 28×28 posing a handwritten
digit recognition problem. The Linnaeus-5 dataset contains RGB images of 32×32 di-
mensionality of 5 object categories: berry, bird, dog, flower, and other. We use the
provided train-test splits for evaluation. In the CIFAR-10 dataset, the training set is
split into 48,000 images used for training, and 12,000 for validation. In the MNIST
dataset, the training set is split into 40,000 and 10,000 images for training and valida-
tion, respectively. In both datasets, 10,000 images are used for testing. In Linneaus-5
datasets, 4,800 images are used for training, 1,200 for validation, and 2,000 for testing.

We used two CNN architectures with 5 and 6 hidden layers. We set Ki = Z
subclasses for all classes, leading to CZ − 1 filters in convolutional layers or neu-
rons in dense layers at a position in the network. We construct the networks start-
ing from 16 or 32 subclasses and reduce the number of subclasses by a factor of 2
with each subsequent layer. This results in two architectures with the layers having
width of {319, 159, 79, 39, 19} or {159, 79, 39, 19} filters for MNIST and CIFAR datasets,
and {159, 79, 39, 19, 9} or {79, 39, 19, 9} filters for Linnaeus-5 dataset. Another fully-
connected layer of 128 neurons is added after the last convolutional layer. The output
layer consists of 5 or 10 neurons depending on the dataset, and a softmax activation
function. In convolutional layers, the bias terms are omitted in all models, and in fully-
connected layers, they are initialised from zeros. To obtain the cluster labels during
initialisation, mini-batch k-means clustering is performed [166]. A schematic illustra-
tion of the network structure is shown in Figure 22.

Figure 22: Structure of the CNN (taken from [3]).

We compare the proposed initialisation approach with Glorot initialisation [150],
He initialisation [151], random initialisation from Gaussian distribution with µ = 0 and
σ = 0.05 (RNorm), random initialisation from uniform distribution in the range

[
− 1√

n
, 1√

n

]

(RUni), where n is the number of input neurons in the corresponding layers, K-Means
initialisation, and PCA initialisation. We show that a small number of samples is gener-
ally sufficient to learn a good projection space that leads to competitive performance.
To do this, we also test the case where only a limited number of training samples is
used during the initialisation step. Specifically, we test the proposed approach with
200 and 500 samples per class (i.e., the total of 2000 or 5000 samples in CIFAR-10
and MNIST, and 1000 or 2500 samples in Linnaeus-5 dataset). After initialising the
network parameters, we train the models with Stochastic Gradient Descent (SGD) with
a learning rate of 0.001, a batch size of 32, and categorical cross-entropy as the loss
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function until the accuracy on the validation set stops improving for 10 epochs. The
model that resulted in the best validation accuracy is then used for reporting the results
on the test set. Images are mean-centered and re-scaled to match the range of 0 to 1.

Table 17 shows the accuracies obtained by using different initialisation methods.
The best accuracy is highlighted in bold. The proposed method often outperforms com-
peting methods. Considering the initialisation using a smaller number of samples, we
observe that both 200 and 500 samples per class are often sufficient for outperform-
ing the competing methods. Another fact worth noticing is that in a few cases, the
use of a smaller number of samples leads to performance improvement compared to
using the full dataset. A possible interpretation of this is that the model trained on
a smaller number of samples overfits less to the training data, thus providing better
generalisation properties.

Figure 23: Training convergence plots. Datasets top to bottom: Linnaeus-5, CIFAR-10,
MNIST (taken from [3]).

Figure 5 shows the accuracy of the validation set versus the number of training
epochs when 16 subclasses and LeakyReLU activation function are used. We observe
that the models initialised with the proposed method generally start in the first iteration
with higher accuracy compared to the competing methods. The models initialised with
the proposed method are able to achieve better overall accuracy. We also provide the
initialisation times (in seconds) for the network architecture based on 32 subclasses in
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Table 17: Classification accuracies on image classification problems.
Linnaeus-5

LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N

or
m

RNorm 52.55 51.45 48.80 51.75 50.10 46.15
RUni 59.00 55.25 49.65 58.50 58.30 47.70
He 55.00 52.20 50.55 57.30 53.95 50.10
Glorot 54.50 54.95 53.00 57.20 56.35 52.60

Ve
cB

N
or

m

RNorm 49.55 47.05 44.85 50.80 47.70 41.85
RUni 53.90 51.55 44.30 51.85 52.90 43.80
He 55.15 53.40 50.75 57.20 54.10 51.15
Glorot 56.40 52.90 53.00 58.85 57.05 52.90
KM 60.70 62.40 60.85 61.55 58.70 57.65
PCA 60.90 62.90 60.00 63.90 60.35 59.75
fSDA 64.25 62.30 61.75 59.75 62.70 61.75
fSDA500 62.00 64.35 62.10 61.45 64.20 61.70
fSDA200 60.65 62.90 59.70 60.95 64.05 59.20

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N

or
m

RNorm 66.17 63.67 59.35 64.89 62.05 63.78
RUni 69.50 69.38 62.32 71.66 70.23 64.88
He 68.49 68.74 65.89 70.18 71.34 64.57
Glorot 71.71 72.04 68.41 73.77 73.51 66.94

Ve
cB

N
or

m

RNorm 63.65 61.89 59.96 64.50 60.68 62.71
RUni 64.99 65.71 54.70 67.31 66.65 56.32
He 69.17 68.17 64.24 71.54 70.11 64.88
Glorot 71.45 71.75 65.79 73.73 72.88 68.56
KM 72.03 75.01 68.52 77.18 76.20 67.03
PCA 72.67 74.40 68.06 72.71 77.17 71.65
fSDA 75.02 75.36 70.59 76.66 77.79 71.87
fSDA500 74.13 74.35 69.80 71.29 76.22 72.60
fSDA200 70.32 74.57 69.35 75.71 77.33 71.39

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N

or
m

RNorm 98.82 98.78 98.45 98.94 98.70 98.41
RUni 99.16 99.20 99.03 99.11 99.19 99.04
He 99.00 99.17 99.03 99.19 99.30 99.10
Glorot 99.10 99.30 99.23 99.22 99.35 99.24

Ve
cB

N
or

m

RNorm 98.76 98.35 98.30 98.76 98.63 98.19
RUni 98.99 98.81 98.49 99.10 98.92 98.58
He 99.03 99.14 98.95 99.13 99.14 98.87
Glorot 99.18 99.21 99.08 99.15 99.16 99.22
KM 99.10 99.07 99.12 99.21 99.20 99.18
PCA 98.82 99.18 99.20 99.25 99.24 99.34
fSDA 98.67 99.26 99.24 99.25 99.24 99.28
fSDA500 98.98 99.14 99.17 97.92 99.13 99.10
fSDA200 98.65 99.04 95.16 99.17 99.18 99.05
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Table 18. As can be seen, the speed of initialisation depends both on dimensionality
and dataset size. Using a smaller number of images for initialisation, the proposed
method is generally faster when compared to the competing methods.

Table 18: Times for initialisation in 32-subclass architecture (in seconds).

KM PCA fSDA fSDA500 fSDA200
CIFAR 22020 12364 6315 807 532
MNIST 16301 6158 4516 521 294
LIN 958 1208 369 216 152

3.7 Neural network training with increased within-layer diversity

3.7.1 Introduction and Objectives

Neural networks perform complex data mappings from their input to their output which
is obtained by performing multiple hierarchical data transformations. As described in
Section 3.6, a feedforward neural network performs a transformation of the form:

y = fL
a (W

T
Lf

L−1
a (WT

L−1 ... f
1
a (W

T
1 x+ b1) + bL−1) + bL), (4)

where f l
a(·) is the (element-wise) activation function at layer l, Wl ∈ RDl×Dl+1 is the

corresponding weight matrix, and bl is the bias term.
After initialising the parameters of the network {Wl, bl}Ll=1, an iterative optimisa-

tion of its parameters is usually performed by using a set of training data and label
pairs {xi, yi}Ni=1 to optimise a loss function expressing the empirical loss. The empirical
loss is expressed by the network error, i.e., a deviation between the network output
on the training data with respect to the corresponding labels. At every iteration of the
optimisation process, the gradient of the loss is used to update the network parame-
ters. That is, at each optimisation step, neurons at a given layer receive feedback from
neurons belonging to higher layers in the network topology. Often, the relationships be-
tween the neurons of the same layer are ignored in this optimisation. We showed that
promoting diversity between the neurons of each layer can lead to better generalisation
performance of the neural network. This is achieved by complementing the traditional
‘between-layer’ feedback with an additional ‘within-layer’ feedback to encourage diver-
sity of the activations of the neurons within the same layer. The methods discussed in
this section are not directly contributing to any component of the MARVEL project. The
methods are contributing to the general development of visual representation learning
and apply to the project from that point of view.

A summary of this work is provided hereafter. The corresponding paper is listed
below, and can be found in Appendix 7.10:

• [167] F. Laakom, J. Raitoharju, A. Iosifidis and M. Gabbouj, “Within-layer Diver-
sity Reduces Generalization Gap”, International Conference on Machine Learning
Workshop on Information Theoretic Methods for Rigorous, Responsible and Reli-
able Machine Learning, pp. 1-11, 2021.
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3.7.2 Summary of the state-of-the-art

Deep neural networks are often over-parameterised, i.e., they have more parameters
compared to the number of data samples used to train them. This often leads to over-
fitting to the data used in their training, which results in low generalisation perfor-
mance on data that are not used during training [168]. Avoiding overfitting has been
extensively studied in the literature [169, 170, 171] and several training strategies
were proposed to avoid it. These include data augmentation [168, 172], the use of
regularisation [173, 174, 175], and Dropout [176, 177, 178, 179].

Diversity has been used for improving the performance of ensemble methods [180,
181]. It has also been used deep learning for improving generalisation through diver-
sifying the information extracted by different network neurons [182, 183]. A common
practice to achieve this is by restricting the weights of each layer of the network to
be diverse, e.g., through orthogonalisation [184, 185]. However, the diversity of the
activations, i.e., the outputs of the neurons, has not received much attention. The
method in [186] is the only one that considers the diversity of the activations directly
by including an additional loss term using cross-covariance of hidden layer activations.
This encourages the neurons to learn diverse or non-redundant representations. This
approach was empirically shown to reduce overfitting and improve the generalisation
performance of the neural network. However, a theoretical analysis to prove that in-
creasing the diversity of the hidden layer neuron activations increases generalisation
performance of the neural network is lacking.

3.7.3 Description of work performed so far

We proposed a neural network training strategy, where we encourage neurons within
a layer to activate in a mutually different manner. Such an approach will lead the
trained neurons to capture different patterns in the input data. To do this, we include
an additional within-layer loss which penalises pairs of neurons that activate similarly.
This is expressed by using an augmented training loss of the form:

L̂aug(f) = L̂(f) + λ
P∑

i=1

J i, (5)

where L̂(f) is the standard empirical loss used for training the neural network, J i

expresses the overall similarity of the neurons within the ith layer and λ is a scaling
factor weighting the importance of the two terms. The loss Eq. (5) can be applied to a
single layer, or to multiple layers of the network.

Let ϕi
n(xj) and ϕi

m(xj) be the outputs of the nth and mth neurons in the ith layer of
the network for the same input sample xj. The similarity snm between the the nth and
mth neurons is defined as the average similarity of their outputs for N input samples.
We use the radial basis function to express the similarity:

snm =
1

N

N∑

j=1

exp
(
− γ||ϕi

n(xj)− ϕi
m(xj)||2

)
, (6)

where γ is a hyper-parameter value. The similarity snm can be computed over the
whole dataset or batch-wise. When two neurons n and m have similar outputs for
many samples, their similarity snm will be high. Otherwise, their similarity smn will be
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small. Based on these pair-wise similarities, we define three variants for the overall
similarity J i:

• Direct: J i =
∑

n̸=m snm. In this variant, we model the global layer similarity
directly as the sum of the pairwise similarities between the neurons.

• Det: J i = −det(S), where S is defined as Snm = snm. This variant is inspired by
the Determinantal Point Process (DPP) [187].

• Logdet: J i = −logdet(S). This variant has the same motivation as the second
one. We use logdet instead of det as logdet is a convex function over the positive
definite matrix space.

3.7.4 Performance Evaluation

We conducted experiments on two image datasets, the CIFAR10 and CIFAR100 [188].
They contain 60,000 images with a resolution of 32 × 32 pixels grouped into 10 and
100 distinct categories, respectively. The datasets are split into training and test subsets
with 50,000 and 10,000 images, respectively. We split the original training set to create
a training and a validation set. We use the first 40,000 images as the main training set
and the last 10,000 as a validation set for optimising the hyperparameter values. We
use three state-of-the-art CNNs:

• ResNext 29-8-16: we consider the standard ResNext Model [189] with a 29-layer
architecture, a cardinality of 8, and a width of 16.

• DenseNet-12: we use DenseNet [190] with the 40-layer architecture and a growth
rate of 12.

• ResNet50: we consider the standard ResNet model [191] with 50 layers.

We compare against the original networks as well as networks trained with the method
in [186], which is referred to as DeCov.

All the models are trained using stochastic gradient descent (SGD) with a momen-
tum of 0.9, weight decay of 0.0001, and a batch size of 128 for 200 epochs. The initial
learning rate is set to 0.1 and is then decreased by a factor of 5 after 60, 120, and
160 epochs, respectively. We also adopt a standard data augmentation scheme that is
widely used for these two datasets [191, 190]. For all models, the additional diver-
sity term is applied on top of the last intermediate layer. The loss weight is chosen
from {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} for both our approach and De-
cov and γ in the radial basis function is chosen from {0.01, 0.1.1, 10, 50, 100}. For each
approach, the model with the best validation performance is used in the test phase.
Each experiment is repeated three times and we report the average performance over
three iterations.

Table 19 reports the average top-1 errors of the different methods. It can be seen
that the use of diversity generally improves performance. Comparing the results of De-
conv and our method, we can see that a variant of our method is consistently providing
the best test error value.

We also conducted additional image classification experiments on the ImageNet-
2012 classification dataset using ResNet50. For the hyperparameters, we use the best
ones for each approach obtained from the experiments conducted on CIFAR10 and
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Table 19: Average classification errors on CIFAR10 and CIFAR100 over three iterations.
Top-1 test Error

Model Method CIFAR10 CIFAR100
Standard 7.07 29.25
DeCov 7.18 29.17

DenseNet-12 Ours direct 6.95 29.16
Ours det 7.04 28.78
Ours logdet 6.96 29.15
Standard 6.93 26.73
DeCov 6.84 26.70

ResNext-29-08-16 Ours direct 6.74 26.54
Ours det 6.67 26.67
Ours logdet 6.70 26.67
Standard 8.27 34.06
DeCov 8.03 32.26

ResNet50 Ours direct 7.86 32.15
Ours det 7.73 32.12
Ours logdet 7.91 32.20

Table 20: Performance of ResNet50 with different diversity strategies on ImageNet
dataset.

Top-1 Errors Generalisation
Method Training Testing Gap
Standard 20.97 23.84 2.87
DeCov 20.92 23.62 2.70
Ours direct 20.88 23.58 2.70
Ours det 20.81 23.62 2.77
Ours logdet 22.57 23.64 1.07

CIFAR100 datasets. Table 20 reports the test errors of the different methods. We also
report the final training errors and the generalisation gap, i.e., the difference between
the training and test accuracies. As can be seen, the best test error is achieved by the
direct variant of the proposed method, while the smallest generalisation gap is by the
logdet variant of the proposed method.
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4 Methodologies for multi-modal data analysis

In this Section, methodologies developed by MARVEL partners targeting multi-modal
data analysis are described. These include a methodology for Audio-Visual Crowd
Counting (Section 4.1), and a methodology for learning enhanced audio representa-
tions by following a cross-modal contrastive learning approach that combines multiple
types of information related to music to learn audio representation (audio feature) from
heterogeneous data, i.e., playlists-track interactions, genre metadata, and the tracks’
audio (Section 4.2). Finally, a method for Dynamic Split Computing in Deep Learning
models suitable for improving computing resources allocation between edge devices
and fog or cloud computing is described in Section 4.3.

4.1 Efficient Audiovisual Crowd Counting with Single-Layer Vision
Transformers

4.1.1 Introduction and objectives

When both visual and audio information is available, one can combine this enriched
information in order to improve performance compared to using only information from
one stream, e.g., the visual information used in the visual crowd counting method of
Section 3.1. In audiovisual crowd counting, the ambient audio of the scene is used
alongside its image in order to estimate the number of people appearing in the scene.
The ambient audio can help improve the accuracy in situations where the quality of the
input image is not ideal, for instance, in scenes with low illumination such as night-
time, in cases where the capture device is noisy or outputs a low-resolution image, and
in situations where some people are partially or completely occluded in the image.

Therefore, the input to an audiovisual crowd counting model is commonly a color
image as well as a corresponding audio clip that spans the time period before and after
the image was taken. Similar to visual crowd counting, the expected output is a number
representing the total number of people present in that image, and the crowd counting
model can optionally provide as output a density map that specifies the density of the
crowd for each pixel of the input image.

Here we describe a different architecture for early exit branches placed on crowd
counting models, that can lead to higher performance and can be combined with a
neural network branch receiving as input audio information. A summary of this work
is provided hereafter. The corresponding preprint is listed below, and can be found in
Appendix 7.11:

• [136] A. Bakhtiarnia, Q. Zhang, and A. Iosifidis. Single-layer vision transformers
for more accurate early exits with less overhead, accepted to Neural Networks
journal (10.5281/zenodo.6737408), 2021.

4.1.2 Summary of the state-of-the-art

At the time of this writing, the DISCO dataset [192] is the only publicly available dataset
for audiovisual crowd counting. DISCO consists of 1935 images of Full HD resolution
(1920 × 1080) as well as a 1-second ambient audio clip for each image which starts
0.5 seconds before the image was captured and ends 0.5 seconds afterwards. For each
image, annotations showing the location of each person’s head in the image are also
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available. These head annotations can be converted to ground truth density maps and
used to train and test the model. DISCO is a challenging dataset due to the variability
of the images in terms of perspective, illumination, and crowd density.

AudioCSRNet [192], evaluated on DISCO, is a high-performing model for audiovi-
sual crowd counting, which is an extension of the popular CSRNet model that is widely
used for visual crowd counting. CSRNet utilises the features extracted by the first 10
layers of a VGG neural network [193] pre-trained on the ImageNet dataset [194], and
processes these features provided using six dilated convolution layers. AudioCSRNet
extends this architecture by extracting audio features from input audio waveform using
a VGGish neural network [195] pre-trained on the AudioSet dataset [195]. Subse-
quently, these extracted audio features are merged with video features using six fusion
blocks, each containing a dilated convolution. The architecture of AudioCSRNet is de-
picted in Figure 24.

Figure 24: Architecture of AudioCSRNet.

Similar to the crowd counting method described in Section 3.1, audiovisual crowd
counting also requires high computational power. For instance, AudioCSRNet requires
nearly 500 billion floating point operations per second (FLOPS) during inference. There-
fore, dynamic inference methods such as early exiting are used in the audiovisual case
as well. As previously mentioned, results obtained from early exit branches are typi-
cally less accurate than the final result, thus improving the accuracy of early exits is an
active area of research.

4.1.3 Description of work performed so far

Our method titled “Single-Layer Vision Transformer” (SL-ViT) [136] is an alternative
architecture for early exit branches, inspired by the Vision Transformer architecture
[109], which leads to more accurate early exit branches compared to conventional
early exit branch architectures. Additionally, the overhead of our method is less than
the conventional approach both in terms of the number of parameters and FLOPS.
Figure 25 depicts the conventional CNN-based architecture for early exits, and Figure
26 shows the architecture of SL-ViT.

Besides a lower overhead and higher accuracy, another advantage of SL-ViT is that
audio and video features can be directly fused inside the early exit branch, leading to
audiovisual SL-ViT (AV-SL-ViT). The first benefit of AV-SL-ViT is its higher accuracy due
to the fact that it is not required to fuse the modalities using element-wise addition and
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Figure 25: Conventional CNN-based early exit branch architecture. Figure created
using the NN-SVG tool [4].

Figure 26: SL-ViT early exit branch architecture.

multiplication of tensors, which can introduce a lot of noise. Another benefit of AV-
SL-ViT is that it provides more options for early exit locations since any intermediate
layer of the visual part of the neural network can be combined with any intermediate
of the audio part of the neural network to create audiovisual early exits, which leads to
a more fine-grained dynamic inference.

4.1.4 Performance evaluation

Our results are summarised in Table 21. In this table, the accuracy is measured using
mean absolute error (MAE) where lower is better. The SL-ViT early exit branch is
placed before the first fusion block and the AV-SL-ViT early exit branch uses the outputs
of VGG and VGGish. The number of parameters is calculated only for the early exit
branch, however, the FLOPS indicate the total operations of the neural network up to
and including the early exit branch.

These results contribute to the KPI-O2-E2-1 (average accuracy enhancement for
audio-visual representations and models at least 20%) by achieving a 3.06% enhance-
ment, and complete KPI-O2-E3-1 (increase the average accuracy for audio-visual event
detection by at least 10%) and KPI-O2-E3-3 (decrease the time needed to identify an
event by at least 30% of current time) by obtaining a 14.24% increase and 48% de-
crease, respectively.
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Table 21: Single-Layer Vision Transformer (SL-ViT): Performance on the DISCO dataset,
floating point operations per second (FLOPS), parameter count and maximum allocated
memory of SL-ViT at inference.

Model MAE Parameters (M) FLOPS (G)
Baseline (CNN) 16.99 ± 0.28 2.50M 329.77B
Proposed method (SL-ViT) 15.04 ± 0.71 2.35M 328.72B
Proposed method (AV-SL-ViT) 14.58 ± 0.64 2.36M 330.31B

4.2 Cross-modal contrastive learning

4.2.1 Introduction and objectives

The purpose of the work was to study how information from multiple sources could
be combined into the same representation for music information retrieval applications
such as musical genre classification, playlist continuation, and automatic tagging. Deep
learning techniques can be used to obtain representations based on various sources of
information. The cross-modal contrastive learning technique is proposed to combine
multiple types of information related to music to learn audio representation (audio fea-
ture) from heterogeneous data. The methods discussed in this section are not directly
contributing to any component of the MARVEL project. The methods are contributing
to the general development of audio representation learning and apply to the project
from that point of view. The paper to give details about the work is listed below and
can be found in Appendix 7.14:

• [196] A. Ferraro, X. Favory, K. Drossos, Y. Kim and D. Bogdanov, “Enriched Music
Representations with Multiple Cross-modal Contrastive Learning”, IEEE Signal
Processing Letters, vol. 28, pp. 733-737, 2021

4.2.2 Summary of the state-of-the-art

Information from multiple sources can be used in music information retrieval applica-
tions. Audio features are the best-predicting information for predicting musical genre
[197], whereas users’ listening data is the most suitable for music recommendation
[198] and mood prediction [199]. Recent advances in deep learning allow for im-
proving the performance on multiple tasks by combining different types of data (multi-
modal) [200, 201]. Deep learning techniques allow learning representation mappings
from input data to an embedding space to be used for multiple downstream tasks [202].
Contrastive learning allows to learn representations by utilising learning objective to
contrast similar (positive examples) and dissimilar items (negative examples) [203].
Triplet loss [204] based approaches have been recently used for music information
retrieval [197] and zero-shot learning [205]. These approaches use triplets that are
composed of an anchor, a positive, and a negative example, and the sampling strategy
for these triplets is crucial to the learning process. The approaches using contrastive
loss functions in a self-supervised learning scheme have recently provided robust im-
age [206], environmental sound [207] and music audio [208] representations that are
learned without annotated data. In a supervised learning scheme, contrastive learning
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has been used in a cross-modal approach where audio information and associated tex-
tual metadata are used to learn semantically enriched audio representations [209, 210].

4.2.3 Description of work performed so far

The proposed method aligns the latent representations obtained from playlists-track
interactions, genre metadata, and the tracks’ audio, by maximising the agreement be-
tween these modality representations using a contrastive loss [203]. The proposed
method is evaluated in three downstream music information retrieval tasks, genre clas-
sification, playlist continuation, and automatic tagging.

The proposed method consists of encoders for the audio, musical genre, and music
playlist information. These encoders are used to obtain latent representations, and the
information from these encoders is mutually aligned using three contrastive losses be-
tween associated and non-associated examples. The joint minimisation of these losses
is used in the optimisation to obtain embeddings of music signals. The performance is
compared with a baseline audio-based CNN model trained for three tasks specifically.

The main contributions of the work are an updated audio encoder (embedding
model) optimised for the music domain based on [209, 211] and the alignment of
multi-modal data for exploiting the semantic metadata and collaborative filtering in-
formation. The work includes an ablation study by comparing the performance of each
source of information independently to evaluate the importance of the different parts
of the model.

4.2.4 Performance evaluation

The main results are summarised in Table 22. The results show that the proposed audio
embedding trained using contrastive loss gives better performance than the baseline
model trained directly for the task using only task-specific information. Detailed results
can be found in [196] and in Appendix 7.14.

Table 22: Performance on genre classification, automatic audio tagging, and automatic
playlist generation with a baseline method learned using only target information and
proposed method learned using cross-modal contrastive learning.

Task Metric Baseline Proposed
Genre classification Mean accuracy±STD 63.28±1.19 76.78±1.22
Tagging, genre ROC AUC±STD 0.840±0.004 0.847±0.004
Tagging, mood ROC AUC±STD 0.722±0.004 0.732±0.005
Tagging, instrument ROC AUC±STD 0.781±0.005 0.797±0.005
Playlist generation normalised Discounted 0.0044 0.0020

Cumulative Gain, nDCG@100
Playlist generation Mean Average Precision, 0.0007 0.0020

MAP@100
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(a) (b) (c) (d)

Figure 27: Overview of (a) no offloading; (b) full offloading; (c) split computing; and
(d) dynamic split computing approaches.

4.3 Efficient Deep Learning on the Edge with Dynamic Split Com-
puting

4.3.1 Introduction and objectives

Deep learning benefits many IoT applications [212], however, deep learning models
are often computationally expensive which makes them difficult to deploy on resource-
constrained IoT devices. Offloading the computation to an edge server or cloud server
(Fig. 27 b) can solve this issue [213], however, it also introduces a few drawbacks.
First, the size of the inputs to deep learning models is often large, particularly com-
puter vision models which take images and videos as input. This means that offloading
the computation to a server consumes a lot of bandwidth as well as energy, and in-
troduces delays due to transmission. Secondly, even though IoT devices are restricted
in terms of their computational capabilities, they still possess some amount of com-
putational power which remains unused when the computation is fully offloaded to a
server. Finally, since the server is collecting the raw input from several IoT devices,
privacy concerns may arise.

Split computing is a new paradigm that partitions the deep neural network (DNN)
into two sections [214]. The initial section called head is executed on the resource-
constrained device. Subsequently, the output of the last layer of the head is transmitted
to a server, where this intermediate representation is given as input to the second sec-
tion of the DNN called tail and the final answer of the DNN is obtained. Fig. 27 (c)
shows the split computing procedure.

When the size of the intermediate representation is smaller than the input size, split
computing consumes less bandwidth and energy compared to full offloading. Moreover,
the transmission delay is reduced and, since the intermediate neural network layer rep-
resentations are transmitted to the server instead of raw inputs, privacy is preserved.
Furthermore, the computational capability of IoT devices is utilised for performing part
of the computations, which reduces the workload of the server. We proposed a dy-
namic version of split computing which optimises the split location based on the state
of the communication channel and leads to faster inference compared to static split
computing.

A summary of this work is provided hereafter. The corresponding preprint is listed
below, and can be found in Appendix 7.15:

• [215] A. Bakhtiarnia, N. Milosevic, Q. Zhang, D. Bajovic and A. Iosifidis, “Dy-
namic Split Computing for Efficient Edge Intelligence”, International Conference
on Machine Learning (ICML) Workshop on Dynamic Neural Networks, 2022.
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Figure 28: Optimal split location based on batch size and data rate for the
EfficientNetV1-B4 architecture.

4.3.2 Summary of the state-of-the-art

Natural bottlenecks are layers of DNNs where the size of the intermediate representa-
tion is less than the input size. Not all DNNs contain such natural bottlenecks. In such
cases, a bottleneck can be inserted into the architecture, for instance, by adding a few
encoder and decoder layers in the middle of the DNN within and re-training the new
DNN [214]. However, bottleneck insertion causes several issues. First, re-training the
DNN is a time-consuming task that requires multiple steps such as identifying a proper
split location, finding the optimal bottleneck size, and hyper-parameter optimisation.
Furthermore, there is no guarantee that the re-trained DNN obtains a comparable per-
formance, particularly with the added restriction of a bottleneck in the architecture.

4.3.3 Description of work performed so far

Dynamic split computing takes advantage of the fact that many natural bottlenecks ex-
ist in modern DNN architectures such as EfficientNet [216] and EfficientNetV2 [217],
which means that dynamic split computing does not need to insert bottlenecks into
the architecture and thus preserves the accuracy of the original DNN. Furthermore,
dynamic split computing takes into account the data rate (bandwidth) of the com-
munication channel as well as the batch size (workload), and calculates the expected
end-to-end inference time for each possible split location. Based on these calculations,
dynamic split computing can select the optimal split location that results in the lowest
end-to-end inference time. The optimal split location varies over time whenever the
state of the communication channel changes.

4.3.4 Performance evaluation

The results for the EfficientNetV1-B4 architecture are shown in Fig. 28, where for each
data rate and batch size, the optimal split location is specified. For each possible state
of the communication channel, the relative gain of dynamic split computing over static
split computing for the EfficientNetV1-B4 architecture in terms of inference speed is
shown in Fig. 29. Observe that each bottleneck can be an optimal split location in
several scenarios, therefore, choosing the split location dynamically based on the state
of the communication channel improves inference speed. This is also the case with the
other variations of EfficientNet and EfficientNetV2 architectures.
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Figure 29: The relative gain of dynamic split computing in terms of end-to-end infer-
ence time over static split computing at block 10 in the EfficientNetV1-B4 architecture.

4.3.5 Future work

While in the results presented above only single-branch deep learning models were
tested, we are currently working on testing the method on audio-visual data analysis
processed by multiple branches followed by layer fusion block(s). This will allow for
efficient split computing in multi-modal data analysis tasks.
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5 Future plans

During the remaining part of the project, work in T3.3 will further focus on method-
ology development and training of the developed models in data coming from the
MARVEL Data Corpus.

Sound event detection development will mainly focus in the future on optimising
the performance in the MARVEL use cases. The focus will be on data unbalance prob-
lem leading to unbalanced detection across different sound event classes and learning
robust models that generalise across multiple use case locations with a limited amount
of learning examples. Both issues can be addressed by utilising transfer learning and
data augmentation techniques. Work on these issues will further contribute to KPI-O2-
E3-1. The development in sound event localisation and detection will focus as well
on optimising the performance in MARVEL use cases. Fully annotated real-life data is
difficult to produce for the task as this requires detailed location annotations for each
sound source in the scene. Future research will focus on ways to utilise synthesised
material generation to produce learning examples similar to the ones encountered in
the use cases. This work will contribute to KPI-O2-E3-1 and KPI-O2-E2-3. Possibly
future directions in the development of automated audio captioning methods include
techniques coping with a low amount of learning examples with a narrow vocabulary.

Regarding visual data analysis, work related to visual crowd counting and visual
anomaly detection will mainly focus on methodology development for improving per-
formance and/or operation speed in connection to the MARVEL use cases. The Dynamic
Split Computing methodology will be further developed and evaluated on visual and
audio-visual data analysis related to the MARVEL use cases. Furthermore, we will in-
vestigate the case of high-resolution visual data analysis, which has the potential to
improve performance. In this case, emphasis will be given to methodology develop-
ment for improving inference speed, as this is the major bottleneck in analysing high-
resolution visual data. Work on these issues will further contribute to KPI-O2-E2-1,
KPI-O2-E3-2, and KPI-O2-E3-3.

Regarding multimodal data analysis, we will try to improve performance in audio-
visual crowd counting and extend our visual anomaly detection to exploit both visual
and audio data. Again, here the use of high-resolution visual information can have the
potential in improving performance. Work on these issues will further contribute to
KPI-O2-E2-1, KPI-O2-E3-2, and KPI-O2-E3-3. Furthermore, work on automated audio-
visual captioning will be started by identifying the state-of-the-art methods, finding the
possibilities for novel methods, and defining a benchmark dataset for the development.

For what concerns the SED methods for edge devices, the next efforts will focus
on combining scalable models with more traditional model compression techniques
(pruning). In addition, as new in-domain data will be released by the pilots, the sound
event detection at the edge will be evaluated and further developed.
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6 Conclusions

This document provided a description of the methodological contributions of MARVEL
partners during the first half of the project duration (M08-M18) within T3.3 Multimodal
audio-visual intelligence. The developed methodologies focus on six of the AI compo-
nents included in the MARVEL Audio, Visual, and Multimodal AI Subsystem, and specif-
ically, Sound Event Detection (SED), Sound Event Localisation and Detection (SELD),
Automated Audio Captioning (AAC), Visual Crowd Counting (VCC), Visual Anomaly
Detection (ViAD), and Audio-Visual Crowd Counting (AVCC). Moreover, methodolo-
gies for improving the training and efficiency of deep learning models when applied to
audio, visual and multimodal analysis tasks were developed. The aim, along with the
main contributions of the developed solutions are summarised in the following.

The aim of sound event detection is to provide a textual label, and the start and end
time of targeted sound event instances in the audio signal. The development focused
on vehicle type detection task. The main contribution of the proposed method is more
balanced detection performance across vehicle types classes in comparison to the state-
of-the-art baseline. The method targets the SED component in the MARVEL architecture
and addresses a KPI related to detection accuracy (KPI-O2-E2-1).

Sound event detection can be performed on low-resource edge devices in order to
reduce the bandwidth and energy required for data transfer and to ensure the preser-
vation of the privacy of the citizens being recorded by the microphones. The main
contribution of SED@Edge is the development of scalable neural architectures which
allows an effective configuration of the neural models, given the available resources,
while preserving the detection accuracy. This component contributes to KPI-O2-E3-3.

Sound event localisation and detection jointly detect the active sound events and
their spatial locations (elevation and azimuth). The development focused on approaches
suitable for real-time usage in the smart city domain and investigated the effect of re-
placing recurrent neural network blocks with self-attention. The method targets the
SELD component in the MARVEL. The proposed neural network architecture decreases
the inference time by 40% and this result completes KPI-O2-E3-3. Automated audio
captioning aims at providing textual descriptions for a segment of audio. The devel-
opment focused on neural network architectures that model spectro-temporal context,
and continual learning for automated audio captioning. The methods contribute to the
AAC component in MARVEL.

A system development from a large set of unlabelled data through active learning
and domain adaptation was investigated in the case of speech emotion recognition ap-
plication. The proposed methods are not directly contributing to any components in
MARVEL, however, utilising large unlabelled datasets is an important issue for any AI
system development. Another developed method studied how engagement in Citizen
Science projects applied to Smart Cities infrastructure can be enhanced through contex-
tual and structural game elements. The work addressed the issue of how to collect and
annotate learning examples for AI development in the Smart City context by utilising
users of a game. The proposed framework does not contribute directly to any MARVEL
component.

Visual crowd counting aims at estimating the number of people visible in an image
or video frame. The proposed method is based on multi-exit deep learning architectures
allowing it to provide an estimate of the number of people under varying computing
resources and network bandwidth allocation. The method targets the VCC component
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in the MARVEL architecture and addresses KPI related to accuracy enhancement (KPI-
O2-E2-1). Visual anomaly detection aims at detecting novel situations in a visual scene.
Two methods were proposed, one based on unsupervised learning through the recon-
struction of the visual scene, and another one through detection of objects in the scene
and employing user-defined anomaly rules. The methods target the ViAD component
in the MARVEL architecture and address KPIs related to decrease event identification
time (KPI-O2-E3-3) and increase average event detection accuracy (KPI-O2-E3-1). An-
other developed method studied how to estimate social distances in smart cities with
non-invasive means. The work employs person detectors and provides the pair-wise
distances of the existing persons in the scene. The proposed method does not con-
tribute directly to any MARVEL component, but it is related to the visual scene analysis
aspects of MARVEL.

A key aspect in achieving high performance in visual data analysis based on deep
learning models is effective initialisation of their parameters and efficient training.
Methods exploiting discriminant learning ideas for parameter initialisation, diversity
of neurons forming each neural network layer, and data-driven training strategies were
proposed. These methods do not contribute directly to any MARVEL component, but
they constitute tools in the AI methodology design toolkit needed for training deep
learning models.

Audio-visual crowd counting aims at estimating the number of people visible in an
image or video frame by exploiting enriched audio-visual information. The proposed
method is based on multi-exit deep learning architectures efficiently fusing learned
visual and audio data representations which allow providing an estimate of the num-
ber of people under varying computing resources and network bandwidth allocation.
The method targets the AVCC component in the MARVEL architecture and addresses a
KPI related to accuracy enhancement (KPI-O2-E2-1). Finally, a cross-modal contrastive
learning-based method was proposed to combine multiple types of information to learn
audio representation from heterogeneous data. The method was investigated in the
context of music information retrieval applications such as musical genre classifica-
tion, playlist continuation, and automatic tagging. The proposed audio representation
learning techniques can be utilised in many audio AI tasks, but they are not directly
contributing to any MARVEL component.
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Nieto. Cross-modal embeddings for video and audio retrieval. In Computer Vision
– ECCV 2018 Workshops, pages 711–716, Cham, 2019. Springer International
Publishing.

[202] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In 4th Inter-
national Conference on Learning Representations, ICLR, 2016.

[203] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation
learning: A framework and review. IEEE Access, 8:193907–193934, 2020.

MARVEL - 96- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

[204] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large
margin nearest neighbor classification. Journal of machine learning research,
10(2):207–244, 2009.

[205] Jeong Choi, Jongpil Lee, Jiyoung Park, and Juhan Nam. Zero-shot learning for
audio-based music classification and tagging. In Arthur Flexer, Geoffroy Peeters,
Julián Urbano, and Anja Volk, editors, Proceedings of the 20th International So-
ciety for Music Information Retrieval Conference, ISMIR 2019, Delft, The Nether-
lands, November 4-8, 2019, pages 67–74, 2019.

[206] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[207] Eduardo Fonseca, Diego Ortego, Kevin McGuinness, Noel E O’Connor, and Xavier
Serra. Unsupervised contrastive learning of sound event representations. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 371–375. IEEE, 2021.

[208] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning of
general-purpose audio representations. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3875–
3879. IEEE, 2021.

[209] Xavier Favory, Konstantinos Drossos, Tuomas Virtanen, and Xavier Serra. Coala:
Co-aligned autoencoders for learning semantically enriched audio represen-
tations. In International Conference on Machine Learning, Workshop on Self-
supervision in Audio and Speech (ICML), 2020.

[210] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised con-
trastive learning. Advances in Neural Information Processing Systems, 33:18661–
18673, 2020.

[211] Xavier Favory, Konstantinos Drossos, Tuomas Virtanen, and Xavier Serra. Learn-
ing contextual tag embeddings for cross-modal alignment of audio and tags. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages
596–600, 2021.

[212] Xiaoqiang Ma, Tai Yao, Menglan Hu, Yan Dong, Wei Liu, Fangxin Wang, and
Jiangchuan Liu. A survey on deep learning empowered iot applications. IEEE
Access, 7:181721–181732, 2019.

[213] Xiaofei Wang, Yiwen Han, Victor C. M. Leung, Dusit Niyato, Xueqiang Yan, and
Xu Chen. Convergence of edge computing and deep learning: A comprehensive
survey. IEEE Communications Surveys Tutorials, 22(2):869–904, 2020.

[214] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split com-
puting and early exiting for deep learning applications: Survey and research
challenges. arXiv:2103.04505, 2021.

MARVEL - 97- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

[215] Arian Bakhtiarnia, Nemanja Milosevic, Qi Zhang, Dragana Bajovic, and
Alexandros Iosifidis. Dynamic split computing for efficient edge intelligence.
10.5281/zenodo.6737211, 2022.

[216] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning, pages
6105–6114, 2019.

[217] Mingxing Tan and Quoc V. Le. Efficientnetv2: Smaller models and faster train-
ing. arXiv:2104.00298, 2021.

MARVEL - 98- June 30, 2022

DRAFT



MARVEL D3.1 H2020-ICT-2018-20/No 957337

7 Appendix

7.1 Scalable neural architectures for end-to-end environmental sound
classification

The appended paper follows.
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SCALABLE NEURAL ARCHITECTURES FOR END-TO-END ENVIRONMENTAL SOUND
CLASSIFICATION
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ABSTRACT
Sound Event Detection (SED) is a complex task simulating human
ability to recognize what is happening in the surrounding from au-
ditory signals only. This technology is a crucial asset in many ap-
plications such as smart cities. Here, urban sounds can be detected
and processed by embedded devices in an Internet of Things (IoT)
to identify meaningful events for municipalities or law enforcement.
However, while current deep learning techniques for SED are effec-
tive, they are also resource- and power-hungry, thus not appropriate
for pervasive battery-powered devices. In this paper, we propose
novel neural architectures based on PhiNets for real-time acoustic
event detection on microcontroller units. The proposed models are
easily scalable to fit the hardware requirements and can operate both
on spectrograms and waveforms. In particular, our architectures
achieve state-of-the-art performance on UrbanSound8K in spectro-
gram classification (around 77%) with extreme compression factors
(99.8%) with respect to current state-of-the-art architectures.

Index Terms— sound event detection, tinyML, scalable back-
bone, IoT;

1. INTRODUCTION

The task of Sound Event Detection (SED) consists in recognizing
acoustic events in audio streams. This task is of interest both for
industrial and smart cities applications. Although recently the re-
search community has steadily improved the effectiveness and accu-
racy of SED solutions, current neural networks-based approaches are
highly demanding in terms of memory footprint and computational
complexity. As a consequence, these systems are not suitable for
applications requiring pervasive low-power low-cost sensors. In ad-
dition, the high computational complexity affects the lifetime of the
devices and results in increased energy absorption and related car-
bon emissions. Nonetheless, it has already been shown [1] how such
architectures are not strictly necessary and can be compressed us-
ing, for example, knowledge distillation [2] and network pruning [3].
Moreover, when bringing these approaches to edge devices, it is es-
sential to address the variability in computational resources existing
between different platforms. Current compression approaches are
generally tailored to a specific hardware platform; thus, they require
an expensive process to adapt the neural network to new application
scenarios. Conversely, neural architectures should scale efficiently
to exploit the available computational resources under different op-
erational constraints.

To address the issues above, in this paper we employ the PhiNets
[4] architecture’s family for the first time in an audio task, showing
that these models are good candidates for deep-learning-based multi-
media analytics at the edge. In addition, we propose a novel scalable

*These authors contributed equally to this research. This work was par-
tially funded by the EU H2020 project MARVEL (project number: 957337).

backbone, which resembles the scalability principles of the PhiNets,
while compressing audio models (down to 766 parameters)1. Ex-
cluding AudioCLIP [5], which however can not run in real-time on
any embedded device (including edge GPUs), the proposed models
achieve state-of-the-art performance on the UrbanSound8K bench-
mark [6], using only a fraction of the parameters and of the computa-
tions of current architectures (up to a 99.8% reduction in parameters
and operations with respect to similarly performing models).

2. RELATED WORKS

In literature, many architectures for SED exist, recently driven by
the DCASE series [7]. This section will review the state-of-the-art
techniques grouped by input type (spectrogram or waveform) and
target platform.

2.1. SED using spectrograms

The most common approach in detecting acoustic events is spectro-
gram classification. In this paradigm, the waveform is converted into
a spectrogram, using stacked Fourier transforms [8], which are then
processed by convolutional neural networks (CNNs). Among the
approaches in literature, the best performing are VGGish [9], Picza-
kCNN [10], and SB-CNN [11]. For the sake of this study, we only
consider the aforementioned architectures in terms of their classifi-
cation accuracy on the Urbansound8K benchmark [6] and in terms of
their computational requirements. In particular, these three architec-
tures have different structures, but share a high parameter count, with
the smallest one being SB-CNN that counts 241 k parameters. SB-
CNN was presented in [11] alongside data augmentation techniques,
which proved to be the most effective technique to train networks on
the UrbanSound8K benchmark, given the small size of the dataset.
Overall, these architectures are constituted by a massive number of
parameters that could not fit on off-the-shelf MCUs.

2.2. SED using waveform

An emerging trend in audio classification is exploiting one dimen-
sional convolutions (1DConvs) directly on the waveforms. In this
case, neural networks learn the filters to be applied to the input sig-
nal directly. Many approaches that inject previous knowledge in the
filter shape are proposed to ease the training. In SincNet [12], for ex-
ample, the filters of the first convolution are forced to be band-pass
filters. In [13] instead, the proposed architecture exploits the Gam-
matone filter initialization to boost the classification performance.
In ENVNET-V2 [14], the authors use 1DConvs and then exploit bi-
dimensional convolutions on the feature map. Despite the good per-
formance, this comes with a high cost in computational requirements

1Code available at https://github.com/fpaissan/phinet pl

DRAFT



(more than 1M parameters). AudioCLIP [5] learns a bi-dimensional
representation of the waveform with a custom backbone [15] and is
currently the best performing model on the UrbanSound8k bench-
mark. However, this high accuracy is achieved by employing ex-
tremely large architectures, counting up to 30M parameters only for
the feature extraction. In Wavelet Networks [16], instead, the archi-
tecture resembles the wavelet transform to maximize the sound event
detection performance by reducing the impact of phase shifts in the
signal. Overall, models working on the waveform are less accurate
in classifying acoustic events, mainly due to the higher variability
of the signals in the time domain. On the positive side, the 1DConv
based models have a higher parameter efficiency given that they need
to run in only one dimension.

2.3. SED at the edge

Audio processing at the edge (i.e. on embedded platforms) is rele-
vant for both research and industrial applications. Many approaches
targeting embedded platforms are already available in the literature
for a variety of audio tasks, namely keyword spotting (KWS) [17,
18] and SED [1, 19]. In [1], a student-teacher approach is pre-
sented for model compression via knowledge distillation based on
joint alignment of the latent representations and cost function opti-
mization for classification. This approach shows promising results
in compressing architectures. However, there is an implicit upper
bound to the network’s performance since it is empirically shown
that the performance of the student network will not surpass that
of the teacher. [19] proposes a novel architecture where a dilated
convolution replaces the recurrent unit. Moreover, the implemen-
tation exploits depth-wise separable convolutions [20], which are
well-known for their parameter efficiency. Despite this, the parame-
ter count of the architecture is still higher than what could fit on an
MCU. Network quantization offers another popular approach [21].
The most computationally efficient uses Binary Neural Networks
(BNNs) [22] but compromises classification performance.

In our work, we present two efficient architectures whose lite
computational complexity allows their implementation on extremely
resource-constrained platforms, like MCUs. In addition, the pro-
posed models are trained from scratch and, thus, are not limited by
the knowledge distillation process.

3. HARDWARE-AWARE SCALING WITH PHINETS

When bringing neural architectures on MCUs, one of the most
efficient approaches is hardware-aware scaling [4]. Using this
paradigm, it is possible to optimize the neural architectures to fit on
embedded platforms with a negligible drop in performance. How-
ever, in order to exploit this scaling principle, we need to avoid an
exponential decay of the performance with respect to computational
requirements, as often occurs [23]. For these reasons, we present
two different architectures (PhiNets 1D and PhiNets 2D) that are in
line with the hardware-aware scaling paradigm and work on two dif-
ferent multiply–accumulate (MAC) and memory ranges. We exploit
the scalability principles of PhiNets [4], a scalable backbone based
on a sequence of inverted residual blocks (depicted in Fig. 2), where
the shape of each block depends on three hyper-parameters α, β,
t0 that control disjointly the MAC count and memory requirements
(FLASH and RAM), respectively - as described in [4].

3.1. PhiNets on spectrograms

We introduced some modifications to the original PhiNets architec-
ture to tailor it to the SED task and improve the classification per-
formance. In particular, we propose down-sampling the feature map
using max-pooling instead of strided convolutions. We also replace
the original input block with a standard 2D convolution.
Max-pooling improves the network’s overall performance by around
5% on the UrbanSound8K dataset, and changing the input block
showed a similar trend. We observed that networks under 2 k pa-
rameters and 5M MAC perform better using a strided convolution
for downsampling and a depth-wise separable input block. Despite
this small change, the computational load of the PhiNets architec-
tures does not change and is analytically described in [4].

Fig. 1. Illustration of the input 1D convolutional block. The stacked
convolutions work on the features, which are time-stretched with dif-
ferent phases. In the illustration, f represents the number of filters,
while s represents the stride of the convolution.

3.2. PhiNets on waveform

To further reduce the computational cost of the PhiNets, we propose
a variation of the architecture that works on waveforms, thus exploit-
ing one-dimensional convolutions (1DConvs). By doing this, the
relationship between the computational requirements and the num-
ber of filters used in each convolutional block is linear instead of
quadratic. Moreover, the overall parameter count is lower.

The network architecture is split into three main blocks. The
first block is a convolutional block that aims at reducing the shape of
the input tensor allowing for a trade-off between accuracy and MAC
count. This block consists of four vertically stacked 1DConvs with
different kernel sizes (namely 32, 64, 128, 256 points), which work
on time-stretched versions of the waveform to avoid losing informa-
tion in the striding process, as described in Fig. 1. This first con-
volutional block is followed by a sequence of convolutional blocks
composed by a point-wise convolution to up-sample the features,
a depth-wise convolution, a squeeze-and-excite block and another
point-wise convolution to restore the same number of features as the
input. At the end of the network, a fully-connected layer for classi-
fication compresses the extracted features and outputs the logits for
each class. To decrease the computational complexity and to help
the convergence of the network [24], we exploit skip connections in
the convolutional blocks. In particular, we either (i) concatenate the
input and output tensors to double the number of features used in
the following layers (instead of increasing channels by means of e.g.
a point-wise convolution) or (ii) sum the input and output tensors.
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Fig. 2. Illustration of the 1D and 2D convolutional blocks. The input map is fed into the expansion convolution, which affects only the
number of channels in the feature map. The feature map is fed into a depth-wise convolution followed by a squeeze-and-excite block. The
output of the squeeze-and-excite is projected in a lower dimensionality space via a bottleneck layer. At the end of the 1D block there is an
optional downsampling - implemented using average pooling - and a skip connection - either ADD or CONCAT depending if the layer realizes
a downsampling operation or not. For the 2D block, the skip connection always uses an ADD operation. In the illustration, B is the number
of blocks and N is the ID of the current block.

Fig. 2 shows the convolutional block of the PhiNets and how it is
performed both in one and two dimensions.

To scale the computational requirements of PhiNets 1D, we can
change: the number of convolutional blocks, the depth-multiplier,
the number of filters in the first convolution or the stride of the in-
put convolution. In particular, changing all of the above parame-
ters has a linear impact on both computational cost (MAC count and
parameter count) except for the number of filters in the first con-
volutional block. The latter has a quadratic impact on both param-
eter and MAC count. Such scalability features allow for extreme
model compression and optimization, while decoupling parameter
count and computational cost in alignment with the harware-aware
scaling paradigm.

4. EXPERIMENTAL SETUP

We benchmarked the two proposed architectures, for waveforms
and spectrograms, on the UrbanSound8K dataset [6]. The dataset
consists of a collection of 8732 samples of 4 second long typical
urban sound events, equally distributed among ten different classes
(air conditioner, car horn, children playing, dog bark, drilling, en-
gine idling, gun shot, jackhammer, siren, and street music). The
sampling rate of the original audio sample varies, so we re-sampled
each event at 16 kHz, resulting in 64 000 timepoints per sample. We
used the standard 10-fold benchmarking procedure for this dataset
by averaging the test score after training on eight folds and us-
ing one for validation. We augmented the dataset with pitch shift,
time-stretching, and Gaussian noise. The model input consists of
40 mel-spectrograms computed on the 4 s sample using 2048 sam-
ple windows with a hop-length of 512, resulting in 120 frames for
each sound event. For the waveform model instead, we used the
re-sampled signal, thus leading to a 64 000 entries input vector.

We trained the models on spectrograms for 100 epochs, with a
10−3 learning rate, 10−2 weight decay and 0.05 dropout rate in the
convolutional blocks. Moreover, we also added label smoothing to
help the network avoid over-fitting. For the waveform model, we
decreased the learning rate starting from 6× 10−4 every time the
validation accuracy was not improving for 15 consecutive epochs.
Moreover, we used L2 regularization as for the other approach.

To demonstrate that scaling PhiNets has a marginal impact on

the classification accuracy with respect to the compression factor, we
benchmarked models in the 0.1-20 MMAC range and with 0.7-30
thousand parameters, which is a typical range for real-time operation
with off-the-shelf MCUs. For reproducibility, the generated models
are enumerated in Table 1.

5. RESULTS

Table 2 reports the performance achieved by the proposed models
against a set of state-of-the-art solutions described in Sec. 2.1.
We consider different configurations of our PhiNets implementa-
tion, which results in different parameter counts as shown in Table
1. The best performing model in spectrogram classification ([14])
has 101M parameters and achieves 78% classification accuracy.
PhiNets, instead, achieve a 76.3% accuracy with only 27 k param-
eters (i.e. 99.8% compression factor). This result pushes the state-
of-the-art in SED on tiny architectures with a higher performance-
compression ratio. Note that if we do not consider AudioCLIP [5],
for the reasons already discussed, PhiNets have competitive results
also in waveform classification, delivering an overall drop of around
15% in 10-fold accuracy while using only 2% of the best performing
model’s parameters.

5.1. Impact of scaling on classification accuracy

From the results reported above, it is clear that the two architectures
cover well the operating range of MCUs. In fact, when the perfor-
mance of the model that works on spectrograms starts decreasing
drastically, the one-dimensional model helps extend the operative
range while keeping the performance a bit higher, as depicted in
Fig. 3. Encoding the information presented in the spectrograms is
a much more computationally intensive task with respect to wave-
form analysis. However, this usually comes with an improvement in
classification accuracy since spectrograms are less sensitive to noise
and phase shift. Also, by scaling the PhiNets on spectrograms to
a lower MAC and parameter count, we see that the performance is
worse than the one of PhiNets when working on raw waveforms. In
fact, the two models complement each other when scaling compu-
tational requirements, as shown in Fig. 3: spectrum yields the best
complexity performance trade-off for high-end platforms whereas
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Input Model name Input conv type Max pooling α B t0 MMAC Parameters (k)
Sp

ec
tr

og
ra

m PhiNets M40 Conv2D True 0.5 3 4.0 43.00 27.1
PhiNets M15 SeparableConv2D True 0.5 2 5.0 14.43 32.3
PhiNets M5 Conv2D True 0.2 2 2.0 4.72 3.80
PhiNets M3 Conv2D True 0.1 2 4.0 2.71 2.18
PhiNets M1.5 SeparableConv2D True 0.1 2 2.0 1.59 2.00

Input conv stride Input conv filters n d MMAC Parameters (k)

W
av

ef
or

m

PhiNets 1D M1 300 3 4 4.5 1.34 11.50
PhiNets 1D M0.5 500 2 4 4.5 0.40 5.91
PhiNets 1D M0.2 1600 2 3 2.5 0.06 2.11
PhiNets 1D M0.1 300 1 4 1.5 0.15 1.15
PhiNets 1D M0.07 500 1 3 1.5 0.07 0.766

Table 1. Parameters for generating the architectures presented in this paper. For the spectrogram classification model, the notation is the same
as in [4]. For the waveform model, d refers to the depth multiplier while n refers to the number of blocks.

Input Model Params (K) 10-fold acc

Sp
ec

tr
og

ra
m

PICZAKCNN [10] 26 000 73.7
SB-CNN [11] 241 73.11
VGG [9] 77 000 70.74
Cerutti M20k [25] 30 69
Cerutti M200k [25] 200 72
Cerutti M2M [25] 2 000 75
Cerutti M20M [25] 70 000 76
PhiNets M40 27.1 76.3 ± 5.6
PhiNets M15 32.2 76.1± 5.0
PhiNets M5 3.80 68.8± 3.1
PhiNets M3 2.18 65.3± 1.6
PhiNets M1.5 2.00 62.3± 3.9

Input Model Params (K) 10-fold acc

W
av

ef
or

m

AudioCLIP [5] >30 000 90.01
ENVNET-V2 [14] 101 000 78
W11-NET-WL [16] 1 806 68.47± 4.914
W18-NET-WL [16] 3 759 65.01 ± 5.431
W34-NET-WL [16] 4 021 66.77± 4.771
1DCNN [13] 453 62± 6.791
W-1DCNN-WL [16] 458 62.64± 4.979
PhiNets 1D M1 11.5 59.3± 3.7
PhiNets 1D M0.5 5.91 56.4± 6.4
PhiNets 1D M0.2 2.11 48.4± 2.5
PhiNets 1D M0.1 1.15 46.3± 4.2
PhiNets 1D M0.07 0.766 43.3± 2.6

Table 2. Comparison between PhiNets and other state-of-the-art architectures, considering spectrograms and waveforms as input features.
The central column reports the parameter count. The 10-fold accuracy is taken from the original papers. When standard deviation is not
available in the paper, it is not reported in the Table. The notation for the models is taken from the original papers. In particular, M20k in [25]
refers to the order of magnitude of the parameter count.

using waveforms as input works better if computational constraints
are more stringent.

As a rule of thumb, we saw that to maximize performance, the
best combination of parameters involved the use of pooling layers,
input block composed of a 2D convolution and a base expansion fac-
tor between 4 and 6. Smaller models, instead, performed better with
a depth-wise separable input block as described in the original paper
[4], strided convolutions for downsampling and a t0 between 2 and 3.
Instead, for the waveform model the test accuracy increases linearly
with the depth-multiplier and decreases linearly with stride. There-
fore, as expected, the best-performing models have a high number
of blocks and a low stride; thus, they compress less the information
in the input waveform.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented two novel architectures for SED at the
edge. Our architectures are the most efficient in computational com-
plexity for spectrogram classification without compromising the
classification accuracy. In fact, the best performing model, which is
also the biggest we benchmarked in the study, has only 27 k param-
eters and 43MMAC and thus can easily fit in an MCU. Moreover,
we studied the scalability features of our models in order to vali-
date which architectures are the best performing ones for varying
computational requirements. We highlight that hardware-aware
scaling is the most computationally efficient way of bringing neural

Fig. 3. Classification performance with respect to computational re-
quirements and input type.

networks on MCUs (i.e., extremely low-resource devices). We plan
to extend these architectures to other audio tasks, namely keyword
spotting and speech recognition and to other training paradigms
(e.g. cross-modal, knowledge distillation). Moreover, we will ex-
pand the 1DConv model with different input convolutional layers
shapes (e.g., Sinc, Wavelet) to boost the models’ performance.
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Abstract—Sound Event Detection (SED) pipelines identify and
classify relevant events in audio streams with application in the
smart city domain (e.g., crowd counting, alarm triggering), thus
is an asset for municipalities and law enforcement agencies. Given
the large size of the areas to be monitored and the amount of data
generated by the IoT sensors, large models running on centralised
servers are not suitable for real-time applications. Conversely,
performing SED directly on pervasive embedded devices is
very attractive in terms of energy consumption, bandwidth
requirements and privacy preservation. In a previous manuscript,
we proposed scalable backbones from the PhiNets architectures’
family for real-time sound event detection on microcontrollers.
In this paper, we extend our analysis investigating how PhiNets’
parameters scaling affects the model performance in the SED task
while searching for the best configuration given the computational
constraints.Experimental analysis on UrbanSound8K shows that
while only the total number of parameters matters when training
the model from scratch (i.e., it is independent of the scaling
parameter configuration), knowledge distillation is more effective
with specific scaling configurations.

Index Terms—Sound event detection, Neural Networks,
PhiNets, tinyML

I. INTRODUCTION

Sound Event Detection (SED) is an emerging task with
many applications in fields like industries and intelligent
cities [1], where multimedia analytics gained significant inter-
est in the recent past [2], [3]. SED can benefit from the avail-
ability of pervasive embedded devices capable of continuously
monitoring the environment looking for relevant events [1].
Driven by the release of novel datasets and challenges [4]–[7],
recent advancements in the field have considerably improved
the effectiveness and accuracy of SED solutions. However, this
has been achieved using highly demanding models in terms
of memory footprint and computational complexity [8]–[13].
Consequently, these systems are not suitable for applications
requiring pervasive low-power, low-cost sensors. Nonetheless,
it has been shown how strategies such as knowledge distillation
(KD) [14], network pruning [15] or weight quantization [16],
[17] can considerably reduce the size of the models, making
them suitable to run on microcontroller units (MCU) [18].
Unfortunately, these techniques are typically tailored to the
specific device and require an expensive process to adapt

This work was partially funded by the EU H2020 project MARVEL (project
number: 957337).

the original neural network to different processing units.
Therefore, efforts have been recently focused on developing
architectures specifically designed to operate on low-end de-
vices [19].

Following this line of research, in a previous work [20],
we applied PhiNets [21] to the SED task either using spec-
trograms or raw waveforms. The proposed model achieved
state-of-the-art performance on the UrbanSound8k dataset [4]
for spectrogram classification while using an extremely low
number of parameters. The focus of this previous paper was
on minimising as much as possible the memory footprint of
the models, in order to make it fit on MCUs, while limiting the
performance deterioration with respect to the state-of-the-art.
Conversely, in this paper, we provide an experimental analysis
on how the PhiNet’s width-scaling parameters (namely the
width multiplier α and the base expansion factor t0 from the
original paper [21]) impact the final classification performance
by defining models of different sizes and architectures. In par-
ticular, we observed that different configurations of the scaling
parameters leading to the same amount of model parameters
give very similar performance. On the other hand, applying
KD from a larger teacher model boosts the performance but
only when large t0 values are employed.

The paper is organised as follows. Section II describes the
PhiNet backbones and their scaling parameters. Section III
provides details about the experimental analysis whose results
are reported and discussed in Section IV. Finally, Section V
concludes the paper with final remarks.

II. SCALABLE BACKBONES: PHINETS

This work employs the PhiNets networks [21]: a family of
modular scalable backbones that can be easily tuned using
few hyperparamters to match the memory and computational
resources available on different embedded platforms. The main
convolutional block used in the architecture is a modified
version of the inverted residual block used in MobileNetV2
[22] and MobileNetV3 [23] architectures. This block is com-
posed of a sequence of three operations, namely a pointwise
expansion convolution, a depthwise convolution, a squeeze-
and-excitation block [24] and a second pointwise projection
convolution. The structure of the basic PhiNet convolutional
block is shown in Fig. 1. The final model is obtained stacking
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Fig. 1. An overview of the PhiNets convolutional block structure. First, the number of channels is increased with a pointwise convolution, followed by a
depthwise convolution (green) and SE block (blue). Finally, a second pointwise convolution (yellow) connects to the low dimensionality bottleneck block
(purple). B is the number of blocks in the network, and N is the current block index. α, β and t0 are the block hyperparameters.

B of these blocks (we use B = 5 for all the experiments in
this work). Three hyperparameters can be used to modify the
configuration of the convolutional blocks:

• Width multiplier α, which linearly adjusts the filter
count of all convolutions in the network. As a result, it
scales the operation count of the whole model. The num-
ber of operations in the network depends quadratically
on this parameter, as shown in Fig. 2;

Fig. 2. Effects of varying the hyperparameter α on network operations
(expressed in Multiply and Accumulate, MACC).

• Base expansion factor t0, which affects the filter count in
the expansion and depthwise convolutions inner blocks.
This parameters can be used to optimise the RAM re-
quired by the network, which can be approximated as
R ≈ C · t0 with C denoting the RAM needed for the
network with t0 = 1. The effects of this parameter on
the network working memory is shown in Fig. 3;

• Shape parameter β, that defines the filter count of the
later blocks in the networks. These blocks are those the
ones requiring the largest number of parameters, which

Fig. 3. Effects of varying the hyperparameter t0 on the working memory
(WM) or RAM required to store the intermediate network tensors.

can be approximated as #Params ≈ C · 12 (1+β), where
C is number of parameters of the network with β = 1.
The effects of this parameter on network parameters are
shown in Fig 4.

The computational cost and memory footprint of the model
can be easily adjusted to fit the constraints of the processing
unit by varying these three hyper-parameters. Note that differ-
ent configurations of the hyper-parameters may lead to highly
similar parameter counts but rather different architectures.
In this work, we want to investigate the effectiveness of
these different configurations. The sequence of blocks is then
followed by a fully connected classification layer with softmax
activation in order to obtain a 10 class classification output.

III. EXPERIMENTAL ANALYSIS

This work carries out an empirical study to highlight the
effects of two width scaling parameters (α and t0) on sound
event detection performance. β will be kept at the default value
(β = 1), as all networks tested require so few parameters that
even the smallest MCUs can store them with a considerable
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Fig. 4. Effects of varying the hyperparameter β on the parameter memory
(PM) or FLASH required to store the network weights.

margin. We vary α considering [0.20, 0.35, 0.50] possible val-
ues and t0 in [2, 4, 6]. Note that in this way, we cover different
architectures with a very similar number of parameters. Given
the small sizes of the resulting PhiNet models, besides training
them from scratch, we also investigate the use of KD from a
larger plain-conv2d model, using both soft and one-hot labels.

A. Dataset

We perform our analysis on the UrbanSound8K dataset [4],
a collection of 8732 samples of 4 second long typical urban
sound events, equally distributed among 10 different classes
(air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gunshot, jackhammer, siren, and street music).
We re-sampled each event at 16 kHz. Moreover, we augmented
the dataset with pitch shifting with tone steps -2, -1, 1, 2, time-
stretching with factors 0.81 and 1.07, and additional Gaussian
noise. The task is single-label classification, and the perfor-
mance is hence evaluated in terms of classification accuracy.
We used the standard 10-fold benchmarking procedure for this
dataset.

B. Implementation Details

The model input is 2D and consists of 40 mel-spectrum
features computed on the 4 s segments using a 128ms sample
window with a hop-length 42ms. Overall 120 frames are
computed for each sound event. We trained all models for
200 epochs, with a 1 × 10−3 learning rate, 1 × 10−2 weight
decay and 0.07 dropout rate in the convolutional blocks.

We used a plain conv-2d model consisting of 4 conv-2d
layers with 16, 32, 64, 64 filters each for the KD-based
training. The loss was a combination of the cross-entropy
computed on the teacher’s soft labels and the hard labels given
by the ground-truth, with a ratio of 2/3-1/3. The temperature
parameter was set to 2. Both hyper-parameters were empiri-
cally optimised.

IV. RESULTS

Table I reports the sound event detection accuracy obtained
training the models from scratch, as well as using knowledge
distillation, considering different configurations. The table also
reports the parameter count for each configuration.

TABLE I
ACCURACY ON URBANSOUND8K VARYING THE α AND t0 SCALING

PARAMETERS, WITH AND WIHTOUT KD. THE TABLE REPORTS ALSO THE
MODEL PARAMETER COUNT.

α t0 Acc Acc-KD # Parameters
0.20 2 64.87 49.68 4,779
0.35 2 64.64 64.82 12,479
0.50 2 63.90 67.61 24,507
0.20 4 65.85 59.58 8,893
0.35 4 71.80 67.14 23,797
0.50 4 72.25 70.15 47,349
0.20 6 66.05 70.95 13,007
0.35 6 68.02 71.05 35,115
0.50 6 70.39 71.20 70,191

While the performance of the models trained from scratch
decays rather linearly with the number of parameters (as
shown in Fig. 5), the specific configuration of the hyper-
parameters α and t0 does not seem to have a direct and evident
impact on the performance (see Fig 7, 6). Overall, this was
expected as the PhiNet architectures are designed to scale effi-
ciently in the MCU range without significantly compromising
the network’s performance. However, it is worth noting that,
in some cases, using larger values of t0 is preferable with
respect to α given a target hyper-parameter count (compare
for example the two models (0.5;2) and (0.35;34)). This could
be related to the fact that larger convolutional blocks can
better represent the information, easing the learning task.
Finally, note that the best accuracy (72.25%) is achieved using
a medium-size architecture (47K parameters obtained with
α = 0.5 and t0 = 4). PhiNets are actually designed to be
efficient in the MCU range. Therefore, they tend to overfit
easily when the model size increases. This issue is further
accentuated by the relatively small size of the dataset used in
our experiments.

Conversely, models trained via knowledge distillation do
not show the same linear performance decay that, instead,
drastically decreases for small architectures. Nevertheless, the
experimental analysis confirms that KD improves the per-
formance of some configurations. However, this occurs only
when the expansion factor is sufficiently high (t0 = 6 in
our experiments). In all the other cases, using KD leads to
performance deterioration, which in some cases are extremely
evident. Our hypothesis is that architectures with high values
of t0 tend to resemble the conv-2d nature of the teacher, thus
helping the convergence of the model.

Overall, the scaling principles of PhiNets guarantee a com-
petitive classification accuracy without requiring KD.

To complete our analysis, in Table IV we compare the
best performance achieved with PhiNets with the state of the
models (AudioCLIP [8]) and with the plain conv-2d model
used as teacher. Note that the very high performance of Audio-
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Fig. 5. Event detection accuracy as a function of the overall network
parameter count.

Fig. 6. Classification accuracy as a function of t0. Note how a higher value for
the base expansion factor favors networks trained using knowledge distillation.

CLIP is achieved with 60M parameters, which are definitely
not suitable for low-end devices. In addition AudioCLIP has
been trained on a much larger amount of data, while our
models are trained direcltly on UrbanSound8K. Nevertheless,
the proposed PhiNet architecture can reach a 72.2% accuracy
with less the 50K parameters. It is interesting to observe that
the plain conv-2d teacher considerably outperforms the PhiNet
model with a similar parameter count (see the last row of
Table I). This is mainly due to the fact that the teacher network
composed of 2D convolutions requires largely more operations
to run with respect to the largest PhiNet tested (90M vs 10M).

TABLE II
MODEL PERFORMANCE WITH RESPECT TO STATE-OF-THE-ART PLATFORM.

Model name Test acc [%] Parameter count
AudioCLIP [8] 90.01 60M

Teacher (Conv-2d) 81.15 66K
PhiNets 72.25 47K

Fig. 7. Testing accuracy as a function of α. Again, we observe that higher
values for the width multiplier is preferable when training using knowledge
distillation.

V. CONCLUSIONS

In this paper, we investigated the impact of two width-
scaling parameters of PhiNets towards identifying their effects
on the performance of urban sound detection to simplify the
model design given the available memory and computational
resources. Experiments on UrbanSound8K show that while α
and t0 are interchangeable when the model is trained from
scratch, and only the number of parameters matters, large
values of t0 are preferable if KD from a pre-trained teacher
model can be applied.

In future work, we aim at applying the same KD approach
on a video task to validate the results against a different
sensing source. Moreover, we plan to compare this approach
with adaptive pruning strategies for network compression.
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ABSTRACT

Joint sound event localization and detection (SELD) is an
emerging audio signal processing task adding spatial dimensions
to acoustic scene analysis and sound event detection. A popular
approach to modeling SELD jointly is using convolutional recur-
rent neural network (CRNN) models, where CNNs learn high-level
features from multi-channel audio input and the RNNs learn tem-
poral relationships from these high-level features. However, RNNs
have some drawbacks, such as a limited capability to model long
temporal dependencies and slow training and inference times due
to their sequential processing nature. Recently, a few SELD stud-
ies used multi-head self-attention (MHSA), among other innova-
tions in their models. MHSA and the related transformer networks
have shown state-of-the-art performance in various domains. While
they can model long temporal dependencies, they can also be par-
allelized efficiently. In this paper, we study in detail the effect of
MHSA on the SELD task. Specifically, we examined the effects
of replacing the RNN blocks with self-attention layers. We stud-
ied the influence of stacking multiple self-attention blocks, using
multiple attention heads in each self-attention block, and the effect
of position embeddings and layer normalization. Evaluation on the
DCASE 2021 SELD (task 3) development data set shows a signifi-
cant improvement in all employed metrics compared to the baseline
CRNN accompanying the task.

Index Terms— Sound event localization and detection, Self-
attenion, acoustic scene analysis

1. INTRODUCTION

Sound event localization and detection (SELD) is a research prob-
lem associated with spatiotemporal analysis of acoustic scenes, pro-
viding temporal activity information of target sound classes along
with their spatial directions or locations while they are active. The
problem has seen increased research activity recently [1, 2], which
culminated into the introduction of a new SELD task in the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenge in 2019, currently on its third iteration1. The task brings
together two long-standing problems in acoustical signal process-
ing: sound event detection (SED) aiming at only a temporal de-
scription of target sound classes in the scene, and sound source lo-
calization (SSL) aiming at detecting localized sound sources with-
out regard to the type of the emitted sound events. Formulating and
addressing the joint problem brings new possibilities in machine lis-
tening, robot audition, acoustical monitoring, human-machine inter-
action, and spatially informed deployment of services, among other
applications.

1http://dcase.community/challenge2021/

The SELD task has been addressed in literature predominantly
with deep learning models, with a few exceptions combining deep-
learning SED classifiers with model-based localization [3, 4]. The
seminal work of [1] proposed SELDnet, a model performing both
SED and SSL tasks jointly, based on a convolutional and recur-
rent neural network (CRNN) architecture. SELDnet used a series
of convolutional layers as feature extractors, operating on multi-
channel spectrograms, followed by layers of gated recurrent unit
(GRU) layers modeling longer temporal context. Such a CRNN
architecture had proved successful in the SED task [5], and was
extended in [1] with a localization inference output branch, pre-
dicting the frame-wise direction of arrival (DOA) of each detected
class, in a regression manner. While alternative architectures have
been explored (e.g. ResNets [6], TrellisNets [7], the R3Dnet of
[8]), the CRNN architecture has remained the most popular through
the submissions in DCASE2019 and DCASE2020. On the other
hand, many innovations were network-independent, focusing on
improved input features [9], separate modeling of SED and SSL
tasks and fusion [9, 4], and improved SELD representations and
loss functions [10, 8].

Recently, the Transformer [11] architecture has shown state-of-
the-art performance in a variety of tasks ranging from NLP [11],
to image classification [12] and video object tracking [13], among
others, and has been proposed as a replacement for both CNNs and
RNNs, or combined with convolutional layers in a Conformer [14]
architecture. Transformers base their representational power on
self-attention (SA) layers that can model longer temporal or spatial
dependencies than typical convolutional layers, while, in contrast
to RNNs, they can be efficiently parallelized making them signif-
icantly faster during inference. Recently transformers have shown
strong state-of-the-art performance in SED tasks [15], while their
use in SSL and SELD proposals has remained limited. Regarding
source localization, Schymura et al. integrated self-attention into
the outputs of the RNN layers in a CRNN model [16] showing per-
formance gains over the standard CRNN. In subsequent work [17],
RNNs are dropped for transformer layers including linear positional
encoding, bringing further performance improvements. With regard
to SELD, the first work using SA seems to be the DCASE2020 chal-
lenge submission of [10] which follows a SELDnet-like CRNN ar-
chitecture, augmented with SA layers following the bidirectional
RNN layers. The best performing team in DCASE2020 also seems
to employ attention in the form of conformer blocks, as detailed in
a later report [18]. Following DCASE2020, Cao et al. [19] pro-
posed their Event Independent Network V2 (EINV2), realizing a
track-based output format instead of the class-based one of standard
SELDnet, using multi-head self-attention (MHSA) layers following
convolutional feature extractors. Sinusoidal positional encoding is
used before the MHSA as in [11]. Since the above SELD proposals
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include various other improvements and modifications over the ba-
sic SELDnet CRNN, such as modified loss functions [10], partially
independent models for SED and SSL with parameter sharing [19],
or various data augmentation strategies [18], the effect of adding
self-attention in isolation to the result is not clear.

In this work we exclusively investigate the effects of self-
attention in a SELD setting. The rest of this paper is organized
as follows. Section 2 presents our baseline method and the multi-
head self-attention mechanism. In section 3, we describe in detail
our experimental set up used to analyze the effect of self-attention.
In section 4, we discuss the results of all our experiments. Finally,
in section 5, we present our conclusion of this study.

2. METHOD

For our study, we employ a widely used SELD method that is based
on a learnable feature extraction and a learnable temporal pattern
identification, that operate in a serial fashion. We call this com-
monly used SELD method as our baseline. We replace the temporal
pattern identification with a self-attention mechanism, that attends
to the output of the learnable feature extraction layers.

The input to both the baseline and the version with the self-
attention, is a tensor ofK sequences of features from different audio
channels, each sequence having T feature vectors with F features,
X ∈ RK×T×F . X is given as an input to the learnable feature
extractor. For the baseline, the output of this feature extractor is
used as an input to a function that performs temporal pattern iden-
tification, and the output of the temporal pattern identification is
given as an input to a regressor. In the case of the method used for
our study, the output of the learned feature extraction is given as
an input to self-attention blocks, and then the output of the latter is
given as an input to a regressor. The regressor in both cases pre-
dicts the directions-of-arrival for all classes and at each time step,
represented by the directions of the output Cartesian vectors. Using
the ACCDOA [8] representation, the detection activity is also in-
tegrated into the same vector representation, with the length of the
vectors encoding the probability of each class being active. The
output of the regressor and the targets are Ŷ ∈ RT×C×3 and
Y ∈ RT×C×3 respectively, where C is the number of classes and 3
represents the Cartesian localization co-ordinates.

2.1. Baseline

As the baseline, we use the CRNN architecture proposed in [20],
with ACCDOA representation for the output. The baseline has
three convolutional neural network (CNN) blocks, CNNBlockn

with n = 1, 2, 3. CNNBlockn acts as the learnable feature ex-
tractor, extracting high level representations from X as,

Hn = CNNBlockn(Hn−1) (1)

where Hn is the output of the n-th CNN block and H0 = X. Each
CNN block consists of a 2D convolution layer, a batch normaliza-
tion process (BN), a rectified linear unit (ReLU), and a max pooling
operation, and process its input as

Hn = (MPn ◦ ReLU ◦ BNn ◦ 2DCNNn)(Hn−1) (2)

where ◦ indicates function composition. BNn and MPn are the
batch normalization and max-pooling processes of the n-th CNN
block, and 2DCNNn is the 2D convolution layer of the n-th CNN
block. The output of the last CNN block is H3 ∈ RT ′×F ′

, where

T ′ is the time resolution of the annotations and F ′ is the feature di-
mension down sampled from input dimension F in the CNNBlocks.

H3 is used as an input to a series ofm recurrent neural networks
(RNNs), with m = 1, 2 as

H′m = RNNm(H′m−1) (3)

where H′m ∈ RT ′×F ′′
is the output of the m-th RNN, where F ′′ is

the hidden size of the RNN and H′0 = H3

The output of the RNN blocks is fed to a fully connected layer.
The fully connected layer combines the learnt temporal relation-
ships and it is followed by the regressor layer which predicts the
detection and direction of arrival for all the classes for each time
step in ACCDOA format.

y′ = FC1(H′2) (4)

Ŷ = FC2(y′) (5)

where Ŷ ∈ RT ′×C×3 is the predicted ouput from the model.

2.2. ACCDOA representation

The annotations in the dataset for detections are of the form Ydet ∈
RT ′×C , where T ′ is the number of time frames and C is the number
of classes. For each time frame, the value is 1 for a class which is ac-
tive, 0 otherwise. For localization, the labels are Yloc ∈ RT ′×C×3,
which gives the 3 Cartesian localization co-ordinates for the classes
in each time step that the classes are actrive.

The ACCDOA output representation simplifies these two labels
into a single label Y ∈ RT ′×C×3. In this representation, the detec-
tion probalility score is the magnitude of the predicted localization
vector. This value is thresholded to predict the detection activity
for each class. Thus the need for two different output branches to
predict detection and localization separately becomes unnecessary.

2.3. Multi-head Self-Attention in SELD

The motivation of this study is to quantify the effect of replacing
the RNN blocks in the baseline with self-attention blocks to capture
the temporal relationships. In our experiments, the convolutional
feature extractor is kept exactly the same as in the baseline archi-
tecture. The output H3 from the convolutional feature extractor is
passed through a series ofN self-attention blocks, withN = 1, 2, ..
as,

H′N = SABlockN{M,P,LN}(H′N−1) (6)

where H′N ∈ RT ′×F ′′
is the output of the N -th self-attention

block, where F ′′ is the attention size and H′0 = H3.
In particular, we systematically study the effects of number of

self-attention blocks (N), number of attention heads (M) in each
self-attention block, positional embeddings (P)) for each time step
and the effect of layer normalization (LN) on the detection and lo-
calization metrics.

The self-attention layer calculates the scaled dot-product atten-
tion [11] of each time step in the input with itself. For any input
H ∈ RT×I , where T is the number of time steps and I is the input
dimension, its self-attention is calculated as,

SA(H) = softmax(HWqW
T
k HT)HWv (7)

Here, Wq,Wk ∈ RI×K and Wv ∈ RI×O are learnable query,
key and value matrices respectively. K is the key dimension in the
attention layer and O is the output dimension.
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Table 1: Detection and localization results for different configurations of self-attention block on DCASE 2021 Development set. (* - Size of
self-attention head in each layer)

N M P LN # params ER20 F20 LECD LRCD

Baseline-CRNN 0.5 M 0.69 33.9 24.1 43.9
1 4 No No 0.3 M 0.65± 0.01 38.11± 1.44 23.17± 0.85 46.73± 1.44
1 8 No No 0.6 M 0.65± 0.01 39.12± 1.48 22.78± 0.73 46.71± 1.25
1 12 No No 0.9 M 0.65± 0.01 38.96± 1.06 22.96± 0.88 46.74± 1.94

2 8 No No 1.1 M 0.67± 0.01 36.95± 1.16 23.44± 1.27 44.66± 1.53
3 8 No No 1.6 M 0.78± 0.02 19.57± 3.63 27.05± 0.90 22.96± 4.83
2 8 No Yes 1.1 M 0.62± 0.01 44.62± 1.34 22.03± 0.66 55.04± 1.34
3 8 No Yes 1.6 M 0.62± 0.01 44.11± 0.74 22.04± 0.53 54.61± 1.07
2 12 No Yes 1.6 M 0.63± 0.01 43.95± 0.69 22.13± 0.36 54.23± 0.90
3 12 No Yes 2.4 M 0.64± 0.01 43.10± 0.70 22.38± 0.54 54.00± 1.49

3 (128-256-128)* 8 No Yes 2.2 M 0.63± 0.01 44.65± 1.88 21.98± 0.51 55.15± 1.47
3 (128-64-128)* 8 No Yes 1.4 M 0.63± 0.01 43.64± 1.23 22.06± 0.46 54.24± 1.11

2 8 Yes Yes 1.1 M 0.61± 0.01 45.84± 1.06 21.51± 0.74 54.99± 1.87
3 8 Yes Yes 1.6 M 0.62± 0.01 44.63± 1.14 21.56± 0.46 54.46± 0.94

3 (128-256-128)* 8 Yes Yes 2.2 M 0.62± 0.01 45.14± 1.03 21.67± 0.41 55.29± 1.23

First, we ran experiments to determine the optimal number of
attention heads for the task. A single attention head allows each
time step to attend only to one other time step in the input. For
SELD task, it is useful to attend to more than one timestep to estab-
lish semantic relationships in the input audio scene. A multi-head
self-attention (MHSA) layer is described as,

MHSA(H) = Concat
m=1,2,..,M

[SAm(H)]Wp (8)

where M is the number of heads. The output from all the heads
are concatenated and Wp ∈ RMO×O , a learnt projection matrix
projects it into the desired output dimension.

Next, we studied the effect of stacking multi-head self-attention
blocks. It enables the model to learn high level temporal features of
different time scales. We also experimented with different ways to
stack these MHSA blocks. Specifically, we compared the effect of
having layer normalization (LN) and residual connections between
successive blocks and not having both. The first multi-head self-
attention layer takes as input the features from the CNN. The inputs
to the successive layers of MHSA are given by,

HN = LN(MHSA(N−1)(HN−1) +HN−1) (9)

At last, we assessed the effect of having position embeddings in
the self-attention block. Position embeddings are helpful in keep-
ing track of the position and order of features that occur in an audio
scene. This helps the model to learn temporal dependencies based
on order of the sound events. Instead of using a sinusoidal position
vector originally proposed in [11], since the data is split into chunks
and the number of time steps is always fixed in our case, we used
a fixed size learnable embedding table. If P ∈ RT×I is the po-
sition embedding, then the self-attention of input H with position
embedding is calculated as SA(H + P) in equation (7).

3. EVALUATION

3.1. Dataset

We trained and evaluated our models using the dataset provided for
the DCASE 2021 sound event localization and detection challenge

[21]. The development set contains 600 one-minute audio record-
ings with corresponding detections belonging to 12 different classes
(alarm, crying baby, crash, barking dog, female scream, female
speech, footsteps, knocking on door, male scream, male speech,
ringing phone, piano) and their localization labels.

The multi-channel audio data is available in two recording for-
mats, 4-channel first-order ambisonics (FOA) format and 4-channel
tetrahedral microphone recordings (MIC) format. We used the 4-
channel FOA recordings with a sampling rate of 24kHz. The au-
dio recordings also contain realistic spatialization and reverberation
effects from multiple multi-channel room impulse responses mea-
sured in 13 different rooms. The data is split into 6 folds of 100
recordings each. Folds 1-4 are used for training while 5 and 6 are
used for validation and evaluation respectively.

3.2. Network Training

As described in section 2.3, we analysed the effect of different set-
tings for the self-attention block. First, we replaced the two GRU
layers in the baseline, with a single self-attention layer with 4 heads
and an attention size of 128. This early result already suggested that
using self-attention layers were beneficial compared to RNN layers.
With the single layer self-attention, we then set the number of heads
to 8 and 12 to evaluate the best hyper-parameter for the number of
heads.

Next, we studied the effect of number of self-attention blocks.
Specifically, we modified the architecture to have 2 and 3 attention
blocks. For each of these configurations, we also varied the number
of heads to be 8 and 12. The self-attention dimension was kept at
128 for all these experiments. When stacking self-attention blocks,
we studied the effect of having and not having layer normalization
and residual connections between sucessive blocks. In architectures
having three self-attention blocks, we also studied the effect of the
attention dimension in the multi-head self-attention blocks. In par-
ticular, we used 128-128-128, 128-256-128 and 128-64-128 config-
urations. Finally, we studied the effect of adding positional embed-
ding vectors to the input of the first self-attention layer. We added
learnable position embedding of vector size 128 to each time step
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Figure 1: MHSA model configuration for SELD task.

in the input sequence to the self-attention.
For all our experiments, as input features, we extracted log

mel spectrograms with 64 mel bins for each channel in the multi-
channel audio. For the spectrogram extraction, we used short-time
Fourier transform (STFT) with a Hann window, 50% overlap be-
tween frames and a hop length of 0.02 seconds. Further, we also
calculated the intensity vectors [22] of the multi-channel audio sig-
nal from its linear spectra. The log mel spectrograms and the inten-
sity vectors are concatenated along the channel dimension and fed
as input to our model. The model is trained for 100 epochs using
Adam optimizer with β1 = 0.9, β2 = 0.999 and a learning rate of
0.001. We employed mean squared error as our objective function
for this regression task and the model with the best validation score
was chosen for evaluation.

The detection metrics are F score and error rate, they are also
location-dependent, using a spatial threshold for true positives as
detailed in [2]. Similar to DCASE2020, true positives occur only if
events are localized within 20° from the ground truth of the same
class. The localization metrics are localization error and localiza-
tion recall and they are class dependent. For each setting, we train
the model 10 times and report the average scores along with the
standard deviation for each metric.

4. RESULTS

The results of all our experiments are summarized in Table 1. Our
results from the first set of experiments for determining the appro-
priate number of attention heads showed that using 8 attention heads
was marginally better than 12 heads when the number of attention
blocks is fixed to one. Compared to the baseline, the detection error

rate decreased from 0.69 to 0.65 and the F score increased from 33.9
to 39.12. There was also a decrease in the localization error from
24.1 to 22.78 and increase in the recall score from 43.9 to 46.71.

Our next set of analysis was to find the optimal number of
self-attention blocks. Experimental results clearly demonstrate
that serially connecting more self-attention blocks without layer
normalization drastically reduces the performance of the model.
Adding residual connections and layer normalization between the
self-attention blocks significantly improves the performance of the
model. We also verified that with multiple self-attention blocks, 8
attention heads was still the best performing configuration. With
two self-attention blocks and 8 heads each, there was a steep in-
crease in the F score to 44.62 and the localization recall jumped to
55.04.

Finally, we examined the importance of position embeddings
to the first self-attention block and it proved to further increase the
performance of our SELD system. From all our experiments, the
best model configuration had two self-attention blocks with eight
attention heads each with an attention dimension of 128, a learnt
fixed size position embedding and residual connections with layer
normalization between successive self-attention blocks. For this
configuration, the detection error rate ER20 (lower the better), de-
creased by 11.6% and F-score F20 (higher the better), increased by
35.2% compared to the baseline. Similarly, the localization error
rate LECD(lower the better) reduced by 10.7% and the localiza-
tion recall LRCD (higher the better) improved by 25.2% from the
baseline. This model configuration is shown in Figure 1.

The best model configuration has close to twice the number
of parameters as the baseline. However, due to the parallelization
achieved by the self-attention blocks, it is also 2.5x faster than the
baseline model during inference, based on our experiments on a
V100 GPU. Hence, MHSA based models can be useful over RNN
based models for real-time SELD tasks.

5. CONCLUSIONS

In this study, we systematically assessed the effect of self-attention
layers for the joint task of sound event detection and localization.
To account only for the impact of self-attention on this task, we
employed the common SELDnet model using CRNN architecture
and studied the effects of replacing the temporal pattern recogni-
tion RNN blocks with self-attention blocks. We experimented with
various hyper parameter settings for the self-attention block such as
number of blocks, number of attention heads in each self-attention
block, size of the attention, layer normalization and residual con-
nections between sucessive self-attention blocks and adding posi-
tional embedding to the input of self-attention block. Our experi-
ments showed that, multi-head self-attention blocks with layer nor-
malization and position embeddings significantly improve the F20

score and LRCD score compared to the baseline. There is also a
considerable decrease in the detection and localization error metrics
compared to the baseline. The self-attention blocks also reduced the
time required for training and inference compared to RNN blocks
by exploiting parallel computations.
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Abstract—Automated audio captioning (AAC) is a novel task,
where a method takes as an input an audio sample and outputs
a textual description (i.e. a caption) of its contents. Most
AAC methods are adapted from image captioning or machine
translation fields. In this work, we present a novel AAC method,
explicitly focused on the exploitation of the temporal and time-
frequency patterns in audio. We employ three learnable processes
for audio encoding, two for extracting the temporal and time-
frequency information, and one to merge the output of the
previous two processes. To generate the caption, we employ the
widely used Transformer decoder. We assess our method utilizing
the freely available splits of the Clotho dataset. Our results
increase previously reported highest SPIDEr to 17.3, from 16.2
(higher is better).

Index Terms—automated audio captioning, wavetransformer,
wavenet, transformer

I. INTRODUCTION

Automated audio captioning (AAC) is an intermodal trans-
lation task, where the system receives as an input an audio
signal and outputs a textual description of the contents of the
audio signal (i.e. outputs a caption) [1]. AAC is not speech-to-
text, as the caption does not transcribe speech. In a nutshell,
an AAC method learns to identify the high-level, humanly
recognized information in the input audio, and expresses this
information with text. Such information can include complex
spatiotemporal relationships of sources and entities, textures
and sizes, and abstract and high-level concepts (e.g. “several
barnyard animals mooing in a barn while it rains outside”).

There are different published approaches for AAC. Re-
garding input audio encoding, some approaches use recurrent
neural networks (RNNs) [2], [3], [4], others 2D convolutional
neural networks (CNNs) [5], [6], and some others the Trans-
former model [7], [8]. Though, RNNs are known to have
difficulties on learning temporal information [9], 2D CNNs
model time-frequency but not temporal patterns [10], and
the Transformer was not originally designed for sequences
of thousands time-steps [7]. For generating the captions, the
Transformer decoder [6], [11], [8] or RNNs [1], [3], [5]
are mostly employed, and the alignment of input audio and
output captions is typically implemented with an attention

mechanism [12], [11]. Also, some approaches adopt a multi-
task approach, where the AAC method is regularized by the
prediction of keywords, based on the input audio [6], [11],
[13].

In this paper we present a novel AAC approach, based on a
learnable representation of audio that is focused on encoding
the information needed for AAC. We adopt existing machine
listening approaches where sound sources and actions are
well captured by time-frequency information [10], [14], and
additionally exploit temporal information in audio using 1D
dilated convolutions that operate on the time dimension [15],
[16], for learning of high-level information (e.g. background
vs foreground, spatiotemporal relationships). Additionally, we
claim that these two types of information can be combined,
providing a well-performing learned audio representation for
AAC. To this end, we present an approach which is explicitly
focusing on the above aspects. We employ three different
encoding processes for the input audio, one regarding tem-
poral information, a second that considers the time-frequency
information, and a third that merges the previous two and its
output is given as an input to a decoder which generates the
output caption.

The contribution of our work is: i) we present the first
method that explicitly focuses on exploiting temporal and local
time-frequency information for AAC, ii) we provide highest
reported results using only the freely available splits of Clotho
dataset and without any data augmentation and/or multi-task
learning, and iii) we show the impact on the performance
of the different components of our method, i.e. the temporal
and local time-frequency information, merging the previous
two, or all of them. The rest of the paper is as follows. In
Section II we present our method. Section III presents the
evaluation process of our method, and the obtained results are
in Section IV. Section V concludes the paper and proposes
future research directions.

II. PROPOSED METHOD

Our method takes as an input a sequence of Ta vectors with
F audio features, X ∈ RTa×F , and outputs a sequence of Tw
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vectors having W one-hot encoded words, Y. To do so, our
method utilizes an encoder-decoder scheme, where the encoder
is based on CNNs and the decoder is based on feed-forward
neural networks (FFNs) and multi-head attention. Our encoder
takes X as an input, exploits temporal and time-frequency
structures in X, and outputs the learned audio representation
Z ∈ RTa×F ′

, which is a sequence of Ta vectors of F ′ learned
audio features. The decoder takes as an input Z and outputs
Y. Figure 1 illustrates our proposed method.

A. Encoder

Our encoder, E(·), consists of three learnable processes,
Etemp(·), Etf(·), and Emerge(·). Etemp learns temporal context
and frame-level information in X [16], and is inspired by
WaveNet [15] but with non-causal convolutions, since in AAC
there is no restriction for causality in the encoding of input
audio. Etf learns time-frequency patterns in X, and is inspired
by SOTA methods for sound event detection [10], [14], and
Emerge merges the information extracted by Etemp and Etf.
Nt blocks of CNNs (called wave-blocks henceforth) in

Etemp, sequentially process X. Each wave-block consists of
seven 1D CNNs, CNNnt

t1 to CNNnt
t7 , with nt to be the index

of the wave-block. For example, CNN2
t3 is the third CNN of

the second wave-block. The kernel size, stride, and dilation
of CNNnt

{t1,t4,t7} are one and its padding zero. The kernel size
of CNNnt

{t2,t3} is three and its padding, dilation, and stride is
one. The kernel size of CNNnt

{t5,t6} is three, its padding and
dilation are two, and stride is one. CNNnt

t1 has Cnt
in and Cnt

out
input and output channels, respectively, and the rest have Cnt

out
input and output channels.

The above hyper-parameters are based on the WaveNet
architecture [15]. The output of the nt-th wave-block, Hnt

t ,
is obtained by

H′′nt
t1 =CNNnt

t1 (H
nt−1
t ), (1)

S′′nt
t =tanh(CNNnt

t2 (H
′′nt
t1 ))� σ(CNNnt

t3 (H
′′nt
t1 )), (2)

H′nt
t =CNNnt

t4 (S
′′nt
t ) +H′′nt

t1 , (3)
S′nt

t =tanh(CNNnt
t5 (H

′nt
t ))� σ(CNNnt

t6 (H
′nt
t )), and (4)

Hnt
t =ReLU(BNnt

t (CNNnt
t7 (S

′nt
t ) +H′nt

t1 )), (5)

where BNnt
t is the batch normalization process at the nt-

th wave-block, ReLU is the rectified linear unit, σ(·) is the
sigmoid non-linearity, � is the Hadamard product, H0

t = Xt,
and HNt

t ∈ RC
nt
out×Ta
≥0 . The output of Etemp, Zt = Etemp(Xt),

is obtained by reshaping HNt
t to {1× Ta × Cnt}. All CNNnt

operate along the time dimension of Xt, allowing HNt
t to learn

temporal information from Xt [15] and be used effectively
in WaveTransformer for learning information that requires
temporal context, e.g. spectro-temporal relationships. The time
receptive field of each wave-block spans seven time-steps of
its corresponding input, leading to a receptive field of 7Nt−1
time-steps of X, for the output of the Nt-th wave-block.
Etf employs Ntf blocks of 2D CNNs, called 2DCNN-

blocks henceforth. Each 2DCNN-block consists of a 2D CNN

Fig. 1. The WaveTransformer, with the encoder on the left-hand side and the
decoder on the right-hand side

(S-CNNntf ), a leaky ReLU (LU), and a 2D CNN (P-CNNntf
tf ).

Each 2DCNN-block is followed by a ReLU, a BN (BNntf )
process, a max-pooling (MPntf ) process that operates only on
the feature dimension (hyper-parameters according to [10]),
and a dropout (DR) with probability of pntf . The 2DCNN-
blocks are inspired by AAC and sound event detection and
classification methods, and the recent, successful adoption of
depth-wise separable convolutions [13], [10]. The 2DCNN-
blocks learn spatial time-frequency information from their
input [10], allowing HNd

d to be used effectively for the
identification of sources and actions [10].

S-CNNntf consists of Cntf
in different (5, 5) kernels with

unit stride, and padding of 2, focusing on learning time-
frequency patterns from each channel of its input. Each kernel
of S-CNNntf is applied to only one channel of the input to
S-CNNntf , according to the depthwise separable convolution
model and to enforce the learning of spatial time-frequency
patterns [10]. P-CNNntf

tf consists of a square kernel of size
KP-CNN > 1, with unit stride, and padding of 2, focus-
ing on learning cross-channel information from the output
of S-CNNntf , since the kernels of P-CNNntf

tf operate on all
channels of the input to P-CNNntf

tf .
While hyper-parameters of S-CNNntf and S-CNNntf are

based on [10], the usage of KP-CNN > 1 is not according to a
typical point-wise convolution (i.e. with a (1, 1) kernel, unit
stride, and zero padding), as it was experimentally found that
it performs better, using the training and validation data, and
the protocol described in Section 3. S-CNN1 has Cntf

in = 1
and Cntf

out = Cnt
out input and output channels, respectively.

S-CNNntf>1 and P-CNNntf have input and output channels
equal to Cnt

out. The output of the ntf-th 2DCNN-block, Hntf
tf ∈

RC
ntf
out ×Ta×F ′

tf
≥0 , is obtained by

S′ntf
tf =P-CNNntf(BNntf(LU(S-CNNntf(Hntf−1

tf )))) and (6)
Hntf

tf =DR(MPntf(BNntf(S′ntf
tf ))), (7)

where H0
tf = Xtf and HNtf

tf ∈ RC
Ntf
out ×Ta×1
≥0 . Then, Ztf =
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Etf(Xtf) is obtained by reshaping HNtf
tf to {1× Ta × CNtf

out }.
Emerge consists of a 2D CNN, CNNm and a feed-forward

neural network (FNN), FNNm, with shared weights through
time. Specifically, CNNm has a (5, 5) kernel with unit stride
and dilation, padding of 2, and two input and one output
channels. Both Zt and Ztf have the same dimensionality, are
concatenated in their channel dimension, and given as an input
to CNNm, as Z′′ = [Zt;Ztf] and Z′ = CNNm(Z

′′), where

Z′′ ∈ R2×Ta×CNtf
out

≥0 , and Z′ ∈ R1×Ta×CNtf
out is the output of

CNNm. Z′ is then reshaped to {Ta × CNtf
out } and given as an

input to FNNm, as Z = FNNm(Z
′), where Z ∈ RTa×F ′

, with
F ′ = CNtf

out .

B. Decoder
We employ the decoder of the Transformer model [7] as our

decoder, D(·). During training D takes as an input Y and Z,
and outputs a sequence of Tw vectors having a probability
distribution over W words, Ŷ ∈ [0, 1]Tw×W . We follow
the implementation in [7], employing an FFN as embedding
extractor for one-hot encoded words, FNNemb(·), a positional
encoding process, Penc(·), Ndec decoder blocks, Dndec(·), and
an FFN at the end which acts as a classifier, FNNcls(·). FNNemb
and FNNcls have their weights shared across the words of
a caption. Each Dndec consists of a masked multi-head self-
attention, a layer-normalization (LN) process, another multi-
head attention that attends at Z, followed by another LN, an
FNN, and another LN.

We model each Dndec as a function taking two inputs,
Undec ∈ RTw×V ndec

e and Z, and having as output Hndec
dec ∈

RTw×V ndec
e , with H0

dec = H′dec, U0 = Y, and V 0
e = W . All

FNNs of each Dndec have input-output dimensionality of V ndec
e .

We use Natt attention heads and for the multi-head attention
layers and pd dropout probability. For the implementation
details, we refer the reader to the paper of Transformer
model [7]. FNNemb takes as an input Y and its output is
processed by the positional encoding process, as

H′dec = Penc(FNNemb(Y))), (8)

where Penc is according to the original paper [7]. H′dec is
processed serially by the Ndec decoder blocks, as Hndec

dec =

Dndec(Hndec−1
dec ,Z), and then we obtain Ŷ as

Ŷ = FNNcls(H
Ndec
dec ). (9)

We optimize jointly the parameters of the encoder and decoder,
by minimizing the cross-entropy loss between Y and Ŷ.

III. EVALUATION

To evaluate our method, we employ the dataset and protocol
defined at the AAC task at the DCASE2020 challenge. The
code and the pre-trained weights of our method are freely
available online1. We also provide an online demo of our
method, with 10 audio files, the corresponding predicted
captions, and the corresponding ground truth captions2.

1https://github.com/haantran96/wavetransformer
2https://haantran96.github.io/wavetransformer-web-demo/

A. Dataset and pre- and post-processing

We employ the freely available and well curated AAC
dataset, Clotho, consisting of around 5000 audio samples
of CD quality, 15 to 30 seconds long, and each sample is
annotated by human annotators with five captions of eight
to 20 words, amounting to around 25 000 captions [4], [17].
Clotho is divided in three splits: i) development, with 14465
captions, ii) evaluation, with 5225, and iii) testing with 5215
captions. We employ development and evaluation splits which
are publicly and freely available. We extract F = 64 log mel-
band energies using Hamming window of 46ms with 50%
overlap from the audio files, resulting to 1292 ≤ Ta ≤ 2584,
for audio samples whose length is between 15 and 30 seconds.
During training, to mitigate the length difference of the audio
samples in Clotho, in each mini-batch we make all input
audio samples to have same length by pre-pending zeros to
the shorter ones.

We process each caption and we prepend and append
the <sos> (start-of-sentence) and <eos> (end-of-sentence)
tokens, respectively. Additionally, we process the development
split and we randomly select and reserve 100 audio samples
and their captions in order to be used as a validation split
during training. These 100 samples are selected according to
the criterion that their captions do not contain a word that
appears in the captions of less than 10 audio samples. We
term the resulting training (i.e. development minus the 100
audio samples) and validation splits as Devtra and Devval,
respectively. We also provide the file names from Clotho
development split used in Devval, at the online repository of
WaveTransformer2. We post-process the output of WaveTrans-
former during inference, employing both greedy and beam
search decoding. Greedy decoding stops when <eos> token
or when 22 words are generated. During training, to mitigate
the length difference of the captions in Clotho, in each mini-
batch we make all captions to have same length by appending
<eos> tokens to the shorter ones.

B. Hyper-parameters, training, and evaluation

We employ the Devtra (as training split) and Devval (as val-
idation split) to optimize the hyper-parameters of our method,
using an early stopping policy with a patience of 10 epochs.
We employ Adam optimizer [18], a batch size of 12, and
clipping of the 2-norm of the gradients to the value of 1.
The employed hyper-parameters of our method are Nt = 4,
Ntf = 3, Cnt

out = Ve = 128, F ′tf = 1, Ndec = 3, Natt = 4,
pntf = pd = 0.25, and beam size of 2. This leads to the
modelling of 7Nt − 1 = 27 frames, equivalent to 0.7 seconds
for current X, for Etemp.

To assess the performance of WaveTransformer (WT) and
the impact of Etemp, Etf, Emerge, and beam search, we employ
the WT, WT without Etf and Emerge (WTtemp), without Etemp
and Emerge (WTtf), and without Emerge (WTavg), where we
replace Emerge with an average between Etemp and Etf. We
evaluate the performance of WT with greedy decoding and
with beam searching (indicated as WT-B) on Clotho evaluation
split and using the machine translation metrics BLEU1 to
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TABLE I
RESULTS ON CLOTHO EVALUATION DATASET. Bn STANDS FOR BLEUn . BOLDFACE FONTS INDICATE THE BEST VALUES FOR EACH METRIC

Model B1 B2 B3 B4 METEOR ROUGEL CIDEr SPICE SPIDEr
TRACKE (w/o MT) [6] 50.2 29.9 18.3 10.2 14.1 33.7 23.3 09.1 16.2
NTT (w/o MT, DA, and PP) [11] 52.1 29.4 17.4 10.3 13.8 33.5 23.2 08.5 15.8
NTT (MT+PP, w/o DA) [11] 52.0 31.2 20.0 12.7 14.0 33.7 26.1 08.2 17.2
WTtemp 45.8 25.9 15.4 08.8 13.9 32.0 19.8 08.7 14.2
WTtf 47.9 28.0 17.1 10.2 14.7 33.1 24.7 09.3 17.0
WTavg 47.9 28.1 17.1 10.3 14.8 33.0 24.7 09.4 17.0
WT 48.4 28.2 17.4 10.2 14.8 33.2 24.7 09.9 17.3
WT-B 49.8 30.3 19.7 12.0 14.3 33.2 26.8 09.5 18.2

BLEU4 scores, METEOR, and ROUGEL [19], [20], [21], and
the captioning metrics CIDEr, SPICE, and SPIDEr [22], [23],
[24]. In a nutshell, BLEUn measures a weighted geometric
mean of modified precision of n-grams, METEOR measures
a harmonic mean of recall and precision for segments between
the two captions, and ROUGEL calculates an F-measure
using the longest common sub-sequence. On the other hand,
CIDEr calculates a weighted cosine similarity of n-grams,
using term-frequency inverse-document-frequency weighting,
SPICE measures how well the predicted caption recovers
objects, attributes, and their relationships, and SPIDEr is the
average of CIDEr and SPICE, exploiting the advantages of
CIDEr and SPICE.

Additionally, we compare our method with the two highest-
performing AAC methods, NTT [11] and TRACKE [6], devel-
oped and evaluated using only Clotho development and eval-
uation splits. NTT uses different components, like multi-task
learning (MT), data augmentation (DA), and post-processing
(PP), but authors provide results without these components.
TRACKE is the current SOTA, it also uses MT but the authors
provide results without MT. We compare our WT against
TRACKE without MT and NTT without (w/o) DA.

IV. RESULTS

Table I presents the results of WT, NTT, and TRACKE,
where our comparison is limited to methods that are using
only the publicly available splits of Clotho. It must be noted
that both the systems presented at the papers of the NTT and
TRACKE methods, employ data augmentation (DA) and/or
multi-task learning (MT) schemes, achieving higher SPIDEr.
Since WT is not employing MT and DA, in Table I we
compare to the version of NTT and TRACKE methods that
have similar set-ups as the WT. As can be seen, the learning
of time-frequency information (WTtf) can lead to better results
than learning temporal information (WTtemp) instead. We hy-
pothesize that this is because the decoder can learn an efficient
language model, filling the connecting gaps (e.g. interactions
of objects) between sound events learned from Etf. However,
from the results it can be seen that employing both Etemp and
Etf increases more the performance of the WaveTransformer
(WT).

Comparing the different scores for the employed metrics
and for the WTtf and WT cases, shows that the utilization
of Etemp is not contributing much in the ordering of words,
as indicated by the difference of BLEU metrics between

WTtf and WT. We can see that with the Etemp, our method
learns better attributes of objects and their relationships, as
indicated by CIDEr and SPICE scores. Thus, we argue that
Etemp contributes in learning attributes and interactions of
objects, while Etf contributes information about objects and
actions (e.g. sound events). Also, by observing the results for
WTavg, we can see that a simple averaging of the learned
information by Etemp and Etf leads to a better description
of objects, attributes, and their relationships (indicated by
SPICE). Though, as can be seen by comparing WTavg and
WT, the Emerge manages to successfully merge the information
by Etemp and Etf. The utilization of beam search (WT-B)
gives a significant boost to the performance, reaching up to
18.2 SPIDEr. Compared to TRACKE and NTT methods, we
can see that when excluding DA, MT, and PP, our method
(WT) performs better. Additionally, WT-B performs better
than NTT with MT and PP. Our post-processing consists only
on using beam search, where the NTT method involves a
second post-processing technique by augmenting the input
data and averaging the predictions. Thus, WT surpasses the
other methods that is compared against.

Finally, two, high SPIDEr-scoring, captions are for the
files Flipping pages.wav, and 110422 village dusk.wav of the
evaluation split of Clotho. Our predicted captions for each of
these files, using WT-B, are: “a person is flipping through the
pages of a book” and “a dog is barking while birds are chirping
in the background”, respectively, and the best matching ground
truth captions are “a person is flipping through pages in a
notebook” and “a dog is barking in the background while some
children are talking and birds are chirping”, respectively.

V. CONCLUSION

In this paper we presented a novel architecture for AAC,
based on convolutional and feed-forward neural networks,
called WaveTransformer (WT). WT focuses on learning long
temporal and time-frequency information from audio, and
expressing it with text using the decoder of the Transformer
model. We evaluated WT using the dataset and the metrics
adopted in the AAC DCASE Challenge, and we compared
our method against previous SOTA methods and the DCASE
AAC baseline. The obtained results show that learning time-
frequency information, combined with a good language model,
can lead to good AAC performance, but incorporating long
temporal information can boost the obtained scores.
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ABSTRACT

Automated audio captioning (AAC) is the task of automatically cre-
ating textual descriptions (i.e. captions) for the contents of a gen-
eral audio signal. Most AAC methods are using existing datasets
to optimize and/or evaluate upon. Given the limited information
held by the AAC datasets, it is very likely that AAC methods learn
only the information contained in the utilized datasets. In this pa-
per we present a first approach for continuously adapting an AAC
method to new information, using a continual learning method. In
our scenario, a pre-optimized AAC method is used for some unseen
general audio signals and can update its parameters in order to adapt
to the new information, given a new reference caption. We evalu-
ate our method using a freely available, pre-optimized AAC method
and two freely available AAC datasets. We compare our proposed
method with three scenarios, two of training on one of the datasets
and evaluating on the other and a third of training on one dataset
and fine-tuning on the other. Obtained results show that our method
achieves a good balance between distilling new knowledge and not
forgetting the previous one.

Index Terms— Automated audio captioning, continual learn-
ing, learning without forgetting, WaveTransformer, Clotho, Audio-
Caps

1. INTRODUCTION

Automated audio captioning (AAC) is the inter-modal translation
task, where a method takes as an input a general audio signal and
generates a textual description of the contents of the audio sig-
nal [1]. AAC methods learn to describe sound sources/events, spa-
tiotemporal relationships of events, textures and sizes, and higher-
level knowledge like counting [1, 2], but not speech transcrip-
tion [3, 4]. In a typical AAC scenario, a deep learning method is
optimized in a supervised or reinforcement learning scheme and us-
ing an AAC dataset [5, 6, 7, 8, 9]. Audio clips are given as an input
to the AAC method and the method generates captions for its inputs.
Then, the method is optimized by trying to reduce the difference be-
tween the predicted and the actual (i.e ground truth) captions. Given
that the existing AAC datasets are limited, the above scheme creates
some limitations. For example, since the available information from
the audio clips in the different datasets are most likely not overlap-
ping and the described information and expression variability dif-
fers given that different annotators have been used [3, 10], then an
AAC method optimized with one dataset will have problems when
evaluated with another AAC dataset. Even if some technique is used
for adapting an AAC method to another dataset, e.g. like transfer
learning, it would be required to have all the new data for the adap-
tation. This creates limitation of continuously adapting an AAC

method to new information.
The above presented problem of continuously adapting is not

new and has been attacked using continual learning, sometimes also
called lifelong learning [11, 12], which is the process of continu-
ously adapting a method to new data and/or tasks. The advantage
of continual learning over other techniques, e.g. transfer learning,
is that the latter usually introduces the phenomenon of catastrophic
forgetting, where the method is adapted to the new information but
forgets the initially learned one [11, 13, 14, 15]. Though, contin-
ual learning methods seem that tackle this phenomenon [14, 15].
There are different approaches for continual learning, e.g. like joint
training [12], though our focus is on the cases where the new data
are not required a priori, because it is often not possible to have
all data beforehand due to storing reasons (e.g. cannot store all the
data) or to degradation of data (e.g. data have been lost over time).
Approaches that do not require having the data to do the adapta-
tion, can be roughly divided into three categories [11], namely regu-
ralization methods like learning without forgetting (LwF) [15] and
elastic weight consolidation (ECW) [14], dynamic architectures like
dynamically expandable networks (DEN) [16], and replay models
like gradient episodic memory (GEM) [17].

In this paper we consider the scenario where an AAC method
continuously adapts to new and unseen data, using unseen ground
truth captions. This scenario can resemble, for example, an online
platform where new audio data and captions can be provided by
human users and the AAC method continuously learn from the new
data. Focusing on this, we present a first method for continual learn-
ing for AAC, adopting the LwF approach. Although there are pub-
lished continual learning approaches for audio classification using
different approaches [18, 19], we employ LwF due to its simplicity,
reduced need for resources, and the facts that LwF is model agnos-
tic and no modifications are needed for the employed AAC model.
Although, previous research has shown that one of the weaknesses
of LwF is that its effectiveness is dependent on the similarity of the
tasks at hand [20, 11, 21], we deem that this is not applicable to our
case since we use LwF for continuously adapting to new data on the
same task.

For our work presented here, we employ a freely available and
pre-optimized AAC method called WaveTransformer (WT) [22]
and two freely available AAC datasets, namely Clotho [3] and Au-
dioCaps [10]. Since WT method has achieved state-of-the-art re-
sults on Clotho, we use AudioCaps as the new data that the AAC
method will adapt. Given that there are no other published continual
learning approaches for AAC, in this paper we do not consider the
case of the mismatched set of words in the two employed datasets.
The rest of the paper is organized as follows. Section 2 presents
our method and Section 3 presents the adopted evaluation process.
Obtained results are in Section 4 and Section 5 concludes the paper.
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2. METHOD

Our method is model agnostic, based on LwF and knowledge dis-
tillation [15, 23]. It employs a pre-optimized AAC model, a copy
of the AAC model, an iterative process, a regularization-based loss,
and a stream of new audio data with captions that are used for learn-
ing the new information. The stream of new audio data and captions
is used to provide input to the original and copy AAC models. The
output of both models is used against the provided captions from
the stream, but only the parameters of the copy model is updated.
At every update of the parameters, the copy model can be used as
an output of our continual learning method. An illustration of our
continual learning approach is in Figure 1.

In more detail, we start by having a pre-optimized AAC model
Mbase(·; θbase), having the pre-optimized parameters θbase. Mbase is
pre-optimized using a dataset of K input-output examples Dori =
{(X′,Y′)k}Kk=1, where X′ ∈ RTa×F is a sequence of Ta audio fea-
ture vectors having F features and Y′ ∈ {0, 1}Tw×W a sequence of
Tw one-hot encoded vectors of W elements, that indicate the most
probable word for each tw-th word index. Mbase generates its output
as

Ŷ′k = Mbase(X
′
k; θbase), (1)

where Ŷ′k is the predicted caption by Mbase when having as input
the X′k. The optimization of θbase is performed by minimizing the
loss

L(θbase,Dori) =

K∑

k=1

CE(Y′k, Ŷ
′
k), (2)

where CE is the cross-entropy loss between Y′k and Ŷ′k.
Then, we create a copy of Mbase, Mnew(·; θnew), having same

hyper-parameters as Mbase and the parameters θnew. Our target is
to continuously update θnew for new data, without making Mnew to
deteriorate its performance on Dori. The new data are coming from
a stream of data, S, which continually produces new and unseen
data (i.e. data not in Dori). We sample data from S in batches of B
examples, creating the input-output examples as

Dnew = {(X,Y)b : (X,Y) ∼ S ∧ b = 1, . . . , B}, (3)

where X ∈ RTa×F is a sequence of audio features, similar to X′,
and Y ∈ {0, 1}Tw×W is a sequence of one-hot encoded vectors
similar to Y′. Here has to be noted that the captions coming from
S can (and most likely will) have different set of words with Y′.
Though, our approach is not considering the problem of the differ-
ent set of words. For that reason, we consider from Y only the
words that are common with Y′.

We use the sampled data Dnew as an input to both Mbase and
Mnew, resulting to

Ŷbase
b = Mbase(Xb; θbase), and (4)

Ŷnew
b = Mnew(Xb; θnew), (5)

where Ŷbase
b and Ŷnew

b are the predicted outputs of Mbase and Mnew,
respectively, when having as an input Xb.

Having Ŷbase
b and Ŷnew

b , we define the loss

Figure 1: Our proposed continual learning method for AAC. The
dotted line represents the copying of the parameters of Mbase to
Mnew, and it takes place only once at the beginning of the process.
Red line indicates backpropagation for updating the parameters of
Mnew.

Ltot(θbase, θnew,Dnew) = (1− λ)Lnew(θnew,Dnew)+

λLreg(θbase,Dnew), where (6)

Lnew(θnew,Dnew) =

B∑

b=1

CE(Yb, Ŷ
new
b ), (7)

Lreg(θbase, θnew,Dnew) =

B∑

b=1

KL(Ŷbase
b , Ŷnew

b ), and (8)

λ is a factor that weights the contribution of Lnew and Lreg to Ltot,
and KL(a, b) is the KL-divergence between a and b. We use λ
in order to balance the learning of the new information and the
non-forgetting of the old information. The non-forgetting is im-
plemented with the Lreg, where the predictions of Mnew are sought
to be as similar to the predictions of Mbase.

Finally, after calculating the Ltot for each sampling of data from
S, we obtain new optimized parameters for Mnew as

θ?new = argmin
θnew

Ltot(θbase, θnew,Dnew), (9)

where θ?new are the new, optimized parameters. After obtaining θ?new,
we update θnew as

θnew = θ?new. (10)

Thus, Mnew is updated with the new information and also remem-
bers old learned information, after applying (10). The iterative pro-
cess of our continual method for AAC is the process described by
Equations (3) to (10). The result of our method is the Mnew after the
application of Eq. (10).

3. EVALUATION

In order to evaluate our method, we use a freely available and pre-
optimized method as our Mbase and a freely available dataset dif-
ferent from Dori to simulate S, namely WaveTransformer (WT) and
AudioCaps, respectively. Dori used for WT is Clotho. We use mini-
batches of size B from AudioCaps to simulate Dnew, using only one
epoch over AudioCaps. The performance of the continual learning
is evaluated using metrics adopted usually in AAC task. Our code
used for the implementation of our method can be found online1.

1https://github.com/JanBerg1/AAC-LwF
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3.1. Datasets and pre-processing

Clotho [3] is a freely available dataset for AAC, containing 3840
audio clips for training, 1046 for validation, and 1046 for evalua-
tion. Each audio clip is of 15-30 seconds long and is annotated with
five captions of eight to 20 words. This results to 19 200, 5230, and
5230 input-output examples for training, validating, and evaluating
an AAC method, respectively. AudioCaps [10] is also a freely avail-
able AAC dataset, based on AudioSet [24]. AudioCaps has 38 118
audio clips for training, 500 for validation, and 979 for testing. All
audio clips are 10 seconds long, and clips for training are annotated
with one caption while clips for validation and testing with five cap-
tions. These result to 38 118, 2500, and 4895 input-output examples
for training, validating, and evaluating, respectively. In all experi-
ments, as Dori we use the training split of the corresponding dataset
and as Dnew the training split from the other AAC dataset. Dur-
ing the stage of hyper-parameter tuning we used as the validation
split from Dori and Dnew to evaluate the performance of our method,
while during testing we used the evaluation split as Dnew, from the
corresponding dataset. These result to K = 19200 for Clotho and
K = 38118 for AudioCaps.

From all audio clips we extract F = 64 log mel-band energies,
using a 46 second long Hamming window with 50% overlap. This
results to 1292 ≤ Ta ≤ 2584 for Clotho and Ta = 862 for Au-
dioCaps. Additionally, for Clotho there are 8 ≤ Tw ≤ 20 words
in a caption and there are W = 4367 unique words, while for Au-
dioCaps there are 2 ≤ Tw ≤ 51 words in a caption and there are
W = 4506 unique words. But, when Mbase is optimized on ei-
ther Clotho or AudioCaps the Mnew is evaluated at the other dataset
(i.e. Mbase trained on Clotho and Mnew evaluated on AudioCaps,
and vice-versa). Since in our method we do not consider the case
of learning new words, we keep only the common words from the
dataset used for evaluation. For example, in the case of training
on Clotho and evaluating on AudioCaps, we keep from AudioCaps
only the words that exist in Clotho. The amount of words that we
remove from AudioCaps is 1715.

3.2. Mbase model

As Mbase we use the WT AAC model, presented in [22]. WT con-
sists of four learnable processes, three used for audio encoding and
one for decoding the learned audio information to captions. WT
takes as an input a sequence of audio features, e.g. X′ or X, and
generates a sequence of words, e.g. Y′ or Y. Input audio fea-
tures are processed in parallel by two different learnable processes,
one for learning temporal patterns, Etemp(·), and one for learning
time-frequency patterns, Etf(·). Etemp consists of 1D convolutional
neural networks (CNNs), set-up after the WaveNet model [25] and
using gated and dilated convolutions. Etf is based on 2D depth-wise
separable CNNs, capable to learn time-frequency information and
proven to give state-of-the-art results in sound event detection [26].
Both Etemp and Etf do not alter the temporal resolution of their in-
put and their output is concatenated and given as an input to a third
learnable process, Emerge(·). Emerge learns to intelligently merge the
information from Etemp and Etf, producing as an output an encoded
sequence of the input audio, containing both temporal and time-
frequency information.

The output of Emerge is given as an input to a decoder, D(·) that
is based on the Transformer model [27], using three stacked multi-
head attention blocks. Each attention block takes as an input a se-
quence of tokens/words and uses two different multi-head attention
processes. The first is a masked self-attention, for each token/word

Figure 2: WT architecture, where a) is the encoder and b) the de-
coder, after [22].

attending only to its previous ones in the input sequence. The sec-
ond multi-head attention is a cross-modal attention, attending to the
output of Emerge given the output of the first, self-attention process.
The first multi-head attention block D takes as an input its outputs
shifted right and applies a positional encoding. The output of the
last multi-head attention block is given as an input to a classifier,
which shares its weights through time and predicts the most proba-
ble word in each time-step of the output caption. WT is illustrated
in Figure 2, after [22].

3.3. Training, hyper-parameters, and evaluation

We compare the performance of our proposed method against the
following baseline scenarios: i) WT pre-trained on Clotho and eval-
uated on Clotho and AudioCaps, ii) WT pre-trained on AudioCaps
and evaluated on Clotho and AudioCaps, and iii) WT pre-trained on
Clotho, fine-tuned on AudioCaps, and evaluated on Clotho and Au-
dioCaps. We term the above cases as WTcl-au, WTau-cl, and WTcl-ft,
respectively. For pre-training Mbase, we use the training split of the
corresponding dataset, employing the early stopping policy by using
the corresponding validation split and the associated SPIDEr score.
For both datasets we use 10 consecutive epochs for early stopping,
detecting not improving SPIDEr score. As an optimizer we use
Adam [28] with the proposed values for the hyper-parameters. Ad-
ditionally, we use a temperature hyper-parameter at the softmax
non-linearity of the classifier of Mnew, as this has been found to
improve the performance [15]. We use the value of 2 for this hyper-
parameter.

Using the above protocol, we evaluate the performance of our
method using λ = 0.70, 0.75, . . . , 0.95, 1.0 and B = 4, 8, 12.
We use the pre-trained WT on Clotho, and we simulate S as mini-
batches of size B from AudioCaps, as described by Eq. 3. We as-
sess the performance of the Mnew at the 50th, 75th, and 150th up-
date, and after using only once all data from AudioCaps, using SPI-
DEr score [29]. SPIDEr [29] is the weighted average of CIDEr and
SPICE metrics. CIDEr [30] employs weighted cosine similarity of
n-grams, based on the term-frequency inverse-document-frequency
(TFIDF), effectively quantifying the difference of the predicted and
ground truth captions on using the same words to convey informa-
tion. On the other hand, SPICE [31] analyzes the described scene
and quantifies the differences of the predicted and ground truth cap-
tion in describing the same objects, attributes, and their relation-
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Table 1: SPIDEr score of the baseline scenarios
Baseline scenario SPIDEr DoriDoriDori SPIDEr DnewDnewDnew

WTcl-au 0.182 0.108
WTau-cl 0.318 0.102
WTcl-ft 0.065 0.247

ships.

4. RESULTS

In Table 1 are the results of Mbase, regarding the three different base-
line scenarios. In Table 2 are the obtained results of our method, for
various values of B and λ, focusing on the SPIDEr score for Dori

and Dnew. As can be seen from Table 1 and from the cases of WTcl-au

and WTau-cl, the AAC method performs better on the Dori than Dnew.
This clearly shows that the model cannot perform equally well on
the two different datasets, just by pre-training on one of them. Fo-
cusing on the WTcl-ft, can be seen that the AAC method can per-
form good on the second dataset, i.e. Dnew, but the performance
of the method on Dori degrades considerably. This strengthens the
need for our method, which aims at alleviating the degradation of
performance on the Dori.

As can be seen from Table 2, it seems that the value ofB has an
observable impact on the performance on Dori. That is, lower values
of B seem to not benefit the performance on Dori for any value of
λ. Specifically, for values of B = 4, the SPIDEr score on Dori is
lower than the SPIDEr score for Dori and for B > 4, for any value
of λ. The same stands mostly true for B = 8 and B > 8, with the
exception where λ = 0.7. The above observation for B suggests
that the batch size for sampling the stream of data S can also act
as a regularizer for the not-forgetting of information from the Dori.
Regarding the impact of λ, one can directly see the effect of the
1−λ and λ factors in Eq. (6), having 1−λ for scaling the effect of
Lnew and λ for scaling the effect of Lreg. Specifically, for λ = 1 the
SPIDEr score for Dnew is lower than the SPIDEr score for Dori. This
trend is in accordance with the observations from Table 1, and is an
expected trend since the loss from Dnew is turned to 0 for λ = 1.
Given the observations for B from the same Table 2, it is indicated
that using just the loss Lreg(θbase, θnew,Dnew) for updating θnew can
enhance, up to an extent, the performance of the Mnew on the new
data from S. Similarly, for values of λ < 1.00 the performance
of Mnew on Dnew increases for all values of B. Additionally, the
value of λ and the SPIDEr score on Dnew have a reverse analogous
relationship.

In terms of better performing combination of λ and B, we see
two trends. There is the combination of B = 4 and λ = 0.85,
which yields the best performance on Dnew of SPIDEr= 0.239. Ad-
ditionally, there is the combination ofB = 12 and λ = 0.80, which
seems to act as the best regularizer for the performance on Dori, with
SPIDEr= 0.186. These results are in accordance with the previous
observations for B and λ, indicating some kind of trade-off for the
values of B and λ. Finally, comparing Tables 1 and 2, one can see
the benefit of our method, giving a good balance between the top
performance on Dnew and not deteriorating the performance on Dori.

5. CONCLUSIONS

In the paper we presented a first study of continual learning for
AAC. Our method is based on the learning without forgetting

Table 2: Results of continual learning using Learning without
Forgetting for AAC, for various B and λ. With bold are indicated
the best SPIDEr scores for each dataset.

batch size B λ SPIDEr DoriDoriDori SPIDEr DnewDnewDnew

4

0.70 0.098 0.239
0.75 0.102 0.215
0.80 0.093 0.214
0.85 0.115 0.230
0.90 0.133 0.215
0.95 0.155 0.192
1.00 0.163 0.119

8

0.70 0.113 0.210
0.75 0.119 0.223
0.80 0.132 0.220
0.85 0.133 0.190
0.90 0.156 0.187
0.95 0.178 0.157
1.00 0.165 0.114

12

0.70 0.109 0.211
0.75 0.160 0.197
0.80 0.186 0.157
0.85 0.171 0.179
0.90 0.182 0.153
0.95 0.185 0.145
1.00 0.176 0.115

method, which focuses on continuously updating the knowledge of
a pre-trained AAC method on new AAC data, without degrading
the performance of the AAC method on the originally used dataset
during pre-training. For that reason, we employed a freely avail-
able and pre-trained AAC method and two freely available AAC
datasets. We use the adopted AAC method which is pre-trained
on one of the employed AAC datasets, and we use the other AAC
dataset as a continuous stream of AAC data. We update the knowl-
edge of the employed AAC method given the stream of AAC data.
We compare our method against three baselines, two for training on
one of the AAC datasets and evaluating on the other, and a third
of training on one of the AAC datasets and fine-tuning the trained
method to the other. Our results show that our method manages to
not let the performance of the AAC method to deteriorate on the
original AAC dataset, while, in the same time, manages to distil
information from the new data to the employed AAC method.

For future research, utilizing AAC datasets set in more distinct
domains and training those in consecutive way to the model would
provide more data on how effective these methods can be when used
for AAC. Recent years continuous learning has been a hot issue and
more methods have been introduced just during last few years, many
of which might effective when utilized for AAC as well.
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Abstract
Researchers have recently started to study how the emo-

tional speech heard by young infants can affect their devel-
opmental outcomes. As a part of this research, hundreds of
hours of daylong recordings from preterm infants’ audio en-
vironments were collected from two hospitals in Finland and
Estonia in the context of so-called APPLE study. In order to an-
alyze the emotional content of speech in such a massive dataset,
an automatic speech emotion recognition (SER) system is re-
quired. However, there are no emotion labels or existing in-
domain SER systems to be used for this purpose. In this paper,
we introduce this initially unannotated large-scale real-world
audio dataset and describe the development of a functional SER
system for the Finnish subset of the data. We explore the ef-
fectiveness of alternative state-of-the-art techniques to deploy a
SER system to a new domain, comparing cross-corpus gener-
alization, WGAN-based domain adaptation, and active learning
in the task. As a result, we show that the best-performing mod-
els are able to achieve a classification performance of 73.4%
unweighted average recall (UAR) and 73.2% UAR for a binary
classification for valence and arousal, respectively. The results
also show that active learning achieves the most consistent per-
formance compared to the two alternatives.
Index Terms: speech emotion recognition, speech analysis,
real-world audio, daylong audio, LENA recorder

1. Introduction
In speech emotion recognition (SER), the task is to recognize
emotional states of speakers from speech signals [1, 2]. One
potential application of SER is the study of babies’ auditory en-
vironments, where the early emotional experiences of babies,
including affective speech, can impact their later cognitive de-
velopment. In order to study this relationship, Auditory environ-
ment by Parents of Preterm infant; Language development and
Eye-movements (APPLE) study has collected a large audio cor-
pus of child-centered daylong audio recordings from neonatal
intensive care units (NICUs), recorded in Turku University Hos-
pital, Finland, and Tallinn Children’s Hospital, Estonia [3]. In
order to analyze the emotional contents of speech in the record-
ings, a functional SER system for this new domain is required.

The purpose of the present study is to develop such a system
to analyze these (initially unannotated) hospital-environment
audio recordings for their emotional speech content. The ab-
sence of in-domain annotations and massive scale of the data
raises the question of how to most effectively deploy a SER
system for this real-world large-scale dataset.

In principle, cross-corpus generalization (CCG) is the most
straightforward strategy to deploy SER for an unlabeled dataset,

but can suffer from domain mismatch. In fact, [4] have shown
through extensive multi-corpus and multilingual experiments
that reliable CCG-based SER was only feasible with certain
corpora and emotional classes, highlighting many issues with
cross-domain SER model generalization to out-of-domain data
(but see also, e.g., [5] for a potential remedy). In order to tackle
the issue of domain mismatch, different domain adaptation
(DA) methods have been utilized in SER. For instance, Deng
et al. [6] extended an unsupervised deep denoising autoen-
coder (AE) by combining it with a supervised learning objective
to create a semi-supervised DA method for SER. Another ap-
proach in [7] used an unsupervised deep neural network (DNN)-
based adversarial DA approach for SER. The method learns a
domain-invariant feature representation between labeled source
data and unlabeled target-domain data while maintaining a good
performance on the primary SER task. A number of other DA
methods for SER have been proposed as well (e.g., [8–10]).

Active learning (AL) is another strategy and has been suc-
cessfully applied to SER as well. Zhao and Ma [11] presented
an iterative AL algorithm, which utilizes conditional random
fields, to determine the level of uncertainty for each unlabeled
sample. The most uncertain samples were then selected for
human annotation. Another study [12] examined different AL
methods based on uncertainty and diversity maximization in a
simulation setup with DNN classifiers. The work showed that
the tested AL methods outperformed random sampling-based
methods with a constrained labeling budget.

Only a few SER studies have been conducted on large-scale
datasets. Jia et al. [13] studied DNN-based SER with a massive
7-million-utterance internet voice corpus. They pretrained their
novel DNN-based models with 90,000 unlabeled utterances,
and fine-tuned and evaluated them on 3,000 randomly selected
manually annotated utterances from the same dataset. Fan et al.
[14] presented a SER dataset with a total duration of over 200
hours. They proposed a novel SER model containing pyramid
convolutions which outperformed other models that were tested
on the dataset. Additionally, they showed that existing mod-
els are prone to overfit to small-scale datasets, which limits the
ability of these models to generalize for real-life data.

However, CCG, AL, and DA have rarely been compared
to each other directly. Moreover, most of the existing work has
been conducted using studio, telephone, or internet speech data.
Therefore, our present daylong audio dataset from a hospital
context, together with its practical significance, provides an ex-
cellent test bench to compare strategies for SER system devel-
opment in a novel domain with challenging real-world speech
data. More specifically, by using the Finnish subset of the data,
we compare CCG and state-of-the-art DA and AL in the task to
study their feasibility and SER performance in practice.
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2. Methods
2.1. Medoid-based active learning

Zhao et al. [15] presented an AL method called medoid-based
active learning (MAL) to effectively utilize a small number of
annotations, which serves as the foundation of the AL method
used in our experiments. The algorithm can be divided into
three subsequent parts: 1) obtaining a distance matrix that con-
tains the pairwise distances between all samples in the dataset,
2) performing k-medoids clustering using the distance matrix,
and 3) starting from the largest cluster, querying human anno-
tations for the medoids in a descending cluster size order.

The distance metric used in the present experiments was
selected based on pilot experiments with MAL using existing
SER datasets. A 600-dimensional utterance-level log-mel fea-
ture representation (see Section 4.1) was first used as the initial
feature representation of each sample in a dataset. These fea-
tures were then compressed into a 32-dimensional latent repre-
sentation using a DNN-based AE with six layers. Pearson dis-
tances dP [16] between the bottleneck features were then used
to define the affinity matrix A across all the samples. Next,
k-medoids clustering was applied to the data. First, one sample
was randomly selected as the member of a set S, followed by an
addition of k − 1 more samples as centroids using the farthest-
first traversal algorithm. Here, the distance from a sample, a,
to the set S was defined as

dP (a, S) = min
b∈S

dP (a, b) . (1)

The samples in S were then used as the initial medoids for a
k-medoids clustering algorithm (see e.g. [17] for an overview)
to assign each sample in the dataset into one of the clusters.

In the final stage, the clusters were sorted in a descending
order based on the number of samples in each cluster, and their
medoids were presented to human annotators for labeling. In
the experiments, we studied the use of these labels in two dif-
ferent ways: i) assigning each sample in a cluster with the an-
notated medoid label (as in [15]; here referred to as “cluster la-
bels”), or ii) only using the medoid samples as labeled data for
classifier training, which was not studied in the original MAL
paper [15]. Based on pilot experiments on other datasets, k was
set to N

3
, where N is the number of samples in a corpus.

2.2. Wasserstein distance-based domain adaptation

The present DA approach was based on the Wasserstein
distance-based domain adaptation (WDA) method proposed in
[18]. In WDA, a neural network (NN) classifier, aka the source
model M , is adapted to a target corpus, DT , by using la-
beled data from source domain corpus/corpora, DS . The source
model M consists of two parts, a feature extractor, FS , and a la-
bel classifier, CL. The adaptation process of WDA involves two
stages, which are demonstrated in Fig. 1.

The first stage (Fig. 1, top) consists of training M using
samples XS and their labels YS from DS to obtain a trained
FS . This is done using binary cross-entropy [18] as the loss:

LM (x,y) = −
∑

(x,y)∈(XS ,YS)

yT log10(CL(F (x))). (2)

In the second stage (Fig. 1, bottom), FS is adapted to DT

to obtain an adapted feature extractor, FT , by minimizing the
Wasserstein-1 distance Wd between the distributions of DS and
DT using an adversarial training process. Following a WGAN
framework [19], FS is adapted into FT by finding a common

Step 1CL
FS

YS
XS

Predicted
label

Step 2
CDFT

XT

XS
Predicted
domain

Figure 1: The two-step the adaptation process of WDA. First,
FS and CL are trained to classify source corpus samples into
emotion categories. In the second step, FS is adapted into FT

using a domain discriminator CD with an adversarial loss.

feature representation for DS and DT by iteratively minimizing
the two losses:

LCD (x, z) =
∑

x∈XS

CD(FS(x))−
∑

z∈XT

CD(FT (z)) (3)

LFT (x,y,z) =
∑

z∈XT

CD(FT (z)) + LM (x,y) , (4)

where CD is the domain discriminator and XT are the target
corpus samples. The parameters for CD and FT are updated in
turns, where Eqs. 3 and 4 are the loss functions for updating the
parameters of CD and FT , respectively. The output features of
FT are the input features for CD . Additionally, the parameters
of FS serve as the initial parameters of FT . As pointed out in
[18], the minimization of Eqs. 3 and 4 is shown to minimize
Wd between the distributions of DS and DT . For a detailed
formulation of the WDA algorithm, see Algorithm 1 in [18].

2.3. Cross-corpus generalization

As our baseline approach, we use CCG with different source
corpora and their combinations. Labels of each corpus are first
mapped to a common emotion category space, followed by a
standard supervised classifier training (see Section 4.2).

3. Data
3.1. NICU-A

The FinEst NICU Audioset (NICU-A) was collected in the AP-
PLE study, and is the primary audio material for which our SER
system was aimed to be deployed on. We use the Finnish subset
of the dataset, which was recorded at the NICU of Turku Uni-
versity Hospital using LENA-recorders (https://www.lena.org/)
placed at the bedside of preterm babies (average age approx. 33
gestational weeks) in intensive care. The data consists of 43 x
16-hour recordings from different participating families (a total
of 688 h of audio). The recordings were carried out in relatively
calm single family rooms of the NICU, where only the baby,
visiting parents (primary talkers), and, occasionally, nurses and
doctors carrying out healthcare routines were present.

Broad-class diarization of LENA software [20] was used
to split each 16-h recording into utterance-sized segments, and
to assign a speaker tag (male, female, key child, other child)
to the utterances. Based on the validity study reported for the
same data in [21], adult speech from “male/female adult” “near”
and “far” -categories were included in the analyses to capture
caregiver speech (but see [22] for general guidelines with LENA
“far” data). Utterances shorter than 600 ms were discarded from
further analysis. This resulted in a total of 129,007 utterances
with an average length of 1.57 s (approx. 56 h of speech).

Eight families were carefully selected as the test data and
35 as the training data based on the representativeness of both
data sets in terms of covariates such as child health, parental
presence etc. After pre-processing the data of NICU-A, both
the training and test sets were partially annotated.
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For the training data, samples were selected for annotation
using MAL, as described in Section 4.2.1. Two annotators per-
formed labeling for distinct subsets of the data, except for the
first 200 samples that were annotated by both to measure inter-
rater agreement rates. Each sample was annotated in two di-
mensions: in terms of binary arousal (high/low) and in terms
of ternary valence (negative, neutral, positive). The two dimen-
sions were annotated in a random order for each sample. A
sample could also be labeled as erroneous, if the samples were
corrupted by noise, had overlapping speakers, had very short
speech fragments, or did not contain speech at all.

For the test data, gold standard (GS) annotations were ob-
tained from three speech/clinical experts for a randomly se-
lected subset of samples from the test set. All GS samples
were independently annotated for their arousal and valence by
all three annotators, followed by majority voting of labels. Sam-
ples without majority labels were removed from the test set. GS
annotators had access to 10 s of the preceding audio context of
each sample to better understand the communicative context.

After removing the erroneous files, the training and test sets
had 5198 and 345 labeled samples, respectively. Training data
inter-annotator agreement rates in terms of kappa scores were
0.78 for valence and 0.64 for arousal. For the GS data, the
kappa scores were 0.48 for valence and 0.28 for arousal. The
difference between the training and testing agreement rates is
explained due to the use of MAL in the selection of the training
samples, where the first 200 samples annotated by both anno-
tators were also the most acoustically distinct samples in the
training data. The finding also demonstrates the inherent diffi-
culty in annotating a random sample of real-world speech for
emotional content.

The ‘neutral’ and ‘negative’ classes for valence were
merged for NICU-A, bearing in mind that the APPLE study was
primarily interested in the proportion of positive valence over
other speech. As a result, training sample counts were 1509 for
positive and 3689 for neutral valence, and 3165 and 2033 for
high and low arousal, respectively. The corresponding test set
counts were 120 (positive) and 225 (neutral) for valence, and 89
(high) and 256 (low) for arousal.

3.2. Other corpora for CCG and DA experiments

In addition to NICU-A, four existing SER corpora (referred to
as source corpora) were used in the CCG and DA experiments:

The Berlin Emotional Speech Database (EMO-DB) [23] is
a widely used corpus and consists of 535 spoken utterances in
German from 10 professional actors with seven emotional la-
bels: anger, boredom, disgust, fear, joy, neutral, and sadness.

eNTERFACE [24] is an audiovisual database consisting of
1287 video samples in English from 42 test subjects from 14
nationalities in six categories: anger, disgust, fear, joy, sadness,
and surprise. Only the audio tracks were used in this study.

The Finnish Emotional Speech Corpus (FESC) [25] con-
sists of nine professional actors portraying emotions of five dif-
ferent categories: neutral, sadness, joy, anger, and tenderness.
These portrayals were split into 4254 utterances based on long
silences as defined by an energy threshold [26].

The Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) [27] is a multimodal database including
a total of 7356 recordings from 24 professional actors, out of
which 1440 speech-only recordings were used in the present
study. Eight different emotional labels were included: neutral,
calm, happy, sad, angry, fearful, surprise, and disgust.

4. Experimental setup
4.1. Features

Log-mel, GeMAPS, and eGeMAPS [28] features were used in
the CCG and AL experiments. For the DA experiments, only
log-mel features were used due to their superior performance in
pilot experiments. For the log-mel features, 40 mel filters were
used with a Hann window using a 30-ms window size and 10-
ms shifts. To get constant-dimensional utterance feature repre-
sentations, seven functionals (the first four moments, min, max,
and range) were taken from the time series of the log-mel fea-
tures. In addition, four functionals (the first four moments) were
applied to first and second order delta features. This resulted in
a 600-dimensional feature vector for the log-mel features. The
62- and 88-dimensional GeMAPS and eGeMAPS features were
extracted using the openSMILE toolkit [29]. The features for
each corpus were z-score normalized at the corpus level.

4.2. Conducted experiments

For the source corpora, the emotional labels were mapped into
the quarters of the valence-arousal plane following [4], with the
exception of merging ‘neutral’ and ’negative’ valence to ‘neu-
tral’ in order to better correspond to the labels of NICU-A. The
emotional mapping of [4] has been used in multiple SER stud-
ies (e.g. [8, 10, 30, 31]). All classification tests were conducted
on the NICU-A GS data. We use the unweighted average recall
(UAR %) as the primary evaluation measure.

4.2.1. Active Learning Experiments

In the AL experiments, MAL was performed for the full unla-
beled training set of NICU-A (101,813 samples). To compress
the log-mel features of the training set into a latent representa-
tion, an AE network was used. The training and validation data
for the AE were based on a random split of the training set using
a ratio of 80:20 utterances. The encoder of the AE consisted of
three fully-connected (FC) ELU [32] layers of 512, 512, and 32
units, and the decoder of two 512-unit ELU layers and a linear
reconstruction layer. The first two AE layers had a dropout of
0.1. The model was trained using MSE loss, Adam [33] opti-
mizer (lr = 10−4), batch size of 1024, and early stopping with
a patience of 300. The best model according to the validation
loss was then used to compress the data to 32 dimensions. Then,
MAL was performed for each of the 35 training set families sep-
arately and the data were sent for annotation (Section 3.1).

The annotated samples were then used for training a sup-
port vector machine (SVM) with an RBF kernel. Each sample
was weighted inversely proportional to its class frequency to
counter class distribution imbalances. Optimal SVM hyperpa-
rameters were selected for each feature type and both classifica-
tion tasks individually based on a grid search using 5-fold cross-
validation over the training data. Then, the SVM was trained on
the full training data using these hyperparameters and tested on
the GS data. The process was performed separately for the la-
beled training set of 5,198 samples and for the extended training
set of 33,979 samples using the cluster labels from MAL.

4.2.2. Cross-corpus Generalization Experiments

For the CCG experiments, two settings were explored: 1-to-1
and 4-to-1 CCG. In the 1-to-1 setting, each of the source corpora
was used individually as the training set. In the 4-to-1 setting,
all four source corpora were used for SVM training with similar
specifications as with the AL experiments.
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Table 1: UAR (%) performance scores for alternative ap-
proaches on the target data. For AL and CCG, log-mel (log-
m), GeMAPS (Ge), and eGeMAPS (eGe) features are compared.
For DA, the unsupervised (US) and semi-supervised (S-S) vari-
ant of WDA is compared. The highest accuracies are bolded.

 

 

 

 

 

 

 

 

 
 
 

CCG 

Training corpus log-m Ge eGe log-m Ge eGe 

EMO-DB 48.5 53.8 53.4 64.1 63.7 62.7 

eNTERFACE 56.8 52.7 50.2 63.1 64.3 64.1 

FESC 45.3 57.3 54.9 56.3 68.3 70.8 

RAVDESS 50.4 53.8 53.3 64.3 62.0 58.7 

All source corpora 42.9 54.9 56.8 61.3 64.4 65.5 

 
 
 

DA 

Source corpus US S-S US S-S 

EMO-DB 49.7 51.3 71.0 73.2 

eNTERFACE 57.0 58.0 67.2 68.6 

FESC 46.9 47.4 61.5 63.1 

RAVDESS 57.1 57.7 66.5 68.4 

All source corpora 53.2 53.5 71.0 71.3 

Experiment UAR (%) 

 
 

AL 

 Valence Arousal 

Cluster labels log-m Ge eGe log-m Ge eGe 

No 70.9 71.0 71.9 68.5 69.3 65.8 

Yes 68.2 73.4 72.9 67.0 68.9 67.6 

4.2.3. Domain Adaptation Experiments

For the DA-based experiments, 1-to-1 and 4-to-1 adaptation
conditions were examined with the same source corpora as in
CCG. All DA experiments were conducted separately for va-
lence and arousal. In the 1-to-1 settings, each source corpus was
randomly split into a training and test set in a ratio of 85:15. For
the 4-to-1 setting, the training and test sets were the combina-
tion of the respective corpus-specific splits. For the first stage
of the adaptation process, the training set of each source corpus
was used to train M by using the Adam optimizer (lr = 10−4),
early stopping with a patience of 100 based on test set accu-
racy, and batch size of 256. The log-mel features were used as
the input features for F , consisting of three FC layers of 512,
512, and 256 units, each followed by batch normalization. The
first two layers had LReLU [34] nonlinearities and a dropout
of 0.4. CL was an NN consisting of three FC layers of 256,
256, and 2 units. The first two layers had LReLU nonlinearities
and a dropout of 0.3. The last layer was followed by a softmax
function. For each variant of the source data, a separate M was
trained for both valence and arousal.

For the second stage of the adaptation process, the full un-
labeled data from the source corpus/corpora and the unlabeled
training samples of NICU-A were used for training. Following
[18], the unsupervised variant of WDA was trained until the first
term in Eq. 4 was saturated. For the semi-supervised variant,
the labeled training set of NICU-A was used to determine the
model accuracy after each epoch, and the model with the high-
est accuracy was selected for testing. This set was also used to
find optimal hyperparameters. CD consisted of four FC layers
of 512, 512, 256, and 1 units. The first three layers were fol-
lowed by ReLU nonlinearities. The parameters of CD and FT

were updated with the RMSProp [35] and Adam optimizers, re-
spectively. In the 1-to-1 settings, lr = 5 · 10−5 was used, except
with FESC for valence and with RAVDESS for arousal, where
lr = 7 · 10−5. For the 4-to-1 settings, lr = 7 · 10−5 was used for
valence and lr = 6 · 10−5 for arousal. The performance of the
adapted model was then tested on the GS data.

All the DA and AL parameters were based on extensive pi-
loting with leave-one-corpus-out simulations using the source
corpora, and before any NICU-A data had been labeled.
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Figure 2: Normalized confusion matrices for valence (left)
and arousal (right) using the best models. Valence = SVM +
GeMAPS + cluster labels from MAL (73.4% UAR). Arousal =
NN + WDA using EMO-DB as the source corpus (73.2% UAR).

5. Results
The main results are presented in Table 1. They show that AL
(top rows) is the most consistent performer across the studied
conditions, even though somewhat better arousal results are ob-
tained by particular configurations of CCG and DA. The best
DA-based model adaptation achieves 73.2% UAR on arousal,
outperforming all other methods by a clear margin. However,
adaptation from other corpora does not always work that well.
In addition, CCG and DA have problems with valence classi-
fication on data from the new domain. The DA results (Table
1, bottom) are on average higher than the results of CCG, even
though the WDA method does not provide a major improvement
over CCG on valence. The semi-supervised variant of WDA is
also consistently better than the unsupervised variant. The com-
parison of using either cluster or medoid labels for AL provides
somewhat mixed results, depending on the exact condition.

In terms of features, the GeMAPS and eGeMAPS fea-
ture sets outperformed the log-mel features on valence with
CCG. For CCG and arousal, the best-performing features var-
ied largely between different training corpora, and the match-
ing Finnish language FESC is a substantially better source for
NICU-A than the others, reaching 70.8% UAR with eGeMAPS
features. In the AL experiments (Table 1, top), the eGeMAPS
and GeMAPS features achieved the best mean classification ac-
curacy for valence and arousal, respectively.

The confusion matrices for the best-performing models
(Fig. 2) indicate that these models do not systematically favor
one label over the other when performing predictions.

6. Conclusions
In the present paper, we developed a SER system for large-
scale analysis of emotional content of speech in initially unan-
notated real-life child-centered audio recordings from a NICU.
CCG, AL, and DA were compared as alternatives for deploy-
ing a SER system for this novel dataset from scratch. Our re-
sults show that WGAN-based DA outperformed the baseline
CCG approach, verifying its usefulness in the absence of any
data labels. However, with a very moderate human labeling re-
source available, k-medoids based AL was superior compared
to CCG and DA in valence classification and relatively competi-
tive for arousal as well. However, when classifying arousal, DA
resulted in slightly better results than AL. Overall, the results
demonstrate that the earlier proposed MAL [15] and WDA [18]
methods are also applicable to practical SER scenarios. The
results also show that emotion analysis for LENA-based day-
long audio recordings is possible with an accuracy comparable
to those reported in earlier literature (e.g., 58.1% for valence
and 66.8% for arousal across the multi-corpus tests in [31]).
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[21] K. Siirilä, “Language Environment Analysis (LENA) -
menetelmän validiteetti keskosvauvojen ääniympäristön arvioin-
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Citizen Science aims to engage people in research activities on important issues related
to their well-being. Smart Cities aim to provide them with services that improve the quality
of their life. Both concepts have seen significant growth in the last years, and can be further
enhanced by combining their purposes with Internet of Things technologies that allow for
dynamic and large-scale communication and interaction. However, exciting and retaining the
interest of participants is a key factor for such initiatives. In this paper we suggest that en-
gagement in Citizen Science projects applied on Smart Cities infrastructure can be enhanced
through contextual and structural game elements realized through augmented audio interactive
mechanisms. Our inter-disciplinary framework is described through the paradigm of a collabo-
rative bird call recognition game, in which users collect and submit audio data, which are then
classified and used for augmenting physical space. We discuss the Playful Learning, Internet
of Audio Things, and Bird Monitoring principles that shaped the design of our paradigm, and
analyze the design issues of its potential technical implementation.

0 INTRODUCTION

The concept of Smart Cities (SC) describes urban en-
vironments enriched with interaction modalities towards
the improvement of city functioning and of its inhabitants’
life [1]. Aiming to align the technological attainments of
the digital era with the urban fabric of the physical world,
SC utilize Information and Communication Technologies
(ICT), such as mobile devices, embedded sensors, and data
collection and analysis tools, and seamlessly integrate them
in traditional infrastructure. Thus, the physical environ-
ment is transformed into a dynamic source of information,
an ”intelligent living space”, which, based on the adoption
of networking advances, provides citizens with the tools,
resources, and services to exploit the benefits of this data
flow [2]. The realization of intelligent systems to be em-
bedded into SC environments can be broken down into
three axes: i) the Internet of Things (IoT) facilitating the

*Correspondence should be addressed to Emmanuel Rovithis
K. Drossos is supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No
957337, project MARVEL.

inter-connectivity of physical and virtual devices through
communication protocols, ii) the Internet of Services (IoS)
comprised of the amalgamation of different applications
into explicable services, and iii) the Internet of People (IoP)
encompassing the interactions between the citizens, who
are ultimately the intended users of the system [3]. In or-
der for SC to become truly beneficial innovation ecosys-
tems capable of finding solutions to real-world problems,
the citizens need to be excited in terms of creativity and
collaboration [4]. To that scope, SC require applications
that facilitate large-scale participatory projects, in which
emphasis will be placed on the coordination of end-users
towards dealing with the targeted issues [4].

The concept of Citizen Science (CS) describes projects,
in which people volunteer to contribute to a scientific en-
quiry by gathering and managing information. The advent
of the 21st century has signaled an unprecedented growth
of CS initiatives bringing scientists and the public together
with the aim of raising awareness and finding solutions
about social and environmental issues. Volunteers can now
quickly locate a project for CS on a subject of their in-
terest and easily join its active community, whereas ad-
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vances in human-computer interaction have extended the
access to such projects to groups that could not previously
be reached [5]. Thus, citizens can take on a vital role in
research activities that may vary from simply providing
experts with the necessary information to consulting the
responsible authorities or even participating in making and
implementing decisions [6]. In that process, basic scientific
principles must be followed, such as well designed data
collection and validation methods, explicit instructions and
research questions, and feedback as a reward for participa-
tion [7].

We believe that SC can host large-scale participatory CS
projects in a mutually beneficial relationship, in which SC
provide the technological infrastructure and CS the activi-
ties targeting the citizens’ well-being. However, the design
of such an endeavour must address important challenges
related to participants’ engagement and cognition. Regard-
ing the former, volunteer dropout has been identified as one
of the salient factors that impact the organizational consis-
tency of CS [6, 8]. Regarding the latter, undertaking and
accomplishing tasks in a CS context does not necessarily
extend beyond the acquisition of knowledge to a deeper
understanding of the scientific process [9]. So far, sugges-
tions for exciting and retaining the interest of CS volun-
teers include providing positive reinforcement, and match-
ing the tasks to their personal skills [6]. Cognitive impact
has been approached mostly through student assessments
in curriculum-based projects presenting limited evidence
that participation enhances scientific knowledge and public
awareness. Therefore, more evaluations are deemed neces-
sary for extracting solid conclusions [9]. In this paper we
suggest that motivation and understanding can be enhanced
through an inter-disciplinary approach that combines struc-
tural and contextual game elements with Internet of Au-
dio Thing (IoAuT) technologies [10] to realize CS projects
in SC environments. We describe our recommendations
for developing an appropriate design framework through
the paradigm of a bird call recognition augmented reality
audio-based game.

The rest of the paper is organized as follows. In Section 1
are discussed the principles underlying the paradigm’s de-
sign in terms of its playful learning, audio interaction, and
bird recognition aspects, Section 2 describes the concep-
tual and technical structure of the paradigm and Section 3
outlines the technical design specifications. Finally, Sec-
tion 4 concludes the paper.

1 DESIGN PRINCIPLES

1.1 Playful Learning
Playful Learning refers to the incorporation of game ele-

ments into non-game learning environments [11].The abil-
ity to motivate players is the most frequently cited charac-
teristic of games related to knowledge construction [12].
By utilizing a variety of interaction mechanisms games
create the conditions for competition, cooperation, explo-
ration, and reflection, and engage participants in immersive
experiences [13]. Aiming to investigate the connection of

motivation and engagement to the learning outcomes re-
searchers have intensified their efforts in the last decade,
whereas educators have been drawing upon the results to
systematically use game-based learning practices in their
classroom [12]. Non-schooling environments have been
also following this trend: museums, libraries, corporations,
and government agencies have been integrating game el-
ements in personal or collective activities as the means
to enrich users’ experience and enhance their construction
of knowledge. However, simply adding a leaderboard sys-
tem based on points of progress may have negative effects,
since players with low scores could become frustrated and
lose their interest in the competition [14]. Similarly, stereo-
typical approaches will not necessarily result in increasing
and sustaining participation when addressing the broader
community [15]. Therefore, careful planning of game ele-
ments integrated into non-game systems is needed to en-
sure motivation at all times of the process.

Large-scale participatory CS projects require atten-
tion, coordination, cooperation, and commitment. The few
cases, in which CS was organized in the form of a game,
have delivered positive results: providing users with a
playful interface and allowing them to collaborate with
or compete against each other towards a common goal
resulted in users coming up with novel ideas [8]. Another
approach refers to CS projects, which are embedded in the
form of mini-games within larger sand-box game environ-
ments, i.e. environments, in which players have freedom
of action that is not restricted by a linear narrative. In
the case of [16] players completing various stages of the
mini-games are rewarded with in-game prizes.

Besides the motivational function, there are other game
elements that can be useful. In order for CS to produce
an output of equal-to-expert quality, the participants need
guidance through protocols, training, and oversight [5]. A
game’s rules, tutorial, and feedback can address these is-
sues respectively, whereas the addition of a compelling nar-
rative can enhance immersion in the experience. A final is-
sue that we considered is the link of high motivation and
engagement to the intended learning outcomes. Drawing
upon modern learning theories including Problem-based
Learning [17], i.e. learning from the process of striving
toward the resolution of a problem, Constructivist Learn-
ing [18], i.e. learning from the process of interacting with
the environment, and Experiential Learning [19], i.e. learn-
ing from the process of reflecting on one’s experience, pro-
vides the theoretical basis for realizing meaningful learn-
ing environments [20]. Yet, researchers stress the need
for stronger evidence, before game mechanisms aiming at
motivation and immersion are systematically used as the
means to achieve the learning objectives [21, 22], a need
that large-scale participatory projects can address.

1.2 Internet of Audio Things
IoAuT is an emerging field that refers to embedding

computing devices in physical objects towards the recep-
tion, processing, and transmission of audio information
[23]. It comprises different types of audio collectors, pro-
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cessors and transmitters, and facilitates their integration,
local and remote accessibility, and multi-directional com-
munication [10]. Despite the plethora of SC initiatives and
the need for utilizing state of the art Human-Computer In-
teraction (HCI) technologies to realize new forms of par-
ticipation, most approaches have focused on data visual-
isation techniques and mostly neglected the acoustic as-
pect of the urban environment [1, 24]. Existing SC ap-
plications of distributing information through the auditory
channel include the generation of sound content based on
urban related data in order to increase users’ awareness
about their city environment [24, 25], the generation of vi-
sual maps based on the perceptual attributes of submitted
recordings for monitoring and managing the urban acoustic
environment [26], and the augmentation of public spaces
with audio information for engaging the audience in social
experiences [27]. Furthermore, Wireless Acoustic Sensor
Networks can be used for the surveillance and analysis
of acoustic scenes, urban noise pollution, environmental
anomalies, and wildlife [10].

In our paradigm design we focused on three specific as-
pects of IoAuT: i) collecting and submitting audio data for
analysis, ii) generating a soundscape map, and iii) aug-
menting physical space with virtual audio components for
navigation and interaction within the environment. Focus-
ing on the latter, Augmented Reality Audio (ARA) sys-
tems have been applied for well-being purposes by acous-
tically enriching the working environment of employees
[28], indicating the location of security threats [29], real-
izing non-visual spatial mappings for navigation [30], au-
rally signalling touristic points of interest [31], assigning
audio recordings to locations of cultural importance [32],
and aurally signifying city facilities for urban exploration
[33]. Interaction in these implementations can be charac-
terised as passive, i.e. users of the system essentially trig-
ger sound events through their position and movement in
the augmented space. However, more active modes of in-
teraction can enhance users’ communication in competi-
tive or collaborative contexts. In [34] a positive connection
was shown between challenging mechanics requiring the
performance of gestures with the satisfaction gained from
the experience. In [35] the behavior of the virtual sound
sources that players need to locate is controlled by the
movement of other antagonizing players, whereas in [36]
players take up different roles and need to coordinate their
actions in the augmented space to achieve the game goal.
Sound recognition and audio based analytics [37, 38] can
further expand the possibilities for interaction by advanc-
ing the responsiveness between the natural and the virtual
acoustic environment [39], whereas user experience im-
provement techniques from the wider frame of AR can be
utilized to enhance the system’s context-awareness [40].

1.3 Bird Monitoring
The third field that we drew upon for designing our

paradigm relates to Bird Monitoring. Bird related ecologi-
cal projects usually fall into three categories: i)inventory,
ii) monitoring, and iii) research [41]. Inventory projects

aim to generate a list of species by identifying birds by
visual observation and/or their song. Monitoring projects
involve recording birds in a region or study site for a pe-
riod of time. Such projects use geolocation information to
pinpoint found birds on Geographic Information System
(GIS) overlays. Research projects require experts to for-
malize and investigate a hypothesis about bird behaviour.

One of the leading active projects in collaborative Bird
Monitoring is eBird, a project of the Cornell Lab of Or-
nithology [42, 43]. eBird evolved from a basic CS project
into a collective enterprise through the novel approach of
developing cooperative partnerships among experts in a
wide range of fields including computer scientists, biolo-
gists, and data administrators. eBird data are overlaid on
global GIS maps. They are openly available and consti-
tute a major source of biodiversity data, increasing expert
knowledge on the dynamics of bird species distributions
and aiding the conservation of birds and their habitats. The
project involves at the moment more that 100,000 regis-
tered users that deliver up-to-date results about bird pop-
ulations. We suggest that future projects can motivate and
retain participation through embedded game mechanisms
as described in this paper.

2 PROPOSED FRAMEWORK

2.1 Scenario Design
In terms of structure our paradigm consists of four

stages:

• In the first stage, users undertake the task of collecting
bird songs for classification using the recording tool of
the application. The recordings are checked internally in
the mobile device regarding their authenticity and clar-
ity, and, if they meet the criteria, they are matched to the
corresponding bird species. Users are then provided with
the respective information including the bird’s name and
photos.

• In the second stage, users submit their successful en-
try to the system’s remote server along with the related
meta-data including the recording’s date and location.
This information is used by the system for the creation of
a virtual 2d map representing bird presence in the urban
environment. Users receive a message informing that the
map was updated to include their latest entry. The virtual
map is dynamically shaped according to users’ position
in physical space and the meta-data gathered by all sub-
missions.

• In the third stage, users activate the augmented version
of the map. The system merges virtual components with
physical space into an augmented environment, in which
users can immerse. This augmentation relies purely on
audio information. Essentially, the meta-data submitted
by the users is periodically refreshed and translated into
aural stimuli by shaping the parameters for the occur-
rence of sound events stored in the device. Each bird has
been assigned its own sound, which acts as a symbol for
the bird’s presence, while at the same time demonstrates
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its characteristic song for further study. Data sonification
and sound spatialization techniques are used to express
the targeted aspects of the aerial fauna: panning, play-
back volume, and playback rate are dynamically modi-
fied to hint at the birds’ direction and proximity to the
user, and at the amount of the submitted recordings re-
spectively. Users interpret the audio information to nav-
igate through the augmented urban landscape. Our sug-
gested paradigm has a 24-hour storage cycle, through
which the meta-data can be recalled on a day-by-day ba-
sis.

• In the fourth stage, users experience an artistic aspect
of the project, in which all submitted recordings are
streamed by the system to the users, aimed at exciting
their enjoyment, engagement, and collaboration. This
stage can be activated once users are within the range
of an audio source. In case many recordings have been
assigned to a specific location, the system performs pro-
cessing and mixing of the material through reverberation
and temporal allocation algorithms to distinguish the
recordings from one another and create a clear and ap-
pealing virtual soundscape before superimposing it onto
the real acoustic environment. Thus, users feel like they
are participating in a collaborative artwork that enriches
their scientific duties.

Our proposed paradigm suggests further enhancing the
aforementioned stages through game elements applied on
game scenarios. Thus, citizen scientists become players of
a large-scale participatory game that aspires to boost their
engagement through fun, challenge, attainment, competi-
tion, and collaboration.

Regarding game elements, the following are suggested:

• Level advance: players unlock different game scenarios
according to their successful submissions and commit-
ment to the project.

• Badges and rewards: players’ progress is also made pub-
lic through titles to be gained as rewards for their perfor-
mance.

• Collaborative mode: players can work together towards
achieving more complex goals that require cooperation
and coordination with each other.

Regarding game scenarios, the following are suggested:

• Quiz: players are asked to recognize the bird songs to
gain points for their correct answers. They can famil-
iarize themselves with the topic by studying the stored
patterns in the device, a process which enhances the
project’s educational aspect.

• Treasure Hunt: players focus on a specific bird and re-
port different locations of its presence within a limited
time frame. They can consult their maps (2d or aug-
mented), as they are dynamically shaped by the submis-
sions of other players.

• Time Travel: players follow the route of a specific bird
within a certain time period by visiting past correspond-

ing locations that are saved in the system, and thus study
its migratory mobility.

• Adopt a bird: players monitor the activity of a specific
bird for a certain amount of consecutive days. In the
process more information about the species is disclosed,
such as feeding and mating habits. This game scenario
aims to engage players more deeply with caring for the
subject of their study.

In terms of audio interaction, all aforementioned stages,
elements, and scenarios rely on three different modes:

• Constant Listening: players are exposed to the complete
augmented audio environment at any time, and can also
select to isolate specific information.

• Focused Listening: players turn their device like opening
a window to a specific direction and only listen to the
audio information that the device is facing.

• Interactive Listening: players perform specific actions
with the device, such as pressing a virtual button to
record or tilting their device to activate the virtual sound-
scape and/or bring front specialized information.

2.2 Architecture Design
The design of our paradigm’s architecture (fig. 1) is

based on the four stages defined in the scenario, and in-
volves a three-layer IoAuT setup. The Sensing Layer in-
cludes the sensors, and the recording and playback module
in the user’s mobile device, which allow for producing au-
dio content and analyzing phenomena associated with au-
ditory events. The Network Layer is responsible for data
transfer from the Sensing Layer, and the Application Layer
includes the web services and the virtual soundscape con-
struction module.

Focusing on exploring the ARA environment, the ar-
chitecture design segments the concept into two primary
modes. The first mode is designed to facilitate passive in-
teraction, as users walk through the real environment. Af-
ter the desired filters are set through the menu of the mo-
bile app, the sound monitoring mechanism reproduces the
real acoustic environment in real-time, and the playback
mechanism delivers the captured sound, when its source is
in the user’s proximity. All audio components are mixed
together and delivered through the audio headset. An am-
plification coefficient, which is adjustable by the user, is
applied to audio capture for improving the recognition of
bird sound. Once users hear something of interest, they can
enter the second mode and actively search the dynamically
generated virtual 2d map or augmented audio map to locate
points of interest and interact with them.

Once the preview mechanism is derived using the above
procedure, audio recording is implemented into the exist-
ing capture procedure model. The user then responds to this
procedure by annotating the part of the waveform, which
contains the bird sound. A Convolutional Neural Network
(CNN) model embedded in the mobile device checks to
recognize specific bird classes. If the model classifies the
annotating sound to a specific class, then the local save pro-
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cedure is enabled. More specifically, the following data are
stored: i) the annotation of the audio file, ii) the tag of the
bird class, iii) the tag of the time of the event, including
date, year, and hour, and iv) the GPS coordinates that are
captured using the GPS features of the mobile device. As
soon as the local saved data are ready, the final upload pro-
cedure to the web server can be made.

Real Environment

Real Environment

Server

Recording

Reproduction

Amplify

Bird Detector

CNN

Bird Tag Coordinates Tag

Bird C1

Bird Cn

Bird C2

Audio File

Sound Map Database

a: Sensing Layer

Classes

Time Tag

Preview Procedure Capture Procedure

Audio File 
Annotation

Coordinates Tag

Time Tag

Local Save Procedure

Bird Tag
Audio File 
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Coordinates TagTime Tag

Mobile (IoAuT) Device

Sound Map 
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Sound Spatialisation

Sound Scenario 
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Pseudoacoustic 
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ARA Mix

Mobile (IoAuT) Device

Sensors Interaction Control

Mic

Mic

Download Procedure

b: Network Layer

c: Application Layer

Fig. 1: The Concept Architecture: a) Sensing Layer, b) Net-
work Layer, c) Application Layer

The Application Layer is organized in a client-server ar-
chitecture. The mobile app, as the client, requests to down-
load a sound scene by sending the phone position. The
server part manages the data regarding the audio files of
the annotated birds with corresponding tags of bird classi-
fication, GPS coordinates and time. The sound scene data
are imported in the sound scenario constructor, which man-
ages the processes of gestural interaction control, and the
sound spatialization engine, which is responsible for plac-
ing the recordings in virtual space. The variations of sound
scenario constructor and interaction controller shape each
game mode.

2.3 Risk Assessment
Our paradigm stands for a preliminary approach that re-

quires implementation and testing for evaluation and opti-
mization. As a first step we have performed an assessment
of potential risks and we suggest ways that they could be
dealt with.

• Bad data: users could submit sounds that have been
downloaded from the web, or recorded from other prere-
corded playback. This risk can be countered by a) allow-
ing users to make a recording only via the in-app record-
ing tool, and b) performing a frequency range check

to establish that the audio captured is a result of nat-
ural wild-life recorded in situ and not elsewhere. Spe-
cial techniques used in voice anti-spoofing (see results
from https://www.asvspoof.org/) can be also
applied.

• Wildlife disturbance: naive users might disturb the birds’
natural habitat in their attempt to perform the game ac-
tions. The fact that the proposed scenarios rely on cap-
turing audio information, a process which does not re-
quire visual contact with the subject under examination,
reduces that risk.

• Acoustic interference: in connection to the previous risk,
there is the possibility that the playback of the applica-
tion’s audio content interferes with the natural acoustic
environment and its inhabitants. This risk can be elimi-
nated, if the application works only in headphones mode
and does not emit sound from the speakers.

• Data overload: the streaming of too much information
might cause system lag. Towards reducing that risk, the
sounds used for user’s navigation will be stored in the
device, which will receive from the server only playback
specifications. Furthermore, the streaming soundscape
made from the all users’ submissions, will be created
periodically on the server. Each user entering the same
physical area would download the same soundscape au-
dio.

We understand that wildlife disturbance is a complex
and sensitive issue and poses a major challenge in the
gamification of the bird recognition process. Careful de-
sign must be applied to ensure that a set of appropriate in-
structions regarding user behavior is clearly communicated
without thwarting the application’s game aspect. Further-
more, an expert evaluation [44] is intended to take place
and provide valuable insight towards the prevention of pos-
sible negative consequences.

3 TECHNICAL DESIGN SPECIFICATIONS

3.1 Audio Capture
The capture of the real acoustic environment is done

by means of the sound recording features of the device.
The user defines the appropriate recording option accord-
ing to their equipment. The available options include mono
and binaural recording technology. The capture procedure
also involves outputting the monitor audio to the default
playback device. Mono recording uses modules that are
typically available in almost all modern smartphones: the
built-in microphone for detecting sounds of interest, and
a set of headphones as playback acoustic equipment. The
binaural recording option is performed using in-ear micro-
phones embedded on a stereo headset like Sennheiser Am-
beo Smart Headset1. In both options, there is an optional

1Sennheiser AMBEO Smart Headset-Mobile binaural record-
ing headset, URL https://en-de.sennheiser.com/
in-ear-headphones-3d-audio-ambeo-smart-headset,
(Accessed on 03/19/2021)
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Fig. 2: Spectrograms of 14 distinct tropical birds from
Puerto Rico. Taken from [45]

Fig. 3: Time-frequency representation of 4 distinct bird
sounds from [45], with an annotation bounding box cre-
ated by an expert

gain control of the environmental monitoring system for
personalized sound detection procedure (fig.1).

3.2 Bird Call classification
Automatic bird sound classification plays an important

role in monitoring and protecting biodiversity. Recent ad-
vances in machine listening and deep learning models for
bird audio detection provide a novel way for improving
bird call recognition to expert level. The fact that inter-
species bird sounds exhibit such a distinctive spectral struc-
ture, motivated researches to employ typical hand-crafted
time-frequency representations as an input to various deep
learning models. The most prominent one is the usage of
mel-scaled band energies as the time-frequency representa-
tion, which is given as an input to 2D CNNs [45]. Figure 2
shows the distinctive spectral structure of 14 tropical birds.

The most recent example of a Bird audio classifica-
tion model is BirdNet, introduced by Cornell University
[46, 47]. It involves a ResNet-like CNN model, containing
127 layers and 27 million parameters, and capable of iden-
tifying 984 North American and European bird species by
sound. BirdNet achieves a Mean Average Precision (mAP)
of 0.791 for single-species recordings. However, typical
CNNs cannot model long temporal dependencies that are
usually needed in machine listening tasks, such as bird-

audio detection [48, 37]. To address this issue, different
published papers have adopted the Convolutional Recur-
rent Neural Network (CRNN) model [48, 49]. The CRNN
model consists of a series of 2D CNNs, followed by Recur-
rent Neural Networks (RNNs) and a linear layer. A time-
frequency representation of audio is given as an input to the
a CRNN model, and the 2D CNNs learn time-frequency
patterns according to the targeted task (e.g. bird audio de-
tection). Then, the RNNs take as input the output of the
CNNs, and focus on learning temporal patterns. Finally,
the linear layer is fed the output of the RNNs and performs
the classification. The CRNN model achieved high perfor-
mance in DCASE Challenge tasks on bird-audio detection,
ranking among the top 5 systems [48, 50].

3.2.1 Deep learning workflow
In order to implement the bird call classification mod-

ule the typical workflow for training image deep learn-
ing models will be followed. The first important step is to
record the primary data sources, while keeping extensive
metadata about time and location and recording quality.
Sound data must be carefully curated by experts to reflect
also the background sounds of the field under surveillance.
The next steps comprise standard Deep Learning pipelines.
CNNs are applied to classify time-frequency visualization
of bird sounds (see Figure 3), using a hold out valida-
tion set to control the generalization to unknown cases.
There are two major modeling options: i) clip-wise an-
notation/inference, where the model classifies a bunch of
seconds at once, and ii) frame-wise annotation/inference,
where the model outputs prediction for each discrete time
step (e.g. milliseconds).

3.2.2 Delivering the model
A trained CNN model is delivered to the proposed ap-

plication in two ways: i) recognition as a service where a
back-end server (powered by GPU) is used to accept au-
dio chunks, perform the pre-processing and the inference,
and report the classification result and ii) recognition on
the edge-device, where all process is performed on the user
side. Each serving paradigm has pros and cons. Recogni-
tion as a service needs network access and a powerful back-
end server, whereas recognition on the edge can accom-
modate relatively small sized models and has no network
requirements.

3.3 GIS based repository
Since bird call detection will be accompanied by GPS

based geographical coordinate and time stamp, all detec-
tion data can be presented in the form of cartographic GIS
data model. This will allow users to easily locate their find-
ings and the findings of others. GIS data can be aggregated
by zoom levels and give finer grain detection the further
the user zooms in. The basic user interface screen could
be a map with overlaid information about the user’s cur-
rent geo-location and already existing bird call detection.
A side effect of this online collaborative GIS repository
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would be the extraction of migratory journeys of species of
bird as well as the abundance of specific species.

3.4 Augmented Reality Audio
The ARA environment consists of a real and a virtual

acoustic component with the real sound recording being
mixed with the spatial reproduction of the classified cap-
tured birds’ sounds into a pseudoacoustic environment, a
mix that needs to take place as seemlessly as possible. The
importance of a dynamic ARA mix of the gain difference
between the real and the virtual acoustic environment com-
pared to the static mix gain in legacy ARA mix models [51]
has been pointed out in [52]. The comparison of the legacy
and the adaptive ARA mix model has shown that the lat-
ter demonstrated significantly better performance in terms
of auditory perception [53]. Thus, in the proposed frame-
work, we employ this dynamic and adaptive ARA mixing
strategy that focuses on the impact of dynamic fluctuations
of the real and the virtual environment to acoustic percep-
tion, taking in consideration acoustic phenomena, such as
auditory masking.

Furthermore, the location awareness in ARA systems
refers to the capability of a device to determine its location
in terms of coordinates through active or passive human-
computer interaction. Several ARA works have shown the
necessity to utilize spatialization techniques, in order to
combine data extracted from location awareness systems
with virtual sound sources [28, 54]. Our proposed system
includes a spatialization module for positioning the 3d vir-
tual sound sources, a set of sensors including gyroscope,
accelerometer, and GPS, that facilitates gestural interac-
tion, and a headset for reproducing the augmented acoustic
environment. With this setup users are free to move their
head in both horizontal and median plane, and listen to the
entire 3d acoustic space, while transmitting their location,
movement, and gestural activity to the system’s engine.

4 CONCLUSION

We have presented a framework for enriching a Citizen
Science project in a Smart City environment with game ele-
ments using Internet of Sound technologies. The aim of our
inter-disciplinary approach is to seek ways to enhance the
public’s motivation for participation, engagement in the ex-
perience, and deeper understanding of the subjects and pro-
cesses at hand. We focused on Bird Call Recognition and
Monitoring collaborative activities, in which participants
can report and study the state and flux of the urban aerial
ecosystem in the context of playful scenarios. In accor-
dance with modern learning theories we propose the use of
game elements including targeted quests, structured levels,
and progress points and badges. User interaction relies on
Internet of Audio Things mechanisms including recording
and submitting audio data, and exploring the augmented
environment through GIS-related navigation and gestural
performance with the mobile device. Sound classification
takes place through a CNN network, and the augmented

soundscape is constructed by an adaptive ARA mixing sys-
tem.

A core aspect of CS and SC is to focus on citizens’ prob-
lems and needs. The users of our proposed system are seen,
on the one hand, as active units that exploit the benefits of
the enhanced world around them, and, on the other, as in-
terconnected members of the community that collaborate
with each other to improve that world. SC facilitate a safe
environment to observe, reflect, and experiment, whereas
CS provides with specific problems to solve and thus con-
tribute to the scientific community. We hope that our pro-
posed framework will serve as future reference towards en-
hancing the appeal of CS to the involved stakeholders, and
providing novel ways to realize personal and collective in-
teractive experiences based on a network of audio devices
able to collect, evaluate, process and distribute acoustic
data in urban environments.
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Abstract
Deep neural networks can be converted to multi-exit architectures by inserting early

exit branches after some of their intermediate layers. This allows their inference pro-
cess to become dynamic, which is useful for time critical IoT applications with stringent
latency requirements, but with time-variant communication and computation resources.
In particular, in edge computing systems and IoT networks where the exact computa-
tion time budget is variable and not known beforehand. Vision Transformer is a recently
proposed architecture which has since found many applications across various domains
of computer vision. In this work, we propose seven different architectures for early
exit branches that can be used for dynamic inference in Vision Transformer backbones.
Through extensive experiments involving both classification and regression problems,
we show that each one of our proposed architectures could prove useful in the trade-off
between accuracy and speed.

1 Introduction
Deep neural networks have achieved immense success in recent years [15], however, they
commonly consist of many interconnected layers containing millions of parameters which
require high computational resources and cause slow inference speed. Dynamic inference
methods [8] allow deep models to modify their computation graph during inference in order
to alleviate this problem. One such method is early exiting [20, 21], leading to multi-exit
architectures, where early exit branches are inserted after intermediate hidden layers of the
backbone network and provide early results, albeit with less accuracy compared to the final
result of the backbone network.

Early exits are useful in computationally restricted settings such as mobile and edge
computing, where early results can be used for “easy” inputs to save resources. Addition-
ally, multi-exit architectures can be helpful in anytime prediction settings where the inference
process may be interrupted at any time and the network is expected to provide a response
even if it was interrupted before completion. Examples of anytime prediction settings are
distributed environments such as edge computing systems and IoT networks, where the la-
tency depends on the communication channels, which means the exact computation time

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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budget is not known beforehand and varies over time. Here, the latest result provided by a
multi-exit architecture can be given as output whenever the network is interrupted.

Vision Transformer [4] is a recently proposed architecture for computer vision which has
since been applied to various problems, such as image classification, object detection, depth
estimation, and many more [12]. To the best of our knowledge, multi-exit Vision Trans-
former architectures have not yet been studied in the literature, which limits the application
of Vision Transformers in mobile and edge computing. In this work, we propose seven
different architectures for early exit branches that can be inserted into Vision Transformer
backbones. Through extensive experiments on both image classification and crowd count-
ing, the latter being a regression problem, we show that depending on the particular problem
at hand, each of these architectures has the potential to be useful in the trade-off between
classification accuracy and inference speed. Our code will be made publicly available at
https://gitlab.au.dk/maleci/multiexitvit.

2 Related Work

2.1 Multi-Exit Architectures
A deep neural network (DNN) can be formulated as a function f (X) = fL( fL−1(... f1(X)))
where X is the input, L is the number of layers in the DNN and fi is the differentiable oper-
ator at layer i. The output of layer i is denoted by hi = fi(hi−1) and θi refers to the trainable
parameters of fi(·). The training process for this DNN can be formulated as shown in Equa-
tion (1) where θ =

⋃L
i=1 θi is the set of all trainable parameters of the DNN, {Xn,yn}N

n=1 is
the set of training samples and l(·) is a loss function.

f ∗ = argmin
θ

N

∑
n=1

l(yn, f (Xn)) (1)

In order to convert a DNN to a multi-exit architecture, an early exit branch cb(hb) = yb is
placed at every selected branch location b∈ B⊆{1, ..,L}, where cb is the classifier or regres-
sor producing the early result yb. The schematic illustration of a multi-exit architecture is
shown in Figure 1 (a). Since there are multiple outputs in a multi-exit architecture, its train-
ing procedure is not as straightforward as Equation (1). Three major strategies for training
multi-exit architectures exist in the literature [21]. The classifier-wise strategy freezes the
backbone, meaning the parameters θ will not be modified, and trains the branches separately
and independent of each other or the backbone. In the end-to-end strategy, the loss function
lt = l +∑b∈B λblb combines the losses lb of the early exit branches with the backbone’s loss
and trains the entire multi-exit architecture simultaneously. In this strategy, the contribution
of the loss of the branch at location b is captured by weight score λb. Finally, the layer-wise
strategy first trains the layers up to and including the first early exit branch. Subsequently,
the previous layers are frozen and the rest of the layers up to and including the second branch
are trained, and this operation is repeated until the entire backbone has been trained.

In the end-to-end and layer-wise strategies, the number of branches and their placement
create trade-offs between the accuracy of different exits. In addition, with the end-to-end
strategy, the weight scores introduce new hyper-parameters. In contrast, no trade-offs or new
hyper-parameters need to be considered with the classifier-wise strategy. However, since in
this case the parameters of the backbone remain unchanged, fewer parameters are affected
during the training of the branches. In this work we investigate all three training strategies.
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(a) (b)

Figure 1: (a) Schematic illustration of a multi-exit; and (b) Vision Transformer architecture.

It is important to note that branches placed later in the networks do not necessarily result
in a higher accuracy compared to previous branches. We use the term impractical in order
to refer to such branches, and the term practical for branches with a higher accuracy than
all previous branches. The usage of impractical branches would not be sensible since earlier
branches with a higher accuracy exist.

2.2 Vision Transformer
Vision Transformer (ViT) [4] is an adaptation of the Transformer architecture [25] for com-
puter vision problems. At the core of the Transformer is the self-attention layer, which takes a
sequence X = (x1, . . . ,xn)∈Rn×d as input and outputs the sequence Z = (z1, . . . ,zn)∈Rn×dv ,
which can be formulated as Equation (2), where Q = XW Q, K = XW K and V = XWV are
query, key and value matrices, respectively, in which W Q, W K and WV are learnable weight
matrices [4]. dk = dq are the size of the vectors in query and key matrices.

Z = softmax
(

QKT
√

dk

)
V (2)

In order to capture more than one type of relationship between the entities in the se-
quence, self-attention is extended to multi-head attention by concatenating the output of
several self-attention blocks, each with its own set of learnable parameters. Figure 1 (b) de-
picts the Vision Transformer architecture, where initially an input image is cut into several
image patches. A sequence of patch embeddings is then formed by projecting each patch
and concatenating a positional embedding to the resulting vector. An extra learnable classi-
fication token is also appended to the sequence. The sequence passes through L Transformer
encoder layers, each containing multi-head attention layers among other operations. Finally,
the output vector corresponding to the classification token is passed on to an MLP dubbed
classification head to obtain the final result.

2.3 Attention-Free, MLP-Based Architectures
Several MLP-based architectures for computer vision that also operate on sequences of im-
age patches have been recently proposed [6]. The aim of these architectures is to reduce the
computational cost of ViT by removing the attention mechanism, while achieving a com-
parable performance by preserving a global receptive field similar to that of ViT. Since the
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(a) (b)

Figure 2: (a) MLP-Mixer architecture; and (b) ResMLP architecture.

intermediate representations in the hidden layers of ViT is in the form of a sequence of
patches, it is simple to use the building blocks of these MLP-based architectures as early exit
branches placed on ViT backbones. These building blocks create more lightweight branches
compared to the Transformer encoders in ViT.

One such architecture called MLP-Mixer [23] is shown in Figure 2 (a). Each mixer
layer in MLP-Mixer consists of token mixing and channel mixing operations, which are
formulated as Equations (3a) and (3b), where f1(·) . . . f4(·) are linear layers and σ(·) is the
GELU activation function. The output of the final mixer layer is passed on to a global average
pooling layer and then a fully connected layer.

U = X + f2(σ( f1(Norm(X)T )))T (3a)
Y =U + f4(σ( f3(Norm(U)))) (3b)

A similar architecture called ResMLP [24] is shown in Figure 2 (b). Each ResMLP layer
consists of a cross-patch sublayer and a cross-channel sublayer, which are formulated as
Equations (4a) and (4b). In ResMLP, normalization is carried out using an affine transfor-
mation instead of layer normalization, as shown in Equation (4c) where α and β are learn-
able vectors that scale and shift the input. Similarly, the output of the final ResMLP layer is
passed on to a global average pooling layer and then a fully connected layer.

U = X +Norm( f1(Norm(X)T )T ) (4a)
Y =U +Norm( f3(σ( f2(Norm(U))))) (4b)
Norm(X) = Aff α,β (X) = Diag(α)X +β (4c)

3 Multi-Exit Vision Transformer
We assume a high-performing ViT backbone is available for the problem at hand, and the
goal is to convert this backbone to a multi-exit architecture in order to allow for dynamic
inference. We propose seven different architectures for the early exit branches added after
intermediate layers of a ViT backbone. The most intuitive approach, which we call MLP-
EE, is to add an MLP to the classification token of the intermediate layer, similar to the
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classification head in the ViT backbone. Even though MLP-EE is very lightweight, it may
not contain enough parameters and layers to extract useful features, particularly for exits
placed early. Moreover, it does not process tokens other than the classification token.

Another approach is to convert the sequence of token vectors in the intermediate layers
of the ViT backbone to a 2D grid and further process them using convolutional filters, lead-
ing to 3 different architectures we call CNN-Ignore-EE, CNN-Add-EE and CNN-Project-EE,
each handling the classification token in a different way. Note that even though the interme-
diate layer is in the form of a sequence, each vector in the sequence corresponds to a patch
of the input image, therefore putting the vectors back in a 2D grid simulates their original
neighborhood which is essential when using convolutional filters that have a local receptive
field. The motivation behind this approach is that convolutional filters are the current ap-
proach in the literature for early exiting [10, 21, 22] and can act as a baseline for the other
proposed architectures. Furthermore, convolutional filters introduce low overhead in terms
of parameters and computation. Additionally, a fusion of CNNs that can capture local struc-
ture very well but can not handle long range interactions, with ViTs which can process long
range interactions, seems natural and may combine the advantages of both [6].

On the other hand, the local receptive field of CNN-based early exits may prove to be a
drawback. An alternative that can overcome this limitation is using the Transformer encoder
layer instead of the convolutional filters, which we call ViT-EE. Indeed, it has been shown
that Transformer encoder layers can create superior early exits for CNN backbones by intro-
ducing a global receptive field [2]. However, since the layers of ViT backbones already have
a global receptive field, it is not clear whether ViT-EE will have the same advantage over
CNN-based early exits in ViT backbones as well. Another advantage of using Transformer
encoder is the simplicity of its structure, which means it can handle various other data types
such as point-clouds and even cross-modal data [2, 6]. The main drawback of ViT-EE is its
high overhead, however, the building blocks of the recently proposed attention-free MLP-
based architectures can serve as more lightweight alternatives that still maintain a global
receptive field and structure simplicity, leading to ResMLP-EE and MLP-Mixer-EE.

Formally, the output of Transformer encoder b, denoted by Pb, consists of patch embed-
dings pb

1, . . . , pb
N corresponding to the input image patches, as well vector pb

0 corresponding
to the classification token. Since the shape of the intermediate representations is the same
for all of the hidden layers, without loss of generality, we assume that the early exit branch is
to be placed after Transformer encoder b. In MLP-EE, shown in Figure 3 (a), Pb is normal-
ized to obtain P̄b = Norm(Pb). Subsequently, an MLP consisting of three dense layers with
two dropout layers in between takes p̄b

0 as input, where P̄b = (p̄b
0, . . . , p̄b

N), and outputs the
early result. The MLP layers in all our proposed architectures have the same three layers. In
ViT-EE, shown in Figure 3 (b), Pb is given as input to a Transformer encoder layer [2]. The
output of the Transformer encoder is then normalized and passed on to an MLP, similar to
the previous architecture.

In CNN-based early exits, the N patch embeddings pb
1, . . . , pb

N can be reshaped into a ten-
sor Cb ∈R

√
N×

√
N×dv , akin to an intermediate representation in a CNN backbone, with height

and width of
√

N and dv channels, and then passed on to a convolution layer, a max pooling
layer and an MLP to obtain the early result. However, it is not clear what should be done with
classification token p̄b

0. A similar situation arises in dense prediction using Vision Transform-
ers, where three ways for dealing with the classification token are proposed [19]. In CNN-
Add-EE, the classification token is added to every patch embedding, leading to C̄b = (pb

1 +
pb

0, pb
2 + pb

0, . . . , pb
N + pb

0); in CNN-Project-EE, the classification token is concatenated to ev-
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(a) (b) (c) (d)

Figure 3: (a) MLP-EE; (b) ViT-EE; (c) MLP-Mixer-EE; and (d) ResMLP-EE early exit
branch architectures.

(a) (b) (c)

Figure 4: (a) CNN-Add-EE; (b) CNN-Project-EE and (c) CNN-Ignore-EE early exit branch
architectures.

ery patch embedding, leading to C̄b = (concat(pb
1, pb

0),concat(pb
2, pb

0), . . . ,concat(pb
N , pb

0));
and in CNN-Ignore-EE, the classification token is ignored and discarded, leading to C̄b =Cb.
These three alternative architectures are depicted in figure 4.

As previously mentioned, the building blocks of attention-free MLP-based architectures
can be low-overhead alternatives for ViT-EE which uses a Transformer encoder layer. Figure
3 (c) and (d) shows the MLP-Mixer-EE and ResMLP-EE early exit branch architectures,
respectively. Note that similar to the original MLP-Mixer and ResMLP architectures, the
output of the mixer layer and the ResMLP layer are passed on to a global average pooling
layer.

4 Results
For the image classification experiments, we use CIFAR-10, CIFAR-100 and Fashion MNIST
datasets [14, 26]. We use ViT-B/16 architectures with the original pre-trained weights pro-
vided by the authors [4] as backbones, and we train them on our target datasets using a
cross-entropy loss function. For the regression experiments, we investigate crowd counting,
which is the problem of counting the total number of people present in a given image [5].
We use DISCO [9] as the dataset and TransCrowd [17] which is a ViT-based architecture as
the backbone. Mean absolute error (MAE) is commonly used to evaluate the accuracy of
crowd counting models [3]. All three backbones have 12 Transformer encoder layers.

All our models were trained using the Adam optimizer [13] with learning rates of {10−3,
10−4, 10−5} and the best result is selected. The learning rate is reduced by a factor of 0.6 on
plateau with a tolerance of 2 epochs, and an early stopping mechanism with a tolerance of 5
epochs is used.

Note that while early exits have been recently attached to high-performing CNN back-
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bones [1, 2, 7], there is no prior work for early exits on Vision Transformer backbones. Since
the performance obtained by Vision Transformer backbones is improved by a large margin,
we omit listing the comparison with early exits on CNN backbones in the following results.

4.1 Classifier-Wise
With the classifier-wise training strategy, since the branches do not affect each other or the
backbone, we place and train early exit branches with each of our proposed architectures at
every single layer in the backbone. For each early exit branch, we record the accuracy of
its early results as well as the total FLOPs up to and including the branch. The results are
depicted in Figure 5, where all practical early exits are circled. In addition, the accuracy of
the final exit of the backbone is shown in these figures.

These results can be used to select a collection of lightweight high-performing branches.
With dynamic inference, it is desirable for the model to be as fine-grained as possible, there-
fore, with the classifier-wise strategy where placing more branches does not affect other
branches or the backbone, it is desirable to place as many branches as possible on the back-
bone. To make this more clear, imagine a scenario where only two exit options are avail-
able: option A with 80% accuracy and 3B FLOPS, and option B with 90% accuracy and 6B
FLOPS. If the computation budget at hand is 5B FLOPS, the only possible option to choose is
A, resulting in 80% accuracy. However, with a finer-grained model that also includes option
C with 85% accuracy and 4B FLOPS, choosing option C leads to 85% accuracy. Hence we
examine all possible branch locations: if there exists a single practical branch at a location,
that branch should be added at that location; if there are no practical branches at a location,
then no branches should be added there, since more accurate and more lightweight exits are
available; and if there are more than one practical branches at a location (for instance, with
the DISCO dataset in Figure 5 (a), both CNN-Ignore-EE and CNN-Project-EE make practi-
cal branches at layer 2) it means that there is a trade-off between accuracy and computation
at that location, and the proper branch should be selected based on the particular application.
Alternatively, it is possible to deploy multiple branches at the same location simultaneously,
and exit the one that fits the budget during inference. Note that with the classifier-wise strat-
egy, there can be different branch types on the same backbone, for instance, there can be a
CNN-Add-EE branch at location 1 and a ViT-EE branch at location 2.

Several observations can be made from these results. First, all of our proposed architec-
tures create at least one practical branch. As expected, MLP-EE does not contain enough
parameters and layers to extract useful features in early locations on its own, and thus per-
forms poorly, while it catches up in the later locations where the features extracted by the
intermediate layers can compensate. Furthermore, MLP-EE only processes the classification
head, which contains only low-level features in very early layers. However, MLP-EE always
creates the first practical branch as it is the most lightweight. Secondly, CNN-based branches
outperform other types in the first few locations. This is likely because the fusion of convo-
lutional layers that capture local interactions well, with the global attention of the backbone,
combines the best of both worlds. However, this effect seems to fade in later locations,
perhaps since several layers of the backbone are able to capture both local and global inter-
actions fairly well. In addition, CNN-Ignore-EE outperforms other CNN-based early exits
in most of these early cases, as the classification token in the very early layers contains only
low-level features. Thirdly, aside from the very early locations where CNN-based branches
dominate, ResMLP-EE performs better in classification problems, while ViT-EE performs
better in crowd counting. Evident from the use of visual attention mechanisms and dilated
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convolutions in many high-performing models for crowd counting [5], global information
such as perspective plays an important role in crowd counting, therefore, ViT-EE which can
capture multiple types of attention through the use of the multi-head attention layer in Trans-
former encoder, outperforms ResMLP-EE which does not include a mechanism for handling
multiple types of attention. Fourthly, observe that MLP-Mixer-EE outperforms ResMLP-EE
in most locations in the crowd counting cases. This is because the affine transformation in
ResMLP can be used instead of normalization when the training is stable [24], however, with
crowd counting, the training process is not as stable as image classification.

Note that in the last six locations in CIFAR-10 and Fashion MNIST cases, the differ-
ences between the performance of different branch types are minuscule, and therefore less
informative. Moreover, observe that unlike multi-exit architectures with CNN backbones,
branches placed later on a ViT backbone do not necessarily provide a higher accuracy com-
pared to previous branches. This is because in CNN backbones, the network has a very local
receptive field in the early layers, and the receptive field gradually increases throughout the
network, whereas ViTs have a global receptive field from the very first layer. This means
that the accuracy of later branches of CNN backbones is expected to increase since the re-
ceptive field has increased, whereas in ViT backbones, later intermediate layers do not have
any advantages in terms of the receptive field, thus their branches may obtain a lower accu-
racy. Finally, note that in the DISCO experiments, some of the very late early exit branches
achieve a lower MAE compared to the final exit. This is because the MLP in our proposed
architectures consists of three layers while the MLP in the ViT-B/16 backbone has one.

4.2 End-to-End and Layer-Wise
Unlike the classifier-wise training strategy, it is not possible to conduct a comprehensive
study of the end-to-end and layer-wise strategies, since there are 2L−1 − 1 possible branch
placements. In addition, the end-to-end strategy can have infinitely many weight values for
each of the placements. Therefore, for these training strategies, we only investigate two
cases; one where a single early exit branch is placed after the sixth layer; the other where
three branches are placed after the third, sixth and ninth layers. In both cases, the contribution
of the final exit to the loss is double the contribution of the early exits.

Results are summarized in Tables 1 and 2. In all image classification cases, final accuracy
is decreased compared to the backbones without early exits, which have an accuracy of
98.31% for CIFAR-10, 91.24% for CIFAR-100 and 95.00% for Fashion MNIST. However,
in crowd counting, the final MAE is improved from the original 11.07 when a single MLP-
EE, ViT-EE or MLP-Mixer-EE branch is used. Similar to the classifier-wise strategy, in both
cases involving the DISCO dataset, MLP-Mixer-EE outperforms ResMLP-EE for the same
reason explained above. Furthermore, ViT-EE outperforms other branch types in most cases,
particularly when there are 3 exit branches, and performs very high in others. Since the end-
to-end training strategy affects the parameters of the backbone, perhaps ViT-EE branches
have the least negative impact on the backbone due to the similarity of their architecture with
the layers of the backbone. This is further supported by the fact that CNN-based branches
whose architectures differ the most from that of the backbone, typically perform much worse.

With the layer-wise strategy, we encounter a problem. Since Vision Transformers are
data-hungry [12], they need to be pre-trained on very large datasets. For the first step of
the layer-wise strategy where all layers up to and including the first early exit branch are
trained, pre-trained weights exist, therefore, the training procedure achieves results with a
high accuracy on par with their end-to-end counterpart. For instance, in the case of CIFAR-
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(a)

(b)

(c)

(d)

Figure 5: Performance of different multi-exit architectures on (a) DISCO; (b) CIFAR-10; (c)
CIFAR-100 and (d) Fashion MNIST datasets trained with classifier-wise strategy. Practical
early exit branches are circled. In order to highlight the differences, early exits with MLP-EE
architecture are removed in (b) and (d) and branches 1 to 6 and 6 to 11 are separated.
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Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. Fasion MNIST Acc. DISCO MAE FLOPS
Early@6 Final Early@6 Final Early@6 Final

MLP-EE 94.90% 96.73% 81.12% 87.45% 94.47% 94.85% 11.04 10.72 28.04
CNN-Ignore-EE 95.95% 97.10% 77.97% 85.90% 94.43% 94.67% 21.88 11.09 28.10
CNN-Add-EE 94.94% 96.87% 75.75% 86.96% 94.22% 94.77% 18.46 11.24 28.10

CNN-Project-EE 94.66% 96.80% 77.95% 86.89% 94.33% 94.69% 18.23 11.29 28.16
ViT-EE 95.89% 96.99% 85.23% 89.44% 94.39% 94.84% 11.06 11.01 32.65

MLP-Mixer-EE 95.78% 97.07% 81.72% 87.53% 94.41% 94.88% 13.03 10.93 31.11
ResMLP-EE 95.44% 97.35% 82.41% 87.57% 94.38% 94.95% 16.99 11.36 31.02

Table 1: Performance of multi-exit architectures with one branch, trained with end-to-end
strategy. The last column shows the FLOPS up to and including the branch.

Branch Arch. CIFAR-10 Acc. CIFAR-100 Acc. DISCO MAE
Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final Early@3 Early@6 Early@9 Final

MLP-EE 87.21% 94.48% 95.64% 96.19% 61.00% 79.83% 84.42% 86.46% 13.77 11.54 11.55 11.44
CNN-Ignore-EE 91.44% 95.68% 96.55% 96.56% 65.08% 79.35% 84.74% 86.32% 20.99 23.65 20.88 11.42
CNN-Add-EE 90.27% 95.63% 96.80% 96.94% 62.66% 78.86% 85.11% 87.01% 18.33 19.25 18.92 11.77

CNN-Project-EE 91.19% 95.77% 96.81% 96.99% 64.26% 78.63% 84.47% 86.19% 21.25 21.46 17.99 11.49
ViT-EE 92.35% 96.01% 97.25% 97.33% 74.73% 84.31% 87.43% 87.88% 12.76 11.27 11.59 11.18

MLP-Mixer-EE 91.16% 95.99% 96.96% 96.99% 66.24% 81.84% 86.68% 87.29% 12.24 13.95 15.29 11.46
ResMLP-EE 92.53% 95.87% 96.76% 96.86% 70.45% 82.61% 87.36% 87.85% 14.15 14.71 17.05 11.09

Table 2: Performance of multi-exit architectures with 3 branches, trained with end-to-end
strategy.

10, CNN-Ignore-EE achieves 95.97% accuracy at the sixth layer. However, for subsequent
steps, the original pre-trained weights can not be used since the weights of earlier layers have
changed. We tested the training process with no pre-trained weights, with the original pre-
trained weights as well as pre-trained weights from the end-to-end strategy, however, neither
achieved a high accuracy.

5 Conclusion and Future Direction

We proposed seven architectures for early exiting Vision Transformer backbones, provided
the motivations behind each of these architectures, and showed that depending on the branch
locations, training strategy and the problem at hand, any of our proposed architectures can
prove useful. Furthermore, we provided recommendations on selecting lightweight high-
performing branches based on the results of our experiments. We discussed the role of archi-
tectural elements such as local and global interactions, receptive field, classification token,
support for multiple types of attention, normalization and similarity of branch architecture
with the backbone layers, on the performance of multi-exit ViT architectures.

A potential future research direction would be to check whether other recent architectures
for computer vision that operate on a sequence of image patches such as Perceiver [11],
gMLP [18] and FNet [16] produce suitable early exits for Vision Transformer backbones.
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Abstract

The COVID-19 pandemic has been ongoing since March 2020. While social distancing regulations can slow the
spread of the virus, they also directly affect a basic form of non-verbal communication, and there may be longer term
impacts on human behavior and culture that remain to be analyzed in proxemics studies. To obtain quantitative results
for such studies, large numbers of personal and/or media photos must be analyzed. Several social distance monitoring
methods have been proposed for safety purposes, but they are not directly applicable to general photo collections with
large variations in the imaging setup. In such studies, the interest shifts from safety to analyzing subtle differences in
social distances. Currently, there is no suitable benchmark for developing such algorithms. Collecting images with
measured ground-truth pair-wise distances using different camera settings is cumbersome. Moreover, performance
evaluation for these algorithms is not straightforward, and there is no widely accepted evaluation protocol. In this
paper, we provide an image dataset with measured pair-wise social distances under different camera positions and
settings. We suggest a performance evaluation protocol and provide a benchmark to easily evaluate such algorithms.
We also propose an automatic social distance estimation method that can be applied on general photo collections. Our
method builds on object detection and human pose estimation. It can be applied on uncalibrated single images with
known focal length and sensor size. The results on our benchmark are encouraging with 91% human detection rate
and only 38.24% average relative distance estimation error among the detected people.

Keywords: Social Distance Estimation, Person Detection, Human Pose Estimation, Performance Evaluation, Test
Benchmark, Proxemics

1. Introduction

Social distances are a part of non-verbal human com-
munications and, naturally, there are personal and cul-
tural differences in how people feel about their personal
space and interpret the interpersonal distance in differ-
ent situations. The research field under social studies
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concerning these phenomena related to space is known
as proxemics (Hall et al., 1968). Despite the long history
of studies in the field (Hall, 1966; Cook, 1970; Harri-
gan, 2005), it remains difficult to carry out quantitative
analysis on the actual social distances in the natural sit-
uations outside of monitored test conditions, e.g., when
people are spending their free time with their families.
One way to approach this problem is visual social dis-
tancing (VSD), where the interpersonal distances are
automatically measured from the images or videos. A
comprehensive overview of the VSD problem, includ-
ing the main challenges and connections to social stud-
ies, is provided in (Cristani et al., 2020).

Social distancing has recently received a lot of atten-
tion due to the outbreak of SARS-CoV-2 virus (Gor-
balenya et al., 2020) that was declared as a global pan-
demic by the World Health Organization (WHO) in
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March 2020. The pandemic, also known as the COVID-
19 pandemic is still ongoing as of November 2021 and
there has been a total of about 253 million confirmed
cases and 5.1 million deaths worldwide within the pe-
riod of December 2019-November 2021 (Organization,
b). Social distancing plays an important role in slowing
down the spread of the virus. WHO recommends to stay
at least one meter apart from other people in order to
reduce the risk of infection (Organization, a). Automat-
ically monitoring the social distances is important for
safety reasons, but it is also interesting as a phenomenon
that has globally changed basic human behavior (Zhang
et al., 2021; Di Corrado et al., 2020; Eden et al., 2020).
After the pandemic eases, there are many interesting re-
search questions in proxemics and other fields to look
into: how the social distancing affected every-day life,
what kind of significant differences were there between
different countries, can the differences be linked to the
spreading speed, will there be any long-term changes
that will stay after the pandemic.

While there are methods and sensors available for au-
tomatic monitoring of social distances (Nguyen et al.,
2020), the analysis of deeper and longer term social
and cultural impacts of the social distancing regula-
tions requires looking into different source data, such
as personal photo collections and pictures published in
newspapers and magazines. For monitoring purposes,
it is possible to use fixed camera setup and location,
take videos or simultaneous images from multiple view-
points, and use additional sensors such as depth or ther-
mal cameras. All these can make the social distance
estimates more accurate but are not available for typi-
cal personal and media photos that are not taken with a
fixed setup, but have varying parameters such as focal
length, sensor size, lighting conditions, and pitch angle.
An example of an image that could be found in a per-
sonal or media photo collection, but not in a monitoring
or surveillance setup is shown in Fig. 1. At the same
time, in social and proxemics studies the focus shifts
from monitoring whether people are obeying the regu-
lations to more subtle differences in the social distances
and how they are represented in the media.

During the pandemic, most effort has been under-
standably on the monitoring side, and currently there
is no suitable benchmark for developing and testing al-
gorithms for accurate social distance analysis from sin-
gle images having varying camera parameters. This
can be due to the laboriousness of gathering varying
images with measured pair-wise distances between hu-
mans. At the same time, there is no clear protocol for
measuring the algorithm performance in this task. To
address these lacks, we provide a social distance evalu-

Figure 1. An example of an image that represents a style,
which is common in personal and media photography, but not
in monitoring.

ation test benchmark including a protocol for mapping
the detected pair-wise distances into the correspond-
ing ground truth distances, a suggested overall perfor-
mance metric, and 300 test images taken with vary-
ing setups: indoors-outdoors, sitting-standing, varying
camera angles using 2 different cameras and 7 different
focal lengths. The photos were taken by a professional
photojournalist to follow the typical media photography
style. We publish also easy-to-use codes for evaluating
novel methods and make it easy to integrate additional
test photos.

We also propose a social distance estimation algo-
rithm that can be applied on any uncalibrated single im-
age taken by a regular camera as long as focal length
and sensor size are known. It combines object detec-
tion and human pose estimation with projective geom-
etry using image parameters (focal length, sensor size)
and pixel locations. While the results are promising, we
also point out some of the main remaining challenges
for future development.

The rest of the paper is organized as follows. Sec-
tion 2 introduces related work on social distancing and
automatic distance evaluation. Section 3 describes the
provided test benchmark and the proposed evaluation
protocol. Our method for automatic social distance es-
timation is described in Section 4. Section 5 provides
our experimental setup and results and, finally, Section 6
concludes the paper.

2. Related Work

Effectiveness of social distancing on slowing down
the spread of the COVID-19 virus has been widely stud-
ied (Vokó and Pitter, 2020; Sun and Zhai, 2020; Prem
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et al., 2020; Courtemanche et al., 2020; Abouk and Hey-
dari, 2021; Balasa, 2020), and these studies confirm
that social distancing measures are successful in reduc-
ing the growth rate of the virus. Therefore, monitoring
and regulating the social distancing behaviour between
people has played a crucial part in dampening the ef-
fects of the virus. In addition to directly effecting the
virus spread, social distancing has globally changed hu-
man behavior and interactions leading to different side-
impacts, e.g., on mental health (Ford, 2020; Jacob et al.,
2020), physical activity (Di Corrado et al., 2020; Jacob
et al., 2020), mood and memory (Zhang et al., 2021),
and media consumption (Eden et al., 2020). Such im-
pacts and their cross-cultural (Al-Hasan et al., 2020a,b;
Doogan et al., 2020) and cross-sectional (Jacob et al.,
2020; Lee et al., 2021) differences continue to draw at-
tention from researchers in many fields.

Social distance monitoring for safety reasons can be
eased by automatic social distance estimation from im-
ages and videos. A comprehensive survey in (Nguyen
et al., 2020) explores the wide array of current technolo-
gies that can be used to monitor and encourage social
distancing. A commercial pedestrian tracking system
was used in (Pouw et al., 2020) to detect passengers
in crowded environments and estimate the distances be-
tween them by using a graph based approach. A study
in (Ahmed et al., 2021) proposed using a deep learn-
ing based model with YOLOv3 (Redmon and Farhadi,
2018) as its backbone to monitor social distancing vi-
olations from overhead view cameras. In (Punn et al.,
2020), the authors used YOLOv3 and DeepSort (Wojke
et al., 2017; Wojke and Bewley, 2018) to detect bound-
ing boxes of people in RGB images and by utilizing
these bounding boxes, they detected the cases of social
distance violations.

A work in (Aghaei et al., 2021) proposed to use skele-
ton keypoints generated from human body pose estima-
tion algorithms (Cao et al., 2019; Simon et al., 2017;
Cao et al., 2017; Wei et al., 2016) to estimate the dis-
tance between people from uncalibrated images. The
authors used manual tuning to estimate the homogra-
phy matrix (Young, 1982) of an image plane and then
used leg, arm, and torso lengths of the people along-
side with the homography matrix to draw a safe space
circle underneath every detected person. Then, any col-
lision between the estimated safe space circles was re-
ported as a social distance violation. Similarly, the work
in (Fabbri et al., 2020) takes advantage of manual ho-
mography matrix calibration to estimate social distances
for fixed cameras. Separating the work from (Aghaei
et al., 2021), bounding boxes obtained from the ob-
ject detection model (Zhou et al., 2019) and the height

of these boxes are used as reference points to estimate
the locations of the people. Moreover, a small CNN
is used to estimate the feet locations even when they
are not visible. The output of this CNN is used to cor-
rect the height of the bounding boxes in cases of oc-
clusions. Another similar study in (Yang et al., 2020)
also used bounding boxes obtained from object detec-
tors (Alexey Bochkovskiy, 2020; Ren et al., 2016) to
estimate locations of the people from surveillance cam-
era footage by using the homography matrix that is cal-
culated from the known extrinsics.

The work in (Bertoni et al., 2021) used a feed for-
ward neural network that was trained on the intrinsic
parameters of the camera and the keypoints obtained
from a pose estimation model. The model outputs the
predicted 3D locations as well as the orientations of
the detected people. While detecting safe distance vi-
olations, not only the proximity but also the orienta-
tion of the people with respect to one another is con-
sidered. Finally, the study in (Morerio et al., 2021) pro-
posed a neural network architecture that takes a pair of
2D body keypoints as input and outputs the estimated
pair-wise distance. The two sets of body keypoints are
converted into feature vectors by an encoder block. The
vectors are then concatenated and given as input to a
regressor block, followed by a fully connected layer
that was trained on the public datasets Epfl-Mpv-VSD
(Fleuret et al., 2008), Epfl-Wildtrack-VSD (Chavdarova
et al., 2018), OxTown-VSD (Benfold and Reid, 2011)
and Kitti (Geiger et al., 2012) to estimate pair-wise dis-
tances. The output of the regressor block is also used
as input to another branch with a gradient reversal layer
(Ganin et al., 2016) to estimate the camera’s tilt angle
and height from the ground plane in order to make the
estimations more robust to variations in camera view-
points. The method works on any single uncalibrated
image.

Most of the introduced works approach automatic so-
cial distance estimation as a monitoring or surveillance
task, where the goal is to prevent social distance regula-
tion violations. To this end, they apply additional sen-
sors, use predefined camera settings, and/or manually
define a homography matrix for a certain environment.
While such approaches can improve the social distance
estimation accuracy, they are not feasible when the pur-
pose is to analyze the impacts of social distances from
personal or media photo collections.

Moreover, the above-mentioned studies approach the
automatic social distance estimation problem as a bi-
nary classification problem where they aim to classify
the pair-wise distances between people either as safe or
unsafe, depending on a given threshold. Classifying dis-
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tances in a binary manner has a high tolerance for dis-
tance estimation errors. For example, if the threshold
for safe distance is set to 2 meters, the actual distance
between a pair of people is 1.9 meters, and a method
estimates that distance as 0.1 meter, the percentual dis-
tance estimation error would be 94.7%, but a binary
classification approach would still correctly label the
situation as a social distance violation. Furthermore,
the binary approach does not provide any additional in-
formation on the severity of the violations in different
situations which may be relevant information for subse-
quent analysis.

A common pattern observed in most of the machine
learning based social distance estimation methods (with
the exception of at least (Aghaei et al., 2021; Morerio
et al., 2021; Bertoni et al., 2021) that use keypoints of
the human body) is that they rely on the bounding boxes
drawn by object detectors to detect social distance vio-
lations. Although the current object detectors are accu-
rate in detecting objects, the bounding boxes are gener-
ally loosely drawn around these objects. Thus, it is not
reliable to use only the bounding box information for
estimating exact distances between people as it is not
possible to infer accurate 3D location estimates from
the bounding boxes alone. Therefore, we aim to es-
timate exact 3D locations of all the people in uncali-
brated RGB images with respect to the camera by using
the information extracted from the human body skeleton
detected by body estimation algorithms. Moreover, we
also incorporate an object detection model for people
detection. However, the purpose of the people detection
in our approach is to only detect the false positives in
skeleton keypoints, when they are drawn on non-human
objects.

The method in (Aghaei et al., 2021) is the most
similar to our method as it also uses body poses. In
(Aghaei et al., 2021), manual input is used to estimate
the homography matrix of the image plane to the ground
plane. The method is evaluated on surveillance camera
footage and the task is approached as a binary classifica-
tion problem. It is feasible to manually set the homog-
raphy matrix of surveillance cameras as these cameras
are generally non-moving and stable. Contrary to this,
we want our method to be fully automatic as we aim to
estimate distances in images taken in different locations
with different cameras. Instead of requiring manual in-
put to estimate the homography as the study in (Aghaei
et al., 2021), we assume that we can find keypoint pairs
that are parallel to camera’s sensor plane and we use the
image parameters, i.e., focal length and sensor size in
our distance estimation.

For the developing and testing social distance estima-

tion methods, it is important to have image datasets that
have a suitable setup and ground-truth for the task. The
previous works have used datasets such as Epfl-Mpv-
VSD, Epfl-Wildtrack-VSD and OxTown-VSD. These
datasets include videos taken by surveillance cameras
with fixed extrinsic and intrinsics and they do not in-
clude manually measured ground truth locations and
distances. Instead, the locations of the people are esti-
mated by making use of the annotation boxes that were
drawn on the people. The pixel locations of these an-
notation boxes are used as a reference point to estimate
the subjects’ locations by taking the extrinsic parame-
ters into account. This means that these locations are
not exactly ground truth, but estimations based on the
known extrinsics and the pixel locations of the manually
annotated person bounding boxes. Furthermore, since
exact body parts are not annotated and the annotations
are only in bounding box format, it is not feasible nor
possible to accurately match the detected people with
the given ground truth people when there are multiple
overlapping boxes. Moreover, only the people that are
passing on a certain region of interest are annotated.

Due to the aforementioned reasons, the existing
datasets are not suitable for evaluating methods that
aim at estimating distances in general photo collections
and are not manually tuned for a specific camera and
environments. Furthermore, the approximate person
annotations and location estimates do not allow accu-
rately measuring the distance estimation performance,
but are only suitable for detecting coarse violations in
social distancing recommendations. While this may
be sufficient for surveillance purposes in fixed environ-
ments, more accurate ground-truth and annotations are
needed for evaluating methods aiming at detecting sub-
tle changes in long-term social distancing behavior in
varying environments. In the following section, we in-
troduce our novel dataset that addresses the mentioned
drawbacks of the existing datasets.

3. KORTE SOCIAL DISTANCE ESTIMATION
BENCHMARK

We provide a test benchmark for facilitating research
in automatic social distance evaluation. We propose a
performance evaluation protocol and provide 300 test
images with ground-truth pair-wise distances. While the
number of images is too low for training fully learning-
based systems, it provides a varied test setup. All the
evaluation codes along with the test photos are pub-
licly available at https://doi.org/10.23729/b2ea87e6-
b845-46b8-abf3-cdbe299ce8b0. It is also easy to com-
plement the benchmark with additional images by fol-
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Figure 2. Birdseye view of the first photo shoot (outdoor). The ground truth locations of the people and cameras are given in blue
and red dots, respectively.

lowing the proposed annotation format and using the
provided evaluation protocol.

3.1. Test Photo Collection

We collected test photos in four separate photo
shoots. The first and third photo shoots were organized
outdoors at Tampere University campus in December
2020 and August 2021, respectively. Every person was
standing. The second and fourth photo shoots were or-
ganized indoors at Tampere University campus in Jan-
uary 2021 and August 2021 with people sitting around
tables and sofas. We had 6 volunteer test subjects in the
first and second photo shoots and 7 volunteer test sub-
jects in the third and fourth photo shoots. We followed
the COVID-19 restrictions at the time: everyone was
wearing a mask and we were less than 10 people gath-
ering. As an additional safety measure, we placed to
closest distances from each other only people who meet
regularly anyway because they share working space or
live together. Every test subject signed an agreement al-
lowing to use their images for research purposes. Any
bypassers in the images were censored out to respect
their privacy and because their exact positions were un-
known. The photos were taken by a professional photo-
journalist.

During the photo shoots, test subjects stayed on the
same known positions, while the photographer changed
his position and used multiple cameras and lenses at

each spot. Fig. 2 shows as an example the birdseye
view of the first photo shoot (outdoor). P0, P1, P2, P3,
P4, P5 are the locations of the 6 test subjects and C0,
C1, C2 are the camera locations. For the first photo
shoot, P0, P1, P2, P3, P4, P5, C0 and C1 were all on
the same ground plane, while C2 was at a balcony with
a height of 230 cm relative to the ground plane that all
of the other locations were at. Similar birdseye views
of the other photo shoots are included in the Appendix
(A.12-A.14). The unit of the x and z axis labels is cen-
timeters. The ground truth locations of the cameras and
the test subjects were measured and maintained exploit-
ing tiles on the ground/floor that were equal in size.
While test subjects’ locations were fixed during each
photo shoot, they were asked to vary their orientation
and pose. The ground truth locations of all the cameras
and test subjects for all the photo shoots are provided
with the dataset.

We do not report the exact pitch angles, and they were
not fixed in the photo shoots. Due to the camera posi-
tions, pitch angles are close to zero in most of the im-
ages except for the 54 photos taken from camera po-
sition C2 in the first and third photo shoot, where the
camera was at an elevated position. We believe that our
dataset represents a typical media or personal photo col-
lection with respect to the pitch angles, but it should be
noted that methods performing well on our dataset (es-
pecially if they rely on the zero pitch angle assumption)
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may not perform equally well on extreme pitch angles
such as overhead images.

The used camera models were Canon EOS 5D Mark
II and Canon EOS 6D Mark II. The used focal lengths
were 16, 24, 35, 50, 105, 200, and 300 mm. The cam-
eras were stabilized on a tripod. Fig. 3 shows example
photos from the first and second photo shoots, one photo
from each camera position.

Focal Camera Model Shooting Setting
Length Canon Indoor Outdoor

16 EOS 5D Mark II - 6
16 EOS 6D Mark II 12 10
24 EOS 5D Mark II 5 8
24 EOS 6D Mark II 25 8
35 EOS 5D Mark II - -
35 EOS 6D Mark II 24 24
50 EOS 5D Mark II - 31
50 EOS 6D Mark II 23 30
105 EOS 5D Mark II 15 -
105 EOS 6D Mark II 22 32
200 EOS 5D Mark II - 7
200 EOS 6D Mark II - -
300 EOS 5D Mark II - 8
300 EOS 6D Mark II - 10
All 126 174

Table 1. Numbers of photos in the test dataset for different
focal lengths (mm), camera models, and shooting settings (in-
door/outdoor).

3.2. Test Data Description

The overall dataset contains 300 images including
174 outdoor images and 126 indoor images. All of the
images are in JPG format. The resolutions of the im-
ages are 2400x1600, 4080x2720 and 4160x2768 with
139, 80 and 81 images in each resolution, respectively.
Two different camera models were used and the sensor
size for both of these cameras is 36 mm in width and 24
mm in height. The distribution of the pictures in terms
of focal lengths, camera models, and shooting settings
is given in Table 1.

Along with the images, we also provide different an-
notation data provided in three separate .csv files illus-
trated in Fig. 4. The first file (Fig. 4a) contains the pixel
locations of four different body parts. These annotated
body parts are the center of the eyes, the center of the
shoulders, the center of the torso, and the center of the
head. If a body part is not visible in the image, it is not
annotated. The people in the images are labeled as P0,
P1, P2, P3, P4, P5, P6, P7 and P8 in the annotation file.

These person tags are consistent through all of the im-
ages. This means that a person tag always refers to the
same person in all of the images that we provide. The
second file (Fig. 4b) contains the 3D locations of peo-
ple and different camera positions in all photo shoots.
Photo shoot IDs 0, 1, 2, and 3 refer to the first (out-
door), second (indoor), third (outdoor), and fourth (in-
door) photo shoots, respectively. The third file (Fig. 4b)
links the image filenames with the corresponding photo
shoot and camera location. The cameras’ exterior ori-
entation parameters are not included in the metadata of
the images.

New images can be added to the dataset simply by
following the described structure of the annotation data
shown in Fig. 4. This does not require any changes in
the provided evaluation codes. New photo shoots, i.e.,
new settings of people, must be identified with a unique
integer identifier. For any photo shoot, the real world lo-
cations of the people should stay the same in all the pho-
tos. There may be pictures taken from different camera
locations. The person and camera tags should start with
a letter P and C, respectively, followed by a unique iden-
tifier integer. The person and camera location tags must
be consistent within a given photo shoot, however re-
peated tags in different photo shoots are allowed. This
means that two different people or camera tags could
be the same as long as they belong to a different photo
shoot. At least 1 of 4 body parts (center of the eyes,
shoulders, torso, head) of the people in the images must
be annotated in terms of pixel locations. They should be
named ”Eyes”, ”Shoulder”, ”Torso”, and ”Head” in the
body part column of the body part pixel location file in
Fig. 4a.

To be consistent with the annotations in the provided
test images, the annotation can be done as follows. Us-
ing the keypoint numbering in Fig. 6, the center of the
eyes refers to the middle point of the keypoint pair 15-
16, the center of the shoulders refers to the middle point
of the keypoint pair 2-5, the center of the torso refers
to the middle point of the keypoint pair 1-8, and the
head should be annotated as middle point of the head
regardless of the head’s angle with respect to the cam-
era. If a head is sideways and only one of the eyes is
visible, the visible eye can be annotated as the center of
the eyes. If no eyes are visible, the center of the eyes
should not be annotated. The center of the eyes should
also not be annotated if at least one of the eyes is out
of the picture due to the head being on the edge of the
picture. The other body parts can be annotated as long
as they are either completely visible in the picture or are
partially occluded by another person or object. In the
cases where they are partially occluded, the pixel loca-
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Figure 3. Example photos from the test dataset. The upper row has photos from the first photo shoot (outdoor) taken from all
camera positions C0 (left) to C2 (right) and the lower row has photos from the second photo shoot (indoor) taken from all camera
positions C0 (left) to C3 (right).

tion should be estimated as if the occluding person or
object was not present in the picture. The center of the
shoulders, torso, and head should not be annotated only
in the cases where these body parts are either partially
or completely out of the picture due to the person be-
ing on the edge of the picture. If a person is sideways
and only one of the shoulders, i.e., keypoints 2 and 5, is
visible, this point can be annotated as the center of the
shoulders.

3.3. Evaluation Protocol
Any distance estimation method to be tested using

the benchmark should give as output at least 1 of the
4 annotated pixel body locations along with either the
estimated 3D location of the persons or the estimated
distances between the people. The body part can be dif-
ferent for each person, or a method may choose to give
only a single body part, such as the head, for all the
persons. The test benchmark uses the pixel locations
to automatically match each detected person with one
of the ground truth locations and then computes aver-
age percentual pair-wise estimation errors between the
estimated and ground truth distances.

We provide all the necessary functionalities for test-
ing as long as the required output for each image is
given. Internally, the matching is carried out by com-
paring the automatically detected body pixel locations
with the points annotated in the files. The automatically
detected body parts are compared to all of the respec-
tive annotated body parts. As an example, a detected
torso point is compared to all of the annotated torso
points for that image. For all of the detected body parts

of a person, the closest respective annotated point in
terms of pixel-wise distance is found. In case there are
more than one detected persons matched with the same
ground truth person, the matching is done in a greedy
manner by selecting only the closest match and the rest
of the detected persons for that ground truth person are
regarded as false positives.

After matching the detections with the persons la-
beled in the photos, we calculate the distances between
each person pair by using their estimated 3D locations.
Then, the estimated pair-wise distances are compared
to the corresponding ground truth pair-wise distances to
obtain a percentual distance estimation error for each
pair. The performance is evaluated by taking the aver-
age of all of the pair-wise percentual distance estima-
tion errors for each image and then averaging over im-
ages. In addition to the pair-wise percentual distance
estimation error, we evaluate also the person detection
rate, i.e., the ratio of correctly detected person averaged
over all the images, and the false discovery rate aver-
aged over all the images. It should be noted here that
we do not use any threshold for matching the detections
with the actual people. As long as the number of detec-
tions is lower or equal to the actual number of people
in an image, all the detections are matched. Thus, de-
tections can be considered false positives only if there
are more detections than actual people for an image.
Therefore, a method producing many false positive de-
tections is expected to get a high detection rate, but nat-
urally the distance estimations would likely be poor and
the false discovery rate would be higher. On the other
hand, a method missing most the people could have a
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(a) Body part pixel locations

(b) Ground truth relative 3D location (c) Photo shoot identifiers and camera locations

Figure 4. Annotation file formats

low pair-wise percentual distance estimation error for
the detected people, but still not be suitable for social
distancing analysis. Therefore, it is important to con-
sider all these metrics together, when evaluating a social
distance estimation algorithm.

The pair-wise percentual distance estimation error De

for the eth single image is given by the following for-
mula, where n is the number of detected people in the
image, Ei is the estimated 3D location of the ith person
and Gi is the ground truth 3D location of the ith person:

De =

∑n−1
k=1

∑n
i=k+1

∣∣∣||Ek−Ei ||−||Gk−Gi ||
∣∣∣

||Gk−Gi || ∗ 100
(

n
2

) . (1)

Here, the distances may be also directly given instead of
the 3D locations.

In order to obtain an overall distance estimation error
metric for a set of images, De of all of the images in the
image set are averaged. The distance estimation error
for a set of images DE is given by the following formula

where N is the number of images in the set:

DE =

∑N
e=1 De

N
. (2)

The test benchmark gives DE , the person detection
rate, and the false discovery rate as an output for a given
set of images as long as the input and annotated data
are provided in the proper format. Currently, the test
benchmark uses our provided test photos, but if new im-
ages are added to the dataset as explained in Section 3.2,
these will be automatically considered in the evaluation.

4. Proposed Method for Social Distance Estimation

Our proposed method to estimate social distances
takes advantage of object detection and human pose
estimation methods. Firstly, the input image is given
to YOLOv4 (Alexey Bochkovskiy, 2020) object detec-
tion model to obtain bounding boxes for people. Af-
ter bounding boxes are obtained, overlapping boxes
are grouped together. Then, these grouped boxes are
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Figure 5. False positive examples for OpenPose (left) and YOLOv4 (right).

cropped from the full image and they are individually
given to OpenPose (Cao et al., 2019; Simon et al., 2017;
Cao et al., 2017; Wei et al., 2016) human pose estima-
tion model. After the skeleton keypoints are extracted
from OpenPose, the pixel locations of these keypoints
are used in our distance estimation algorithm to obtain
3D location estimates for each person in the image.

When YOLOv4 and OpenPose models are used to-
gether, they eliminate each other’s false positives. The
left image in Fig. 5 shows a case where a backpack is
falsely recognized as a human by OpenPose. However,
YOLOv4 does not recognize it as a human. Therefore,
the backpack would not be cropped and given to the
OpenPose model. The right image in Fig. 5 shows a
case where a bicycle is falsely recognized as a human
by the YOLOv4 model. The bicycle is then cropped
from the full image and given to the OpenPose model.
However, the OpenPose model does not detect any hu-
man skeleton in the cropped bicycle image. Therefore,
neither of these false positive cases is further processed
by the distance estimation algorithm.

After the cropped images from YOLOv4 are pro-
cessed by the OpenPose model, the skeleton keypoints
for detected human bodies are extracted. We use the
25 keypoint output version of OpenPose illustrated in
Fig. 6. Out of the extracted keypoints, we select pairs
whose mutual distance is independent of the person’s
pose, whose average distance is available in the litera-
ture, whose angle towards the lens is as constant as pos-
sible, and which are visible in most of the photos. With
these criteria, we select three key point pairs for our al-
gorithm: 15-16 for pupillary distance, 2-5 for shoulder
width, and 1-8 for torso length. In typical media or
personal photos, the torso has the most constant angle
towards the lens, but the eyes and shoulders are visi-
ble also in the close-up and portrait photos, where the
torso is not seen. We assume average adult body propor-
tions for the three keypoint pairs: 389 mm for shoulder
width (Watson), 63 mm for pupillary distance (Evans),

Figure 6. 25 skeleton keypoint output of OpenPose.

and 444 mm for torso length (White Mountain Back-
packs). The extracted keypoint pairs are then processed
by our distance estimation algorithm that estimates 3D
positions with respect to the camera for each person.

We use the pinhole camera model (Sturm, 2014)
shown in Fig. 7 for our calculations. We also make
an assumption that every keypoint pair is parallel to the
camera’s sensor plane. We make these assumptions be-
cause the subjects’ poses and camera’s exterior orienta-
tion parameters (Ikeuchi, 2014) are not known. Estimat-
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Figure 7. Pinhole camera model.

Figure 8. Birdseye view of orientation angle toward the lens.

ing the exterior orientation parameters (Ikeuchi, 2014)
of the camera from single images is an ill-posed prob-
lem (Kabanikhin et al., 2008), but in most cases the an-
gle between a person’s torso and the camera’s sensor
plane is negligible for our calculations.

We denote 3D locations of the keypoints on the image
coordinate system as

(xa, ya, f ), (3)

where f is the focal length, and 3D location estimates
of the keypoints on the world coordinate system as

En = (Xa,Ya,−d), (4)

where d is the distance to the camera. The distance be-
tween a pair of keypoints on the image coordinate sys-
tem is

Di =

√
(x0 − x1)2 + (y0 − y1)2 + ( f − f )2 (5)

and the distance between the keypoints on the world co-
ordinate system is

Dw =
√

(X0 − X1)2 + (Y0 − Y1)2 + (d − d)2. (6)

Since the camera sensor’s plane size is known, xa and
ya in Eq. (3) can be derived from the x and y pixel lo-
cations of the keypoints in the image. The last coordi-
nate, f , in Eq. (3) is obtained from the camera parame-
ters. Thus, all the keypoints’ 3D positions on the image
coordinate system in Eq. (3) are known and Di can be
solved. By using triangle similarity, the following equa-
tions give 3D positions of the keypoints on the world
coordinate system. Eq. (7), where Dw is one of the av-
erage body proportions, is used to derive d in Eq. (4).
After d is derived, Xa and Ya are obtained from Eqs. (8)
and (9).

Di

f
=

Dw

d
(7)

Xa = −d
f

xa (8)

Ya = −d
f

ya (9)

After the 3D coordinates of the keypoints on the
world coordinate system in Eq. (4) are estimated, the
middle points of each detected keypoint pair are used
to represent a 3D location for the person. Thus, we
have at most 3 different estimated 3D locations for a per-
son, one for each keypoint pair (shoulder, pupil, torso).
While we assume that the keypoint pairs are parallel to
the camera’s sensor plane, this assumption may not be
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Figure 9. Examples of pictures from the dataset belonging to the first photo shoot, all of them taken from camera location C1. The
used focal lengths for the pictures are 16mm, 105mm and 300mm from left to right.

valid, and the accuracy of the estimated locations is af-
fected by the severity of the violations. Fig. 8 shows
the birdseye view of a person’s orientation angle θ to-
ward the lens. If the angle is non-zero, the shoulder and
pupil keypoint pairs are no longer parallel to the sensor
plane and the estimates based on these keypoint pairs
are prone to error. However, in a typical situation of
upright torsos the estimates made from the torso length
are unaffected by θ, because θ does not affect Di com-
puted using Eq. (5) for the torso. On the other hand,
also a torso may not be parallel to the sensor plane ei-
ther because the person is in a bent position or because
the camera’s pitch angle is non-zero. For an overhead
image, shoulders might be parallel to the sensor plane,
while torsos would be perpendicular. Whenever the as-
sumption on a keypoint pair being parallel to the sensor
plane is violated, Di in Eq. (5) decreases. A smaller Di

leads to a larger estimate for d from Eq. (7). For this rea-
son, we select the 3D location estimate with the small-
est distance to the camera. For typical media or per-
sonal photos, where the pitch angle is small, this usually
means using the estimate derived from the torso when-
ever it is available. However, for close-up and portrait
pictures, the torso is often not visible. Fig. 9 shows three
pictures taken from the same location but with increas-
ing focal lengths. The rightmost image in Fig. 9 is an
example of a close-up picture where the distance esti-
mations have to be made from the shoulder and pupil
distances since there are no visible torsos.

Finally, our method computes the distances between
all the pairs of detected people and gives them as out-
puts. The pixel locations for the detected persons are
given to be able to evaluate on our benchmark, while
they are not needed if the method is used for analysing
social distancing in novel images for photographic stud-
ies. The overall flowchart of the proposed social dis-
tance estimation method is illustrated in Fig. 10.

5. Experimental Results

5.1. Experimental Setup
All of the code was developed in Python program-

ming language version 3.8 (Van Rossum and Drake Jr,
1995). OpenPose (Cao et al., 2019; Simon et al.,
2017; Cao et al., 2017; Wei et al., 2016) and YOLOv4
(Alexey Bochkovskiy, 2020) models were used for hu-
man detection. The input size of YOLOv4 was set
to 704x704. Input size was not set for OpenPose as
OpenPose is able to adapt its input size for each im-
age. The version of the OpenPose model we were
using was originally trained by using the COCO key-
point challenge dataset (Lin et al., 2014), combined
with OpenPose authors’ own annotated dataset for foot
keypoint estimation which consists of a small subset
of the COCO dataset where the authors labelled foot
keypoints. YOLOv4 uses CSPDarknet53 (Wang et al.,
2019) as its backbone which was trained on the Ima-
geNet dataset (Deng et al., 2009). The deep learning
models were downloaded from their respective official
source code pages 1 2 and they were loaded and used by
TensorFlow library version 2.3.1 (et al., 2015). For im-
age processing purposes, OpenCV imaging library was
used (Bradski, 2000). In addition to our final method
that generates 3D position estimates using torso, shoul-
ders, and eyes and selects the estimate closest to the
camera as explained in Section 4, we also evaluate vari-
ants of the proposed method, where only one of these
body parts is used at the time. We use our test bench-
mark to compute the results for all the images and for
each photo shoot separately.

5.2. Results
Table 2 shows the person detection rates and pair-

wise percentual distance estimation errors for the over-
all dataset. Table 3 gives the results for the first photo

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2https://github.com/AlexeyAB/darknet
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Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 28 0.75 333.42 0.55 39.79 0.82 36.30 0.89 28.80
24 46 0.81 346.05 0.55 39.52 0.91 33.22 0.94 24.68
35 48 0.81 450.49 0.58 65.63 0.91 48.52 0.92 34.68
50 84 0.80 306.56 0.44 72.37 0.91 39.29 0.94 35.03
105 69 0.72 332.72 0.57 110.50 0.79 73.29 0.89 52.50
200 7 0.69 105.28 0.73 52.28 0.69 93.53 0.78 53.66
300 18 0.70 1244.59 0.60 52.88 0.61 148.94 0.78 52.51
All 300 0.78 385.22 0.54 68.56 0.84 51.01 0.91 38.24

Table 2. Person detection rates and pair-wise percentual distance errors for each of the methods for all of the images (indoor and
outdoor) combined.

Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 7 0.85 120.60 0.71 26.44 0.85 18.33 0.85 18.48
24 8 0.83 190.70 0.64 76.24 0.91 16.99 0.91 21.49
35 11 0.90 174.68 0.84 57.78 0.96 20.17 0.96 21.09
50 11 0.87 190.12 0.77 72.35 0.89 24.34 0.91 26.40
105 11 1.00 127.57 1.00 48.99 1.00 41.63 1.00 33.08
200 7 0.69 105.28 0.73 52.28 0.69 93.53 0.78 53.66
300 8 0.70 288.13 0.88 34.48 0.18 - 0.89 34.48
All 63 0.85 165.27 0.78 54.43 0.90 28.76 0.91 28.97

Table 3. Person detection rates and pair-wise percentual distance errors for each of the methods for the first photo shoot (outdoor)
where every person is standing up.
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Figure 10. Flowchart of the method.

Number
of

Pictures

Combined
Method

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

53 0.85 37.59

Table 4. Person detection rates and pair-wise percentual dis-
tance errors for the combined method for the photos taken
from camera location C2, for which the zero pitch angle as-
sumption is not valid.

shoot separately. For the other photo shoots, the sep-
arate results are provided in the Appendix (B.6-B.8).
Since YOLOv4 is used in addition to OpenPose and
they cancel each other’s false positives, we have no
cases with more detections than actual people in an im-
age. This leads to almost zero false discovery rates
as explained in Section 3.3. Therefore, false discovery
rates are not reported in the tables.

It can be observed from Table 2 that the most reliable
body part to estimate locations is the torso. However,
estimations made from the torso alone fail for close-up
pictures where the torso detection rate is low. When all
three body parts (shoulder, pupil, and torso) are used to-
gether for the estimations, the obtained results shown in
the last column are better than the results obtained from
any single body part. The combined method mostly uses
the torso whenever it is visible (overall shots) and uses
the shoulder and pupil distances when the torso is not
visible (close-up shots).

Looking at Tables 3, B.6, B.7 and B.8 it can be seen
that there are no significant differences in terms of per-
son detection rates when it comes to indoor and out-
door pictures. However, it should be noted that the pair-
wise distance estimation errors for the indoor pictures
are slightly higher than the outdoor pictures. This is
primarily caused by the fact that many body parts of
the people in the indoor pictures are obstructed by the
chairs and sofas. There are also more cases of people
facing away from the camera, people standing in front
of other people, and people in poses where their torsos
were non-upright in the indoor photo shoots.

5.3. Additional Results and Analysis

We separately show the results for the images that
were taken from camera location C2 for the first and
third photo shoot (outdoor) on Table 4. C2 location was
at a height of 360 cm on the first and 220 cm on the third
photo shoot relative to the ground plane where the sub-
jects were standing on. Thus, the camera was pitched
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Figure 11. Pair-wise distance estimation errors for each of the ground truth pair-wise distances.

down to include the subjects within the field of view.
For the other camera locations, the pitch angle was close
to zero and people were mainly standing or sitting with
their torsos upright. Therefore, the torsos are usually
almost parallel to the camera’s sensor plane and, thus,
produce good distance estimates whenever they are vis-
ible. For camera location C2, this may no longer be
the case. However, the results show that the relative
pair-wise distance estimation errors for C2 locations are
slightly lower than on the average despite the violation
of the zero pitch angle assumption. We can conclude
that this level of pitch angle does not cause significant
problems.

A graph showing how the pair-wise distance estima-
tion errors depend on the ground truth distances is given
in Fig. 11. It can be observed from this graph that
the pair-wise distance estimations errors are on average
slightly lower for higher ground truth distances. This is
reasonable as for the closest distances the variations in
the poses also cause some error.

We also provide additional results by formulating
the social distance estimation problem as a binary
classification task similar to previous works. We set
five different social distance thresholds as safe dis-
tances. If the distance between a pair is smaller than
the threshold, we consider the distance to be unsafe
and safe otherwise. We consider the unsafe case as
the positive class. The standard evaluation metrics
for binary classification problems are Precision, Re-
call, and F1-Score. The formulas for these metrics

Safe Distance (m) F1-Score
1 0.46

1.5 0.62
2 0.75
3 0.83
4 0.90

Table 5. F1-scores of our proposed method for different safe
distance thresholds

are Precision = TruePositives
TruePositives+FalsePositives , Recall =

TruePositives
TruePositives+FalseNegatives , F1−score = 2∗( Precision∗Recall

Precision+Recall ).
F1-score is an overall measure of the binary classifica-
tion performance and is always within the range of 0-1
with 1 indicating perfect performance. The F1-score re-
sults of our proposed method are given in Table 5.

As can be seen in Table 5, the choice of safe distance
threshold changes the F1-scores drastically. For exam-
ple, the low performance for 1m threshold follows from
many ground-truth distances being just slightly above
the threshold. As our methods tends to slightly underes-
timate the distances especially when the torsos are not
visible as explained in Section 4, these cases lead to
false positives. This supports our claim that formulat-
ing the problem of social distance estimation as a bi-
nary classification task is not an optimal way to evaluate
the performance of the methods. As the results depend
greatly on the threshold value, F1-scores do not reflect
the true capacity and accuracy of the distance estima-
tion performance of a method. Our proposed evaluation
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protocol, which gives the average pair-wise percentual
distance estimation error offers greater insight on the
method’s performance.

6. Conclusion

To address the need for more accurate estimation of
social distances from general images to analyze social
and cultural impacts of the social distancing regulations
introduced due to the COVID-19 pandemic, we pro-
posed a new test benchmark for automatic social dis-
tance estimation algorithms. The benchmark includes
an evaluation protocol for methods producing pair-wise
social distances. The images follow a typical journal-
istic photographing style instead of a fixed monitoring
setup, and they were taken with varying camera set-
tings. Furthermore, we proposed a robust method that
estimates 3D locations of persons in images and then
uses these estimated locations to calculate the social dis-
tances between the people. Our method is able to esti-
mate social distances in any single image without the
need for knowing the extrinsic parameters or manually
calibrating the homography matrix of the image plane
to the ground plane, provided that the focal length and
sensor size information of the camera are known, which
enables our method to be used flexibly on all kinds of
images. The proposed method was able to obtain 91%
person detection rate along with 38.24% pair-wise dis-
tance error on the proposed test benchmark.

While our method gives satisfactory results for over-
all shots where the torsos of the people can be de-
tected by OpenPose, the accuracy of the estimations
gets weaker for close-up shots where the torsos are gen-
erally not visible in the image. This happens because
our method assumes one of the keypoint pairs (eyes,
shoulders, torso) to be parallel to the camera’s sensor
plane, and violations of this assumption lead to distance
estimates that are longer than the ground-truth. In typ-
ical journalistic photos, where the camera’s pitch angle
is close to zero and the peoples’ torsos are in upright
positions, the assumption is typically most accurate for
the torso keypoint pair whenever it is visible in the im-
age. Thus, our method could be improved by estimat-
ing automatically also the pitch angle and persons’ an-
gles with respect to the camera. Our method also uses
average adult human body proportions for the calcula-
tions. Therefore, the estimations made for children in
the images would be less accurate. Our method can be
improved by taking advantage of other methods that can
estimate the gender and ages of the subjects and adap-
tively changing the assumed body dimensions for each
individual subject depending on their gender and age.

It should also be noted that our method requires the fo-
cal length and sensor plane size information of the cam-
era. Therefore, our method cannot be applied on photos
where these information are lacking. For our method to
be applied on pictures where the focal length and sensor
plane size are not known, these information would have
to be estimated through other methods.

In our future research, we will use our benchmark
to further enhance the proposed method and then use it
in an interdisciplinary study, where we will analyze the
impacts of the COVID-19 regulations on social interac-
tions. While the COVID-19 makes the social distance
analysis very topical, the benchmark and the developed
methods are naturally not restricted on COVID-19 re-
lated analysis, but they can be beneficial in other image-
based proxemics studies focusing on different historical,
cultural, or journalistic phenomena.
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Appendix A. Birdseye Views of Photo Shoots 2-4

Figure A.12. Birdseye view of the second photo shoot (indoor). The ground truth locations of the people and cameras are given in
blue and red dots, respectively.

Figure A.13. Birdseye view of the third photo shoot (outdoor). The ground truth locations of the people and cameras are given in
blue and red dots, respectively.
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Figure A.14. Birdseye view of the fourth photo shoot (indoor). The ground truth locations of the people and cameras are given in
blue and red dots, respectively.
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Appendix B. Results for Photo Shoots 2-4

Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 4 0.83 178.58 0.62 29.70 0.62 22.92 1.00 23.98
24 4 0.83 354.18 0.54 24.94 0.70 19.29 0.95 23.40
35 4 0.66 49.27 0.54 19.61 0.95 25.79 0.95 20.40
50 7 0.76 189.61 0.51 29.79 0.76 29.57 0.89 27.26
105 14 0.68 102.84 0.62 55.40 0.56 27.42 0.90 35.07
All 33 0.74 163.61 0.57 37.76 0.70 26.03 0.93 28.88

Table B.6. Person detection rates and pair-wise percentual distance errors for each of the methods for the second photo shoot
(indoor) where every person is sitting down.

Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 9 0.62 760.07 0.42 51.13 0.81 18.66 0.84 28.78
24 8 0.84 778.06 0.33 33.50 0.91 17.06 0.93 22.37
35 13 0.78 880.81 0.40 68.43 0.84 16.50 0.86 19.09
50 50 0.83 333.23 0.33 82.12 0.96 25.18 0.97 32.54
105 21 0.70 771.80 0.37 149.17 0.84 36.14 0.88 67.45
300 10 0.70 1669.68 0.41 117.25 0.63 148.94 0.73 66.52
All 111 0.78 658.29 0.34 81.44 0.88 34.21 0.91 39.35

Table B.7. Person detection rates and pair-wise percentual distance errors for each of the methods for the third photo shoot
(outdoor) where every person is standing up.
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Focal
Length
(mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent
Distance

Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

Person
Detec-

tion
Rate

Pair-wise
Percent

Distance
Error

16 8 0.78 117.07 0.54 42.86 0.9 82.69 0.92 40.27
24 26 0.79 259.67 0.60 31.07 0.95 45.33 0.96 26.57
35 20 0.82 402.73 0.61 76.93 0.94 89.47 0.94 55.15
50 16 0.74 429.24 0.52 74.61 0.8 98.24 0.86 54.40
105 23 0.68 102.05 0.57 155.77 0.80 137.55 0.85 57.06
All 93 0.76 266.61 0.58 79.10 0.89 90.03 0.91 46.22

Table B.8. Person detection rates and pair-wise percentual distance errors for each of the methods for the fourth photo shoot
(indoor) where some people are sitting down and some are standing up.
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Abstract—Deploying deep learning services for time-sensitive
and resource-constrained settings such as IoT using edge com-
puting systems is a challenging task that requires dynamic
adjustment of inference time. Multi-exit architectures allow
deep neural networks to terminate their execution early in order
to adhere to tight deadlines at the cost of accuracy. To mitigate
this cost, in this paper we introduce a novel method called Multi-
Exit Curriculum Learning that utilizes curriculum learning,
a training strategy for neural networks that imitates human
learning by sorting the training samples based on their difficulty
and gradually introducing them to the network. Experiments on
CIFAR-10 and CIFAR-100 datasets and various configurations
of multi-exit architectures show that our method consistently
improves the accuracy of early exits compared to the standard
training approach.

I. INTRODUCTION

Deep learning models have been successful in solving
many problems in various domains of science and technol-
ogy, ranging from autonomous vehicles to drug discovery
[1]. However, a general drawback of deep neural networks
is that, by definition, they are built from many layers of
interconnected neurons. This results in models containing
millions of parameters that need to be deployed on powerful
processors due to their high computational cost. This restric-
tion has sparked a great deal of research targeting neural
network compression in recent years, thus many methods
have been developed for the purpose of making deep learning
models more lightweight; including pruning [2], quantization
[3], regularization [4] and knowledge distillation [5] to name
a few.

The high computational cost of deep learning models
becomes even more problematic in computationally restricted
environments, such as mobile and IoT devices. Yet, deep
learning has many use cases in such settings, including but
not limited to video surveillance, voice assistants, network
intrusion detection and augmented reality [6]. Many of these
use cases are time-sensitive and require applications to run
with respect to strict time limits, for instance, in the cases of
cooperative autonomous driving and augmented reality [7].

To enable time-sensitive Internet of Things applications,
computationally expensive tasks, such as deep learning ser-
vices, are sometimes offloaded from end-devices to edge
servers using edge computing systems in order to decrease
the overall execution time [8]. However, these systems of-
ten have a distributed and multi-tiered network architecture

where the time required for the transmission of data between
various devices is variable and depends on the communica-
tion channel state and the data size. This calls for novel neural
network designs that can dynamically adapt their inference
time to account for these variations in transmission time.
Among lightweight deep learning methods, the concept of
early exits [9] is a promising solution that particularly fits
these settings, which is sometimes also referred to as multi-
exit architectures or auxiliary classifiers in the literature.

In multi-exit architectures, branches composed of just a
few layers of neurons are added at intermediate layers of
a deep network called the backbone network. Such branches
are trained to perform the same task as the backbone network
and produce an output similar to that of the final layer of
the network, albeit they are inevitably less accurate. These
branches can then be used to make inference time more
dynamic at the cost of accuracy. For instance, when there
is a strict time budget and it is suspected that the deadline
will be missed if the entire network is traversed, the output
of these early exit branches can be used instead. Another
way of utilizing early exits for dynamic inference is to use
the output of early exit branches for “easier samples” and
only compute the output of later branches or the final output
of the backbone network when the input sample is difficult.
There are various methods for detecting where to exit, one
of the easiest and most intuitive ones being to determine the
confidence of the output of a branch. For instance, a strategy
that is used for classification problems is to set a threshold
on the entropy of the classification result [10].

As previously mentioned, early exit branches are typically
less accurate compared to the final output of the corre-
sponding backbone network, therefore it is vital for them
to be as accurate as possible to maintain the reliability of
the output. Since the architecture of early exit branches
is often very shallow in order to avoid introducing high
additional overhead, increasing their accuracy is generally
a challenging task. Phuong et al. [11] recently showed that
knowledge distillation-based training can be used to improve
the accuracy of early exits.

In this paper, we propose a new approach for improving
the accuracy of early exit branches based on curriculum
learning. Curriculum learning [12] is a training strategy for
neural networks that has been shown to improve the final
accuracy of a network in certain cases. The idea behind
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curriculum learning is similar to how humans learn new
tasks: a well-informed teacher can be used to initiate the
training with the simplest material and gradually introduce
more difficult subjects to the student. For neural networks
however, sometimes the opposite approach of introducing
the hardest subjects first, called anti-curriculum, can be
beneficial as well. To the best of our knowledge, curriculum
learning has not yet been explored in the context of multi-
exit architectures. We tested our proposed approach in 16
different scenarios involving multi-exit architectures for the
problem of image classification, and found that it consistently
increases the accuracy of early exits in every case. These
scenarios involve two different datasets, namely CIFAR-10
and CIFAR-100 [13], four different backbone networks and
two different branch locations for each backbone. We also
show that the proposed approach works regardless of the
optimization algorithm used during training1.

The remainder of the paper is structured as follows.
Section II provides an overview of relevant literature. The
proposed approach, called Multi-Exit Curriculum Learning,
is described in Section III. Experimental results are provided
in Section IV. Finally, Section V concludes the paper and
briefly discusses future research directions.

II. RELATED WORK

In this section, we provide more detailed explanations
regarding multi-exit architectures as well as curriculum learn-
ing, which are the foundations of our method. We start by
describing the mathematical model for multi-exit architec-
tures and listing popular training strategies proposed for such
architectures. Subsequently, we elaborate on the curriculum
learning strategy, including the concepts of sorting and pacing
functions, and recount various approaches to these functions
that exist in the literature.

A. Multi-Exit Architectures
Following the notation of Scardapane et al. [9], ba-

sic neural networks are formulated as function f(x) =
fL(fL−1(...f1(x))) where L is the number of layers and fi
denotes the operator at layer i, which can be a convolution
layer, a dense layer, batch normalization or any other differ-
entiable operator. The output of the i-th layer is denoted by
hi = fi(hi−1) where h0 = x, and θi signifies all trainable
parameters of layer i.

In order to extend this framework to multi-exit architec-
tures, first, a set of branch locations B ⊆ {1, .., L} are
selected. For each branch location b, a classifier or regressor
cb(hb) = yb is defined, where yb is the hypothesis of the
early exit branch at location b. The schematic illustration of
a multi-exit architecture is depicted in Figure 1.

The training of a neural network can be formulated as
tuning its parameters by applying an optimization algorithm
on a loss landscape:

f∗ = argmin
θ

N∑

n=1

l(yn, f(xn)), (1)

1Our code is made available at https://gitlab.au.dk/maleci/
MultiExitCurriculumLearning.

Fig. 1. Schematic illustration of a multi-exit architecture.

where θ =
⋃L
i=1 θi is the set of all parameters of the neural

network, {(xn, yn)}Nn=1 is the set of training samples, and
l(·) is a loss function.

However, due to the attached early exit branches, the
training of multi-exit architectures is not as straightforward.
Three main approaches were proposed for training a multi-
exit architecture [9], [14]:
• End-to-End Training: Training is formulated as a single

optimization problem where the total loss is defined as a
combination of the losses of early exit branches and the
final layer. In this case, the contribution of each of the
early exit branches to the total loss is expressed with
a weight value (a hyper-parameter) that causes trade-
offs and can have a significant impact on the accuracy
of the early exit branches as well as the final layer. For
instance, a certain weighting scheme for the contribution
of branches may result in an increase in the accuracy
of early exit branches but a decrease in the accuracy of
the final layer.

• Layer-Wise Training: Initially, the entire network up
to and including the first early exit branch is trained.
Subsequently, the trained weights are frozen, meaning
that they are not allowed to be modified anymore, and
the rest of the network up to and including the second
early exit branch is trained. This operation is repeated
until the entire network has been trained. Note that with
this strategy, there is no guarantee that the accuracy of
the final layer will be similar to the case where the
network does not have any early exit branches.

• Classifier-Wise Training: The entire backbone network
is initially trained. Then, the parameters of the backbone
network are frozen and each branch is trained separately
since it does not affect the training of other early
exit branches. Note that no trade-offs are introduced
in this strategy, and since the parameters of the back-
bone network are not modified, its accuracy remains
unchanged. However, the early exit branches have less
parameters available for training compared to the other
two strategies.

In this work we follow the classifier-wise training strategy
for training the multi-exit architectures because of its practi-
cal importance. This is due to the fact that it can be easily
added on top of existing networks (as a “plug-and-play”
solution) without the need for re-training a high-performing
backbone network, or computationally expensive and te-
dious experimentation for determining the optimal hyper-
parameters that lower the effect of trade-offs introduced by
combined training of the parameters of the early exit branches
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with those of the backbone network. Furthermore, one of
the issues with multi-exit architecture is choosing the right
number of early exit branches and their placement. With end-
to-end and layer-wise training strategies, the choice of the
total number of branches as well as their placement in the
backbone network becomes important and can cause further
trade-offs. On the other hand, with the classifier-wise training
strategy, since the branches are independent of each other and
the backbone network, early exit branches can be placed at
any intermediate layer. However, we need to keep in mind
that early exit branches placed later in the network do not
necessarily achieve a higher accuracy, therefore some branch
placements may be irrational and unnecessary since there
are earlier branches which can potentially achieve higher
accuracy.

Another concern with multi-exit architectures is devising a
method that decides which exit should be used for each input
example. As previously mentioned, a simple solution is to use
the confidence of the network on its own prediction, although
many other methods have been proposed for this purpose [9].
However, since our goal is to develop a method in order to
increase the accuracy of all early exit branches regardless of
their placement, this issue is outside the scope of this paper.

B. Curriculum Learning

As previously stated, curriculum learning draws inspiration
from the way humans learn new subjects throughout their
formal education. For each topic of study, a knowledgeable
teacher often starts with explaining the simplest notions to
the students and gradually introduces more difficult aspects
of the topic during the course of the study. Curriculum
learning treats the problem of training neural networks in
the same manner by starting the training from a subset of
training samples it deems to be simple, and progressively
adding more difficult samples to the training process. Thus,
curriculum learning is composed of two main components: a
sorting function that takes training samples as input, assigns
a difficulty value to each of them based on some metric and
sorts them based on their difficulty values; and a pacing
function that determines the pace at which new training
samples are introduced to the network during the training
process.

Scoring functions can either be predefined, meaning that
the difficulty for each training sample is determined based
on some prior knowledge given by an expert, or automatic,
meaning that the difficulty of each sample is determined
based on an algorithm. Examples of predefined sorting func-
tions include sorting based on the length of the input text
in natural language processing problems, or based on the
number of objects in an image in object detection problems.
A comprehensive list of predefined sorting functions for
various types of data can be found in [16].

Most automatic sorting functions can be categorized into
the following three groups [16]:
• Self-Paced Learning: In this approach, the student net-

work itself determines the difficulty of each sample
based on its current loss. It is important to note that

Hacohen et al. [17] found that self-paced learning can
lead to a decrease in the final test accuracy.

• Transfer Teacher: In this strategy, the loss of a pre-
trained network called teacher is used to measure the
difficulty of training samples. A variant of transfer
teacher where the teacher network is the same as the
backbone network is called self-taught (not to be con-
fused with self-paced learning). The main difference
between self-taught and other teacher transfer methods
is that the self-taught method can be applied repeatedly,
meaning that initially the network is trained normally
and its losses are used to sort the examples and train
the same network with curriculum learning. Afterwards,
the losses of the new and improved network are used to
re-sort the training samples and train the same network
yet another time, and this process can be repeated until
there are no further improvements.

• Reinforcement Learning Teacher: Curriculum learning
can also be formulated as a reinforcement learning
problem where the action is to decide which samples
should be used for training, the state is the loss of
the student for each sample, and the reward is the
performance of the student.

Several other less common automatic sorting functions can
be found in [16]. In this work, we use the transfer teacher
method with two different teacher networks as scoring func-
tion. As previously mentioned, unlike human learning, the
opposite approach of training the network starting from
the most difficult samples to the easiest samples, called
anti-curriculum or harder-first, has been shown to be more
effective than curriculum learning in some cases [16].

Typically, a pacing function λ(t) : N → (0, 1] takes the
index of the current iteration as an input and outputs the
fraction of the sorted training samples that should be used for
training. Pacing functions can be categorized into two groups:
discrete pacing functions and continuous pacing functions.
The most popular discrete pacing function, called baby step,
partitions sorted training samples into several buckets and
gradually adds buckets of harder samples to the pool of
training samples introduced to the network. A less common
discrete pacing function called one-pass partitions the sorted
training samples into several buckets, but discards the the
samples of the previously introduced easier bucket from the
training pool after adding the samples of a new harder bucket.

Popular examples of continuous pacing functions include
linear, root, root-p and geometric progression, which are
described by Equations (2)-(5) respectively:

λlinear(t) = min

(
1, λ0 +

1− λ0
Tf

· t
)
, (2)

λroot(t) = min

(
1,

√
λ20 +

1− λ20
Tf

· t
)
, (3)

λroot-p(t) = min

(
1,

√
λp0 +

1− λp0
Tf

· t
)
, (4)
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λgeom(t) = min

(
1, 2

(log2 λ0− log2 λ0
Tf

·t)
)
. (5)

In the above equations, t is the index of current iteration, λ0
denotes the initial fraction of training samples introduced to
the network and Tf is the iteration at which the entire dataset
is used for the first time.

Putting it all together, Figure 2 shows the random mini-
batch process in curriculum learning. Each epoch is com-
posed of N

Nb
batches where N is the total number of training

samples and Nb is the batch size. Batch number t is sampled
uniformly at random only from the first λ(t) portion of the
sorted data.

Fig. 2. Random Mini-Batch Process in Curriculum Learning.

As a final note, there are several theoretical analyses in the
literature explaining why curriculum learning can improve
the training procedure. Bengio et al. [12] point out that
curriculum learning can be viewed as a continuation method.
Continuation methods [15] are optimization strategies for
non-convex problems that start with a smooth objective and
gradually introduce less smooth versions in the hopes of
revealing the global picture in the process [16]. Additionally,
Hacohen et al. [17] reached the conclusion that curriculum
learning modifies the optimization landscape to amplify the
difference between the optimal parameter vector and all
other vectors that have a small covariance with the optimal
solution, including uncorrelated or negatively correlated pa-
rameter vectors.

III. MULTI-EXIT CURRICULUM LEARNING

In this section, we will explain the details of our method.
We assume that an already trained high-performing deep
neural network is given in the beginning. Due to time restric-
tions, this neural network must be converted to a multi-exit
architecture, as it is preferable to provide an output within the
strict time budget, even though it can be less accurate, rather
than not providing an output within this time limit at all.
Thus we augment this backbone network with a set of early
exits. As previously stated, the parameters of the backbone

network will not be fine-tuned, that is, if the backbone
network represents function f(x) = fL(...f1(x)) with a
set of parameters θ =

⋃L
i=1 θi, θ will remain unchanged

throughout the training process and only the parameters of
early exit branch functions ci(hi) : i ∈ B will be tuned.
As the entire backbone network is frozen during classifier-
wise training of the added early exit branches, and thus is
not allowed to “help” the early exit branches by tuning its
parameters, it is more difficult to increase the accuracy of
the early exit branches compared to other training strategies
listed in Section II. We use curriculum learning to train the
early exit branches, in order to improve their accuracy.

For the purpose of sorting the training samples based on
their difficulty, we use the categorical cross-entropy loss of
a pre-trained teacher network. We use two different teachers,
InceptionV3 [18] which is the same teacher used in Hacohen
et al. [17], and the more recent EfficientNetB7 [19]. We
take versions of these networks pre-trained on the ImageNet
dataset [20] and use transfer learning to train them for
the CIFAR-10 and CIFAR-100 datasets by removing the
top layer, adding two dense layers with a Dropout layer
[21] in between and retraining the network for the intended
dataset. By using two dense layers, we are taking the output
of pre-trained networks as feature vectors and training a
multilayer perceptron classifier based on these features. In
addition, since we freeze the first five blocks of the Ef-
ficientNetB7 backbone to overcome the limitations of our
hardware resources, utilizing two dense layers instead of just
one provides additional flexibility.

Figures 3 and 4 illustrate the easiest and most difficult
training samples, respectively, in the CIFAR-10 dataset based
on the loss values of InceptionV3 teacher. It is not difficult
to interpret why the network finds some of these images
particularly hard. For instance, a close-up from the front
of the airplane might be very different from the usual
perspective of other images with the same label, or it may
be difficult to distinguish between dogs, cats and deer with
certain colors and patterns of fur.

We use two variants of the baby step pacing function, the
fixed exponential pacing function shown in Fig. 5 and the
single step pacing function depicted in Fig. 6, both introduced
by Hacohen et al. [17]. Similar to our work, Hacohen et al.
[17] also investigate the effectiveness of curriculum learning
on the problem of image classification (although not in multi-
exit architectures) and document the pacing functions that
lead to improvements in the final accuracy. These pacing
functions introduce the entire dataset fairly quickly, meaning
that curriculum learning effectively takes place only in the
first few epochs. We found that such pacing functions are
effective in our case as well. Fixed exponential pacing
starts with only a small percentage of the training data and
exponentially increases the amount of data after every fixed
number of batches, whereas single step pacing starts with a
higher percentage of data and introduces the entire dataset
after a certain number of batches have been processed. The
details of fixed exponential pacing and single step pacing
functions are shown in Equations (6) and (7) respectively,
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Fig. 3. Easiest training samples in the CIFAR-10 dataset based on the loss
values of InceptionV3 teacher network. The labels are ground truth, not the
predictions of the network.

Fig. 4. Hardest training samples in the CIFAR-10 dataset based on the loss
values of InceptionV3 teacher network. The labels are ground truth, not the
predictions of the network.

where t is the index of the current batch, s indicates the
initial fraction of data used, r denotes the increase in data
and δ is the fixed number of batches after which the data is
increased. It is important to note that fixed exponential pacing
has three hyper-parameters, namely s, r and δ, while single
step pacing has only two.

λ(t) = min
(
s · rb tδ c, 1

)
(6)

λ(t) =

{
s, t < δ
1, t ≥ δ (7)

Fig. 5. Fixed exponential pacing function with s = 0.04, r = 1.9 and
δ = 300.

Fig. 6. Single step pacing function with s = 0.30 and δ = 300.

We use four different backbone networks in our ex-
periments, namely DenseNet201 [22], MobileNetV1 [23],
ResNet152 [24] and InceptionV3 [18]. We train these net-
works on the CIFAR-10 and CIFAR-100 datasets using
transfer learning in the exact same way as the aforementioned
teacher networks.

In the training of teacher and backbone networks, in order
to overcome the limitations of our available resources, the
size of the batches are adjusted and some of the layers in the
networks are frozen, that is, their weights are not modified
during the training process. Keep in mind that since these
networks are all pre-trained on the ImageNet dataset, the
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frozen layers are still capable of providing useful features.
Table I summarizes the details of the training process for
each of these networks.

TABLE I
TRAINING DETAILS FOR TEACHER AND BACKBONE NETWORKS

Network Batch
Size

Frozen Layers Test Accuracy

CIFAR-
10

CIFAR-
100

DenseNet201 32 All except batch
normalization

96.48% 82.53%

MobileNetV1 64 None 94.28% 76.91%
ResNet152 32 All except batch

normalization
95.36% 82.25&

InceptionV3 64 None 96.56% 83.80%
EfficientNetB7 32 First five blocks 96.50% 83.76%

We place two early exit branches at two different inter-
mediate layers on each backbone network. All early exit
branches have the same architecture, which is a convolution
layer, followed by a maximum pooling layer, and three dense
layers with a Dropout layer between each pair, as shown
in Figure 7. Note that since the dimention of features in
different branch locations might be different, the size of the
flattened vector varies for each branch location. This is the
same branch architecture used by by Hu et al. [25]. The
location of each branch depends on the architecture of the
backbone network. We found that placing an early exit branch
later in the backbone network does not necessarily improve
the overall accuracy of the branch, and generally speaking
branches located immediately after the “natural blocks” - for
instance, concatenation layers, residual connections or dense
blocks - in the architecture performed better than several
other layers immediately before or after them. Early exit
branches are placed at the earlier sections of the backbone
network as they correspond to the locations where dynamic
inference would be desired in practical scenarios. The exact
placement of branches for each backbone network can be
found in Tab. II.

Fig. 7. Architecture of Early Exit Branches.2

As previously mentioned, we use the classifier-wise train-
ing strategy for training the multi-exit architecture. During
the training of each branch, first we test both stochastic gradi-
ent descent and Adam [27] optimizers with different learning
rates of {10−1, 0.12, 10−2, 10−3, 10−4, 10−5} to obtain the
highest accuracy for the normal training method without any

2Image created using the NN-SVG tool [26].

TABLE II
PLACEMENT OF BRANCHES FOR EACH BACKBONE NETWORK

Backbone Dataset BN∗ Branch Placed After
DenseNet201 CIFAR-10 1 Layer 15 of 201

2 Layer 40 of 201
CIFAR-100 1 Layer 40 of 201

2 Layer 137 of 201
MobileNet CIFAR-10 1 Layer 8 of 28

2 Layer 14 of 28
CIFAR-100 1 Layer 8 of 28

2 Layer 14 of 28
ResNet152 CIFAR-10 1 Layer 13 of 152

2 Layer 38 of 152
CIFAR-100 1 Layer 13 of 152

2 Layer 38 of 152
InceptionV3 CIFAR-10 1 1st Filter Concat

2 2nd Filter Concat
CIFAR-100 1 1st Filter Concat

2 2nd Filter Concat
∗Branch Number

curriculum, which we call vanilla. We chose to test the 0.12
learning rate in addition to 10−1 since it was the best case
discovered for the experiments in Hacohen et al. [17]. With
both optimizers, the learning rate is automatically reduced
when the validation accuracy plateaus. Subsequently, using
the same optimizer, we train the branch using the curriculum
and anti-curriculum training methods. Similar to Hacohen et
al. [17], we also compare the results with random curriculum
which uses the pacing function on randomly-ordered training
data without any sorting. This comparison is in order to show
that the benefit does not solely come from the pacing, and that
the sorting from easiest to hardest or vice-versa contributes
to the increase in accuracy as well.

As with many machine learning paradigms, curriculum
learning is sensitive to hyper-parameters, therefore we per-
form a grid search in order to find the suitable teacher
network and pacing function in each case. We use a dataset
separate from training, validation and test datasets for this
task. Table III summarizes the different choices of pacing
functions tested during the hyper-parameter optimization
step.

TABLE III
HYPER-PARAMETER OPTIMIZATION FOR PACING FUNCTION

Function Type Parameters Abbreviation
s r δ

Fixed Exponential Pacing 0.04 1.9 100 FEP(100)
Fixed Exponential Pacing 0.04 1.9 200 FEP(200)
Fixed Exponential Pacing 0.04 1.9 300 FEP(300)
Single Step Pacing 0.30 - 300 SSP(300)

We repeat each of the experiments five times and record
the average accuracy along with the standard deviation. In
order to make the comparisons fair, in each repetition, in
all four cases of vanilla, curriculum, anti-curriculum and
random curriculum, the early exit branch starts with the same
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TABLE IV
COMPARISON OF THE FINAL TEST ACCURACY OF EARLY EXIT BRANCHES USING DIFFERENT TRAINING METHODS

Backbone Dataset BN∗ Vanilla Curriculum AC† RC§ Opt. LR¶ Teacher Pacing
DenseNet CIFAR-10 1 71.71% ± 0.47 71.59% ± 0.57 71.75% ± 0.75 71.58% ± 0.57 Adam 10−4 EfficientNet FEP(100)

2 77.43% ± 0.64 77.91% ± 0.03 77.21% ± 0.80 77.25% ± 0.35 SGD 0.12 EfficientNet FEP(100)
CIFAR-100 1 38.36% ± 0.31 39.56% ± 0.57 35.32% ± 2.06 38.74% ± 1.37 SGD 0.12 EfficientNet FEP(200)

2 61.72% ± 1.26 64.05% ± 1.18 58.78% ± 1.68 62.95% ± 0.78 Adam 10−4 EfficientNet FEP(300)
MobileNet CIFAR-10 1 67.30% ± 0.25 67.33% ± 0.31 67.04% ± 0.45 67.02% ± 0.48 Adam 10−4 EfficientNet SSP(300)

2 79.06% ± 0.65 79.47% ± 0.05 79.04% ± 0.43 78.55% ± 0.41 Adam 10−4 Inception FEP(100)
CIFAR-100 1 44.26% ± 0.69 44.83% ± 0.19 44.89% ± 0.26 44.84% ± 0.45 Adam 10−4 Inception FEP(300)

2 47.48% ± 0.99 48.39% ± 0.66 47.54% ± 0.45 48.34% ± 0.74 Adam 10−4 EfficientNet FEP(200)
ResNet CIFAR-10 1 67.87% ± 0.76 68.75% ± 0.16 67.78% ± 0.26 67.44% ± 0.74 Adam 10−4 EfficientNet FEP(100)

2 76.25% ± 0.25 76.24% ± 0.28 76.32% ± 0.25 76.29% ± 0.11 Adam 10−4 EfficientNet FEP(100)
CIFAR-100 1 35.53% ± 0.74 36.57% ± 1.07 36.46% ± 0.82 36.08% ± 0.70 Adam 10−4 EfficientNet SSP(300)

2 41.26% ± 0.56 41.30% ± 1.02 41.45% ± 0.73 40.89% ± 0.36 Adam 10−4 EfficientNet FEP(100)
Inception CIFAR-10 1 76.91% ± 0.58 77.34% ± 0.27 77.13% ± 0.07 77.19% ± 0.17 Adam 10−4 EfficientNet FEP(300)

2 79.06% ± 0.37 79.18% ± 0.12 79.47% ± 0.52 79.42% ± 0.15 Adam 10−4 Inception FEP(100)
CIFAR-100 1 44.24% ± 0.70 44.56% ± 0.44 44.53% ± 0.42 44.07% ± 0.75 Adam 10−4 Inception FEP(200)

2 45.86% ± 0.21 46.50% ± 0.21 45.13% ± 0.92 46.11% ± 1.28 Adam 10−4 Inception FEP(300)
∗Branch Number
†Anti-Curriculum
§Random Curriculum
¶Learning Rate

weight initialization.

IV. RESULTS

Our results are summarized in Table IV. The first three
columns of the table determine the case under study; the
next four columns compare the final accuracy of different
training approaches for each case; and the last four columns
summarize the optimal hyper-parameters discovered for each
case. We can observe that in all 16 cases, the accuracy of
our method (curriculum and anti-curriculum) is higher than
the accuracy of the models trained following the vanilla
approach. Notice that in five of the cases the accuracy of the
anti-curriculum strategy is better than that of curriculum. The
fact that anti-curriculum can achieve superior results is hardly
surprising, since there are many documented cases in the
literature where the anti-curriculum approach yields higher
performance than the curriculum approach [16]. One possible
explanation is that anti-curriculum forces the network to
focus on the boundary cases and ambiguous examples early
on and thus performs better when separating the classes.
We can also observe that for three of the cases involving
the Inception backbone network, the selected teacher is the
Inception network as well. Thus these cases are examples
of self-taught teacher transfer. Finally, we note that the best
optimizer found for two of the DenseNet cases is SGD while
in all other cases the Adam optimizer is selected.

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper, we proposed a robust way of increasing the
accuracy of early exits branches in multi-exit architectures
and showed that it works across different datasets, backbone
networks, branch locations and optimizers. We have also
shown that even though curriculum learning provides the
highest accuracy in most of the experiments, in some cases,
anti-curriculum achieves the best performance, therefore it

is better to test both of these approaches rather than relying
exclusively on the former.

As future research directions, it would be worth investigat-
ing how our method performs with other training strategies
for multi-exit architectures. It is unlikely that this method
increases the accuracy for every weighting scheme of the
end-to-end training strategy or for every layer in the layer-
wise training strategy, however, it is an interesting problem
to discover the conditions under which it provides a benefit.
Moreover, the combination of our method with other meth-
ods for increasing the accuracy of early exits such as the
distillation-based training introduced in Phuong et al. [11]
can be explored. Indeed, curriculum learning in combination
with an ensemble approach has been shown to improve
knowledge distillation [28].
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ods such as early exiting. In this paper, we introduce a novel architecture

for early exiting based on the vision transformer architecture, as well as
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well as audiovisual crowd counting, we show that our method works for both
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1. Introduction

Over the past decade, deep learning has shown tremendous success across

various fields, such as computer vision and natural language processing [1].

However, deep learning models are by definition composed of many layers of

interconnected neurons, even reaching billions of parameters, which makes

them computationally expensive. This has sparked a great deal of research

in order to make deep learning models more lightweight, for which many ap-

proaches have been proposed, for instance, model compression methods [2]

such as quantization [3], pruning [4], low-rank approximation [5] and knowl-

edge distillation [6].

More and more emerging internet of things (IoT) applications are in-

tegrating deep learning models, such as video surveillance, voice assistants,

augmented reality and cooperative autonomous driving, which are often time-

sensitive and require inputs to be processed within specific deadlines [7, 8].

The heavy computational burden of deep learning becomes problematic for

these time-critical IoT applications, due to resource-constrained IoT devices.

Edge computing is a promising computing paradigm for addressing this issue,

in which the deep learning task is offloaded to edge servers in the proximity

of IoT devices.

Since edge computing systems introduce computation offloading over a

communication network and involve multiple nodes working collaboratively

in order to complete the task in a timely manner, transmission time has to

be taken into account in addition to the deep learning computation time.

However, transmission time may vary greatly over time and across different
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channels. Consequently, deep learning models running on edge computing

systems and IoT networks should be capable of anytime prediction, meaning

they should be able to provide a valid response even if they are interrupted

before traversing the entire neural network, although the model is expected

to provide a better answer if it is allowed to run for longer time.

Dynamic inference approaches [9] modify the computation graph based

on each input during the inference phase in order to fit the time constraints.

A dynamic inference approach that particularly suits anytime prediction is

early exiting [10], also referred to as multi-exit architectures or auxiliary clas-

sifiers in the literature. In multi-exit architectures, one or more early exit

branches are placed after some of the intermediate hidden layers of the back-

bone network. The goal of each of these branches is to provide an early

result similar to the final result of the neural network using only the fea-

tures extracted up to that particular branch location. These early results

are inevitably less accurate than the final result of the network. In order to

achieve anytime prediction using early exiting, the latest early result can be

used whenever the execution is interrupted, for instance, whenever a hard

deadline is reached. Computation time can be further decreased by applying

model compression techniques on the backbone of multi-exit architectures.

Besides anytime prediction, early exiting can also be used in budgeted batch

classification where a fixed amount of time is available in order to classify

a set of input samples. In such a setting, the result of earlier branches can

be used for “easier” samples whereas the result of later branches or the final

result can be used for “harder” ones. The difficulty of each sample can be

determined based on the confidence of the network about its output [11],
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although other approaches exist in the literature [10].

Early exit branches are expected to have a low overhead in terms of the

extra computation they introduce, since a high overhead would defeat the

purpose. Therefore, they often contain only a handful of layers. Ideally,

we want the accuracy of the early results to be close to that of the final

result, since a higher accuracy for early exit branches means that the overall

reliability of the system increases. However, the low-overhead constraint

makes it quite challenging to achieve a high accuracy since the early exit

branches have significantly less trainable parameters compared to the rest of

the network. Several approaches for increasing the accuracy of early exits

such as knowledge distillation [12], curriculum learning [13] and architectures

designed specifically for early exit branches [14] have been suggested. In this

paper, we propose a novel architecture in order to obtain more accurate early

exits for convolutional neural network (CNN) backbones.

A neural architecture called vision transformer (ViT ) [15] has been re-

cently introduced for image classification which is radically different from

convolutional neural networks. The building blocks of Vision Transformer

have been used for early exits placed on Vision Transformer backbones [14],

however, using Transformer-based early exit branches on CNN backbones is

not intuitive and requires additional steps and architectural modifications.

We use a modified version of this architecture instead of the usual convolu-

tion and pooling layers in early exit branches and show that our method can

significantly increase the accuracy of early exits compared to conventional
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architectures by fusing local and global receptive fields1. The contributions

of this paper can be summarized as follows:

• We propose a novel architecture for early exit branches in multi-exit

architectures based on vision transformers, called single-layer vision

transformer (SL-ViT ). We compare our method with conventional

CNN-based early exit architectures across 27 scenarios involving differ-

ent datasets, branch locations and backbone networks and show that

our method is significantly more accurate in 26 of these scenarios, while

having less overhead in terms of number of parameters and floating

point operators (FLOPS). To the best of our knowledge the fusion of

global and local scope in early exits has never been used in multi-exit

architectures before.

• We show that our method is a general purpose approach that works

across different modalities as well as multi-modal settings by investi-

gating image classification, audio classification and audiovisual crowd

counting scenarios. We also show that our method works for both

classification and regression problems.

• We introduce a novel way of integrating audio and visual features in

early exits using vision transformers. To the best of our knowledge, this

is the first time early exits have been studied in multi-modal settings.

• We provide insight into why our method achieves better results com-

pared to conventional CNN-based architectures by investigating the

1Our code will be available at https://gitlab.au.dk/maleci/sl_vit.
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role of attention and receptive field.

• We introduce a fine-tuning strategy for SL-ViT called copycat single-

layer vision transformer (CC-SL-ViT ) which is based on the copycat

strategy developed for CNNs [16] and show that this method can fur-

ther increase the accuracy of SL-ViT early exits. To the best of our

knowledge this is the first time the copycat strategy is used for vision

transformers or early exits.

The rest of this paper is organized as follows: Section 2 provides an

overview of the relevant literature; Section 3 describes our proposed method

in detail; Section 4 explains the details of our experiments; Section 5 show-

cases the experiment results; and, finally, Section 6 briefly discusses the re-

sults and concludes the paper.

2. Related Work

This section provides the necessary prerequisites for understanding our

method and experiments. We start by describing the particulars of multi-exit

architectures. Subsequently, we provide the details of the vision transformer

architecture, which is the foundation of the proposed method. Then, we

briefly touch on how audio classification is normally carried out, which is

included in several scenarios in our experiments. Finally, we explain another

scenario investigated in our experiments, i.e. crowd counting, and how it can

be approached in a multi-modal manner.
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2.1. Multi-Exit Architectures

In order to describe multi-exit architectures, we use the same notation as

Scardapane et al. [10] where a neural network is formulated as a function

f(X) = fL(fL−1(...f1(X))). In this formulation L signifies the total number

of layers in the network and fi is the operator corresponding to layer i, which

can be a convolutional layer, a fully-connected layer, a normalization layer,

or any other differentiable operator. hi = fi(hi−1) denotes the output of layer

i, where h0 is the input X. Finally, θi symbolizes the trainable parameters

of layer i.

Equation (1) formulates the training process for the neural network which

is achieved by tuning its parameters using an optimization algorithm on the

landscape defined by a loss function. In this equation, the parameters of the

neural network are denoted by θ =
⋃L

i=1 θi, the training samples are signified

by {(Xn, yn)}Nn=1, and l(·, ·) is the loss function.

f ∗ = arg min
θ

N∑

n=1

l(yn, f(Xn)) (1)

Extending this notation to multi-exit architectures, B ⊆ {1, .., L} signifies

the set of selected branch locations after which early exit branches will be

placed. cb(hb) = yb is the classifier or regressor representing the early exit

branch at each branch location b, where yb denotes the early result at that

location. The schematic illustration of a multi-exit architecture is presented

in Figure 1. However, since there are multiple outputs, and thus multiple

loss signals in a multi-exit architecture, its training is not as straightforward.

Three different approaches for training multi-exit architectures exist in

the literature [10, 17, 13]. In the first approach, called end-to-end training,
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Figure 1: Schematic illustration of a multi-exit architecture with two early exits.

the loss signals of all exits are combined and backpropagated through the

network at the same time. With end-to-end training, the contribution of

each loss signal to the total loss is expressed with weight values, which are

therefore hyper-parameters of the model.

The second approach, called layer-wise training, first trains the network

up to and including the first exit branch. Subsequently, the part of the

network that has been trained so far is frozen, meaning its parameters are not

modified any further, and the remainder of the network up to and including

the second exit branch is trained. This process continues until the entire

network is trained. Note that with this approach, there is no guarantee that

the accuracy of the final exit remains unchanged.

In the final approach, called classifier-wise training, the backbone net-

work is completely frozen and each branch is trained independent of the

rest of the network and other branches, meaning the parameters θ are not

modified and only the parameters of the classifers/regressors {cb}, b ∈ B are

trained. With this approach, no new hyper-parameters are introduced and

the backbone remains unchanged. However, the early exit branches affect a

lower number of trainable parameters compared to the other approaches.

In this paper, we choose to follow the classifier-wise training approach
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due to its practical importance. This is because with classifier-wise training,

early exit branches can be easily added on top of existing backbone net-

works without the need for re-training and hyper-parameter optimization,

which can be computationally expensive and time consuming. Furthermore,

with end-to-end and layer-wise training strategies, the number of branches

and their placement can lead to further trade-offs and affect the overall per-

formance of the model. Since branches are independently trained in the

classifier-wise strategy, any number of branches can exist and a branch can

be placed at any location without affecting the performance of other branches

or the backbone.

It is important to mention that branches placed later in the backbone

network do not necessarily result in a higher accuracy compared to branches

placed earlier. The usage of such branches would therefore not be sensi-

ble since earlier branches exist that require less computation and provide

more accurate results. We hereby use the term impractical to refer to such

branches.

As previously mentioned, there are several methods that try to improve

the accuracy of early exits. The method in [12] uses the combination of the

distillation loss from the final exit and the loss signal from ground truth labels

to train more accurate early exits using in the end-to-end training setting.

The method in [18] expands on this idea by adding a third loss signal based on

the difference between features of the latest early exit with earlier exits. The

method in [19] proposes a technique called gradient equilibrium to combat

the problem of gradient imbalance that surfaces when using the end-to-end

strategy, which is when the variance of the gradients becomes very large when
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loss signals from multiple exits are combined, leading to unstable training.

Moreover, this paper introduces forward and backward knowledge transfer

that aims to encourage collaboration among different exits. The method in

[20] improves the accuracy of later exits by reusing predictions from earlier

exits. The method in [21] circumvents the problem of impractical branches by

adaptively selecting the exit location based on time budget and the specific

input. The method in [22] simplifies the design of multi-exit architectures

by removing the hyper-parameters of the end-to-end training strategy that

specify the contribution of each loss signal.

Besides efficient inference, early exits can prove useful in several other

applications, for instance, the method in [23] allows for parallel training of the

segments of the DNN that exist between early exits, by training each segment

based on the loss signal of the next segment obtained in the previous training

stage. Moreover, early exits can be added to the network during the training

in order to increase the accuracy of the backbone network and discarded after

the training phase, for instance, the widely used Inception model [24] was

trained in this way.

Besides early exiting, several other approaches exist for dynamic infer-

ence, for instance, layer skipping [25, 26, 27, 28] where the execution of some

of the layers of the DNN are skipped, and channel skipping [29] where less

impactful channels of convolutional neural networks are ignored and their

computation is skipped during the inference phase. However, unlike early ex-

its, these approaches cannot provide an output if the execution is interrupted

due to a strict deadline, as these methods need to perform the computations

until the very last layer.
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2.2. Vision Transformer

The transformer architecture was first introduced by Vaswani et al. [30]

for natural language processing, and it has recently been adapted for solving

computer vision problems by Dosovitskiy et al. [15]. Vision transformer was

originally developed for the problem of image classification, however, varia-

tions of vision transformer have since been applied to many computer vision

problems, such as object detection, depth estimation, semantic segmenta-

tion, image generation and action recognition, as well as multi-modal data

analysis tasks such as text-to-image synthesis and visual question answering

[31, 32, 33].

In order to describe the vision transformer architecture, we first explain

the self-attention layer. The input of this layer is in the form of a sequence

X = (x1, . . . , xn) where X ∈ Rn×d and d is the embedding dimension to

represent each entity. Its output is in the form of Z = (z1, . . . , zn) where

Z ∈ Rn×dv . The goal of self-attention is to capture the interaction between

the entities in the sequence. For this purpose, each vector xi in the sequence

is transformed into three separate vectors: the query vector qi ∈ Rdq , the key

vector ki ∈ Rdk and the value vector vi ∈ Rdv , where dq = dk. To construct

the output vector zi that corresponds to the input xi, for each vector xj in

X (including xi itself), the scalar aij is calculated by the inner product of

qi and kj. Output vector zi is then calculated by summing the value vectors

v1, . . . , vn weighted by their corresponding scalars, that is, zi =
∑n

j=1 aijvj.

The scalar aij basically specifies how much attention the i-th entity should

pay to the j-th entity, since aij determines the contribution of vj to the

combined output zi. In practice, the scalars are normalized by
√
dk and
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converted into probabilities using the softmax function.

If the key, query and value vectors are packed into matrices Q = XWQ,

K = XWK and V = XW V , where WQ, WK and W V are learnable weight

matrices, the above operation can be rephrased as follows:

Z = softmax

(
QKT

√
dk

)
V (2)

In order to enable the model to capture more than one type of relationship

between the entities in the sequence, self-attention is extended to multi-head

attention by concatenating the output of h different self-attention blocks

Z1, . . . , Zh each with its own set of learnable weight matrices, into a single

matrix Z ′ = [Z0, . . . , Zh] ∈ Rn×h.dv , which is then projected using a weight

matrix W ′ ∈ Rh.dv×d.

A transformer encoder is constructed by passing the input sequence into

a normalization layer, a multi-head attention layer, a second normalization

layer and a multi-layer perceptron (MLP), respectively. Two residual con-

nections are added, one by adding the input sequence to the output of the

multi-head attention, and the other by adding the output of the multi-head

attention to the output of the MLP.

Putting it all together, a vision transformer is created by first splitting

the input image into patches. Subsequently, the sequence of patches is pro-

jected into a sequence of vectors and a positional embedding is added to

the corresponding vector of each patch. An additional learnable embedding

called classification token is added to the beginning of the sequence. The

sequence then passes through L transformer encoders. Finally, the first vec-

tor in the output of the last transformer encoder, which corresponds to the

classification token, is passed to a MLP which outputs the final classification
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result. The architecture of vision transformer is depicted in Figure 2.

Figure 2: The vision transformer (ViT) architecture for image classification.

ViT-EE is a method which uses transformer encoders for early exits

placed on ViT backbones [14]. ViT-EE uses the exact same layer as the

ViT backbone. Using the building blocks of the backbone network for early

exit branches is simple and intuitive, and it is the reason why so far, mostly

convolutional layers have been used for early exiting CNN backbones. How-

ever, as we show in this work, carefully designing the architecture of early

exit branches can lead to significant improvements. Using Transformer-based

early exit branches on CNN backbones is not intuitive, and requires addi-

tional steps such as converting tensors to patches, dealing with the classifica-

tion token and fine-tuning the architecture parameters including patch size,

attention heads, embedding representation, the size and number of layers
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for MLP, and dropout. Moreover, we show that removing the last residual

connection in the transformer encoder can improve the performance in some

cases.

Furthermore, ViT backbones have a global receptive field in every layer,

this means that ViT-EE is not necessarily ideal for early exits at all layers,

as it adds too much overhead without providing improvements in terms of

receptive field. On the other hand, CNN backbones have a limited receptive

field particularly in earlier layers, therefore fusing this receptive field with a

global one leads to improvements.

2.3. Audio Classification

Similar to image classification, audio classification is the problem of cat-

egorizing a given audio waveform into one of several predetermined classes.

For instance, the given audio waveform could be a musical recording, and the

goal could be to specify which genre of music it belongs to. To represent the

input features, spectrograms obtained by applying short-time Fourier trans-

form (STFT) and Mel spectrograms are commonly used [34], although raw

audio waveforms can been used as well [35]. Mel spectrograms are spectro-

grams that are constructed using the Mel scale which is a nonlinear trans-

formation of the frequency scale designed based on domain knowledge about

the human auditory system. Various deep learning models for audio classifi-

cation exist in the literature, including models that are commonly used for

image classification, namely ResNet [36], DenseNet [37] and Inception [38],

which have been shown to be quite effective for audio classification as well

[39]. Conveniently, the same three networks have previously been used as

backbone networks when investigating early exiting for image classification
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[13]. Therefore we use these backbone networks for both image and audio

classification in our experiments.

2.4. Audiovisual Crowd Counting

Crowd counting refers to the problem of identifying the total number of

people present in a given image. Crowd counting has many applications such

as safety monitoring, disaster management, design of public spaces, intelli-

gence gathering and analysis, creation of virtual environments and forensic

search [40]. With many of these applications, it is vital for the model to per-

form in near real-time. However, the input images in these scenarios often

have high resolutions, such as HD or Full HD. Moreover, many of the avail-

able methods contain an immense number of parameters [41]. This means

that crowd counting models are often very computationally expensive, there-

fore, dynamic inference methods such as early exiting and other lightweight

deep learning methods become essential in real world applications.

Although the main objective of this task is to obtain a single count from

an image, many methods treat this problem as dense prediction where the

output is a density map depicting the density of the crowd across the input

image, and the total count is calculated by the sum of all values in the density

map. Therefore, in most crowd counting datasets, such as Shanghai Tech

[42] and World Expo ’10 [43], the locations of the heads of individuals in the

image are annotated and provided as targets. A ground truth density map

can then be obtained from these head annotations using Gaussian kernels or

more complicated and specialized methods [41]. Figure 3 shows an image

from the Shanghai Tech dataset and the ground truth density map that was

generated from the provided head annotations using the method presented in
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Figure 3: An example image from the Shanghai Tech dataset and its corresponding ground

truth density map.

Zhang et al [42]. In crowd counting, Mean Absolute Error (MAE ) is usually

used as a measure of accuracy whereas Mean Squared Error (MSE ) is used

as a measure of robustness [44].

Many crowd counting methods exist in the literature [41], however, most

of these methods are applied in a single-modal fashion where the input is

an image or a video frame. In contrast, AudioCSRNet [45], a multi-modal

extension of the widely-used CSRNet model for crowd counting [46], takes

as input the ambient audio of a scene in addition to its image. The authors

show that the ambient audio improves the result in situations where the

image quality is not ideal, for instance, low image resolution, presence of

noise, occlusion and low illumination.

In CSRNet, the features extracted from the input image by the first 10

layers of a VGG-16 [47] network pre-trained on the ImageNet dataset [48]

are passed through 6 dilated convolution layers and a 1×1 convolution layer

in order to obtain the density map. AudioCSRNet extends this architecture

by converting each of the dilated convolution layers into a fusion block. The

architecture of AudioCSRNet is depicted in Figure 4. First, a Mel spectro-
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gram is obtained from the raw audio waveform. Subsequently, in each fusion

block, the features extracted from the input Mel spectrogram by the first 6

layers of a VGGish [49] network pre-trained on the AudioSet dataset [49] are

projected to two vectors called γ and β which represent the multiplicative

and additive aspects of the audio features. The γ and β vectors are then

tiled in order to match the size of the visual features. Finally, the output of

the dilated convolution is element-wise multiplied by γ and added to β.

The fusion operation can be summarized as

vl+1 = Fl(γl ⊙Dl(vl) + βl), (3)

where vl ∈ RCl×Wl×Hl is the output of the l-th fusion block, Fl denotes an

activation function, γl and βl are the tiled vectors and Dl represents the l-th

dilated convolution.

Figure 4: Architecture of AudioCSRNet.

In practice, a batch normalization layer [50] is added immediately after

each dilated convolution. Furthermore, the height and width of the interme-

diate features remain unchanged by using padding in the convolution oper-

ations, meaning Hl = Hl+1 and Wl = Wl+1. Additionally, since the first 10
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layers of VGG-16 decrease both height and width by a factor of 8 via several

pooling operations, the final result of the network needs to be upsampled by

a factor of 8 in order to match the resolution of the input image. It is im-

portant to preserve the total sum of the density map during this upsampling

operation, since it represents the total count.

3. Single-Layer Vision Transformers for Early Exits

We assume a pre-trained and high performing backbone network is al-

ready available. Due to time constraints arising from the particular appli-

cation, it is desirable that the network provides a result within the specific

deadline rather than not providing a result at all, even though this result may

be less accurate than it would be if time constraints did not exist. Therefore,

the backbone needs to be augmented with early exit branches to allow for

dynamic inference and anytime prediction. As previously mentioned, we use

the classifier-wise approach for training the early exit branches since it re-

sults in “plug-and-play” branches that can easily be added to the backbone

network without any re-training or hyper-parameter tuning.

3.1. SL-ViT

Typically, the architecture of early exit branches starts with one or more

convolution layers, although some may have no convolutions at all. After-

wards, they may have a pooling layer, which may be global pooling, and one

MLP [51, 11]. Here, as a baseline, we choose to utilize the architecture de-

picted in Figure 5 with one 3×3 convolution, followed by a 2×2 max pooling

layer and finally a MLP. The size of the max pooling layer is increased to

4 × 4 for crowd counting since the input images have a very high resolution.

18

DRAFT



Additionally, we use dropout [52] inside the MLP to avoid overfitting. We

use a single convolution since early exits with two or more convolution layers

have a high overhead and may even lead to lower accuracy [11]. Early exits

without convolutions are sometimes used very late in the network, however,

since they are straightforward and leave no room for modifications, we do

not apply our method for such cases. The resulting architecture is a common

setup within the literature, and is effectively the same architecture used for

earlier exits by Hu et al. [51].

Figure 5: Architecture of CNN early exit branches. Size of the flattened feature vector

depends on the dimensions of the features at the specific branch location. For branches

placed on the AudioCSRNet backbone, max pooling size is increased to 4x4 since the input

images have a high resolution. Figure created using the NN-SVG tool [53].

Our method called single-layer vision transformer or SL-ViT for short, is

an alternative architecture for early exit branches that can achieve a higher

accuracy compared to the aforementioned baseline, while having less over-

head in terms of the number of parameters as well as floating point opera-

tions per second (FLOPS). Our proposed architecture is based on the vision

transformer architecture introduced in section 2.2, where instead of the input

image, we split the intermediate features at the branch location into patches
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(sub-tensors) and pass them to a vision transformer.

The choice of vision transformer architecture is primarily due to its global

receptive field. Receptive field is crucial in many deep learning problems,

including ones studied in this work. The receptive field of state-of-the-art

CNNs developed for image classification has steadily increased over time

and is correlated with increased classification accuracy [54]. Additionally, in

audio classification using spectrograms, each location relates to a different

frequency band in a different window of time. It is reasonable to assume that

processing combinations of frequencies and windows that are not necessarily

adjacent could be of importance. Moreover, many crowd counting methods

have made use of global information through visual attention mechanisms

and dilated convolutions [41]. Since the receptive field is particularly limited

in early layers of CNN backbones, choosing an architecture for early exit

branches with a global receptive field could be beneficial.

Many other designs strive to increase the receptive field in their building

blocks, for instance, the pyramid pooling module (PPM) in PSPNet [55] or

atrous spatial pyramid pooling (ASPP) in DeepLab [56]. However, they all

fall short in comparison with the global receptive field of transformers. PPM

increases the receptive field through aggregating different levels of pooling,

which means far locations have only access to coarse representations of each

other, and ASPP has holes in its receptive field.

It is important to mention that the local receptive field of convolutional

layers is not fundamentally bad. On the contrary, it plays a key role in

representation learning and extracting local information, especially in the

early layers of the network where the receptive field of the convolutional filters
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is small. Filters in successive convolutional layers have increasingly larger

receptive fields, therefore, final layers in a CNN architecture have filters of

large enough receptive fields that can effectively aggregate information from

the entire input image to provide a proper response. However, this process

of cascading local receptive fields of increasing size requires the number of

layers in the CNN to be large, or at least all the layers in the network to

be traversed in order to provide the network’s response. When an early

exit is added at an early layer, this chain of increasingly larger receptive

fields is broken, and an early exit that has a local receptive field may not be

able to effectively aggregate all required information in the image to provide

a suitable response. This situation is the motivation behind the proposed

branch architecture, which fuses the local receptive field of the layer in the

network where the early exit branch is attached, with the global receptive

field of the early exit, in order to effectively aggregate information from the

entire input and provide a more accurate response. Indeed, the original

Vision Transformer paper [15] attributes the success of their model to the

combination of local and global receptive fields and shows that even in very

early layers, this ability to integrate information globally is indeed used by

the model.

There are some crucial differences between the original vision transformer

and the architecture in our method. First, in order to introduce a low over-

head for early exit branches, we only use a single transformer encoder layer

instead of the original 12 to 36 layers, meaning that L = 1 in our case.

Secondly, we do not utilize a separate classification token and instead pass

the entire output of the transformer encoder layer to the MLP head. This
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is possible because the width and height of tensors are generally reduced

throughout CNN backbones by pooling operations, and thus the number of

patches in our architecture is lower than that of the original vision trans-

former. In addition to the number of patches, the size of the embedding

dimension (d) is also reduced in our proposed architecture, introducing far

less parameters when passing the entire output of the last transformer en-

coder layer to the MLP head, even with high-resolution inputs such as in our

crowd counting experiments. Variations of our architecture have 5× 5, 7× 7

or 16 × 9 patches and embedding dimensions of 32 or 36, whereas different

versions of the original vision transformer have 14 × 14 or 16 × 16 patches

and embedding dimensions of 768, 1024 or 1280. We empirically found that

using the entire transformer encoder output instead of just one classification

token can increase the accuracy, perhaps because in a single-layer version,

there are not enough layers for the classification token to learn to properly

summarize other patches. Our proposed architecture is shown in Figure 6.

It is also important to note that the MLP head used in our architecture is

exactly the same as the MLP in the CNN early exit architecture.

Our model has several hyper-parameters, namely the size of each patch,

the embedding dimension d and the number of attention heads h in multi-

head attention. The patch size creates a trade-off where smaller patches

result in a more fine-grained attention mechanism while increasing the total

number of parameters in a bi-quadratic fashion. Therefore, similar to the

original vision transformer, we choose the size of the patch to be close to the

square root of the height and width of the input features. We also make sure

that the size of the patch can divide the size of the input features to avoid
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Figure 6: Architecture of SL-ViT early exit branches. Unlike typical vision transformers,

only a single transformer encoder layer is used, extra learnable classification token is not

added to the sequence and the entire output of the transformer encoder is passed on to

the MLP head. The MLP head is the same as CNN early exit branches.
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padding, for instance, a patch size of 4× 4 for input features of size 28× 28.

We perform a grid search to find the values of d and h that result in the

highest accuracy, while keeping the total number of parameters less than or

equal to that of the CNN early exit counterpart.

At a first glance, it might seem like the SL-ViT architecture introduces

more hyper-parameters than the conventional CNN architecture, however,

the CNN architecture includes many design choices as well, such as the num-

ber of filters, filter size, padding, dilation, stride, pooling type and pooling

size. The design choices for CNN architectures might seem simpler since they

have been studied more extensively compared to vision transformers which

were introduced more recently.

3.2. Audiovisual SL-ViT

With audiovisual backbones such as the AudioCSRNet model for audio-

visual crowd counting, described in section 2.4, it is desirable to have audio-

visual early exits that use both visual and audio features in order to achieve

a higher accuracy. The simplest way to have such branches is to add the

branches after the blocks where the fusion of visual and audio features take

place. However, with our proposed SL-ViT architecture, it is also possible to

include audio features as one or more patches alongside other patches, and

directly fuse the features in the early exit. The advantage of this approach is

that since in vision transformers, any of the patches can pay attention to any

other patch, the visual features can be fused with the audio features without

being directly impacted and modified. In contrast, since convolutional filters

only take the immediate vicinity into account, the audio features must be

present in every location. One option is to concatenate the visual features
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and the tiled audio features along the depth. However, that would greatly

increase the amount of computation for each fusion operation, therefore in-

trusive operations such as element-wise multiplication and addition are used

instead.

3.3. Copycat SL-ViT

Finally, we introduce a fine-tuning strategy for SL-ViT branches that can

further increase their accuracy. Correia-Silva et al. [16] developed a method

called copycat CNN where they create a “fake” dataset by taking images

from another domain, giving them as input to a network trained on the

target domain, and recording the output of the network as labels for these

images. For instance, images from the ImageNet dataset [48] can be given

to a network trained on the CIFAR-10 dataset [57], where the image of a

camel may be labelled as a “dog” since there are no labels for “camel” in

CIFAR-10. This fake dataset is then combined with a dataset for the target

domain and used to train a new network. We use this strategy to fine-tune

an already trained SL-ViT branch and obtain a copycat single-layer vision

transformer (CC-SL-ViT ). Note that the ratio of the fake data mixed with

the available dataset is a hyper-parameter of this fine-tuning strategy.

4. Experimental Setup

In this section, we provide the details of our experiments. We begin by

giving a short summary of the datasets as well as the training details for the

backbone networks. We then lay out the details of the branch architectures,

their training procedure and their placement on the backbone networks, and

finally explain how the copycat strategy was used to fine-tune the branches.
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A total of 27 different scenarios were tested in our experiments. For both

image and audio classification, two datasets, three backbone networks and

two different branch locations on each backbone were tested. In addition,

three different branch locations for the audiovisual crowd counting backbone

network were covered. All experiments were repeated 5 times and the average

accuracy as well as the standard deviation were recorded. 4 × Nvidia 2080Ti

GPUs were used for the training of our models.

4.1. Datasets

4.1.1. CIFAR-10 and CIFAR-100

These are widely-used datasets for image classification [57]. Both datasets

consist of 60,000 color images of size 32 × 32 pixels and their corresponding

class labels. The images in CIFAR-10 and CIFAR-100 are categorized into

10 and 100 different classes, respectively. We use 40,000 examples for train-

ing, 10,000 for validation and another 10,000 for testing. Since our backbone

networks are pre-trained on ImageNet which consists of 224 × 224 pixel im-

ages, we resize each image to these dimensions before passing them into the

network.

4.1.2. Speech Commands (SC)

A well-known audio dataset of spoken words [58]. It consists of 100,503

1-second audio clips with a sampling rate of 16kHz, each labelled as one

of 12 classes: 10 different spoken words such as “Yes”, “No”, “Down” and

“Stop” as well as one class for background noise and another for unknown

words. We use 85,511 examples for training, 10,102 for validation and 4,890

for testing. We convert the raw audio waveforms into spectrograms using
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short-time Fourier transform (STFT) with a window size of 255 samples and

step size of 128 samples, and resize the resulting spectrograms to 224 × 224

before passing them into the network.

4.1.3. GTZAN

It is the most widely-used dataset for music genre recognition [59]. The

original dataset consists of 10 genres such as “Pop” and “Rock” and 100

30-second audio clips per genre with a sampling rate of 22,050Hz. We follow

the common approach to split each audio clip into 10 separate 3-second clips

in order to increase the size of the dataset to 10,000. We use 8,000 examples

for training, 1,000 for validation and another 1,000 for testing. Following

the approach of Palanisamy et al. [39] where different spectrograms with

different parameters are placed in each channel of the input image, we use

one spectrogram obtained from STFT with window size of 512 samples and

step size of 256 samples as well as two Mel spectrograms with 128 bins

and window sizes of 100 and 50 milliseconds, and step sizes of 50 and 25

milliseconds, respectively.

4.1.4. DISCO

An audiovisual dataset for crowd counting which contains 1,935 images

of Full HD resolution (1920× 1080) [45]. For each image, a corresponding 1-

second audio clip of ambient sounds with a sampling rate of 48kHz, starting

0.5 seconds before the image was taken and ending 0.5 seconds afterwards,

exists as well. The labels are provided in the form of head annotations in

the image. At the time of this writing, DISCO is the only publicly available

dataset for audiovisual crowd counting. We use 1435 examples for train-
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ing, 200 for validation and 300 for testing. The input image is resized to

1024× 576 pixels to reduce memory and computation requirements. Similar

to Hershey et al. [49], the input audio waveform is transformed into a Mel

spectrogram with 64 bins, window size of 25 milliseconds and step size of

10 milliseconds. Following Hu et al. [45] the ground truth density maps are

obtained by convolving the head annotations with a 15× 15 Gaussian kernel

K ∼ N (0, 4.0).

4.2. Backbone networks

Transfer learning is used to train the ResNet152, DenseNet201 and In-

ceptionV3 backbone networks for both image and audio classification. The

backbone networks are all pre-trained on the ImageNet dataset and the top

layer is replaced. We found that instead of adding just one dense layer at the

top, as is common in transfer learning, using two dense layers and a dropout

layer in between leads to a higher accuracy in our case. The resulting network

is then trained using the Adam optimizer [60] with a learning rate of 10−4

and categorical cross-entropy loss function. The learning rate is reduced by

a factor of 0.6 on plateau with a tolerance of 2 epochs, and an early stopping

mechanism with a tolerance of 5 epochs is used.

The audiovisual crowd counting backbone is trained in two stages. We

first train a network with the AudioCSRNet architecture described in Section

2.4 for 100 epochs. L2 norm is used as loss function and AdamW [61] with

a learning rate of 10−5 and weight decay of 10−4 is used as optimizer, where

the learning rate is multiplied by a factor of 0.99 each epoch. This is the

same training procedure used in the original paper [45]. Subsequently, in

order to convert the problem from dense prediction to regression, a dense
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layer with an output size of one is added after the last layer of the trained

AudioCSRNet. This layer is initialized as a sum, meaning the initial weights

are all equal to one and no bias is used. Then the entire network is re-trained

for another 100 epochs using MAE as loss function instead of the previous

L2 loss, a learning rate of 10−6 and weight decay of 10−5. The learning rate

is similarly multiplied by a factor of 0.99 every epoch. The resulting model

achieves a MAE of 13.63 which is even lower than the MAE of 14.27 reported

in the original paper. However, the output of the network is just a single

number representing the total count instead of a density map. The final

accuracy of all trained backbones can be seen in Table 1.

When training the backbone networks, in order to fit the limitations of

our available computational resources, the batch sizes are adjusted and some

layers of the backbone networks are frozen. All backbone networks were

trained with a batch size of 32 except AudioCSRNet which has a batch size

of 4 as well as InceptionV3 when trained on CIFAR-10 and CIFAR-100 which

has a batch size of 64. All layers of the backbone networks were trained,

except in the case of ResNet152 and DenseNet201 when trained on CIFAR-

10 and CIFAR-100 where only the batch normalization layers were trained.

We found that training only the batch normalization layers is sufficient to

achieve a high-performing backbone network in these cases [62].

4.3. Branches

All branches were trained from scratch using the He initialization method

[63] and the Adam optimizer with a learning rate of 10−4 where the learning

rate is reduced by a factor of 0.6 on plateau with a tolerance of 2 epochs,

and an early stopping mechanism with a tolerance of 5 epochs is utilized.
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Table 1: Performance of backbone networks on each dataset

Backbone CIFAR-10 Acc. CIFAR-100 Acc. SC Acc. GTZAN Acc. DISCO MAE

ResNet152 95.36% 82.25% 95.85% 91.29% -

DenseNet201 96.48% 82.53% 96.36% 92.09% -

InceptionV3 96.56% 83.80% 94.93% 87.79% -

AudioCSRNet - - - - 13.63

The branches on classification backbones use a categorical cross-entropy loss

function whereas the branches on the audiovisual crowd counting backbone

use mean absolute error loss. The training batch size for branches were 64

in scenarios involving CIFAR-10, CIFAR-100 and Speech Commands, 32 in

scenarios involving GTZAN and 4 in scenarios involving DISCO.

Table 2 shows the location of the branches placed on each backbone net-

work. For the AudioCSRNet backbone network, branch V1 uses only the

output of the VGG-16 layers, therefore, it only has access to the visual fea-

tures. Branch AV1 uses the outputs of both VGG-16 and VGGish, therefore

it has access to both audio and visual features. In this branch location, the

fusion of audio and visual features is performed as described in Section 3 for

the SL-ViT architecture, and similar to the fusion blocks in AudioCSRNet

for the CNN architecture, however, without dilation. Finally, branch AV2

is placed after the first fusion block in AudioCSRNet, therefore audio and

visual features have already been fused and thus fusion operation is not re-

quired within the branches. Adding branches after the second fusion block

or later would not be reasonable since more than 85% of the computation

of the backbone is carried out before that point, and thus the acceleration
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resulting from early exits would be negligible.

Table 2: Placement of branches for each backbone betwork

Backbone BN∗ Branch Placed After

DenseNet201 1 Transition Layer 1

2 Transition Layer 2

ResNet152 1 12th Convolution

2 36th Convolution

InceptionV3 1 First Filter Concat

2 Second Filter Concat

AudioCSRNet V1 Last Layer of VGG

AV1 Last Layers of VGG and VGGish

AV2 First Fusion Block

∗Branch Number

4.4. SL-ViT and CC-SL-ViT Parameters

Table 3 summarizes the hyper-parameters used for the SL-ViT branches

in each scenario. “Patch Size” shows the width and height of each image

patch, “Patches” denotes the resulting number of patches across width and

height of the input image, d is the size of embedding dimension and h is the

number of heads in multi-head attention.

For copycat SL-ViT, images from the Tiny ImageNet dataset, which are

the images from ImageNet down-sampled to 32×32, were given to the Incep-

tionV3 backbone trained on CIFAR-10, and the outputs were used to create

the fake dataset. Then the fake dataset was mixed with CIFAR-10 with a

2-to-1 ratio and used for re-training.
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Table 3: Hyper-parameters of SL-ViT for different backbone networks and branches

Backbone Dataset BN∗ Patch Size Patches d h

DenseNet201 all all 4x4 7x7 32 12

ResNet152 SC 2 4x4 7x7 32 24

GTZAN 2 4x4 7x7 32 24

Other 4x4 7x7 32 12

InceptionV3 CIFAR-100 all 5x5 5x5 36 8

Other 5x5 5x5 32 12

AudioCSRNet DISCO all 8x8 16x9 32 12

∗Branch Number

5. Results

The results of our experiments are presented in Tables 4 to 8. In these

Tables, the final accuracy, the total FLOPS of the model up to and includ-

ing the branch and the number of parameters of just the early exit branch

are compared between the CNN architecture and the SL-ViT architecture.

Higher accuracies, lower errors, lower number of parameters and lower total

FLOPS are highlighted in these tables. Furthermore, the acceleration caused

by SL-ViT early exits, defined as the total FLOPS of the backbone network

divided by the total FLOPS of the model up to and including the SL-ViT

branch, is also provided.

Several observations can be made about these results. First, in all sce-

narios except one, SL-ViT early exits achieve a significantly higher accuracy.

Even in the one exceptional scenario, namely branch 2 of ResNet152 in Table

6, the accuracy of SL-ViT is very close to its CNN counterpart. Secondly,

while in some cases SL-ViT branches have an equal number of parameters
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compared to CNN branches, in all scenarios, the total FLOPS of SL-ViT

branches is lower, therefore SL-ViT branches are always more lightweight.

Thirdly, in one scenario, namely branch 2 of ResNet152 in Table 7, removing

the last residual connection in the SL-ViT architecture significantly improved

the accuracy of the SL-ViT branch. Finally, in the AV2 branch location in Ta-

ble 8, both CNN and SL-ViT are impractical branches since earlier branches

with higher accuracies exist. This is perhaps due to the intrusive fusion

operation in the first fusion block which might initially make the intermedi-

ate features more obscure. Nonetheless, even in this case, SL-ViT is more

accurate.

Table 4: Comparison of different early exit architectures on the CIFAR-10 dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 66.74 ± 0.57% 70.79 ± 0.72% 0.78M 0.59M 1.66B 1.64B 13.77

2 79.31 ± 0.81% 81.18 ± 0.52% 0.83M 0.79M 5.33B 5.26B 4.29

DenseNet201 1 71.27 ± 0.36% 76.38 ± 0.33% 0.78M 0.59M 2.55B 2.53B 3.39

2 80.64 ± 0.29% 83.53 ± 0.37% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 77.27 ± 0.58% 79.99 ± 0.20% 0.61M 0.56M 2.17B 2.14B 2.65

2 79.55 ± 0.24% 81.72 ± 0.53% 0.61M 0.56M 2.53B 2.49B 2.28

Table 9 shows the result of applying the copycat fine-tuning strategy

to SL-ViT branches for the CIFAR-10 dataset. Observe than in all cases,

the accuracy is significantly increased compared to SL-ViT, which itself was

more accurate than CNN based on Table 4. We also tested this strategy

for the CIFAR-100 dataset with 10-to-1, 2-to-1 and 1-to-1 ratios of fake and

real data, however, neither improved the overall accuracy. Perhaps another
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Table 5: Comparison of different early exit architectures on the CIFAR-100 dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 34.93 ± 0.52% 38.59 ± 1.40% 0.80M 0.61M 1.66B 1.64B 13.77

2 47.39 ± 0.65% 53.93 ± 0.68% 0.86M 0.81M 5.33B 5.26B 4.29

DenseNet201 1 33.91 ± 1.00% 42.50 ± 0.69% 0.80M 0.61M 2.55B 2.53B 3.39

2 47.22 ± 0.45% 50.76 ± 1.01% 0.82M 0.68M 4.21B 4.17B 2.06

InceptionV3 1 43.18 ± 0.69% 46.86 ± 0.57% 0.63M 0.63M 2.17B 2.14B 2.66

2 44.87 ± 0.83% 49.07 ± 0.55% 0.63M 0.63M 2.53B 2.50B 2.28

Table 6: Comparison of different early exit architectures on the Speech Commands dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 75.80 ± 0.73% 84.05 ± 0.31% 0.78M 0.59M 1.66B 1.64B 13.77

2 89.78 ± 0.24% 89.63 ± 0.52% 0.84M 0.84M 5.33B 5.26B 4.29

DenseNet201 1 72.78 ± 0.64% 87.94 ± 0.85% 0.78M 0.59M 2.55B 2.53B 3.39

2 86.56 ± 0.61% 90.93 ± 0.52% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 84.64 ± 0.88% 87.62 ± 0.65% 0.61M 0.56M 2.17B 2.14B 2.65

2 87.08 ± 1.11% 88.33 ± 0.92% 0.61M 0.56M 2.53B 2.49B 2.28
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Table 7: Comparison of different early exit architectures on the GTZAN dataset

Backbone Branch Accuracy Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

ResNet152 1 67.01 ± 1.11% 73.27 ± 0.91% 0.78M 0.59M 1.66B 1.64B 13.77

2∗ 80.26 ± 2.07% 81.56 ± 1.57% 0.83M 0.83M 5.33B 5.26B 4.29

DenseNet201 1 70.65 ± 1.23% 76.38 ± 1.94% 0.78M 0.59M 2.55B 2.53B 3.39

2 81.72 ± 0.62% 84.00 ± 1.67% 0.80M 0.66M 4.21B 4.17B 2.06

InceptionV3 1 77.86 ± 0.90% 79.42 ± 0.99% 0.61M 0.56M 2.17B 2.14B 2.65

2 78.90 ± 0.90% 79.90 ± 0.79% 0.61M 0.56M 2.53B 2.49B 2.28

∗The last residual connection in the SL-ViT architecture was removed in this case

Table 8: Comparison of Different Early Exit Architectures on the DISCO Dataset

Backbone Branch MAE Branch Params Total FLOPS Acceleration

CNN SL-ViT CNN SL-ViT CNN SL-ViT SL-ViT

AudioCSRNet V1 16.99 ± 0.28 15.04 ± 0.71 2.50M 2.35M 329.77B 328.72B 1.49

AV1 17.00 ± 0.23 14.58 ± 0.64 2.52M 2.36M 331.37B 330.31B 1.48

AV2 17.90 ± 0.25 17.03 ± 1.04 2.50M 2.35M 374.86B 373.81B 1.31
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mixing ratio, choice of dataset and network to generate the fake dataset, opti-

mizer or hyper-parameters such as learning rate may result in improvements

for CIFAR-100.

Table 9: Effect of Copycat strategy demonstrated on the CIFAR-10 dataset

Backbone Branch Accuracy

SL-ViT CC-SL-ViT

ResNet152 1 70.79 ± 0.72% 71.61 ± 0.45%

2 81.18 ± 0.52% 83.41 ± 0.15%

DenseNet201 1 76.38 ± 0.33% 78.34 ± 0.31%

2 83.53 ± 0.37% 84.89 ± 0.43%

InceptionV3 1 79.99 ± 0.20% 80.78 ± 0.23%

2 81.72 ± 0.53% 82.20 ± 0.40%

Table 10: Comparison of improvements gained by SL-ViT with gains from knowledge

distillation for the CIFAR-10 dataset.

Backbone Branch CNN (Baseline) CNN with KD SL-ViT (Ours)

ResNet152 1 66.74 ± 0.57% 69.31 ± 0.28% 70.79 ± 0.72%

2 79.31 ± 0.81% 78.79 ± 0.61% 81.18 ± 0.52%

DenseNet201 1 71.27 ± 0.36% 73.93 ± 0.15% 76.38 ± 0.33%

2 80.64 ± 0.29% 81.56 ± 0.12% 83.53 ± 0.37%

InceptionV3 1 77.27 ± 0.58% 78.37 ± 0.34% 79.99 ± 0.20%

2 79.55 ± 0.24% 80.41 ± 0.43% 81.72 ± 0.53%

Even though other early exit methods focus on improving the training

procedure and can be used in combination with our proposed architecture,

comparing the improvements gained by utilizing such methods with improve-
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ments gained from our approach can still provide insights into the significance

of architecture design for early exits. Table 10 contains comparisons with

knowledge distillation-based training similar to the method in. [12] for the

CIFAR-10 dataset. Observe that in all cases, SL-ViT obtains a significantly

higher accuracy compared to knowledge distillation.

5.1. Ablation Studies

Table 11 showcases the effect of using different architectural parameters

on the accuracy of both SL-ViT and CNN branches. Where not specified,

the CNN early exits have a 3 × 3 kernel size with no dilation, and the SL-

ViT early exits have 12 attention heads, which are the baselines presented

in previous tables. Other parameters such as the number of convolutional

filters and padding size are adjusted accordingly in order to keep the number

of parameters close to the baselines.

These results support our hypothesis that the improvements of SL-ViT

are due to the fusion of local and global receptive fields. First, by increasing

the number of attention heads in SL-ViT, the accuracy increases significantly

while the parameters only slightly increase, hinting that learning multiple

types of attention plays a major role in SL-ViT. Secondly, by increasing the

CNN kernel size from 3× 3 to 15× 15 the accuracy is improved, yet it is still

lower than that of SL-ViT. This is because even a large filter size does not

provide a global receptive field. On the other hand, adding dilation to CNN

decreases its accuracy compared to the CNN baseline. This is because dilated

convolutions create holes in the receptive field, which increases the receptive

field yet loses important local information. Thirdly, using two CNN layers

also improves the accuracy compared to the CNN baseline, however, a higher
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gain in accuracy was achieved using a larger kernel size. Moreover, two SL-

ViT layers still obtain a higher accuracy compared to two CNN layers while

having a lower overhead in terms of parameters. Finally, we show that even

if the backbone is not pre-trained on ImageNet and is trained completely

from scratch, SL-ViT still obtains a higher accuracy compared to CNN.

Table 11: Ablation studies: the effect of the number of attention heads, number of layers,

dilation, kernel size and backbone pre-training on the accuracy of early exits placed on

the first branch location of a ResNet152 backbone trained on the CIFAR-10 dataset

Architecture Params Accuracy Branch Params FLOPS

SL-ViT (1 head) 67.92 ± 0.86% 0.55M 1.64B

SL-ViT (2 heads) 68.65 ± 0.90% 0.55M 1.64B

SL-ViT (4 heads) 69.08 ± 1.07% 0.56M 1.64B

SL-ViT (8 heads) 69.85 ± 1.12% 0.58M 1.64B

SL-ViT (12 heads) 70.79 ± 0.72% 0.59M 1.64B

SL-ViT (16 heads) 70.76 ± 0.40% 0.61M 1.64B

CNN (3 × 3 kernel) 66.74 ± 0.57% 0.78M 1.66B

CNN (11 × 11 kernel) 69.71 ± 1.06 % 0.78M 1.88B

CNN (15 × 15 kernel) 69.90 ± 0.68% 0.79M 2.02B

CNN (dilation 2) 66.61 ± 0.47% 0.78M 1.66B

CNN (dilation 3) 65.43 ± 0.32% 0.78M 1.66B

SL-ViT (2 layers) 71.89 ± 0.75% 0.65M 1.64B

CNN (2 layers) 67.68 ± 1.06% 0.78M 1.66B

SL-ViT (no backbone pre-training) 63.14 ± 0.57% 0.59M 1.64B

CNN (no backbone pre-training) 62.86 ± 0.99% 0.78M 1.66B

Finally, we discovered that removing the second residual connection in

the transformer encoder may lead to an increase in the overall accuracy of

our method. This effect was moderate in most cases, yet quite significant

in others. An example of this effect is shown in Table 12 for the Speech

Commands dataset. We chose to keep the residual connection whenever the
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effect was moderate and only remove it if it leads to a significantly higher

accuracy. Such cases are highlighted in our experiments (Table 7).

Table 12: Ablation studies: the effect of removing the last residual connection in the

transformer encoder for the Speech Commands dataset

Backbone Branch Number Accuracy of SL-ViT Accuracy of SL-ViT without the Last Residual

ResNet152 1 84.05 ± 0.31% 83.67 ± 0.85%

2 89.63 ± 0.52% 85.79 ± 0.58%

DenseNet201 1 87.94 ± 0.85% 88.35 ± 0.24%

2 90.93 ± 0.52% 91.08 ± 0.52%

InceptionV3 1 87.62 ± 0.65% 86.10 ± 0.32%

2 88.33 ± 0.92% 88.21 ± 0.45%

5.2. Early Exit Procedure

Since our method improves the accuracy in all early exit locations, it

provides improvements regardless of which early exit procedure is used. For

instance, suppose a confidence-based method is used where the result of an

early exit branch is selected as the final answer if it is confident enough. In

this setting, our method will lead to faster inference on average, since more

accurate branches lead to higher confidence.

Another example would be the anytime prediction setting explained in the

introduction, for instance, an edge server which receives inputs from many

IoT devices and needs to provide a response for each input within a strict

deadline. The transmission time from the IoT devices to the server changes

over time due to network congestion. Moreover, the computational workload

of the server varies over time, therefore, the time budget available for each
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input is not known beforehand, and the inference can be interrupted at any

moment. In this case, the output of the latest exit is used as the final answer.

In such a setting, our method will lead to more accurate results and faster

inference, since SL-ViT exits are more accurate and have less overhead.

To make this more clear, we have conducted experiments within the any-

time prediction setting, where a random time budget is assigned to each

image in the CIFAR-10 test set. We use the DenseNet backbone and the

two branch locations specified in Table 2. We compare the average accu-

racy and FLOPS between the case where SL-ViT branches are used and the

case where CNN branches are utilized. The results of these experiments are

shown in Table 13. It can be observed that the multi-exit network with SL-

ViT branches achieves a significantly higher average accuracy while having

lower average FLOPS.

Table 13: Comparison of the average accuracy and FLOPS in the anytime prediction

setting between a multi-exit DenseNet with SL-ViT early exits and one with CNN early

exits.

Model Average Accuracy Average FLOPS

Multi-Exit DenseNet with CNN Branches 82.79 ± 0.17% 5.11B

Multi-Exit DenseNet with SL-ViT Branches 85.65 ± 0.21% 5.09B

6. Discussion and Conclusion

We showed that the proposed architecture for early exit branches, namely

single-layer vision transformer (SL-ViT) can consistently obtain a signifi-
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cantly higher accuracy compared to conventional methods while introducing

a lower overhead in terms of FLOPS. We showed that our method works for

both classification and regression problems, in both single and multi-modal

scenarios, and across different backbone networks and branch locations.

As previously mentioned, one possible explanation for why SL-ViT per-

forms better, is the fact that even a single layer of transformer encoder has

a global receptive field since each patch can attend to any other patch, while

a convolutional layer has a limited receptive field and can only access the

immediate vicinity based on its filter size. There are several clues that point

to this explanation. First, Table 11 suggests that the attention mechanism

plays a major role in the accuracy improvements. Secondly, based on Tables

4 to 8, the accuracy improvements are generally higher in earlier branches,

where the receptive field of the backbone network up to the branch location

is lower compared to later branches. Finally, the incorporation of global scale

and global information such as perspective is known to be of great impor-

tance in crowd counting, and many crowd counting methods utilize visual

attention mechanisms and dilated convolution layers to this end [41], which

can explain why our method performs well for this problem.

Moreover, we showed that our fine-tuning strategy, namely Copycat SL-

ViT, has the potential to further increase the accuracy of SL-ViT branches.

It is well-known that with deep learning, more data almost always improves

the final outcome, and this is especially true for vision transformers which are

known to be data-hungry [32]. The copycat strategy can at times artificially

increase the size of the dataset without introducing too much noise and thus

improve the final result.
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Furthermore, we introduced a novel approach for fusing audio and vi-

sual features within early exits using vision transformers. The importance

of fusion inside early exits is that it creates much more options for branch

locations, since a combination of any layer in the visual channel of the back-

bone network with any layer in the audio channel of the backbone can be

selected. This allows for a more fine-grained dynamic inference, meaning a

more recent result is available whenever the inference is interrupted in an

anytime prediction setting, which is likely to be more accurate than earlier

results.
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Abstract

In this paper, a novel data-driven method for weight initialization of Multi-
layer Perceptrons and Convolutional Neural Networks based on discriminant
learning is proposed. The approach relaxes some of the limitations of compet-
ing data-driven methods, including unimodality assumptions, limitations on the
architectures related to limited maximal dimensionalities of the corresponding
projection spaces, as well as limitations related to high computational require-
ments due to the need of eigendecomposition on high-dimensional data. We
also consider assumptions of the method on the data and propose a way to
account for them in a form of a new normalization layer. The experiments on
three large-scale image datasets show improved accuracy of the trained mod-
els compared to competing random-based and data-driven weight initialization
methods, as well as better convergence properties in certain cases.

Keywords: Neural networks initialization, discriminant learning

1. Introduction

In recent years, Deep Learning became the dominant paradigm in the fields
of Machine Learning and Computer Vision owing to the availability of large
public data and computational resources. Multilayer Perceptrons (MLPs) and
Convolutional Neural Networks (CNNs) are being widely utilized for a variety
of tasks, including object detection [1, 2, 3], object tracking [4], semantic image
segmentation [5] and action recognition [6, 7].

With the rise of Deep Learning, methods for weight initialization in neural
networks received increased attention, and weight initialization strategies that
can accelerate the training process while leading to competitive performance
remain an open research problem. Multiple approaches have been proposed to
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solve this problem to date. Early works in the field of artificial neural networks
were relying on weight initialization from random distributions, further evolving
to initialization methods with controlled parameters, such as Glorot [8] or He
initialization [9]. Others methods proposed data-driven initialization procedures
[10, 11, 12, 13, 14, 15], which are described in more detail in Section 2.1. The
main motivation behind the latter approach primarily stems from the nature
of training processes of neural networks: since gradient-based optimization of
non-convex functions leads to local minima solutions, starting the optimization
from a favourable point can result in better performance and faster convergence.

Several data-driven initialization methods were proposed based on statisti-
cal learning, primarily focusing on utilization of Principal Component Analysis
(PCA) [16] or Linear Discriminant Analysis (LDA) [17] to determine the data
transformations in successive layers of the network. Nevertheless, these methods
have a number of limitations: PCA only satisfies the criteria of high variance
in the data while not enforcing discriminative properties, and LDA assumes
unimodal class distributions for the data representations in all the layers of the
neural network. Here it should be noted that while data representations at the
last hidden layer of a trained neural network equipped with softmax/linear out-
put neurons are expected to form unimodal classes, this is not the case for early
layers. Therefore, the assumption of class unimodality throughout the layers of
the network for weight initialization limits the potential of the model. Another
major limitation comes from the limited dimensionality of the projection direc-
tions learnt by these methods, thus limiting the number of neurons/weights that
can be initialized by adopting them.

As a remedy for the above-mentioned limitations, in this paper, we propose a
novel data-driven weight initialization approach based on discriminant learning
that allows to relax the above-mentioned limitations. First, we relax the class
unimodality assumption for the data representations at all network layers by
representing it with several subclasses and formulating the optimization problem
for weights initialization accordingly, hence improving the suitability of a model
for real-world scenarios. Second, the proposed approach relaxes limitations to
the model architecture, as the maximal number of initialized neurons/filters
at a certain layer relies on a controlled parameter, i.e. the total number of
subclasses forming the classification problem. Third, the proposed approach
does not rely on eigendecomposition that becomes computationally intensive
for high-dimensional data, hence providing faster initialization especially for
wide CNN architectures, i.e., those with a large number of neurons/filters in
each layer.

The main contributions of the paper can be summarized as follows:

• A novel weight initialization procedure for MLPs and CNNs is proposed
that leads to flexible network architecture design and potentially better
generalization due to its multi-modal formulation. It is experimentally
shown that the adoption of the proposed initialization procedure leads
to faster convergence of the subsequent gradient-based training process
compared to existing approaches.
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• A new normalization layer that overcomes limitations related to the as-
sumption of mean-centered data, adopted by the proposed method, as well
as other data-driven network initialization methods is proposed.

• Experimental results show that utilization of a small number of data sam-
ples generally suffices for effective network initialization, hence, further
reducing the computational requirements for training the network.

The remainder of the paper is structured as follows. Section 2 describes the
related methods utilized for weight initialization in neural networks, Section
3 describes the proposed weight initialization approach along with the moti-
vation behind it, Section 4 presents the experiments performed to assess the
proposed approach, along with the experimental results, and Section 5 provides
conclusions of the work.

2. Related Work

Generally, methods for weight initialization of neural networks can be di-
vided into two categories: the first is based on initialization from a random
distribution and the second follows a data-driven process. For a long time, the
most widely-used and straightforward initialization approach was the initial-
ization from a random distribution: a Gaussian distribution with zero mean
and small hand-tuned standard deviation, or from a Uniform distribution in

the range of
[
− 1√

n
, 1√

n

]
, where n is the number of input neurons in the corre-

sponding layer. It has been further observed that such initialization often leads
to poor convergence, and saturated activations. In [8], it was shown that the
commonly-used activation functions, namely, sigmoid, hyperbolic tangent, and
softsign suffer from saturation of activation in the top layers of the network,
when initialized from random uniform distribution. As a remedy, a new weight
initialization method was proposed, with an objective of preserving the vari-
ance of activation vectors between the layers during the forward propagation,
and the variance of the gradients between the layers during backward propaga-
tion. In practice, the following initialization approach is utilized, approximately
satisfying the above-mentioned objectives:

Wj ∼ U
[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
, (1)

where Wj is the weight matrix at layer j, U [·] denotes the Uniform distribu-
tion, and nj and nj+1 denote the number of neurons at layers j and j + 1,
respectively. Hereafter, we refer to this approach as Glorot initialization (also
commonly referred to as Xavier initialization) [8] . Here we should note that,
in its derivation, the method assumes linear activations at the initialization and
that the input feature variances are equal.

A further step towards controlling the statistics of the distribution from
which the weights are initialized was taken in [9], where a similar motivation to
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that of Glorot is utilized for initialization. Unlike the work in [8], the authors
consider ReLU activation, and show that the proposed approach outperforms
the Glorot initialization especially when used for deep neural networks. The
initialization is done as follows:

Wj ∼ N
[

0,

√
2

√
nj

]
, (2)

i.e., the weights of layer j are initialized from a Gaussian distribution with zero
mean and variance of 2

nj
. Additionally, fully-randomized methods based on

stochastic configuration algorithms have been proposed [18].
As opposed to methods based on random initialization, multiple approaches

exploiting certain data properties have recently been proposed. The most no-
table one is initialization by pre-training on a larger dataset of similar domain1,
such as ImageNet [20] for Computer Vision tasks. Nevertheless, such initializa-
tion was questioned in [21], where it was shown that the benefits arising from
weights initialization based on pre-training generally lie in faster convergence in
earlier iterations, but not necessarily leading to better performance as compared
to random initialization. Other notable data-driven approaches include initial-
ization from cluster centroids obtained by applying (spherical) clustering on
whitened data, hence capturing statistical properties of the dataset [22, 10, 23].
Another method performs normalization of networks’ weights based on the em-
pirical statistics of the network activation obtained from the training data sam-
ples, as well as its gradients [10] Notably, the approach presented in [10] applies
the normalization to both k-means and PCA initialized networks.

2.1. Weight initialization via subspace learning

A set of data-driven weight initialization methods that were proven benefi-
cial for weight initialization in neural networks relies on utilization of subspace
learning techniques. The early works utilizing subspace learning for determining
the weights of neural networks include PCANet [13] and LDANet [14]. These
methods focus on supervised image classification in a CNN-like manner, where
a set of patches are extracted from the training images and flattened to form
a data matrix. From this data representation, a weight matrix is obtained by
applying Principal Component Analysis [16] or Linear Discriminant Analysis
[17]. The resulting weight matrix is subsequently reshaped to obtain a set of
convolutional filters, which are convolved with the training images to obtain
the data representations at the output of the first layer. This process is applied
for several layers2, followed by a pooling operation and an activation function.
In these approaches, no subsequent fine-tuning of the network’s parameters via
back-propagation is performed, while the pooling operation as well as the uti-

1This approach is commonly referred to as transfer learning [19].
2The original LDANet and PCANet methods apply this process twice to determine the

filters of two convolutional layers.
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lized activation function are specially designed, i.e. they are not among the
commonly-used ones in the field of deep learning. However, these methods can
be perceived as the first baselines drawing the connection between the subspace
learning and deep learning methods.

Further notable attempts of linking subspace learning with deep learning
architectures include LDA-based weight initialization proposed in [15, 24]. By
its nature, this work is more similar to our proposed approach in that the
weights obtained by a discriminant learning method are used for initialization
of the neural network which is further trained with backpropagation, instead
of solely considering the forward propagation scenario. LDA is employed to
initialize the weights of a layer, and each subsequent layer is initialized from
the weight matrix obtained by LDA applied to the outputs of the preceding
layer. Similarly to PCANet and LDANet, the weight matrix is learnt from
patches extracted from the outputs of the previous layer and is flattened to
obtain a rectangular data matrix. The last classification layer is initialized with
the discriminant matrix of LDA, and the network is subsequently trained with
backpropagation.

The authors in [11, 12] proposed a feedforward design approach for initial-
izing the layers in CNN based on data statistics from the output of their pre-
ceding layers. The weights in convolutional layers are obtained from a variant
of Principal Component Analysis proposed by the authors, namely, Subspace
Approximation with Adjusted Bias (Saab). The dense layers that are added
after the convolutional layers are trained by applying a linear regression using
subclass labels obtained by clustering the data. The last fully-connected layer
is trained by linear regression to true class labels. This method focuses on the
forward propagation scenario too.

3. Initialization based on Discriminant Learning

Let us consider a standard dense feedforward neural network. Given a vec-
tor x ∈ RD as input, a neural network with L layers applies a hierarchical
transformation

y = fLa (WT
Lf

L−1
a ( WT

L−1 ... f
1
a (WT

1 x + b1) + bL−1) + bL), (3)

where f la(·) is the (element-wise) activation function at layer l, Wl ∈ RDl×Dl+1 is
the corresponding weight matrix, and bl is the bias term. For the sake of simplic-
ity of notation, here we assume that the bias terms are accounted for by using
an augmented version of the data representations of the network layers and,
thus, are incorporated in the corresponding weight matrices Wl, l = 1, . . . , L.
Similarly, a CNN performs a hierarchical data transformation of the form

y = fLa (ŴL ∗ fL−1a ( ŴL−1 ∗ ... ∗ f1a (Ŵ1 ∗ x + b1) + bL−1) + bL), (4)

where Ŵl is a set of convolutional filters at layer l, bl is the bias term,
and f la(·) is the activation function. For CNNs which combine convolutional

5

DRAFT



and dense layers, the corresponding data transformation is obtained by simply
combining data transformations of the form in (4) and (3) in a hierarchical
manner.

3.1. Motivation

Most of the earlier data-driven methods primarily focused on the affine trans-
formation of y = WT

l x
(l), where x(l) is the representation of the input sample

at the feature space defined at layer l. To deal with the convolution operation
y = Ŵl ∗x(l) in (4), the convolution operation is transformed to a vector-based
affine transformation by sampling patches from the input x(l), flattening them
to create vectors and determining an affine transformation matrix Wl, which is
further reshaped to form Ŵl. Several works [14, 15] utilize LDA for learning the
matrix Wl, i.e., the projection is obtained by solving the eigendecomposition

problem of S
(l)
w w = λS

(l)
b w and selecting eigenvectors corresponding to smallest

eigenvalues, where S
(l)
w and S

(l)
b are the within-class and between-class scatter

matrices defined on the data representations at the layer l. Others [13, 11, 12]
have applied Principal Component Analysis, i.e, the matrix W is obtained by
performing eigendecomposition on the covariance matrix of the data represen-

tations at layer l, i.e. S
(l)
t .

Both of these approaches have certain limitations. Being an unsupervised
method, PCA does not take advantage of the class label information of the data.
Therefore, one of its limitations lies in the fact that the learnt subspace is only
optimal in terms of preserving the variance of the projected data; however, no
discriminative properties are enforced. Besides, PCA can only learn a (sub)space
with dimensionality at most equal number of dimensions to that of the original
space. This leads to the inability of learning enough meaningful (i.e., those
having discriminative properties) filters/neurons, as the number of filters of the
first layers is generally significantly higher than that of dimensions in the the
input data, especially in the case of CNNs.

Linear Discriminant Analysis provides a remedy to the limitation of PCA
related to the disregard of the class label information of data, finding a sub-
space where the classes are discriminated. However, it relies on an assumption
of unimodality of data of each class, which is rarely the case in real-world sce-
narios, and especially on the earlier layers of the networks. As a result, such an
assumption leads to limitations in the learning potential of the model. Besides,
the limitation of LDA with regard to the ability to learn a reasonable amount of
meaningful neurons or filters is even higher than that of PCA, as the dimension-
ality of the learnt subspace is bounded by the rank of the between-class scatter
matrix, which is, in turn, bounded by the number of classes. Therefore, the use
of LDA for initialization only allows to obtain a very limited number of meaning-
ful projection dimensions, and, consequently, a limited number of meaningful
neuron weights in the layer, putting limitations on the network architectures
that can be initialized using it.

In addition to the above-mentioned limitations, one can notice that both
LDA and PCA rely on eigendecomposition of D × D matrices that becomes
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computationally intensive especially for high-dimensional data. At the same
time, especially in the case of CNN, the data is likely to reach significantly
high dimensionality: given the data matrix is created similarly to [10, 15, 13],
the dimensionality of the patch matrix corresponding to layer j reaches k2nj ,
where k is the filter size, and nj is the number of filters. Considering commonly-
used CNN models, where the number of filters of convolutional layers generally
ranges from 32 to 512, and a commonly-used filter size of 5 pixels, this leads
to dimensionality ranging from 800 up to 12800, which is substantially high
in terms of computational requirements of eigendecomposition-based subspace
learning methods. For example, in this case the computational complexity of
initialization based on LDA or PCA would reach N(k2nj)

2 + (k2n)3 [25], while
for the proposed approach it is proportional to Nk2njd or k2njN

2 if N < k2nj
and N(k2nj)

2 if N > k2nj [26], where N is the number of samples and d is
the dimensionality of the learnt space, which is in either case less than the
complexity of initialization based on LDA or PCA.

3.2. Proposed approach

In this section we consider the limitations of already existing methods and
propose steps for their relaxation. More specifically, we consider assumptions on
unimodality of data representations in the layers of a network, limitations in the
number of neurons/filters that can be initialized, and the high computational
requirements in high-dimensional settings. A first step towards overcoming these
limitations can be taken by employing Subclass Discriminant Analysis [27], that
relaxes the assumptions on unimodality of classes. To recall, this is achieved
by expressing each class with a set of subclasses determined by applying some
clustering algorithm on the data of each class. Similarly to LDA, SDA optimizes
the Fisher-Rao’s criterion. Considering the optimization problem to be solved
for initializing the weights of the l-th layer, the generalized eigenanalysis problem

S
(l)
t w = λS

(l)
b w is solved, where

S
(l)
t =

N∑

i=1

(x
(l)
i − µ(l))(x

(l)
i − µ(l))T , (5)

S
(l)
b =

C−1∑

i=1

C∑

n=i+1

Ki∑

j=1

Kn∑

h=1

p
(l)
ij p

(l)
nh(µ

(l)
ij − µ

(l)
nh)(µ

(l)
ij − µ

(l)
nh)T , (6)

where C is the number of classes, Ki is the number of subclasses in class i, µ(l) is
the mean of the data representations in layer l, i and n are class labels, and j and

h are subclass labels. p
(l)
ij and p

(l)
lh are the subclass priors, i.e. p

(l)
ij =

Nij

N , where
Nij is the number of samples in subclass j of class i and N is the total number of

samples in X(l) = [x
(l)
1 , . . . ,x

(l)
N ] ∈ RDl×N . The matrix Wl ∈ RDl×Dl+1 can be

then formed by the eigenvectors corresponding to the Dl+1 smallest eigenvalues.
Such representation is particularly beneficial in the CNN case, where each

data sample constitutes a representation of a patch from an image. Assuming
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that patches within the same class corresponding to non-essential background
and those representing the object of interest or certain useful features are clus-
tered into different subclasses, there is no penalization for them being matched
far from each other in the learnt feature space. In contrast, LDA forces all data
samples belonging to the same class to lie close to each other in the projection
space, enforcing unnecessary similarity requirements for essential features and
background patches. Moreover, by utilizing SDA the potential dimensionality
of the subspace is bounded by the total number of subclasses forming the prob-
lem at hand. That is, the maximum number of discriminant directions that can
be determined is increased to

∑C
i=1Ki. The potential set of architectures is,

therefore, significantly expanded compared to LDA. However, it is still bounded
by the dimensionality of input data. We propose to overcome this limitation by
following a process inspired by Graph Embedding [28] and Spectral Regression
[29] in the following.

The criterion function of SDA can be reformulated utilizing Graph Embed-
ding framework [28]. For data centered at µ(l), it can be seen that

S
(l)
t = X(l)X(l)T , (7)

S
(l)
b = X(l)L

(l)
b X(l)T , (8)

where L
(l)
b is the Laplacian matrix defined on the data representations at the

l-th layer of the network for the between-class matrix:

L
(l)
b (i, j) =





N−Nci

N2Nch
, if z

(l)
i = z

(l)
j = h

0, if z
(l)
i 6= z

(l)
j , ci = cj

− 1
N2 , if ci 6= cj

, (9)

where ci is the class label of x
(l)
i , and z

(l)
i is the subclass label of x

(l)
i , Nc is the

number of samples in class c and N
(l)
ch is the number of samples in subclass h of

class c at layer l.

Exploiting the new formulations of S
(l)
b and S

(l)
t , and Spectral Regression

[29], the solution can be obtained by following several steps:

1. The between-class Laplacian matrix L
(l)
b is created following Eq. 9.

2. Assuming there exists such t that t = X(l)Tw, the eigenanalysis problem

L
(l)
b t = λt is solved and the matrix T(l) is created out of the obtained

vectors.

3. The regression of T(l) to W(l) is performed as

W(l) =
(
X(l)X(l)T + αI

)−1
X(l)T(l)T . (10)

The matrix W(l) ∈ RDl×Dl+1 can be further orthogonalized or l2-normalized. In
practice, we observed that l2-normalization results in better performance. More-
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over, when applying l2-normalization instead of orthogonalization, the number
of projection directions Dl+1 can be expanded beyond the dimensionality Dl of
the data representations at layer l. This is achieved by performing a class-wise
clustering process to determining

∑C
i=1Ki > Dl+1 subclasses, and using the

eigenvectors of L
(l)
b corresponding to the largest Dl+1 eigenvalues to form T(l).

Such an approach allows us to define the number of neurons in layer l + 1 by
controlling the total number of subclasses in layer l, leading to the initialization
of as many meaningful neurons as is required by the architecture of the net-

work. Note that, due to the block structure of L
(l)
b , the first C − 1 dimensions

are guaranteed to encode the class discriminant information, similarly to LDA.
In this sense, the layer initialized using the proposed approach is guaranteed to
have at least the same discriminative power as using LDA.

Here we should note that the use of clustering and subsequent cluster label
information has been previously performed in [22, 11]. In [22], clustering is ap-
plied to the whole dataset and the cluster centroids are used for initialization. In
[11], clustering is applied to the whole dataset and one-hot encoded vectors are
created using the obtained cluster labels, followed by a least-squares regression
to obtain the projection matrix used for initialization. In both of these settings,
however, the class label information is not considered. Therefore, the use of
such methods in a supervised setting is rather limited. Besides, the proposed
approach determines the projection directions in which the data achieves opti-
mal subclass separability, rather than regressing directly to the cluster labels.

The proposed approach can further be extended to improve the computa-

tional efficiency on large datasets, where eigendecomposition of L
(l)
b becomes

infeasible. The speed-up is achieved by observing that L
(l)
b has a certain block

structure, therefore its eigenvectors have a similar block structure as well. Given

that a vector of ones is an eigenvector of L
(l)
b , we can create the

∑C
i=1Ki − 1

target vectors of random values with desired structure and orthogonalize them
starting from a vector of ones. The detailed procedure for creation of target vec-
tors is shown in Algorithm 1. The approach has recently been shown beneficial in
a conventional subspace learning setting for speeding up eigendecopmposition-
based SDA [26, 30], and an incremental solution was proposed [31]. While the
methods in [26, 30, 31] were proposed for purely shallow statistical learning, here
we investigate the utilization of similar ideas for data-driven neural network ini-
tialization. The suitability of the proposed ideas for network initialization is
dictated by a range of advantages provided by the method in terms of account-
ing for potential multi-modality present in intermediate layers of the network,
faster initialization compared to conventional data-driven methods, as well as
absence of restrictions in terms of width of neural network layers. At the same
time we investigate ways of addressing the limitations of the methodology in
terms of assumptions on data properties. For the sake of clarity, hereafter we
refer to the proposed initialization approach as fastSDA as defined in [26, 30, 31]
in contrary to eigendecomposition-based SDA.
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Algorithm 1: Discriminant target vectors calculation

Function getTargets(y,ycl,C,Z,N ,D):
Input: y : N × 1 vector with class labels; ycl : N × 1 vector with the cluster

labels; Z : number of clusters in each class; C : number of classes; N :
number of elements; D : dimensionality of data;

%class-level vectors;

for i ← iterate through 1:C do
RV als = random(1,C-1)
T (l)[y == i, :] = tile(RV als, len(y==i),1)

end

S ← unique numbers of elements in each class sorted in ascending order;

%cluster level vectors;

for s ← iterate through S do
k ← classes with s elements; m ← length(k);
RV als = random(m ∗ Z, m*(Z - 1))
for i ← iterate through k do

for j ← iterate through 1:Z do
ixs = where(y == i & ycl == j)
Tclust(l)[ixs,:]← tile(RV als, (length(ixs),1))

end

end

T (l) ← append Tclust(l) as columns on the right;

end

T (l) ← append N×1 vector of ones as a column on the left;

Orthogonalize T (l); remove first column of T (l);
return T (l)T

Algorithm 2: Initialization of lth Dense layer.

Function dense init(X(l),y,N neur,C,D):

Input: X(l) : D ×N data representation at lth layer; y : N × 1 vector with
class labels;N neur :number of neurons;

Z ←ceil(N neur/C)

X(l) ← X(l)−mean(X(l))√
var(X(l))+ε

ycl ← Cluster(X(l), Z)
T (l) ← getTargets(y,ycl,C,Z,N ,D)
if D < N then

R← (chol(X(l)X(l)T ))−1

W (l) ← RRTX(l)T (l)T

else

R← (chol(X(l)TX(l)))−1

W (l) ← X(l)RTRT (l)T

end

W (l) ←Select first N neur dimensions of W (l) and normalize with l2 norm
return W (l)

3.3. Initialization procedures

The proposed approach can be used for initializing Dense and Convolutional
layers following equations (3) and (4). The initialization procedure starts from
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learning the weight matrix of the first layer on the input data. The data is
further transformed with the learnt matrix and transformations defined by the
architecture, e.g., Activation and Pooling. The transformed data is subsequently
used for initializing the next Dense or Convolutional layer, and the process
continues until the Output layer, which is initialized randomly3. After the
initialization of the whole network, it is trained with backpropagation in the
conventional manner. The procedures for initializing weight matrix W(l) and
filters Ŵ(l) for the lth Dense or Convolutional layer are shown in Algorithms 2
and 3, respectively.

In order to account for the mean-centering assumption on the data, the
input data at each layer is standardized during the weight initialization step.
Therefore, to take this into account during the backpropagation step, we add
Batch Normalization layers before each of the Dense layers in the architecture.

3.4. Vector Batch Normalization

Initializing the parameters of a neural network with the proposed method
requires the training data to be mean-centered, such that Eqs. (7) and (8)
express the total and the between-class scatter of the training data. For ini-
tializing Dense layers, this is accounted by means of Batch Normalization. For
Convolutional layers, the standard Batch Normalization does not satisfy our
needs, since the normalization is done using the per-channel mean and vari-
ance. Instead, we would like to normalize the feature maps in a way that would
produce the mean-centered rectangular patch matrix. In other words, we seek
to standardize each non-overlapping k×k×dl−1 patch with the mean and stan-
dard deviation of all such patches (or alternatively, all patches in a mini-batch).
Therefore, to account for mean-centering in Convolutional layers, we introduce
a new normalization layer that we further refer to as Vector Batch Normaliza-
tion. We extract all non-overlapping k× k× dl−1 dimensional patches from the
input appropriately padded with zeros. Further, each patch is flattened to a
1× k2dl−1 vector and the mean and variance are calculated from the resulting
NNp × k2dl−1 data matrix. The feature maps are then normalized as follows:

x̂k
i =

xk
i − µB√
σ2
B + ε

, (11)

yk
i = γx̂k

i + β, (12)

where xk
i is the ith flattened patch, µB and σ2

B are the 1× k2dj−1-dimensional
mean and variance vectors of the vectorized patches in the minibatch, and γ
and β are the learnt parameters controlling the scale and offset, initialized as

3Least-squares regression to class labels can also be applied to initialize the last layer.
However, we observed that in most cases random initialization of the output layer results in
better generalization performance of the models during the subsequent training using back-
propagation.
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Algorithm 3: Initialization of lth Convolutional layer

Function VectorBNorm(X(l),f size):

Input: X(l) : N × S1× S2×D data representation at lth layer; f size : filter
size

X(l) ← Zero-pad X(l) to shape divisible by f size

X
(l)
fl ← Extract and vectorize all f size× f size non-overlapping patches from

X(l)

µ ← mean(X
(l)
fl ); σ ← var(X

(l)
fl );

for patch ← iterate through all non-overlapping f size× f size patches in X(l)

do

patch← flatten(patch)−µ√
σ+ε

patch← Reshape patch to (f size× f size×D)
end

return X(l)

Function conv init(X(l),y,N filt, f size):

Input: X(l) : N × S1× S2×D data representation at lth layer; y : N × 1
vector with class labels; N filt :number of filters; f size :filter size;

Z ← ceil(N filt/C)
X(l) ← VectorBNorm(X(l), f size)

X
(l)
fl ← Extract and vectorize all f size× f size non-overlapping patches from

X(l)

ycl ← Cluster(X
(l)
fl , Z)

T (l) ← getTargets(y,ycl,C,Z,N ,D)
if D < N then

R ← (chol(X
(l)
fl X

(l)T
fl ))−1

W (l) ← RRTX
(l)
fl T

(l)T

else

R ← (chol(X
(l)T
fl X

(l)
fl ))−1

W (l) ← X
(l)
fl R

TRT (l)T

end

W (l) ←Select first N filt dimensions of W (l) and normalize with l2 norm
Ŵ (l) ←Reshape W (l) to (N filt, f size, f size,D)

return Ŵ (l)

1 and 0, respectively. Similarly to conventional Batch Normalization, moving
mean and moving variance are estimated for normalization during inference.

4. Experimental setup

In order to evaluate the proposed network initialization approach, we ran ex-
periments on three image classification datasets: CIFAR-10 [32], MNIST [32],
and Linnaeus-5 [33]. CIFAR-10 dataset contains images of 32 × 32 pixels with
3 channels and 10 object categories: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. MNIST dataset contains grayscale images of size
28×28 posing a handwritten digit recognition problem. Linnaeus-5 dataset con-
tains RGB images of 32×32 dimensionality of 5 object categories: berry, bird,
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dog, flower, and other. We use the provided train-test splits for evaluation. In
CIFAR-10 dataset, training set is split into 48,000 images used for training, and
12,000 for validation. In MNIST dataset, training set is split into 40,000 and
10,000 images for training and validation, respectively. In both datasets, 10,000
images are used for testing. In Linneaus-5 datasets, 4,800 images are used for
training, 1,200 for validation, and 2,000 for testing. Sample images from each
dataset are shown in Fig. 1. Additionally, we employ two non-image datasets:
CovType [34] and KDD [35]. CovType poses the task of classification of forest
cover type from cartographic variables, having 7 classes with 54 attributes. We
utilize 348,612 samples for training, and 116,200 for testing and validation. The
KDD dataset poses the task of classification of network traffic into different
types of attacks. The dataset has 23 classes and 41 attributes. We utilize a
subset of 296,431 samples for training, and 98,795 for validation and testing.

Figure 1: Examples of dataset images from Linnaeus-5 (top), MNIST (middle) and CIFAR-10
(bottom) datasets.

In this work, we focus on settings that require small models, as well as on
settings where large datasets might not be available, and hence data-dependant
initialization is especially required for model performance. Experiments with
initialization of deeper models are therefore left for future work. We evaluate
our approach on two CNN architectures with 5 and 6 hidden layers, and MLPs
with 4 and 5 hidden layers. Recall that following the proposed methodology,
the maximum number of neurons in MLPs or filters in CNNs at a certain layer
is equal to

∑C
i=1Ki, where Ki is the number of subclasses for class i. We set

Ki = Z subclasses for all classes, leading to CZ−1 neurons in MLPs or filters in
CNNs at a certain layer. In our experimental setup we construct the networks
starting from 16 or 32 subclasses and reducing the number of subclasses by a
factor of 2 with each subsequent layer. This results in two architectures with
the layers having width of{319, 159, 79, 39, 19} or {159, 79, 39, 19} neurons/filters
for MNIST and CIFAR datasets, and {159, 79, 39, 19, 9} or {79, 39, 19, 9} neu-
rons/filters for Linnaeus-5 dataset. In CNN case, another fully-connected layer
of 128 neurons is added after the last convolutional layer, initialized following
Algorithm 2. The output layer consists of 5 or 10 neurons depending on the
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dataset, and a softmax activation function.

Figure 2: Structure of fastSDA-initialized Dense network

The overall architecture structure for MLPs is outlined in Fig. 2. We apply
an activation function after each Dense layer, and a Batch Normalization layer
before each Dense layer except the output layer (assuming the input data is
standardized). The overall structure of the CNN architectures is shown in Fig.
3. We apply a Vector Batch Normalization layer before every convolution layer,
followed by Max Pooling and Activation. After the last convolutional block,
data is flattened and Batch Normalization is applied, followed by a Dense layer
with 128 neurons, an activation function, and an output layer with softmax
activation. For all the networks we perform experiments with three commonly-
used activation functions: ReLU, LeakyReLU with α=0.3, and Tanh (hyperbolic
tangent). The output layer is initialized randomly from a Gaussian distribution
with zero mean and standard deviation equal to 0.05. In CNN, the bias terms
are omitted in all models, and in MLPs they are initialized from zeros. To obtain
the cluster labels during fastSDA initialization, mini-batch k-means clustering
is performed [36].

Figure 3: Structure of fastSDA-initialized CNN

In MLPs we compare the proposed initialization approach with random ini-
tialization from Gaussian distribution with µ = 0 and σ = 0.05 (RNorm),

random initialization from uniform distribution in the range
[
− 1√

n
, 1√

n

]
(RUni),
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where n is the number of input neurons in the corresponding layers. We also pro-
vide comparisons with Glorot initialization [8] and He initialization [9]. We also
compare the results with data-driven approaches by substituting the fastSDA
step with either K-Means initialization (KM), LDA, or PCA. For K-Means ini-
tialization, we whiten the data and apply spherical clustering into n clusters,
subsequently initializing each neuron with one of the cluster centroids following
[37]. In LDA and PCA initialization, we initialize the neurons to the eigenvec-
tors of the corresponding weight matrices, similarly to [15, 24]. Since LDA and
PCA can return at maximum C−1 and D eigenvectors, respectively, in the case
that the number of eigenvectors corresponding to non-zero eigenvalues are lower
than the number of neurons required by the architecture, we initialize them ran-
domly from a Gaussian distribution with zero mean and standard deviation of
0.05. In LDA and PCA, eigenvector matrices are normalized such that the l−2
norm of each column is equal to 1, similarly to the proposed approach, to ensure
that any difference in performance arises from the utilized statistical learning
method rather than from normalization. The output layers are initialized ran-
domly, similarly to our proposed approach. All the initialization methods are
evaluated on the same architectures as the proposed approach.

Similarly, in CNN, we compare the proposed initialization approach with
Glorot initialization [8], He initialization [9], random Gaussian and random uni-
form distributions with the parameters similar to the ones utilized in MLPs,
K-Means initialization, and PCA initialization. We use the same architecture
as shown in Fig. 3 for all initialization methods. Besides, for random initializa-
tions, He, and Glorot methods we provide the results for the architectures where
Vector Batch Normalization is replaced with conventional Batch Normalization,
to ensure that the accuracy gain obtained with the proposed approach does not
result solely from the new normalization layer.

It can be noted that the patch extraction in the initialization of CNN re-
sults in a significant increase in the number of data samples used to learn the
projection space, which might lead to undesired overhead during the clustering
step of the proposed approach. As a remedy for this, we show that a small
number of samples is generally sufficient to learn a good projection space that
leads to competitive performance. To showcase this, we provide the results in
which only a limited number of training samples is used during the initialization
step. Specifically, we test the proposed approach with 200 and 500 samples per
class (i.e., the total of 2000 or 5000 samples in CIFAR-10 and MNIST, and 1000
or 2500 samples in Linnaeus-5 dataset). Besides, we also evaluate the methods
without utilization of any type of Batch Normalization. In this case, normal-
ization of data is also not performed during learning of the projection space
initialization of the weights, and the solution is, therefore, approximate.

We train the models with Stochastic Gradient Descent with a learning rate
of 0.001, a batch size of 32, and categorical cross-entropy as the loss function
until the accuracy on the validation set stops improving for 10 epochs. The
model that resulted in the best validation accuracy is then used for reporting
the results on the test set. Data in MLP experiments is standardized and images
in CNN experiments are mean-centered and rescaled to match the range of 0 to
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Table 1: Accuracies on MLP architectures

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 37.25 31.30 30.40 29.55 32.50 33.60
RUni 35.05 35.25 31.35 30.95 30.95 32.65
He 36.70 32.45 32.95 38.55 29.65 32.00
Glorot 39.55 31.35 33.90 37.00 30.60 36.25
KM 38.65 34.70 35.60 40.75 31.00 32.40
LDA 32.65 32.70 33.00 37.25 31.40 33.00
PCA 32.95 34.60 33.90 33.30 31.90 35.65
fSDA 39.10 38.10 36.80 38.60 40.35 36.50
fSDA500 37.05 38.45 37.00 37.80 37.80 37.05
fSDA200 36.30 35.30 34.40 35.20 30.20 34.05

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 47.46 45.69 39.78 47.10 43.28 38.36
RUni 45.68 42.09 36.77 45.42 42.49 38.12
He 47.26 43.89 40.30 46.72 41.65 39.00
Glorot 47.16 44.61 42.21 47.14 41.66 40.86
KM 47.15 45.81 42.35 48.47 45.44 41.81
LDA 46.09 44.59 40.44 46.44 43.46 39.69
PCA 48.85 45.04 40.66 47.29 42.91 40.24
fSDA 48.20 46.32 44.51 47.97 48.18 43.49
fSDA500 48.56 47.32 43.65 48.77 48.48 42.66
fSDA200 47.55 46.19 43.55 46.93 46.40 42.62

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 96.54 96.44 95.78 96.42 96.26 96.06
RUni 95.85 95.11 93.59 96.33 95.70 94.46
He 96.33 96.06 95.44 96.22 95.18 95.29
Glorot 96.85 96.38 96.15 96.55 96.13 95.80
KM 96.52 96.38 96.17 96.76 96.25 96.29
LDA 96.12 95.75 95.98 96.44 95.79 95.71
PCA 96.72 96.44 96.11 96.59 96.10 95.67
fSDA 96.85 96.56 96.34 96.72 96.70 96.35
fSDA500 96.81 96.89 96.34 96.95 97.29 96.53
fSDA200 97.22 96.72 95.92 97.12 96.68 96.83

1.

4.1. Results

The accuracy for MLP models with different initialization methods is shown
in Table 1 and Table 2, where we report results on three activation functions
and two architectures, i.e., LReLU16 stands for architecture corresponding to 16
subclasses as described earlier and Leaky ReLU activation function. Similarly,
Tables 3 and 4 show the accuracies for CNNs without and with normalization
layers, respectively. The best accuracy is highlighted in bold.
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Table 2: Classification results of linear methods in COVTYPE and KDD datasets

COVTYPE
ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 58.81 60.11 63.65 57.35 52.08 52.14
RUni 59.19 59.25 60.37 54.08 59.90 56.33
He 59.61 61.48 59.15 54.84 52.22 54.37
Glorot 63.42 59.96 63.88 53.68 51.29 53.71
KM 59.80 63.01 61.46 55.91 59.35 55.05
LDA 60.68 60.20 65.07 53.42 56.01 54.27
PCA 59.89 59.24 64.13 52.51 56.10 56.91
fSDA 63.97 57.42 63.14 57.65 60.83 54.60
fSDA500 61.39 63.84 62.58 51.54 57.06 55.73
fSDA200 63.66 62.65 63.13 56.84 53.29 58.04

KDD
ReLU16 LReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 97.10 95.88 96.79 98.96 97.88 99.13
RUni 98.48 96.75 98.34 97.73 97.52 99.05
He 90.29 94.28 97.92 97.48 97.70 99.20
Glorot 96.98 96.78 98.31 97.62 97.95 9823
KM 96.88 95.99 98.68 98.43 97.70 98.00
LDA 97.12 96.05 98.36 97.92 98.12 98.94
PCA 97.19 96.63 97.73 98.85 96.64 99.17
fSDA 96.62 96.86 97.56 98.18 97.31 98.87
fSDA500 98.73 98.08 96.96 99.17 98.42 98.05
fSDA200 97.30 96.68 98.50 99.03 97.67 98.46

17

DRAFT



Table 3: CNN results without normalization

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 63.05 55.70 60.85 57.40 60.00 59.10
RUni 48.15 50.95 54.65 52.55 50.40 56.30
He 55.70 55.95 61.85 58.85 56.15 58.60
Glorot 61.85 61.75 60.40 61.50 60.90 62.10
KM 61.90 52.00 46.50 63.25 63.85 45.45
PCA 64.50 54.05 59.35 61.30 64.70 62.15
fSDA 64.75 48.85 62.10 64.55 61.90 63.55

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 68.54 68.29 67.08 66.35 65.40 65.67
RUni 64.02 62.02 66.53 69.01 68.65 70.92
He 68.33 67.75 70.68 68.77 69.25 72.61
Glorot 70.27 70.49 71.00 71.01 70.93 71.28
KM 70.46 69.75 70.72 72.25 71.41 70.70
PCA 70.31 70.20 70.70 71.87 70.62 71.10
fSDA 71.10 69.83 71.01 72.66 71.52 70.46

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

RNorm 98.99 98.96 99.23 98.81 98.98 99.18
RUni 98.78 99.01 99.13 98.93 99.05 99.35
He 98.85 98.92 99.24 98.91 98.86 99.30
Glorot 98.79 98.79 99.09 99.00 98.68 99.24
KM 99.03 99.02 99.21 99.01 99.14 99.10
PCA 99.01 99.13 99.27 98.97 99.08 99.18
fSDA 99.05 99.03 99.28 99.08 99.17 99.26

As can be seen from Table 1, in the majority of architectures and datasets,
the proposed initialization outperforms other competing methods in terms of
accuracy. In the CNN scenario, the proposed approach often outperforms com-
peting methods already without considering mean-centering and the use of any
type of normalization layers. We can see that mean-centering of the data dur-
ing the initialization and the subsequent use of VectorBatchNormalization layers
result in improved accuracy even further in the vast majority of the scenarios.
Note that such normalization also leads to improved accuracy of PCA and K-
Means initialization in most of the cases.

Considering the initialization using smaller number of samples, we observe
that in the CNNs, both 200 and 500 samples are often sufficient for outper-
forming the competing methods (in the case fSDA200 or fSDA500 outperforms
competing methods except fSDA, it is underlined in the tables). Considering
the MLP initialization, the results with regard to initialization with a smaller
number of samples are rather similar to that of CNN and the use of a small
number of samples generally leads to a fair performance. Another fact worth
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Table 4: CNN results with normalization layers

Linnaeus-5
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 52.55 51.45 48.80 51.75 50.10 46.15
RUni 59.00 55.25 49.65 58.50 58.30 47.70
He 55.00 52.20 50.55 57.30 53.95 50.10
Glorot 54.50 54.95 53.00 57.20 56.35 52.60

V
ec
B
N
o
rm

RNorm 49.55 47.05 44.85 50.80 47.70 41.85
RUni 53.90 51.55 44.30 51.85 52.90 43.80
He 55.15 53.40 50.75 57.20 54.10 51.15
Glorot 56.40 52.90 53.00 58.85 57.05 52.90
KM 60.70 62.40 60.85 61.55 58.70 57.65
PCA 60.90 62.90 60.00 63.90 60.35 59.75
fSDA 64.25 62.30 61.75 59.75 62.70 61.75
fSDA500 62.00 64.35 62.10 61.45 64.20 61.70
fSDA200 60.65 62.90 59.70 60.95 64.05 59.20

CIFAR-10
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 66.17 63.67 59.35 64.89 62.05 63.78
RUni 69.50 69.38 62.32 71.66 70.23 64.88
He 68.49 68.74 65.89 70.18 71.34 64.57
Glorot 71.71 72.04 68.41 73.77 73.51 66.94

V
ec
B
N
o
rm

RNorm 63.65 61.89 59.96 64.50 60.68 62.71
RUni 64.99 65.71 54.70 67.31 66.65 56.32
He 69.17 68.17 64.24 71.54 70.11 64.88
Glorot 71.45 71.75 65.79 73.73 72.88 68.56
KM 72.03 75.01 68.52 77.18 76.20 67.03
PCA 72.67 74.40 68.06 72.71 77.17 71.65
fSDA 75.02 75.36 70.59 76.66 77.79 71.87
fSDA500 74.13 74.35 69.80 71.29 76.22 72.60
fSDA200 70.32 74.57 69.35 75.71 77.33 71.39

MNIST
LReLU16 ReLU16 Tanh16 LReLU32 ReLU32 Tanh32

B
N
o
rm

RNorm 98.82 98.78 98.45 98.94 98.70 98.41
RUni 99.16 99.20 99.03 99.11 99.19 99.04
He 99.00 99.17 99.03 99.19 99.30 99.10
Glorot 99.10 99.30 99.23 99.22 99.35 99.24

V
ec
B
N
o
rm

RNorm 98.76 98.35 98.30 98.76 98.63 98.19
RUni 98.99 98.81 98.49 99.10 98.92 98.58
He 99.03 99.14 98.95 99.13 99.14 98.87
Glorot 99.18 99.21 99.08 99.15 99.16 99.22
KM 99.10 99.07 99.12 99.21 99.20 99.18
PCA 98.82 99.18 99.20 99.25 99.24 99.34
fSDA 98.67 99.26 99.24 99.25 99.24 99.28
fSDA500 98.98 99.14 99.17 97.92 99.13 99.10
fSDA200 98.65 99.04 95.16 99.17 99.18 99.05
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noticing is that in a few cases, the use of a smaller number of samples leads to
performance improved compared to using the full dataset. A possible interpre-
tation of this is that the model trained on a smaller number of samples overfits
less to the training data, thus providing better generalization properties.

Figure 4: Convergence plots on MLPs. Datasets top to bottom: Linnaeus-5, CIFAR-10,
MNIST

Figures 4 and 5 show the convergence speed of different methods, where we
plot the accuracy on the validation set versus the number of training epochs.
For the sake of variety, we provide the results on architectures corresponding
to 32 subclasses and ReLU activation function for MLP architectures, and 16
subclasses and LeakyReLU activation function for CNN architecture. The plots
outline several essential points: we observe that fastSDA-initialized models gen-
erally start from a higher accuracy compared to other methods, and generally
they also take less epochs to converge. This is clearly seen especially on the
MLP architectures. In addition, we can see that utilization of a larger number
of samples for initialization results in a higher initial accuracy and a faster con-
vergence compared to using a smaller number of samples. In CNN, we observe
that the convergence properties are not as good as in the MLP case, and our
proposed methods are mostly doing on-par with competing ones. However, this
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Figure 5: Convergence plots on CNNs. Datasets top to bottom: Linnaeus-5, CIFAR-10,
MNIST

is compensated by the fact that our methods are able to achieve a better overall
accuracy, and a more detailed investigation on the convergence properties of
CNNs is left as a future work. Overall, these observations support our intuition
that fastSDA initialization allows to start the optimization process from a more
favourable point in the feature space.

For reference, we provide the initialization times in seconds for larger archi-
tecture corresponding to 32 subclasses for MLPs and CNNs in Table 5. As can
be seen, the speed of initialization depends both on dimensionality and dataset
size (recall that MNIST has 1 channel unlike CIFAR-10 and Linnaeus-5 that
have 3 channels, and Linnaeus-5 is the smallest dataset). In MLPs, the overhead
created by clustering plays a bigger role compared to dimensionality of data,
leading to fastSDA with full training data being slower than PCA. However, in
CNN and when using a smaller number of images for initialization, our approach
is generally faster.
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Table 5: Times for initialization in 32-subclass architecture (seconds)

MLP
KM LDA PCA fSDA fSDA500 fSDA200

CIFAR 108 1251 25 108 42 26
MNIST 73 68 3 41 11 8
LIN 23 176 23 25 16 8

CNN
KM PCA fSDA fSDA500 fSDA200

CIFAR 22020 12364 6315 807 532
MNIST 16301 6158 4516 521 294
LIN 958 1208 369 216 152

5. Conclusion

In this paper we proposed a novel data-driven approach for weight initializa-
tion based on discriminant learning. The proposed initialization was formulated
for dense and convolutional layers appearing in Multilayer Perceptrons (MLPs)
and Convolutional Neural Networks (CNNs). In addition, we considered some of
the limitations of the method caused by assumptions on the data and proposed
ways to remedy them. Experimental results show that the proposed approach
provides several benefits compared to competing ones, including improved train-
ing accuracy and initial accuracy, while achieving equal or faster convergence
and initialization time. In addition, we showed that the initialization time can
be improved even further by applying the initialization based on a small number
of samples with no degrading effect on accuracy.
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Within-layer Diversity Reduces Generalization Gap

Firas Laakom 1 Jenni Raitoharju 2 Alexandros Iosifidis 3 Moncef Gabbouj 1

Abstract
Neural networks are composed of multiple layers
arranged in a hierarchical structure jointly trained
with a gradient-based optimization. At each op-
timization step, neurons at a given layer receive
feedback from neurons belonging to higher lay-
ers of the hierarchy. In this paper, we propose to
complement this traditional ’between-layer’ feed-
back with additional ’within-layer’ feedback to
encourage diversity of the activations within the
same layer. To this end, we measure the pairwise
similarity between the outputs of the neurons and
use it to model the layer’s overall diversity. By pe-
nalizing similarities and promoting diversity, we
encourage each neuron to learn a distinctive rep-
resentation and, thus, to enrich the data represen-
tation learned within the layer and to increase the
total capacity of the model. We theoretically and
empirically study how the within-layer activation
diversity affects the generalization performance
of a neural network and prove that increasing the
diversity of hidden activations reduces the gener-
alization gap.

1. Introduction
Neural networks are a powerful class of non-linear function
approximators that have been successfully used to tackle a
wide range of problems. They have enabled breakthroughs
in many tasks, such as image classification (Krizhevsky
et al., 2012), speech recognition (Hinton et al., 2012a), and
anomaly detection (Golan & El-Yaniv, 2018). However,
neural networks are often over-parameterized, i.e., have
more parameters than data. As a result, they tend to overfit
to the training samples and not generalize well on unseen
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examples (Goodfellow et al., 2016). While research on
double descent (Belkin et al., 2019; Advani et al., 2020;
Nakkiran et al., 2020) shows that over-parameterization
does not necessarily lead to overfitting, avoiding overfit-
ting has been extensively studied (Neyshabur et al., 2018;
Nagarajan & Kolter, 2019; Poggio et al., 2017) and vari-
ous approaches and strategies have been proposed, such as
data augmentation (Goodfellow et al., 2016; Zhang et al.,
2018), regularization (Kukačka et al., 2017; Bietti et al.,
2019; Arora et al., 2019), and dropout (Hinton et al., 2012b;
Wang et al., 2019; Lee et al., 2019; Li et al., 2016), to close
the gap between the empirical loss and the expected loss.

Diversity of learners is widely known to be important in
ensemble learning (Li et al., 2012; Yu et al., 2011) and, par-
ticularly in deep learning context, diversity of information
extracted by the network neurons has been recognized as
a viable way to improve generalization (Xie et al., 2017a;
2015). In most cases, these efforts have focused on mak-
ing the set of weights more diverse (Yang et al.; Malkin &
Bilmes, 2009). However, diversity of the activations has not
received much attention.

To the best of our knowledge, (Cogswell et al., 2016) is
the only work in neural network context which considers
diversity of the activations directly. They propose an ad-
ditional loss term using cross-covariance of hidden acti-
vations, which encourages the neurons to learn diverse or
non-redundant representations. The proposed approach,
known as DeCov, has empirically been proven to allevi-
ate overfitting and to improve the generalization ability of
neural network, yet a theoretical analysis to prove this has
so far been lacking. Moreover, modeling diversity as the
sum of the pair-wise cross-covariance, it can capture only
the pairwise diversity between components and is unable to
capture the higher-order “diversity”.

In this work, we start by theoretically showing that the
within-layer activation diversity boosts the generalization
performance of neural networks and reduces overfitting.
Moreover, we propose a novel approach to encourage acti-
vation diversity within a layer. We propose complementing
the ’between-layer’ feedback with additional ’within-layer’
feedback to penalize similarities between neurons on the
same layer. Thus, we encourage each neuron to learn a dis-
tinctive representation and to enrich the data representation
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learned within each layer. We propose three variants for
our approach that are based on different global diversity
definitions.

Our contributions in this paper are as follows:

• Theoretically, we analyse the effect of the within-layer
activation diversity on the generalization error bound of
neural network. As shown in Theorems 1-6, we express
the upper-bound of the estimation error as a function
of the diversity factor. Thus, we provide theoretical
evidence that the within-layer activation diversity can
help reduce the generalization error.

• Methodologically, we propose a new approach to en-
courage the ’diversification’ of the layers’ output fea-
ture maps in neural networks. The main intuition is
that by promoting the within-layer activation diversity,
neurons within a layer learn distinct patterns and, thus,
increase the overall capacity of the model.

• Empirically, we show that the proposed within-layer
activation diversification boosts the performance of
neural networks.

2. Generalization error analysis
In this section, we analyze how the within-layer activation
diversity affects the generalization error of a neural network.
Generalization theory (Zhang et al., 2017; Kawaguchi et al.,
2017) focuses on the relation between the empirical loss and
the expected risk defined as follows:

L(f) = E(x,y)∼Q[l(f(x), y)], (1)

where Q is the underlying distribution of the dataset. Let
f∗ = argminf L(f) be the expected risk minimizer and
f̂ = argminf L̂(f) be the empirical risk minimizer. We
are interested in the estimation error, i.e., L(f∗) − L(f̂),
defined as the gap in the loss between both minimizers
(Barron, 1994). The estimation error represents how well an
algorithm can learn. It usually depends on the complexity
of the hypothesis class and the number of training samples
(Barron, 1993; Zhai & Wang, 2018).

In this work, we are interested in the effect of the within-
layer activation diversity on the estimation error. In order
to study this effect, we assume that with a high probability
τ , the distance between the output of each pair of neurons,
(ϕn(x)−ϕm(x))2, is lower bounded by d2min for any input
x. Intuitively, if two neurons n and m have similar outputs
for many samples, their corresponding similarity dmin will
be small. Otherwise, their similarity dmin is small and they
are considered “diverse”. By studying how dmin affects the
generalization of the model, we can theoretically understand
how diversity affects the performance of neural networks.

To this end, we derive generalization bounds for neural
networks using dmin.

Several techniques have been used to quantify the estimation
error, such as PAC learning (Hanneke, 2016; Arora et al.,
2018), VC dimension (Sontag, 1998; Harvey et al., 2017;
Bartlett et al., 2019), and the Rademacher complexity (Xie
et al., 2015; Zhai & Wang, 2018; Tang et al., 2020). The
Rademacher complexity has been widely used as it usually
leads to a tighter generalization error bound (Sokolic et al.,
2016; Neyshabur et al., 2018; Golowich et al., 2018). In this
work, we also rely on the Rademacher complexity to study
diversity. We seek a tighter upper bound of the estimation
error and show how the within-layer diversity, expressed
with dmin, affects the bound. We start by deriving such an
upper-bound for a simple network with one hidden layer
trained for a regression task and then we extend it for a
general multi-layer network and for different losses. The
proofs are provided as supplementary material.

2.1. Single hidden-layer network

Here, we consider a simple neural network with one hidden-
layer with M neurons and one-dimensional output trained
for a regression task. The full theoretical characterization of
the setup can be summarized in the assumptions presented
in Appendix 6.1

Our main goal is to analyze the estimation error bound of
the neural network and to see how its upper-bound is linked
to the diversity, expressed by dmin, of the different neurons.
The main result is presented in Theorem 1.
Theorem 1. Under Assumptions 1, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤
(√

J + C2

)
A

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (2)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).

Theorem 1 provides an upper-bound for the estimation error.
We note that it is a decreasing function of dmin. Thus, we
say that a higher dmin, i.e., more diverse activations, yields a
lower estimation error bound. In other words, by promoting
the within-layer diversity, we can reduce the generalization
error of neural networks.

2.2. Binary classification

We now extend our analysis of the effect of the within-layer
diversity on the generalization error in the case of a binary
classification task, i.e., y ∈ {−1, 1}. The extensions of
Theorem 1 in the case of a hinge loss and a logistic loss are
presented in Theorems 2 and 3, respectively.
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Theorem 2. Using the hinge loss, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A+ (1 +
√
J )

√
2 log(2/δ)

N
, (3)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).
Theorem 3. Using the logistic loss l(f(x), y) = log(1 +
e−yf(x)), there exist a constant A such that, with probability
at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

1 + e
√
−J

+ log(1 + e
√
J )

√
2 log(2/δ)

N
, (4)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).

As we can see, also for the binary classification task, the
error bounds of the estimation error for the hinge and logistic
losses are decreasing with respect to dmin. Thus, employing
a diversity strategy can improve the generalization also for
the binary classification task.

2.3. Multi-layer networks

Here, we extend our result for networks with P (> 1) hidden
layers. We assume that the pair-wise distances between the
activations within layer p are lower-bounded by dpmin with
a probability τp. In this case, the main theorem is extended
as follows:
Theorem 4. There exist a constant A such that, with proba-
bility of at least

∏P−1
p=0 (τ

p)Q
p

(1− δ), we have

L(f̂)− L(f∗) ≤ (
√

J P + C2)A

+
1

2

(√
J P + C2

)2
√

2 log(2/δ)

N
, (5)

where Qp is the number of neuron pairs in the pth layer,
defined as Qp = Mp(Mp−1)

2 , and J P is defined recur-
sively using the following identities: J 0 = C0

3C1 and
J p = MpCp2

(
Mp2(LϕC

p−1
3 J p−1 + ϕ(0))2 −M(M −

1)
dp
min

2

2 )
)
, for p = 1, . . . , P .

In Theorem 4, we see that J P is decreasing with respect
to dpmin. Thus, we see that maximizing the within-layer
diversity, we can reduce the estimation error of a multi-layer
neural network.

2.4. Multiple outputs

Finally, we consider the case of a neural network with a
multi-dimensional output, i.e., y ∈ RD. This yields the
following two theorems:

Theorem 5. For a multivariate regression trained with the
squared error, there exist a constant A such that, with prob-
ability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ (
√
J + C2)A

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (6)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).

Theorem 6. For a multi-class classification task using the
cross-entropy loss, there exist a constant A such that, with
probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

D − 1 + e−2
√
J

+ log
(
1 + (D − 1)e2

√
J
)√2 log(2/δ)

N
, (7)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).

Theorems 5 and 6 extend our result for the multi-
dimensional regression and classification tasks, respectively.
Both bounds are inversely proportional to the diversity fac-
tor dmin. We note that for the classification task, the upper-
bound is exponentially decreasing with respect to dmin.
This shows that increasing diversity within the layer yields a
tighter generalization gap and, thus, theoretically guarantees
a stronger generalization performance.

3. Within-layer activation diversity
As shown in the previous section, promoting diversity of
activations within a layer can lead to tighter generalization
bound and can theoretically decrease the gap between the
empirical and the true risks. In this section, we propose a
novel diversification strategy, where we encourage neurons
within a layer to activate in a mutually different manner,
i.e., to capture different patterns. To this end, we propose
an additional within-layer loss which penalizes the neurons
that activate similarly. The standard loss function L̂(f)

is augmented as follows: L̂aug(f) = L̂(f) + λ
∑P

i=1 J
i,

where J i expresses the overall similarity of the neurons
within the ith layer and λ is the penalty coefficient for the
diversity loss. Our proposed diversity loss can be applied to
a single layer or multiple layers in a network. For simplicity,
let us focus on a single layer.

Let ϕi
n(xj) and ϕi

m(xj) be the outputs of the nth and mth

neurons in the ith layer for the same input sample xj . The
similarity snm between the the nth and mth neurons can be
obtained as the average similarity measure of their outputs
for N input samples. We use the radial basis function to
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express the similarity:

snm =
1

N

N∑

j=1

exp
(
− γ||ϕi

n(xj)− ϕi
m(xj)||2

)
, (8)

where γ is a hyper-parameter. The similarity snm can be
computed over the whole dataset or batch-wise. Intuitively,
if two neurons n and m have similar outputs for many sam-
ples, their corresponding similarity snm will be high. Other-
wise, their similarity smn is small and they are considered
“diverse”. Based on these pair-wise similarities, we propose
three variants for the overall similarity J i:

• Direct: J i =
∑

n̸=m snm. In this variant, we model
the global layer similarity directly as the sum of the
pairwise similarities between the neurons.

• Det: J i = −det(S), where S is defined as Snm =
snm. This variant is inspired by the Determinantal
Point Process (DPP) (Kulesza & Taskar, 2010; 2012).

• Logdet: J i = −logdet(S)1. This variant has the same
motivation as the second one. We use logdet instead
of det as logdet is a convex function over the positive
definite matrix space.

It should be noted here that the first proposed variant, i.e., di-
rect, similar to Decov (Cogswell et al., 2016), captures only
the pairwise diversity between components and is unable
to capture the higher-order “diversity”, whereas the other
two variants consider the global similarity and are able to
measure diversity in a more global manner.

4. Experiments
To demonstrate the effectiveness of our approach and its abil-
ity to reduce the generalization gap in neural networks, we
conduct image classification experiments on the ImageNet-
2012 dataset (Russakovsky et al., 2015) using the ResNet50
model (He et al., 2016). The diversity term is applied on the
last intermediate layer, i.e., the global average pooling layer.
The training protocol is presented in the appendix 6.3.

We analyse the effect of the two parameters: γ, which is
the RBF parameter used to measure the pair-wise similarity
between two units, and λ, which controls the contribution
of the global diversity term to the global loss, on both the
final performance of the models and its generalization abil-
ity, i.e., generalization gap. The analysis is presented in
Figure 1. As it can be seen, promoting the within-layer
diversity consistently reduces overfitting and decreases the
generalization gap for most of the hyperparameters values.

1This is defined only if S is positive definite. It can be shown
that in our case S is positive semi-definite. Thus, in practice we use
a regularized version (S + ϵI) to ensure the positive definiteness.

Moreover, we note that global modeling of diversity, i.e.,
det and logdet variants, yield tighter generalization gaps
between the train and test errors compared to the non-global
direct approach. In fact, while direct variant decreases the
generalization gap compared to the standard approach, it
decreases it only by 0.5% for most hyperparameter values,
whereas, for the more global approaches, i.e., det and logdet,
the generalization gap is less than 1.1% in multiple cases
compared to the gaps 2.87% and 2.50% achieved by the
standard approach and the direct variant, respectively.

For the direct variant (the curves in blue), we note that the
performance of the method is not sensitive the hyperparam-
eters, and the method achieves its best performance for low
values of λ and γ. For the det variant (the curves in orange),
we note that it significantly improves the generalization abil-
ity of the model. However, there is a trade-off between the
generalization gap and the final error. In fact, emphasizing
diversity and using a high weight for the diversity term sig-
nificantly decreases the generalization gap. This damages
the performance of the model compared to the standard
approach. For example, with λ = 0.01 and γ = 10, the
generalization gap of the model is 0.9% compared to 2.87%
of the standard. However, the test error for this model gets
up to 24.42% compared to 23.87% for the standard. For
lower values of λ, the model is able to significantly outper-
form the standard approach on both the test error and the
generalization gap. For the logdet variant (green curves),
we note that, in terms of generalization gap, the approach
consistently outperforms the standard approach. Using a
small value for λ, the model yields lower error rates than
the standard approach. For high values of λ, the error rates
become similar to the standard approach but with a lower
generalization gap. This variant is not sensitive to the hyper-
parameter γ. Additional empirical results are presented in
appendix 6.4.

5. Conclusions
In this paper, we proposed a new approach to encourage
‘diversification’ of the layer-wise feature map outputs in
neural networks. The main motivation is that by promoting
within-layer activation diversity, neurons within the same
layer learn to capture mutually distinct patterns. We pro-
posed an additional loss term that can be added on top of
any layer. This term complements the traditional ‘between-
layer’ feedback with an additional ‘within-layer’ feedback
encouraging diversity of the activations. We theoretically
proved that the proposed approach decreases the estimation
error bound and, thus, improves the generalization ability
of neural networks. This analysis was further supported by
experimental results showing that such a strategy can indeed
improve the performance of state-of-the-art networks.
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Figure 1. Sensitivity analysis of λ and γ on both the model accuracy and its generalization ability
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6. Appendix
6.1. Theoretical assumptions

The full theoretical characterization of the setup can be
summarized in the following assumptions:

Assumptions 1.

• The activation function of the hidden layer, ϕ(t), is a
positive Lϕ-Lipschitz continuous function.

• The input vector x ∈ RD satisfies ||x||2 ≤ C1.

• The output scalar y ∈ R satisfies |y| ≤ C2.

• The weight matrix W = [w1,w2, · · · ,wM ] ∈
RD×M connecting the input to the hidden layer satis-
fies ||wm||2 ≤ C3.

• The weight vector v ∈ RM connecting the hidden-
layer to the output neuron satisfies ||v||2 ≤ C4.

• The hypothesis class is F = {f |f(x) =∑M
m=1 vmϕm(x) =

∑M
m=1 vmϕ(wT

mx)}.

• Loss function set is A = {l|l(f(x), y) = 1
2 |f(x) −

y|2}.

• With a probability τ , for n ̸= m, (ϕn(x)−ϕm(x))2 =
(ϕ(wT

nx)− ϕ(wT
mx))2 ≥ d2min.

6.2. Section 2 proofs:

We recall the following two lemmas related to the estimation
error and three Rademacher complexity:

Lemma 1. (Bartlett & Mendelson, 2002) For F ∈ RX , as-
sume that g : R −→ R is a Lg-Lipschitz continuous function
and A = {g ◦ f : f ∈ F}. Then we have

RN (A) ≤ LgRN (F). (9)

Lemma 2. (Xie et al., 2015; Bartlett & Mendelson, 2002)
With a probability of at least 1− δ

L(f̂)− L(f∗) ≤ 4RN (A) +B

√
2 log(2/δ)

N
(10)

for B ≥ supx,y,f |l(f(x), y)|, where RN (A) is the
Rademacher complexity of the loss set A.

Lemma 3. (Xie et al., 2015) Under Assumptions 1,
the Rademacher complexity RN (F) of the hypothe-
sis class F = {f |f(x) =

∑M
m=1 vmϕm(x) =∑M

m=1 vmϕ(wT
mx)} can be upper-bounded as follows:

RN (F) ≤ 2LϕC134

√
M√

N
+

C4|ϕ(0)|
√
M√

N
, (11)

where C134 = C1C3C4 and ϕ(0) is the output of the acti-
vation function at the origin.

Lemma 2 bounds the estimation error using the Rademacher
complexity and the supremum of the loss class Lemma 3
provides an upper-bound of the Rademacher complexity for
the hypothesis class.

In the following proofs, we use Lipschitz analysis. In par-
ticular, a function f : A → R, A ⊂ Rn, is said to be
L-Lipschitz, if there exist a constant L ≥ 0, such that
|f(a)−f(b)| ≤ L||a−b|| for every pair of points a, b ∈ A.
Moreover:

• supx∈A f ≤ sup(L||x||+ f(0)).

• if f is continuous and differentiable, L = sup |f ′(x)|.

6.2.1. PROOF OF THEOREM 1

In order to find an upper-bound for our estimation error, we
start by deriving an upper bound for supx,f |f(x)|;
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Lemma 4. Under Assumptions 1, with a probability at least
τQ, we have

sup
x,f

|f(x)| ≤
√
J , (12)

where Q is equal to the number of neuron pairs defined
by M neurons, i.e. Q = M(M−1)

2 , and J = C2
4

(
MC2

5 +

M(M − 1)(C2
5 − d2min/2)

)
and C5 = LϕC1C3 + ϕ(0).

Proof.

f2(x) =

(
M∑

m=1

vmϕm(x)

)2

≤
(

M∑

m=1

||v||∞ϕm(x)

)2

≤ ||v||2∞
(

M∑

m=1

ϕm(x)

)2

≤ C2
4

(
M∑

m=1

ϕm(x)

)2

= C2
4

(∑

m,n

ϕm(x)ϕn(x)

)

= C2
4


∑

m

ϕm(x)2 +
∑

m̸=n

ϕn(x)ϕm(x)


 (13)

We have supm w,xϕ(x) < sup(Lϕ|wTx|+ϕ(0)) because
ϕ is Lϕ-Lipschitz. Thus, ||ϕ||∞ < LϕC1C3 + ϕ(0) = C5.
For the first term in equation 13, we have∑

m ϕm(x)2 < M(LϕC1C3 + ϕ(0))2 = MC2
5 .

The second term, using the identity ϕm(x)ϕn(x) =
1
2

(
ϕm(x)2 + ϕn(x)

2 − (ϕm(x)− ϕn(x))
2
)
, can be

rewritten as
∑

m̸=n

ϕm(x)ϕn(x) =
1

2

∑

m̸=n

ϕm(x)2+ϕn(x)
2−
(
ϕm(x)−ϕn(x)

)2
.

(14)
In addition, we have with a probability τ , ||ϕm(x)− ϕn(x)||22 ≥
dmin for m ̸= n. Thus, we have with a probability at least τQ:

∑

m̸=n

ϕm(x)ϕn(x) ≤ 1

2

∑

m̸=n

(2C2
5 − d2min)

= M(M − 1)(C2
5 − d2min/2). (15)

By putting everything back to equation 13, we have with a proba-
bility τQ,

f2(x) ≤ C2
4

(
MC2

5 +M(M − 1)(C2
5 −d2min/2)

)
= J . (16)

Thus, with a probability τQ,

sup
x,f

|f(x)| ≤
√

sup
x,f

f(x)2 ≤
√
J . (17)

Note that in Lemma 4, we have expressed the upper-bound
of supx,f |f(x)| in terms of dmin. Using this bound, we
can now find an upper-bound for supx,f,y |l(f(x), y)| in
the following lemma:

Lemma 5. Under Assumptions 1, with a probability at least
τQ, we have

sup
x,y,f

|l(f(x), y)| ≤ 1

2
(
√
J + C2)

2 (18)

Proof. We have supx,y,f |f(x) − y| ≤ supx,y,f (|f(x)| +
|y|) = (

√
J + C2). Thus supx,y,f |l(f(x), y)| ≤ 1

2 (
√
J +

C2)
2.

The main goal is to analyze the estimation error bound of
the neural network and to see how its upper-bound is linked
to the diversity, expressed by dmin, of the different neurons.
Now we can prove our main Theorem 1:

Theorem 1 Under Assumptions 1, there exist a constant A,
such that with probability at least τQ(1− δ), we have

L(f̂)−L(f∗) ≤
(√

J+C2

)
A+

1

2
(
√
J+C2)

2

√
2 log(2/δ)

N
(19)

where J = C2
4

(
MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
, and

C5 = LϕC1C3 + ϕ(0).

Proof. Given that l(·) is K-Lipschitz with a constant K =
supx,y,f |f(x)−y| ≤ (

√
J +C2), and using Lemma 1, we

can show that RN (A) ≤ KRN (F) ≤ (
√
J +C2)RN (F).

For RN (F), we use the bound found in Lemma 3. Using
Lemmas 2 and 5, we have

L(f̂)−L(f∗) ≤ 4
(√

J+C2

)(
2LϕC134+C4|ϕ(0)|

)√M√
N

+
1

2
(
√
J + C2)

2

√
2 log(2/δ)

N
(20)

where C134 = C1C3C4, J = C2
4

(
MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LϕC1C3 + ϕ(0). Thus, taking A =

4
(
2LϕC134 + C4|ϕ(0)|

)√
M√
N

completes the proof.

6.2.2. PROOF OF THEOREMS 2 AND 3

Similar to the proofs of Lemmas 7 and 8 in (Xie et al., 2015),
we can show the following two lemmas:

Lemma 6. Using the hinge loss, we have with probability
at least τQ(1− δ)

L(f̂)− L(f∗) ≤ 4
(
2LϕC134 + C4|ϕ(0)|

)√M√
N

+ (1 +
√
J )

√
2 log(2/δ)

N
(21)

where C134 = C1C3C4, J = C2
4 (MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LϕC1C3 + ϕ(0).
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Lemma 7. Using the logistic loss l(f(x), y) = log(1 +
e−yf(x)), we have with probability at least τQ(1− δ)

L(f̂)−L(f∗) ≤ 4

1 + e
√
−J

(
2LϕC134+C4|ϕ(0)|

)√M√
N

+ log(1 + e
√
J )

√
2 log(2/δ)

N
(22)

where C134 = C1C3C4, J = C2
4 (MC2

5+M(M−1)(C2
5−

d2min/2)
)
, and C5 = LϕC1C3 + ϕ(0).

Taking A = 4
(
2LϕC134 +C4|ϕ(0)|

)√
M√
N

in Lemma 6 and
Lemma 7 completes the proofs.

6.2.3. PROOF OF THEOREM 4

Theorem 4 There exist a constant A such that, with proba-
bility of at least

∏P−1
p=0 (τ

p)Q
p

(1− δ), we have

L(f̂)− L(f∗) ≤ (
√

J P + C2)A

+
1

2

(√
J P + C2

)2
√

2 log(2/δ)

N
(23)

where Qp is the number of neuron pairs in the pth layer,
defined as Qp = Mp(Mp−1)

2 , and J P is defined recur-
sively using the following identities: J 0 = C0

3C1 and
J p = MpCp2

(
Mp2(LϕC

p−1
3 J p−1 + ϕ(0))2 −M(M −

1)
dp
min

2

2 )
)
, for p = 1, . . . , P .

Proof. Lemma 5 in (Xie et al., 2015) provides an upper-
bound for the hypothesis class. We denote by vp denote
the outputs of the pth hidden layer before applying the
activation function:

v0 = [w0T

1 x, ....,w0T

M0x] (24)

vp = [

Mp−1∑

j=1

wp
j,1ϕ(v

p−1
j ), ....,

Mp−1∑

j=1

wp
j,Mpϕ(v

p−1
j )] (25)

vp = [wp
1
T
ϕp, ...,wp

Mp

T
ϕp], (26)

where ϕp = [ϕ(vp−1
1 ), · · · , ϕ(vp−1

Mp−1)]. We have

||vp||22 =
Mp∑

m=1

(wp
m

Tϕp)2 (27)

and wp
m

Tϕp ≤ Cp
3

∑
n ϕ

p
n. Thus,

||vp||22 ≤
Mp∑

m=1

(Cp
3

∑

n

ϕp
n)

2 = MpCp
3
2
(
∑

n

ϕp
n)

2

= MpCp
3
2
∑

mn

ϕp
mϕp

n. (28)

We use the same decomposition trick of ϕp
mϕp

n as in the
proof of Lemma 4. We need to bound supx ϕ

p:

sup
x

ϕp < sup(Lϕ|wp−1
j

T
vp−1|+ ϕ(0))

< Lϕ||W p−1||∞||vp−1||22 + ϕ(0). (29)

Thus, we have

||vp||22 ≤ MpCp2
(
M2(LϕC

p−1
3 ||vp−1||22 + ϕ(0))2

−M(M − 1)d2min/2)
)
= J P . (30)

We found a recursive bound for ||vp||22, we note that for
p = 0, we have ||v0||22 ≤ ||W 0||∞C1 ≤ C0

3C1 = J 0.
Thus,

sup
x,fP∈FP

|f(x)| = sup
x,fP∈FP

|vP | ≤
√

J P . (31)

By replacing the variables in Lemma 2, we have

L(f̂)−L(f∗) ≤ 4(
√

J P+C2)

(
(2Lϕ)

PC1C
0
3√

N

P−1∏

p=0

√
MpCp

3

+
|ϕ(0)|√

N

P−1∑

p=0

(2Lϕ)
P−1−p

P−1∏

j=p

√
M jCj

3

)

+
1

2

(√
J P + C2

)2√2 log(2/δ)

N

Taking A = (
(2Lϕ)PC1C

0
3√

N

∏P−1
p=0

√
MpCp

3 +
|ϕ(0)|√

N

∑P−1
p=0 (2Lϕ)

P−1−p∏P−1
j=p

√
M jCj

3) completes the
proof.

6.2.4. PROOFS OF THEOREMS 5 AND 6

Theorem 5 For a multivariate regression trained with the
squared error, there exist a constant A such that, with prob-
ability at least τQ(1− δ), we have

L(f̂)−L(f∗) ≤ (
√
J+C2)A+

D

2
(
√
J+C2)

2

√
2 log(2/δ)

N
(32)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0)

Proof. The squared loss ||f(x)− y||2 can be decomposed
into D terms (f(x)k − yk)

2. Using Theorem 1, we can
derive the bound for each term and thus, we have:

L(f̂)−L(f∗) ≤ 4D(
√
J+C2)

(
2LϕC134+C4|ϕ(0)|

)√M√
N

+
D

2
(
√
J + C2)

2

√
2 log(2/δ)

N
, (33)
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where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M −
1)(C2

5 − d2min/2)
)
, and C5 = LϕC1C3 + ϕ(0). Taking

A = 4D
(
2LϕC134 + C4|ϕ(0)|

)√
M√
N

completes the proof.

Theorem 6 For a multi-class classification task using the
cross-entropy loss, there exist a constant A such that, with
probability at least τQ(1− δ), we have

L(f̂)− L(f∗) ≤ A

D − 1 + e−2
√
J

+ log
(
1 + (D − 1)e2

√
J
)√2 log(2/δ)

N
(34)

where J = C2
4 (MC2

5 +M(M − 1)(C2
5 − d2min/2)

)
and

C5 = LϕC1C3 + ϕ(0).

Proof. Using Lemma 9 in (Xie et al., 2015), we have
supf,x,y l = log

(
1+ (D− 1)e2

√
J )

and l is D−1
D−1+e−2

√
J -

Lipschitz. Thus, using the decomposition property of the
Rademacher complexity, we have

Rn(A) ≤ 4D(D − 1)

D − 1 + e−2
√
J

(
2LϕC134

√
M√

N
+

C4|ϕ(0)|
√
M√

N

)
.

(35)

Taking A = 4D(D − 1)
(

2LϕC134
√
M√

N
+ C4|ϕ(0)|

√
M√

N

)
com-

pletes the proof.

6.3. Experimental protocol

we conduct image classification experiments on the
ImageNet-2012 classification dataset (Russakovsky et al.,
2015) using the ResNet50 model (He et al., 2016). The
diversity term is applied on the last intermediate layer, i.e.,
the global average pooling layer for both DeCov and our
method. We use the standard augmentation practice for
this dataset as in (Zhang et al., 2018; Huang et al., 2017;
Cogswell et al., 2016). All the models are trained with a
batch size of 256 for 100 epoch using SGD with Nesterov
Momentum of 0.9 and a weight decay of 0.0001. The learn-
ing rate is initially set to 0.1 and decreases at epochs 30, 60,
90 by a factor of 10.

6.4. Additional experiments

We start by evaluating our proposed diversity approach on
two image datasets: CIFAR10 and CIFAR100 (Krizhevsky
et al., 2009). They contain 60,000 (50,000 train/10,000 test)
32× 32 images grouped into 10 and 100 distinct categories,
respectively. We split the original training set (50,000) into
two sets: we use the first 40,000 images as the main training
set and the last 10,000 as a validation set for hyperparam-
eters optimization. We use our approach on three state-of-
the-art CNNs: ResNext 29-8-16: we consider the standard

Table 1. Average classification errors on CIFAR10 and CIFAR100
over three iterations

Top-1 test Error

Model Method CIFAR10 CIFAR100

Standard 07.07 29.25
DeCov 07.18 29.17

DenseNet-12 Ours direct 06.95 29.16
Ours det 07.04 28.78
Ours logdet 06.96 29.15

Standard 06.93 26.73
DeCov 06.84 26.70

ResNext-29-08-16 Ours direct 06.74 26.54
Ours det 06.67 26.67
Ours logdet 06.70 26.67

Standard 08.27 34.06
DeCov 08.03 32.26

ResNet50 Ours direct 07.86 32.15
Ours det 07.73 32.12
Ours logdet 07.91 32.20

ResNext Model (Xie et al., 2017b) with a 29-layer architec-
ture, a cardinality of 8, and a width of 16. DenseNet-12:
we use DenseNet (Huang et al., 2017) with the 40-layer
architecture and a growth rate of 12. ResNet50: we con-
sider the standard ResNet model (He et al., 2016) with 50
layers. We compare against the standard networks as well
networks trained with DeCov diversity strategy (Cogswell
et al., 2016).

All the models are trained using stochastic gradient de-
scent (SGD) with a momentum of 0.9, weight decay of
0.0001, and a batch size of 128 for 200 epochs. The ini-
tial learning rate is set to 0.1 and is then decreased by
a factor of 5 after 60, 120, and 160 epochs, respectively.
We also adopt a standard data augmentation scheme that
is widely used for these two datasets (He et al., 2016;
Huang et al., 2017). For all models, the additional di-
versity term is applied on top the last intermediate layer.
For the hyperparameters: The loss weight is chosen from
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01} for
both our approach and Decov and γ in the radial basis func-
tion is chosen from {0.01, 0.1.1, 10, 50, 100}. For each ap-
proach, the model with the best validation performance is
used in the test phase. Each experiment is repeated three
times and we report the average performance over three
iterations.

Table 1 reports the average top-1 errors of the different
approaches with the three basis networks. We note that,
compared to the standard approach, employing a diversity
strategy generally boosts the results for all the three models
and that our approach consistency outperforms both compet-

DRAFT



ICML 2021 workshop on Information-Theoretic Methods for Rigorous, Responsible, and Reliable Machine Learning

Table 2. Performance of ResNet50 with different diversity strate-
gies on ImageNet dataset

Top-1 Errors Generalization

Method Training Testing Gap

Standard 20.97 23.84 2.87
DeCov 20.92 23.62 2.70
Ours direct 20.88 23.58 2.70
Ours det 20.81 23.62 2.77
Ours logdet 22.57 23.64 1.07

ing methods (standard and DeCov) in all the experiments.
For DenseNet-12, our direct and det variants yield the best
performance over CIFAR10 and CIFAR100, respectively.
For ResNext-29-08-16, our approach with det term yields on
average 0.25% accuracy improvement compared to the stan-
dard approach, 0.17% improvement compared to DeCov on
CIFAR10. On CIFAR100, the best performance is achieved
by the direct variant of our approach. For ResNet50, the
three variants of our proposed approach significantly reduce
the test errors over both datasets: 0.36%− 0.54% improve-
ment on CIFAR10 and 1.86%− 1.94% on CIFAR100.

To further demonstrate the effectiveness of our approach
and its ability to reduce the generalization gap in neural
networks, we conduct additional image classification ex-
periments on the ImageNet-2012 classification dataset and
ResNet50. For the hyperparameters, we use the best ones
for each approach obtained from CIFAR10 and CIFAR100
experiments.

Table 2 reports the test errors of the different diversity strate-
gies. To study the effect of diversity on the generalization
gap, we also report the final training errors and the general-
ization gap, i.e., training accuracy - test accuracy. As it can
be seen, diversity (our approach and DeCov) reduces the
test error of the model and yields a better performance. The
best performance is achieved by our direct variant. We note
that, in accordance with our theoretical findings in Section
2, using diversity indeed reduces overfitting and decreases
the empirical generalisation gap of neural networks. In fact,
our logdet variant reduces the empirical generalization gap
of the model by 1.8% compared to the standard approach.DRAFT
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Enriched Music Representations with Multiple
Cross-modal Contrastive Learning

Andres Ferraro, Xavier Favory, Konstantinos Drossos, Yuntae Kim and Dmitry Bogdanov

Abstract—Modeling various aspects that make a music piece
unique is a challenging task, requiring the combination of
multiple sources of information. Deep learning is commonly used
to obtain representations using various sources of information,
such as the audio, interactions between users and songs, or
associated genre metadata. Recently, contrastive learning has led
to representations that generalize better compared to traditional
supervised methods. In this paper, we present a novel approach
that combines multiple types of information related to music
using cross-modal contrastive learning, allowing us to learn an
audio feature from heterogeneous data simultaneously. We align
the latent representations obtained from playlists-track interac-
tions, genre metadata, and the tracks’ audio, by maximizing
the agreement between these modality representations using a
contrastive loss. We evaluate our approach in three tasks, namely,
genre classification, playlist continuation and automatic tagging.
We compare the performances with a baseline audio-based CNN
trained to predict these modalities. We also study the importance
of including multiple sources of information when training our
embedding model. The results suggest that the proposed method
outperforms the baseline in all the three downstream tasks and
achieves comparable performance to the state-of-the-art.

Index Terms—Acoustic signal processing, Machine learning,
Music information retrieval, Recommender systems

I. INTRODUCTION AND RELATED WORK

There are multiple sources and types of information related
to the music that can be used for different applications. For
example, using audio features showed better performance for
predicting musical genres compared to using users’ listening
data [1]. On the other hand, the latter performed better on
music recommendation [2] and mood prediction [3]. Having a
numerical feature representation that combines all the relevant
information of a song would allow creating better automatic
tools that solve problems such as genre prediction, mood
estimation and music recommendation.

Advances of deep learning in the past years enabled to
improve the performance on multiple tasks by combining
different types of data. For example, Oramas et al. [4] propose
a multi-modal approach combining text, audio, and images for
music auto-tagging and Suris et al. [5] propose a method to
combine audio-visual embeddings for cross-modal retrieval.

Deep learning allows learning representations mapping from
different input data to an embedding space that can be used for
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multiple downstream tasks [6]. The most common approach
for representation learning in the music domain is to train a
audio-based classifier to predict some music aspects such as
genre, mood, or instrument and then use the pre-trained model
to extract embeddings that could be used in different tasks.
Alonso et al. [7] compare different pre-trained architectures
for predicting multiple aspects of a song such as danceability,
mood, gender and timbre, showing the generalization capa-
bilities of these pre-trained models. Alternative methods in
the field of deep metric learning recently shown a better
performance across multiple downstream tasks compared to
the approach of pre-training classification models [8], [9],
demonstrating the great potential of deep metric learning for
generalizing to a larger diversity of tasks.

Contrastive learning has gained popularity in the last
years [10]. These approaches allow to learn representation by
employing a metric learning objective, contrasting similar and
dissimilar items. The similar examples are referred as positive
examples and the dissimilar are referred as negative examples.
Approaches based on triplet loss [11] require to define triplets
composed of an anchor, a positive and a negative example.
Triplet loss was recently applied in the music domain for
retrieval [1] and zero-shot learning [12]. However, the strategy
for sampling the triplets is crucial to the learning process
and can require significant effort. There are other losses that
instead of defining triplets rely on the comparison of paired
examples such as infoNCE [13] and NT-Xent [14]. They have
the advantage of involving all the data points within a mini-
batch when training without requiring to define a specific
strategy for sampling the training examples. Employing these
contrastive loss functions in a self-supervised way has led
to powerful image [14], sound [15] and music audio [16]
representations learned without the need for annotated data.
Contrastive learning was also applied in a supervised way [17],
[18] with a cross-modal approach using sound (audio) in-
formation and associated text metadata in order to learn
semantically enriched audio features. The learned features
achieve competitive performance in urban sound event and
musical instrument recognition [17].

The works mentioned above suggest that methods based on
contrastive learning have the potential to exploit different types
of data which is promising for improving the performance
of deep audio embeddings for a large diversity of tasks.
However, to our knowledge, there is no work that focuses on
leveraging multiple modalities through contrastive learning in
order to learn rich musical audio features. This motivates us to
investigate approaches that take advantage of different types of
music-related information (i.e. audio, genre, and playlists) to
obtain representations from the audio that can perform well in
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multiple downstream tasks such as music genre classification,
automatic playlist continuation, and music automatic tagging.
Our results show that the proposed contrastive learning ap-
proach reaches performance comparable to the state-of-art and
outperforms models pre-trained for classification or regression
based on the musical aspect.

Our contributions are as follows: i) We propose an updated
audio encoder optimized for the music domain based on
the approach proposed by Favory et al. [17], [19]. ii) We
use the alignment of multi-modal data for exploiting the
semantic metadata and collaborative filtering information. iii)
We evaluate the obtained representations in three downstream
tasks using different datasets comparing with other common
approaches based on pre-training for classification or regres-
sion. iv) We also include an ablation study by comparing
the performance of each source of information independently,
which allows us to understand the importance of the different
parts of our model. 1

II. PROPOSED METHOD

Our method employs the encoders ea(·), ew(·), and ecf(·),
encoding audio and embeddings of musical genres and mu-
sic playlist information, respectively, and a dataset D =
{(Xa,Xw,xcf)

m}Mm=1, of M associated examples, where “a”,
“w”, and “cf” are indices that associate the variables with
the encoders. Xm

a ∈ RTa×Fa is a sequence of Ta vectors
of Fa features of music audio signals, Xm

w ∈ RTw×Fw is
a sequence of Tw word embeddings of the musical genres
assigned to Xm

a with Fw features, and xmcf ∈ R1×Fcf
≥0 is a vector

of Fcf features correlating Xm
w with a human created playlist.

By the encoders we obtain three latent representations and
their information is mutually aligned using three contrastive
losses between associated and non-associated examples. By
the joint minimization of the losses, we obtain the optimized
e?a , later used for calculating embeddings of music signals (see
Figure 1).

A. Obtaining the latent representations

The audio encoder ea consists of Z stacked 2D-CNN blocks,
2DCNNz , and a feed-forward block, FFB. Each 2DCNNz
consists of a 2D convolutional neural network (CNNz) with a
square kernel of size Kz and unit stride, a batch normalization
process (BN), a rectified linear unit (ReLU), and a pooling
operation (PO). The FFB consists of a feed-forward layer,
FFa1, another BN process, a ReLU, a dropout with probability
p, another feed-forward layer, FFa2, and a layer normalization
(LN) process. ea takes as an input Xm

a and the Z 2D-CNN
blocks and the feed-forward block process the input in a
serial way. The output of ea is the learned representation
φma = ea(X

m
a ), computed as

Hm
z = 2DCNNz(Hm

z−1), and (1)
φma = FFB(Hm

Z ), where (2)
2DCNNz(u) = (PO ◦ ReLU ◦ BN ◦ CNNz)(u), (3)
FFB(u) = (LN ◦ FFa2 ◦ DP ◦ ReLU ◦ BN ◦ FFa1)(u), (4)

1We provide the code to reproduce this work and the pre-trained models:
https://github.com/andrebola/contrastive-mir-learning

Fig. 1. Diagram with architecture of the method

Hm
z ∈ RT ′′×F ′′

, Hm
0 = Xma , ◦ is the function composition

symbol, i.e. (f ◦ g)(x) = f(g(x)), and values of T ′′ and F ′′

depend on the hyper-parameters of CNNz .
The encoder ew(·) is the genre encoder and consists of a

self-attention (SA) over the input sequence, a feed-forward
layer (FFw), DP with probability p, an LN process, and a skip
connection between the input of the feed-forward layer and its
output. ew(·) is after the self-attention mechanism employed in
the Transformer model [20], and is used to learn a contextual
embedding of its input, similarly to [19]. Each musical genre
associated with Xm

a is first one-hot encoded and then given
as an input to the pre-optimized word embeddings model
Word2Vec [21]. The output of Word2Vec is Xm

w , which is
then given as an input to ew(·). The output of ew(·) is the
vector φmw = ew(Xm

w ), containing the contextual embedding
of Xm

w and calculated as

V′m = SF(Xm
w ), (5)

Vm = V′m + (DP ◦ FFw)(V′m), and (6)

φmw = LN(

Tw∑

i=1

Vm
i ), (7)

where V′m, Vm ∈ RTw×F ′
w .

The third encoder, ecf(·), is the playlist association encoder
and consists of a feed-forward block, similar to ea(·), Specifi-
cally, ecf(·) consists of a feed-forward layer, FFcf1, a ReLU, a
dropout process with probability p, another feed-forward layer,
FFcf2, and a LN process. The input to ecf(·) is a vector, xmcf ,
obtained by a collaborative filtering (CF) process, using Mpl
playlists created by humans.

The CF process gets as input a binary matrix, Bcf ∈
{0, 1}M×Mpl , that indicates which songs are included on which
playlist, where Mpl is the amount of playlists. Then, we min-
imize the WARP loss (Weighted Approximate-Rank Pairwise
loss) using SGD and the sampling technique defined in [22], to
approximate ranks between playlists and songs efficiently. CF
outputs the matrices Xcf ∈ RM×Fcf

≥0 and Qcf ∈ RFcf×Mpl
≥0 , where

Bcf ' Xcf ·Qcf. We use each row of Xcf as the vector xmcf . We
employ ecf(·) to process the xmcf , by providing a representation
of xmcf that is learned specifically for the alignment process that
our method tries to achieve. The output of ecf(·) is the vector
φmcf = ecf(x

m
cf ), calculated as

φmcf = (LN ◦ FFcf2 ◦ DP ◦ ReLU ◦ FFcf1)(xmcf ). (8)
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B. Optimization and alignment of latent representations

We jointly optimize all encoders using D and three con-
trastive losses. We expand previous approaches on audio repre-
sentation learning using multi-modal alignment, by employing
multiple cross-modal and single modal alignment processes.
Specifically, we align φma with φmw (audio-to-genre, A2G,
alignment), φma with φmcf (audio-to-playlist, A2P, alignment),
and φmcf with φmcf (genre-to-playlist, G2P, alignment).

We use A2G alignment so that φma keeps information
about musical genre. Additionally, we further enhance the
information in φma by the A2P alignment, which is targeted
to allow φma to have information about playlist associations.
Finally, we employ G2P alignment, so that we keep genre and
playlist related information tied up together and not let them
degenerate to some representation that just helps to minimize
the employed losses. Specifically, we use the contrastive loss
between two paired examples, ψψψα and ψψψb, defined as [14],
[17]

Lψψψα,ψψψb =
M∑

i=1

− log
Ξ(ψψψiα,ψψψ

i
b, τ)

2M∑
k=1

1[k 6=i]Ξ(ψψψiα, ζζζ
k, τ)

, where (9)

Ξ(a,b, τ) = exp(sim(a,b)τ−1), (10)

sim(a,b) = a>b(||a|| ||b||)−1, (11)

ζζζk =

{
ψψψka, if k ≤M
ψψψk−Mb else

, (12)

1A is the indicator function with 1A = 1 iff A else 0, and τ
is a temperature hyper-parameter.

We identify LA2G = Lφa,φw
+ Lφw,φa

as the loss for A2G
alignment, LA2P = Lφa,φcf

+ Lφcf,φa
as the loss for A2P

alignment, and LG2P = Lφw,φcf
+ Lφcf,φw

as the loss for G2P
alignment. We optimize all of our encoders, obtaining e?a , by
minimizing the

Ltot = λA2GLA2G + λA2PLA2P + λG2PLG2P, (13)

where λ· are different hyper-parameters used as weighting
factors for the losses.

III. EVALUATION

To evaluate our method, we employ Melon Playlist
Dataset [23] as D, in order to obtain ea. Then, we assess the
learned representations by ea applying it in different down-
stream tasks. Specifically, we focus on genre classification,
audio-tagging, and automatic playlist continuation. For each of
the tasks, we employ ea as audio encoder, which will provide
embeddings to a classifier, trained for the corresponding task.

We assess the benefit of the contribution of each of the
encoders of our method, by comparing our method using three
encoders (ContrCF-G) with our method but using only ea and
ew (ContrG), and using only ea and ecf (ContrCF). In addition,
we compare the performance on each task using a baseline
architecture that directly predicts the target information from
the audio encoder. We refer to these methods as B-lineG for the
model trained with genre information, B-lineCF for the model
trained to predict CF information and B-lineCF-G for the model
trained to predict both types of information at the same time.

A. Melon Playlist Dataset and audio features

The dataset D used to train the models was originally
collected Melon, a Korean music streaming service. The
dataset consists of M=649,091 songs, represented by their
mel-spectrograms, and Mpl=148,826 playlists. The number of
unique genres asociated with the songs is 219. In order to
train the model we split the songs of the dataset in train (80%),
validation (10%) and test (10%). The split was done applying a
stratified approach [24] in order to assure a similar distribution
of example in all the sets for the genres associated to the songs.

The pre-computed mel-spectrograms provided in the dataset
correspond to a range of 20 to 50 seconds with a resolution
of Fa = 48 mel-bands. Such reduced mel-bands resolution
did not negatively affect the performance of the auto-tagging
approaches in our previous study [25] and have a significantly
lower quality of reconstructed audio which allows to avoid
copyright issues. Following the previous work [26], we ran-
domly select sections the songs to train the audio encoder,
using Ta = 256. 2

B. Parameters optimization

Following the best performance in previous work [1], [26]
the audio encoder use Z=7 layers and K=3. We conducted
a preliminary evaluation to select the hyper-parameters of the
models, comparing the loss in the validation and training set to
prevent the models of overfitting. We defined the dimensions
for CF representations to Fcf= 300 and genres representations
Fw= 200 with Tw <= 10 genres per song. From the same
preliminary evaluation we defined the temperature τ=0.1,
batch size of 128, learning rate of 1e-4, dropout of 0.5 and the
number of heads for self-attention of 4. We did not experiment
with changing the weights λ for the different losses and we
used λA2G = λA2P = λG2P = 1.

C. Downstream tasks

Once the models are trained with the Melon Playlist Dataset,
we use the pre-trained models to generate an embedding from
the audio of each song in the different datasets. Then, we
use the generated embeddings and compare the performance
for each particular task. In the following, we describe each
downstream task and the dataset used.

Genre Classification We use the fault-filtered version of
the GTZAN dataset [27], [28] consisting of music excepts of
30 seconds, single-labeled using 10 classes and split in pre-
computed sets of 443 songs for training and 290 for testing.
We train a multilayer perceptron (MLP) of one hidden layer
of size 256 with ReLU activations, using the training set
and compute its accuracy on the test set. In order to obtain
an unbiased evaluation, we repeat this process 10 times and
average the accuracies. We consider each embedding frame of
a track as a different training instance, and when inferring the
genres, we apply a majority voting strategy. We also include
the performance of pre-trained embedding models taken from
the literature [29]–[31], using the results reported in [30].

2We trained using Tesla V100-SXM2 GPU with 32 GB of memory, the
training took 19 minutes per epoch approximately.
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TABLE I
GTZAN RESULTS

Model Mean Accuracy ± STD
B-lineG 63.28 ± 1.19
B-lineCF 57.12 ± 1.82
B-lineCF-G 64.35 ± 1.10
ContrG 76.78 ± 1.22
ContrCF 67.12 ± 0.94
ContrCF-G 75.29 ± 1.32
VGGish Audioset [31] 77.58
OpenL3 Audioset [29] 74.65
musicnn MSD [30] 77.24

Automatic Tagging. We rely on the MTG-Jamendo dataset
[32] which contains over 55,000 full audio tracks multi-
labeled using 195 different tags from genre, instrument, and
mood/theme categories.3 For this task, we train a MLP that
takes our pre-trained audio embeddings as input. We compute
the embedding of all the tracks by averaging their embeddings
computed on non-overlapping frames with the mean statistic.
The model is composed of two hidden layers of size 128 and
64 with ReLU activations, it includes batch normalizations
after each layer and a dropout regularization after the penulti-
mate layer. We use the validation sets for early stopping and
we finally evaluate the performances on the test sets using
ROC AUC. These evaluations are done on the three separated
category of tags, each of them uses its own split. We repeat
the procedures 10 times and report the mean average.

Playlist Continuation. We make use of the playlists from
the Melon Playlist Dataset that contain at least one track in our
test set (not used when training our embedding model). This
provides 104,410 playlists, for the which we aim at providing
100 continuation tracks. We compute the embedding of all
the tracks by averaging their embeddings computed on non-
overlapping frames with the mean statistic. Then, for each
track in a playlist, we compute the 100 most similar tracks,
among the ones from the test set. These tracks are obtained
using the cosine similarity in the embedding space.4 Among all
the retrieved similar tracks for a playlist, we finally select the
100 most repeated ones. We compare these to the ground truth
using normalized Discounted Cumulative Gain (nDCG) and
Mean Average Precision (MAP) [34], which are commonly
used to evaluate the performance of music recommendation
systems. These ranking metrics evaluate the order of the items
for each playlist returned by the prediction. They return a
higher score for a given playlist if the predicted ranked list
contains items in the test set closer to the top.

IV. RESULTS

Focusing on genre classification, the results in Table I show
that the performance of the audio embedding when trained
using the contrastive loss is always higher than using the
models trained directly to predict the modality information
(B-line). The best performance is obtained with ContrG with a
similar result to when also considering CF information when
training the embedding model (ContrCF-G). We also see that the

3https://mtg.github.io/mtg-jamendo-dataset/
4Similarity searches are computed using Annoy (https://github.com/spotify/

annoy) based on Approximate Nearest Neighbors and angular distance [33].

TABLE II
AUTOMATIC TAGGING RESULTS

ROC AUC ± STD
Model Genre Mood Instrument
B-lineG 0.840 ± 0.004 0.722 ± 0.004 0.781 ± 0.005
B-lineCF 0.836 ± 0.002 0.722 ± 0.003 0.770 ± 0.008
B-lineCF-G 0.845 ± 0.004 0.727 ± 0.006 0.785 ± 0.004
ContrG 0.847 ± 0.004 0.732 ± 0.005 0.797 ± 0.005
ContrCF 0.845 ± 0.004 0.732 ± 0.004 0.793 ± 0.007
ContrCF-G 0.843 ± 0.004 0.733 ± 0.005 0.791 ± 0.006

TABLE III
PLAYLIST GENERATION RESULTS

Model NDCG@100 MAP@100
random 0.0005 0.0001
B-lineG 0.0044 0.0007
B-lineCF 0.0035 0.0007
B-lineCF-G 0.0042 0.0008
ContrG 0.0074 0.0016
ContrCF 0.0076 0.0017
ContrCF-G 0.0085 0.0020

performances of the ContrG model are comparable with state-
of-the-art pre-trained embeddings (VGGish audioset) [30],
[31]. This is particularly interesting since a large percentage
of the Melon Playlist Dataset consists of korean music, which
can be different from popular western music from the GTZAN
collection.

Automatic Tagging. From the results in Table II we see
that the methods based on contrastive learning outperform
the baselines in almost all the cases. The best results for
the instrument and genre tags is obtained with the ContrG
model. For the mood tags the best performance is achieved
with ContrCF-G, which takes advantage of the information in
the playlists and the genre annotations.

The results for the task of Automatic playlist continuation
follow the same trend of the other tasks. The models trained
using the contrastive loss perform better than the baselines
trained directly to predict the genres or the CF representation.
The best performance is obtained with the ContrCF-G model,
which combines genre and CF information.

V. CONCLUSIONS

In this work, we propose a method for learning an audio
representation, by combining multiple sources of information
related to the music using contrastive learning. We evaluate
the method by pre-traing the model using information from
the Melon Playlist Dataset and we compare the performance
in three downstream tasks in the music domain (genre classifi-
cation, automatic tagging, and automatic playlist continuation).
We see that using contrastive learning allows us to reach
higher performance than using the models trained directly to
predict the genre or the collaborative filtering information.
This indicates that contrastive learning is effective at learning
simultaneously from heterogeneous information, enabling us
to improve the overall performance across different tasks.

The dataset used for training our embedding model offers
additional types of information that we did not use. They in-
clude title, playlist tags and authors, as well as other metadata
of the tracks. As future work, we propose incorporating this
playlist-level information which will require an additional level
of abstraction to our architecture.
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modal embeddings for video and audio retrieval,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 0–0.

[6] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.
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Abstract
Deploying deep neural networks (DNNs) on IoT
and mobile devices is a challenging task due to
their limited computational resources. Thus, de-
manding tasks are often entirely offloaded to edge
servers which can accelerate inference, however,
it also causes communication cost and evokes pri-
vacy concerns. In addition, this approach leaves
the computational capacity of end devices unused.
Split computing is a paradigm where a DNN is
split into two sections; the first section is exe-
cuted on the end device, and the output is trans-
mitted to the edge server where the final section
is executed. Here, we introduce dynamic split
computing, where the optimal split location is dy-
namically selected based on the state of the com-
munication channel. By using natural bottlenecks
that already exist in modern DNN architectures,
dynamic split computing avoids retraining and hy-
perparameter optimization, and does not have any
negative impact on the final accuracy of DNNs.
Through extensive experiments, we show that dy-
namic split computing achieves faster inference
in edge computing environments where the data
rate and server load vary over time.

1. Introduction
The combination of deep learning and Internet of Things
(IoT) has tremendous applications in fields such as health-
care, smart homes, transportation and industry (Ma et al.,
2019). However, deep learning models typically contain
millions or even billions of parameters, making it difficult to
deploy these models on resource-constrained devices. One
solution is to offload the computation to an edge or cloud
server (Wang et al., 2020), as shown in Figure 1 (b). How-
ever, since the size of the inputs to deep learning models can
be massive, particularly images and videos, this approach

1DIGIT, Department of Electrical and Computer Engineering,
Aarhus University, Denmark 2Faculty of Sciences, University of
Novi Sad, Serbia 3Faculty of Technical Sciences, University of
Novi Sad, Serbia. Correspondence to: Arian Bakhtiarnia <arian-
bakh@ece.au.dk>.

consumes a lot of bandwidth and energy, and leads to delays.
Moreover, even though IoT devices are limited, they still
possess computational capabilities that remain unused when
the entire computation is offloaded, and utilizing these ca-
pabilities would reduce the load on the servers. In addition,
in applications that process personal data such as health
records, or in audio or visual streams with voice activity
or human presence, privacy regulations such as European
Union’s GDPR (European Commission) or United States’
HIPAA (Centers for Medicare & Medicaid Services, 1996)
may apply. These regulations typically forbid direct ac-
cess to non-anonymized data, leaving the options to either
anonymize the data at the cost of additional computation
and higher latency, or process the data at the source.

Split computing, depicted in Fig. 1 (c), alleviates these issues
by splitting the deep model into a head section and a tail
section (Matsubara et al., 2021). The head model is executed
on the device, and its output (the intermediate representation
at that particular layer of the deep network) is transmitted to
the server, then processed by the tail model to obtain the final
output. In a way, split computing is a partial offloading of
the computation, as opposed to the full-offloading approach.
Another benefit of split computing over full-offloading is
that it can be used as a privacy preserving technique since
intermediate representations are being transmitted instead
of the actual inputs, and the original inputs cannot be easily
reconstructed from the intermediate representations (Jeong
et al., 2018). In addition, split computing can be combined
with early exiting in order to obtain an early result on the
device (Scardapane et al., 2020; Matsubara et al., 2021), as
illustrated in Figure 1 (c), which is useful when transmission
takes longer than expected.

Since split computing aims to decrease the communication
cost, natural bottlenecks, which are the layers of the deep
network where the size of the intermediate representation is
smaller than the input size, can be used as splitting points
for deep learning models. In this paper, we show that un-
like older popular models, state of the art models such as
EfficientNet (Tan & Le, 2019; 2021) possess many natural
bottlenecks. Based on this fact, we propose a method called
dynamic split computing where the best splitting point is
automatically and dynamically determined based on input
and channel conditions, as shown in Figure 1 (d). Since the
underlying deep learning model is not modified, dynamic
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(a) (b) (c) (d)

Figure 1. Overview of (a) no-offloading; (b) full-offloading; (c) split computing; and (d) dynamic split computing approaches.

split computing can be used as a plug-and-play method,
meaning it can be employed without domain knowledge
about the particular deep learning models that are being
used. It is important to note that dynamic split computing
is a complimentary efficient inference method that can be
used in combination with other approaches, including model
compression techniques such as pruning and quantization
(Choudhary et al., 2020), as well as dynamic inference meth-
ods such as early exiting (Bakhtiarnia et al., 2021).1

2. Related Work
Several approaches for speeding up the inference of deep
neural networks (DNNs) on resource-constrained devices
exist in the literature. Local computing performs the entire
computation on the device, yet modifies the architecture of
the neural network in order to decrease the required com-
putation, while causing a minimal negative impact on the
accuracy. Lightweight models such as MobileNet (Howard
et al., 2017; Sandler et al., 2018; Howard et al., 2019) are
specifically designed to be deployed on such limited de-
vices, whereas model compression techniques (Cheng et al.,
2018) alter existing architectures in order to make them
more lightweight, for instance, pruning removes the less
impactful parameters (weights) of the neural network; quan-
tization uses less bits to represent each parameter (Liang
et al., 2021); and knowledge distillation aims to train a more
compact model to reproduce outputs similar to a given larger
neural network (Gou et al., 2021).

Dynamic inference methods (Han et al., 2021) can alter
the architecture of existing neural networks to adapt their
inference time at the cost of accuracy, meaning they will
produce more accurate outputs the longer they are allowed
to execute. Various approaches to dynamic inference exist,
such as early exiting (Scardapane et al., 2020), where early
exit branches are added after intermediate layers of a DNN
that produce an output similar to the final output; layer
skipping (Graves, 2016; Banino et al., 2021; Wang et al.,
2018), where the execution of some of the DNN layers are
skipped; and channel skipping (Gao et al., 2019), where less
impactful channels of convolutional layers are ignored.

1Our code is available at https://gitlab.au.dk/
maleci/dynamicsplitcomputing.

Even with local computing techniques, many high-
performing DNNs exceed the computational capacity of
devices, especially when the output is expected within a
strict deadline. In such cases, the computation can be of-
floaded to external servers. When the computation of a
DNN is offloaded, the inputs must be transmitted from a
device to a server, yet this can introduce massive delays
during data transmission, particularly when the input size
is large, which may defeat the original purpose of speed-
ing up the computation. This has led to a recent emerging
paradigm called edge computing (Abbas et al., 2018) where
the computation is offloaded to edge servers located much
closer to end devices compared to cloud servers which are
often located in data centers. Even though edge computing
reduces the transmission delay, it still has some drawbacks.
First, since the original inputs are being transmitted over
a network, privacy issues arise. Furthermore, since typi-
cally multiple end devices are connected to the same edge
server, if all of them offload their computation simultane-
ously, the edge server may experience a high load while the
computational resources of each end device remain unused.

Split computing (Matsubara et al., 2021) (also known as col-
laborative intelligence) is an alternative approach that pro-
vides a balance between local computing and full-offloading,
where some layers of the DNN are executed on the end de-
vice and the intermediate output is then sent over to the edge
server where it is processed by the rest of the DNN layers.
When the splitting point is chosen such that the size of the
intermediate representation is lower than the input size, the
transmission delay will consequently be lower than that of
full-offloading.

However, not all deep learning models possess such natural
bottlenecks, and even if they exist, they may be located in
the final layers of the network where the bulk of the compu-
tation has already been carried out, and therefore it would
not be sensible to offload the remaining computation. For in-
stance, widely used models such as ResNet (He et al., 2016)
and Inception (Szegedy et al., 2016) do not contain natural
bottlenecks in their early layers (Matsubara et al., 2021).
In such cases, bottleneck injection can be used, where the
architecture of the network is modified to artificially insert a
bottleneck (Matsubara et al., 2021). However, this approach
requires time-consuming operations such as retraining the
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model and optimizing hyperparameters such as the size of
the inserted bottleneck. Furthermore, there is no guarantee
that the new architecture can obtain an accuracy compara-
ble to that of the original architecture, particularly when a
limitation such as a small bottleneck is imposed. Therefore,
bottleneck injection is far from ideal.

3. Dynamic Split Computing
We assume a trained high-performing DNN is to be de-
ployed on a device with access to a server, where the data
rate of the communication channel and the number of inputs
in the batch (batch size) may vary. The variations in the data
rate may be due to fluctuations in wireless channel state or
traffic congestion, and the variations in batch size may occur
due to a different workload at different times. The goal of
our method is to optimize the end-to-end inference time by
dynamically detecting the best splitting point for a given
DNN based on the communication channel state and batch
size. Since we aim to design our method in a “plug-and-play”
manner, such that it can be deployed in edge computing sys-
tems without creating new trade-offs involving the accuracy
or the hassle of retraining, we avoid altering the underlying
architecture or any lossy compression techniques that may
affect the accuracy of the final result.

Formally, neural networks can be formulated as f(x) =
fL(fL−1(. . . f1(x))) where x is the input, L is the total
number of layers in the neural network and fi is the op-
eration performed at layer i. The intermediate represen-
tation at layer i, which is the output of the i-th layer is
recursively formulated as hi = fi(hi−1) where h0 = x
is the input. Based on this notation, with split comput-
ing at layer j, the head and tail parts of the DNN are
denoted by fh(x) = fj(fj−1(. . . f1(x))) and f t(hj) =
fL(fL−1(. . . fj+1(hj))), respectively, and hj is the inter-
mediate representation that is transmitted.

The first step is to find the natural bottlenecks of the DNN
by calculating the compression ratio cl = |hl|/|x| for each
layer l where |hl| and |x| denote the size of intermediate
representation at layer l and the input size, respectively. If
cl < 1, layer l is a natural bottleneck of the DNN. However,
not all natural bottlenecks are useful in split computing. We
define Th

i,j and T t
i,j as the inference time from layer i up to

and including layer j (i < j) of the deep neural network
measured on the device and the server, respectively. When
layers m and n (m < n) have the same compression ratio,
in other words when cm = cn, the total end-to-end inference
time with split computing at layer m and layer n are

Tm = Th
1,m + cmTFO + T t

m+1,n + T t
n+1,L, (1)

Tn = Th
1,m + Th

m+1,n + cnTFO + T t
n+1,L. (2)

where TFO is the transmission time of the entire input in
full-offloading. Assuming the computational resources

of the server are greater than that of the device, then
Th
m+1,n > T t

m+1,n, thus it is favorable to choose the earlier
layer as splitting point. Consequently, only natural bottle-
necks with compression ratio lower than all previous natural
bottlenecks are useful. We call such bottlenecks compres-
sive. Compressive natural bottlenecks are defined by

C = {j|cj < 1, cj < ci ∀i < j}. (3)

The total end-to-end inference time for a given batch of
inputs when the splitting point of the network is l is

Tl = Th
1,l +

D cl
r

+ T t
l+1,L, (4)

where D is the data size of the original input, cl is the
compression ratio of the intermediate representation at layer
l and r is the data rate of the communication channel. When
inputs are images or video frames, the total load in bytes can
be calculated as D = BWHC, where B is the batch size,
W and H are the width and height of the images, and C is
the number of channels in the images, for instance, C = 3
for color images and C = 1 for grayscale.

We define the end-to-end inference time in case of no-
offloading as TL = Th

1,L and in case of full-offloading as

T0 =
D

r
+ T t

1,L. (5)

Therefore, the optimal splitting point sopt can be determined
by optimizing for

sopt = argmin
l∈{0...L}

(Tl). (6)

Dynamic split computing finds the optimal split location for
a given data rate and batch size based on Eq. (6). When
full-offloading cannot be used, for instance, due to privacy
requirements, the range is Eq. (6) is reduced to {0 . . . L−1}.
Note that based on previous arguments, only compressive
natural bottlenecks need to be investigated, therefore once
all compressive natural bottlenecks are identified, we calcu-
late the optimal splitting point for each batch size and data
rate by measuring the inference time of head and tail models
for each compressive bottleneck. It is important to note
that the relationship between inference time of head or tail
model and batch size is not strictly linear, therefore it needs
to be measured for each batch size. Additionally, when the
data rate is too low, it may not be sensible to use any form
of offloading since it introduces too much delay. Therefore,
dynamic split computing considers the no-offloading option
alongside the optimal splitting point and switches between
split computing and no-offloading when necessary.

Since different applications and environments may have
different ranges for data rate and batch size and a unique
pattern for their variations, we need a method to mea-
sure how beneficial dynamic split computing is in each
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specific case. We define a scenario as a sequence of
the state of the environment throughout time, i.e., S =
((B1, r1), (B2, r2) . . . , (BT , rN )), where Bi and ri are the
batch size and data rate at time step i, respectively. The
relative average gain of dynamic split computing in terms
of end-to-end inference time over a specific method, for
instance, static split computing at a specific location, can
then be calculated by

G =
1

N

∑

1≤i≤N

|Tsopt(Bi, ri)− T SS(Bi, ri)|
T SS(Bi, ri)

, (7)

where Tsopt(Bi, ri) and T SS(Bi, ri) are the end-to-end in-
ference time using dynamic and static split computing, re-
spectively, with batch size Bi and data rate ri.

4. Results
We investigate 14 modern DNN architectures: seven varia-
tions of EfficientNetV2 (Tan & Le, 2021) and seven varia-
tions of EfficientNetV1 (Tan & Le, 2019). All these archi-
tectures were originally designed for image classification
and have since been applied to various other problems such
as speech recognition (Lu et al., 2020). The accuracy of
these architectures on the ImageNet dataset (Deng et al.,
2009) ranges from 77.1% to 85.7%.

First, we find the compressive natural bottlenecks for each
architecture. The number of natural bottlenecks in these
architectures ranges from 15 to 68, three to four of which
are compressive. For comparison, VGG-16 (Simonyan &
Zisserman, 2014), which is an older architecture, has only
5 natural bottlenecks. Subsequently, we find the optimal
splitting point for each architecture in a wide range of states.
We check data rates ranging from 1 MBps to 128 MBps
and batch sizes of 1 to 64. Some larger models such as
EfficientNetV2-L run into memory issues with large batch
sizes, therefore, we reduce the maximum batch size to 32 or
24 in such cases. For the edge server, we use an Nvidia 2080
Ti GPU, and in order to simulate a resource-constrained
device, we underclock the same type of GPU to 300 MHz
(the normal GPU frequency is around 1800 MHz).

The results for the EfficientNetV1-B4 architecture are
shown in Fig. 2, where for each state (data rate and batch
size), the optimal split location derived based on Equation 6
is specified. It can be observed that each compressive bottle-
neck is an optimal split location in several states. Moreover,
no-offloading is the optimal solution in some other states.
Therefore, dynamically switching between split locations
(as well as no-offloading) based on the state of the com-
munication channel improves inference speed. This is also
the case with the other 13 investigated architectures. The
relative gain of dynamic split computing over split comput-
ing at a fixed location (block 10) for the EfficientNetV1-B4

architecture in terms of inference speed is shown in Fig.
3. This figure can be used to derive the gain of dynamic
split computing compared to another method for a specific
scenario based on on Equation 7. Notice that in states where
split computing at block 10 is optimal, dynamic split com-
puting swiches to this method and thus has no advantage
over it, whereas dynamic split computing obtains some gain
everywhere else by switching to a different method.
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Figure 2. Optimal split location based on batch size and data rate
for the EfficientNetV1-B4 architecture.
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Figure 3. The relative gain of dynamic split computing in terms of
end-to-end inference time over static split computing at block 10
in the EfficientNetV1-B4 architecture.

5. Conclusion
In this paper, we showed that dynamic split computing of-
fers improvements in terms of inference time over both
no-offloading and split computing with a fixed split location.
Moreover, as opposed to full-offloading, dynamic split com-
puting can decrease the computation load on the server by
performing parts of the computation on the device. Finally,
by transmitting intermediate representations instead of in-
puts, dynamic split computing circumvents privacy issues
that arise when using full-offloading.
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