

Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D4.2: Security assurance and acceleration in E2F2C framework –

initial version†

Abstract: This deliverable is the initial version of the security assurance and acceleration in the

E2F2C framework and it describes the initial version of the work conducted in Task 4.3, which

is part of the WP4. Security assurance is achieved by two components. The first component is

named EdgeSec Virtual Private Network (EdgeSec VPN). EdgeSec VPN secures the

communications between the different components of the MARVEL platform within the

different layers (i.e., Edge, Fog, Cloud). The second component, namely EdgeSec Trusted

Execution Environment (EdgeSec TEE), enables confidential and secure execution of

applications that process sensitive data. Acceleration is achieved through GPURegex, which is

a component that offers GPU-accelerated stream processing. More specifically, GPURegex

accelerates the pattern matching procedure. In this deliverable, we discuss about these tools,

their relation to the MARVEL project and how they address the objectives and KPIs defined.

Contractual Date of Delivery 30/06/2022

Actual Date of Delivery 30/06/2022

Deliverable Security Class Public

Editor Eva Papadogiannaki, Sotiris Ioannidis (FORTH)

Contributors FORTH, TAU, UNS

Quality Assurance Borja Sáez (IFAG)

Dragana Bajovic (UNS)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - June 30, 2022

The MARVEL Consortium

Part.

No.
Participant organisation name

Participant

Short Name
Role Country

1

FOUNDATION FOR

RESEARCH AND

TECHNOLOGY HELLAS

FORTH Coordinator EL

2
INFINEON TECHNOLOGIES

AG
IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK

4 ATOS SPAIN SA ATOS Principal Contractor ES

5
CONSIGLIO NAZIONALE

DELLE RICERCHE
CNR Principal Contractor IT

6
INTRASOFT INTERNATIONAL

S.A.
INTRA Principal Contractor LU

7
FONDAZIONE BRUNO

KESSLER
FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE

9 TAMPERE UNIVERSITY TAU Principal Contractor FI

10 PRIVANOVA SAS PN Principal Contractor FR

11
SPHYNX TECHNOLOGY

SOLUTIONS AG
STS Principal Contractor CH

12 COMUNE DI TRENTO MT Principal Contractor IT

13

UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH

NAUKA

UNS Principal Contractor RS

14

INFORMATION

TECHNOLOGY FOR MARKET

LEADERSHIP

ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT

16 ZELUS IKE ZELUS Principal Contractor EL

17

INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal Contractor PL

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - June 30, 2022

Document Revisions & Quality Assurance

Internal Reviewers

1. Borja Sáez, IFAG

2. Dragana Bajovic, UNS

Revisions

Version Date By Overview

2.2 29/06/2022 Eva Papadogiannaki (FORTH) Final document

2.1.1 21/06/2022 Eva Papadogiannaki (FORTH) Minor revision after IR

2.1.0 16/06/2022 Eva Papadogiannaki (FORTH) Revision after IR (round 1)

2.0.2 14/06/2022 Dragana Bajovic (UNS) IR (round 1)

2.0.1 09/06/2022 Borja Saez (IFAG) IR (round 1)

2.0.0 07/06/2022 Editors & Contributors Document ready for IR

1.0.0 27/04/2022 Eva Papadogiannaki (FORTH) Final ToC revision

0.1.3 21/04/2022 Dragana Bajovic (UNS) Final ToC comments

0.1.2 13/04/2022 FORTH ToC revision

0.1.1 05/04/2022 Dragana Bajovic (UNS) Comments on the ToC

0.1.0 21/03/2022 Eva Papadogiannaki (FORTH) ToC

Disclaimer

The work described in this document has been conducted within the MARVEL project. This project has

received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No 957337. This document does not reflect the opinion of the European Union, and

the European Union is not responsible for any use that might be made of the information contained

therein.

This document contains information that is proprietary to the MARVEL Consortium partners. Neither

this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the MARVEL

Consortium.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - June 30, 2022

Table of Contents

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

LIST OF ABBREVIATIONS .. 8

EXECUTIVE SUMMARY .. 10

1 INTRODUCTION... 11

1.1 PURPOSE AND SCOPE.. 11
1.2 RELATION TO OTHER WORK PACKAGES, DELIVERABLES AND ACTIVITIES ... 11
1.3 CONTRIBUTION TO WP4 AND PROJECT OBJECTIVES .. 12
1.4 STRUCTURE OF THE REPORT .. 13

2 SECURE COMMUNICATION ON THE EDGE (EDGESEC VPN) .. 14

2.1 BACKGROUND .. 14
2.1.1 Virtual Private Networks .. 14
2.1.2 Secure Peer-to-Peer Communications ... 14
2.1.3 State-of-the-Art ... 15

2.2 EARLY DEPLOYMENT AND INTEGRATION .. 16
2.2.1 Development ... 16
2.2.2 Early Deployment ... 16
2.2.3 Integration with MARVEL .. 17

2.3 USE CASES AND RELATED COMPONENTS .. 18
2.3.1 Related Components ... 18
2.3.2 EdgeSec VPN in UNS Use Case ... 19
2.3.3 EdgeSec VPN in GRN Use Cases ... 20
2.3.4 EdgeSec VPN in MT Use Cases ... 21

2.4 EARLY EXPERIMENTAL RESULTS ... 22
2.4.1 Testbed Setup .. 22
2.4.2 Experiments .. 23
2.4.3 Results... 25

2.5 KPIS ... 30
2.5.1 Project-related KPIs ... 30
2.5.2 Component-related KPIs .. 31

3 TRUSTED EXECUTION ON THE EDGE (EDGESEC TEE) .. 33

3.1 BACKGROUND .. 33
3.1.1 Trusted Execution Environments .. 33
3.1.2 Containers .. 34
3.1.3 State-of-the-Art ... 35

3.2 EARLY DEPLOYMENT AND INTEGRATION .. 36
3.2.1 Development ... 36
3.2.2 Early Deployment ... 37
3.2.3 Integration with MARVEL .. 38

3.3 USE CASES AND RELATED COMPONENTS .. 38
3.3.1 Related Components ... 39
3.3.2 EdgeSec TEE in MARVEL Use Cases .. 39

3.4 EARLY EXPERIMENTAL RESULTS ... 39
3.4.1 Testbed Setup .. 39
3.4.2 Experiments .. 39
3.4.3 Results... 39

3.5 KPIS ... 39
3.5.1 Project-related KPIs ... 40
3.5.2 Component-related KPIs .. 40

4 GPU-ACCELERATED STREAM PROCESSING ON THE EDGE (GPUREGEX) 42

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - June 30, 2022

4.1 BACKGROUND .. 42
4.1.1 GPU-Accelerated Stream Processing .. 42
4.1.2 GPU-Accelerated Pattern Matching .. 42
4.1.3 State-of-the-Art ... 43

4.2 EARLY DEPLOYMENT AND INTEGRATION .. 44
4.2.1 Implementation ... 44
4.2.2 Early Deployment ... 46
4.2.3 Integration with MARVEL .. 47

4.3 USE CASES AND RELATED COMPONENTS .. 47
4.3.1 Related Components ... 48
4.3.2 GPURegex in MARVEL Use Cases .. 48

4.4 EARLY EXPERIMENTAL RESULTS ... 48
4.4.1 Testbed Setup .. 48
4.4.2 Experiments .. 49
4.4.3 Results... 50

4.5 KPIS ... 52
4.5.1 Project-related KPIs ... 52
4.5.2 Component-related KPIs .. 52

5 CONCLUSIONS ... 53

6 REFERENCES .. 54

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - June 30, 2022

List of Tables

Table 1: Modified Dockerfile with proxy environment variables ... 19
Table 2: Packet size 100 bytes ... 27
Table 3: Packet size 500 bytes ... 27
Table 4: Packet size 1000 bytes ... 28
Table 5: Project-related KPIs that concern EdgeSec VPN .. 31
Table 6: Component-related KPIs that concern EdgeSec VPN ... 31
Table 7: Project-related KPIs that concern EdgeSec TEE ... 40
Table 8: Component-related KPIs that concern EdgeSec TEE .. 41
Table 9: Processing throughput of GPURegex and GNU Grep (measured in Mbits/second) 52
Table 10: Processing time of GPURegex and GNU Grep (measured in microseconds) 52
Table 11: Project-related KPIs that concern GPURegex ... 52
Table 12: Component-related KPIs that concern GPURegex .. 52

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - June 30, 2022

List of Figures

Figure 1: Conceptual architecture of the whole MARVEL platform .. 12
Figure 2: The n2n architecture ... 17
Figure 3: EdgeSec VPN forms a full mesh topology ... 18
Figure 4: EdgeSec VPN in UNS Use Case .. 20
Figure 5: EdgeSec VPN in GRN Use Cases .. 21
Figure 6: EdgeSec VPN in MT Use Case .. 22
Figure 7: Virtual Machines in Proxmox... 23
Figure 8: The output of the Super Node execution script .. 23
Figure 9: The output of the first Edge Node .. 24
Figure 10: The output of the second Edge Node.. 25
Figure 11: Ping connectivity experiment ... 25
Figure 12: First edge node pings the public IP of the second edge node with payload 100 bytes......... 26
Figure 13: First edge node pings the VPN IP of the second edge node with payload 100 bytes........... 26
Figure 14: First edge node pings the public IP of the second edge node with payload 500 bytes......... 26
Figure 15: First edge node pings the VPN IP of the second edge node with payload 500 bytes........... 26
Figure 16: First edge node pings the public IP of the second edge node with payload 1000 bytes....... 27
Figure 17: First edge node pings the VPN IP of the second edge node with payload 1000 bytes......... 27
Figure 18: Python-based http server on second edge node .. 28
Figure 19: Request to the http server using the public IP .. 28
Figure 20: Tcpdump showing the content of the web page in clear text ... 29
Figure 21: Request to the http server using the VPN IP .. 29
Figure 22: Tcpdump showing the content of the web page is encrypted ... 30
Figure 23: An Intel SGX application is divided into an untrusted and trusted part. Privileged system

code does not have access to the trusted part of the Intel SGX application at any time 34
Figure 24: Differences between VMs and containers .. 35
Figure 25: SCONE offers secure containers (with Docker)... 36
Figure 26: An overview of EdgeSec TEE .. 37
Figure 27: An example python command within the image of EdgeSec TEE 38
Figure 28: Commands to install Python libraries (e.g., joblib, numpy, scikit-learn, scipy and

threadpoolctl) within EdgeSec TEE. .. 38
Figure 29: Successful installation of Python libraries within the docker image of EdgeSec TEE (i.e.,

joblib, numpy, scikit-learn, scipy and threadpoolctl) ... 38
Figure 30: High-level overview of GPURegex in MARVEL .. 44
Figure 31: Construction of the state transition table .. 45
Figure 32: Architectural comparison of an integrated GPU, packed with the main processor in the same

CPU die versus a discrete, dedicated GPU .. 46
Figure 33: An overview of GPURegex .. 46
Figure 34: An example run of GPURegex inside the container destined for Intel CPUs 47
Figure 35: Overview of AAC ... 48

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - June 30, 2022

List of Abbreviations

AAC Automated Audio Captioning

AS Authenticator Server

API Application Programming Interface

CPU Central Processing Unit

DFA Deterministic Finite Automaton

DoA Description of Action

DRAM Dynamic Random Access Memory

EC European Commission

EPC Enclave Page Cache

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security

ISA Instruction Set Architecture

ISP Internet Service Provider

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GRE Generic Routing Encapsulation

KPI Key Performance Indicator

L2TP Layer 2 Tunnelling Protocol

MEE Memory Encryption Engine

OS Operating System

PPTP Point-to-Point Tunnelling Protocol

PRM Processor Reserved Memory

RNA Ribonucleic Acid

RTT Round-Trip Time

SGX Software Guard Extensions

SIMD Single Instruction Multiple Data

SOCKS Socket Secure

SSL Secure Sockets Layer

TCB Trusted Computing Base

TEE Trusted Execution Environment

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - June 30, 2022

TLS Transport Layer Security

VM Virtual Machine

VPN Virtual Private Network

WP Work Package

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - June 30, 2022

Executive Summary

The goal of this deliverable is to present and describe the initial versions of the components that

participate in the whole MARVEL platform and enable security and acceleration features in the

complete Edge-to-Fog-to-Cloud continuum. This deliverable has been developed within the

scope of WP4 “MARVEL E2F2C distributed ubiquitous computing framework”, and more

specifically, within the scope of Task 4.3 “Security and acceleration in the complete E2F2C”

of the MARVEL project under Grant Agreement No. 957337.

The deliverable demonstrates the initial versions (development until M18) of the security

components, namely EdgeSec VPN and EdgeSec TEE, and the initial version of the component

offering the acceleration feature, namely GPURegex. EdgeSec VPN secures the

communications between the different components of the MARVEL platform within the

different layers (i.e., Edge, Fog, Cloud). EdgeSec Trusted Execution Environment (EdgeSec

TEE), enables confidential and secure execution of applications that process sensitive data.

Acceleration is achieved through GPURegex, which is a component that offers GPU-

accelerated stream processing. More specifically, GPURegex accelerates the pattern matching

procedure. In this deliverable, we discuss about these tools, their relation to the MARVEL

project and how they address the objectives and KPIs defined.

D4.5, which is the following and ultimate version of this deliverable, will present the final

versions of the components EdgeSec VPN (i.e., security), EdgeSec TEE (i.e., security) and

GPURegex (i.e., acceleration).

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - June 30, 2022

1 Introduction

1.1 Purpose and Scope

This deliverable, entitled D4.2 “Security assurance and acceleration in the E2F2C framework

– initial version” presents the work performed in the context of Task 4.3 “Security and

acceleration in the complete E2F2C”, within the scope of WP4 “MARVEL E2F2C distributed

ubiquitous computing framework” and the MARVEL project under Grant Agreement No.

957337. As this is the initial version of the deliverable, we detail the components that have been

developed and become available through the MARVEL image registry before M18.

The components that are demonstrated in this deliverable and offer security features to the

E2F2C framework are (i) EdgeSec VPN and (ii) EdgeSec TEE. EdgeSec VPN secures the data

transfer over the network, while EdgeSec TEE offers confidential computing for python

applications that process sensitive user data. In the context of the MARVEL project, EdgeSec

VPN will be used to encrypt any data that is transferred between the MARVEL components to

meet the requirements of a strict communication security. As EdgeSec TEE will be fully

integrated into the MARVEL platform after M18, its complete utilisation will be further

discussed in the following version of this deliverable (D4.5).

The component that enables acceleration in the E2F2C framework is GPURegex. More

specifically, what GPURegex offers is the performance acceleration of the pattern matching

procedure. GPURegex can be applied in numerous cases since pattern matching is the core

operation of several and diverse applications, from network packet processing, database search

to RNA structure alignments. In the context of the MARVEL project, GPURegex will be

probably used for keyword searching against captions exported from audio and video captures.

Thus, in this deliverable, we aim to discuss the details of the development, deployment,

integration, and performance results of the three components that bring security assurance (i.e.,

EdgeSec VPN, EdgeSec TEE) and acceleration (i.e., GPURegex) in the E2F2C framework.

During the first months of the project, EdgeSec was referred to as a complete and

interdependent component with two separate functionalities (i.e., VPN and TEE). Currently,

we believe that it is better to refer to these two distinct functionalities with two separate names,

in order to be more coherent; thus, we discuss the two functionalities in two separate sections

(Sections 2 and 3).

1.2 Relation to other Work Packages, Deliverables and Activities

From the Task 4.3 description below, we can understand that the security and acceleration

features are principally expected in the edge layer, some steps after the data collection from the

sensors, to securely and promptly transfer those data to the subsequent layers and participating

components. The description of Task 4.3 follows:

This task will explore remote attestation, a well-known technique, for verifying the state

of remote computing devices and for verifying the trustworthiness of the data collected

and shared by remote sensors. Moreover, trusted execution environments (such as Intel

SGX) which can enable remote attestation and further provide full memory encryption

will be explored as well (Sect. 1.4.1.5). These environments contain secure elements that

lie in the hardware chip, and support, at least, advanced cryptographic functions and

physically protected storage of private and secret keys. This will allow building a multi-

layer architecture that will provide security, trust and privacy in the edge device itself.

Finally, the utilisation of GPU accelerated streaming processing in edge devices will

also be explored in this task (Sect. 1.4.1.5). This low-end GPU acceleration in the

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - June 30, 2022

processing of streaming data is able to accelerate light computations as a pre-

processing phase, right before offloading tasks to the cloud.

The work conducted in Task 4.3 aims to offer security and acceleration in the complete E2F2C

framework, where specifically EdgeSec VPN aims to participate in the MARVEL platform as

a more holistic element, securing every step of data transmission with end-to-end network

packet encryption.

Furthermore, this deliverable has close relation with Task 3.4, where EdgeSec VPN participates

in the distribution of the AI tasks. Also, it can interact with Task 3.3, where GPURegex will

accelerate the processing of audio/video captions that will be resulted from the components that

participate there. Finally, Task 4.3 and the corresponding deliverables (i.e., D4.2 and D4.5)

have also close relation to WP1 by addressing the project objectives and the respecting KPIs.

Figure 1 presents the conceptual architecture of the whole MARVEL platform, where the

placement of the components EdgeSec VPN, EdgeSec TEE, and GPURegex is highlighted

using black, dashed rectangles. In the following sections, we will refer to this figure to help the

reader recognise the relation of the three components with the other MARVEL components.

Figure 1: Conceptual architecture of the whole MARVEL platform

1.3 Contribution to WP4 and Project Objectives

This deliverable is the main outcome of Task 4.3, which is entitled “Security and acceleration

in the complete E2F2C”. Task 4.3 is part of WP4 “MARVEL E2F2C distributed ubiquitous

computing framework”. The description of WP4 is presented in the next paragraph.

WP4 develops the MARVEL E2F2C framework in order to fully harness, in resource-

optimised and secure way, the edge (including data capturing), fog and cloud resources

to effectively orchestrate and distribute computational and AI-related tasks (Pillar III).

A major consideration towards this goal is the ability to perform a significant part of

the processing at the Edge or Fog. Therefore, AI-enabled devices that can run (edge-

optimised) light-weight DL models play a key role. Moreover, security and acceleration

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - June 30, 2022

methods will be enforced at all layers so as to end up with a robust, trustworthy and

fast decision support toolkit.

The objectives of WP4 are presented in the DoA as follows:

To address these challenges, WP4 objectives are to: (i) offer GPU stream processing

acceleration in edge devices and nodes; (ii) define and deploy a security strategy,

including privacy-aware algorithms, at the edge; (iii) describe innovations performed

by analogue and digital microphones that are based on MEMS technology; (iv) utilise

the openSMILE platform for audio analysis and feature extraction; (v) develop

advanced visualisation techniques to support both real-time and long term decision-

making.

Thus, this deliverable contributes to WP4 and project objectives by offering (i) GPURegex for

processing acceleration and (ii) the combination of EdgeSec VPN and EdgeSec TEE as a

security strategy with privacy-aware technologies (i.e., encrypted data transfer across the

network and Trusted Execution Environments for confidential execution).

1.4 Structure of the Report

The structure of this deliverable is outlined as follows:

• In the first section, we provide an introduction of this deliverable, highlighting its

purpose and scope, its relation to the other work packages, deliverables and activities

within the context of the MARVEL project, its contribution to WP4, and the total

objectives of the project (i.e., Section 1).

• In the second section, we present the first security feature offered through the

component called EdgeSec VPN (i.e., Section 2), which offers encryption of data

transmitted over the network traffic.

• Then, in the third section, we present EdgeSec TEE (i.e., Section 3), which is the second

component that offers security and privacy in the complete E2F2C2, by enabling

confidential processing of code and sensitive data into isolated and encrypted memory

regions.

• In the fourth section, we present details about the component, namely GPURegex, that

offers processing acceleration of pattern matching applications, using GPUs or other

hardware devices that enable SIMD processing (i.e., Section 4).

• In the final section, we conclude this deliverable, by summarising its contents and

results (i.e., Section 5).

While EdgeSec aims to offer a unified security assurance in the context of the whole MARVEL

platform, the two involved components, namely EdgeSec VPN and EdgeSec TEE are distinct

and operate independently. Thus, we present the two components in two distinct sections, so as

not to perplex the two technologies.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - June 30, 2022

2 Secure Communication on the Edge (EdgeSec VPN)

In this section, EdgeSec VPN is presented and described. EdgeSec VPN is the first component

that brings security and privacy features to the complete E2F2C framework, developed within

the MARVEL project. More specifically, EdgeSec VPN is based on the technology of peer-to-

peer VPNs.

In the following sections, we provide some background information regarding VPNs, secure

peer-to-peer communications, and the related state-of-the-art. We describe the basic

development and deployment details. Then, we locate the relevant project and component KPIs.

Finally, we discuss about their correlation with EdgeSec VPN and how they can be realised

within the context of MARVEL.

2.1 Background

In this section, background information related to EdgeSec VPN is presented. More

specifically, we discuss the basics of Virtual Private Networks (VPNs), secure peer-to-peer

communications and the state-of-the-art.

2.1.1 Virtual Private Networks

A virtual private network (VPN) is basically a connection over the Internet from a specific

device to a target network. The term VPN is associated with encrypted transmitted data. The

encryption, although it is not a key characteristic of a VPN connection, it ensures that sensitive

data is safely transmitted and prevents unauthorised entities from eavesdropping on the traffic.

Corporate environments usually make use of VPNs.

The term VPN is used to describe the communication among a closed user group, using a shared

network infrastructure. The available public infrastructure is used for the realisation of the

private network operation. Addressing, connectivity, access control, etc. are offered in the same

way a conventional private network would offer them. The major advantage of VPN is cost

savings since it eliminates the need for long-distance leased lines, operational support, etc. The

main disadvantage is that its performance depends on factors that cannot be controlled by the

use of a VPN, especially if this VPN uses the internet for the communication of its participants.

A number of different VPN protocols have been created, such as PPTP, L2TP, GRE, IPSec,

SOCKS. These protocols enable authentication and encryption, two very desirable

characteristics of a virtual private network [1].

Another definition sets VPN as an extension of private networks across public networks, with

additional authentication and encryption to network traffic. Internet Protocol Security (IPsec)

is one of the VPN protocols that is quite popular. It is standardised by the Internet Engineering

Task Force (IETF), and it offers protection on the Internet Protocol (IP) layer [2].

2.1.2 Secure Peer-to-Peer Communications

Secure peer-to-peer communication is the goal in many different contexts involving dissimilar

technologies.

Edge computing is an emerging paradigm that promises data processing that is done at or near

the collectors of data, limiting the possibility for a central cloud computing infrastructure to run

beyond its capability. In such a framework, security aspects have been raised [3]. Technologies

such as Pseudonymity, Unobservability, Unlinkability, and Anonymity are used for privacy

preservation [4]. On the other hand, Confidentiality, Integrity, Availability, Access control, and

authentication are the factors for the security evaluation of a system [5]. An ideally reliable

system offering edge computing does not disclose a user’s identity, behaviour, and location.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - June 30, 2022

These kinds of requirements place barriers to the broader deployment of such systems.

However, the goal is to collect and process a large amount of data without revealing a user’s

private information.

A security architecture that includes an authenticator server (AS) is proposed in [6] as the

solution to systems that use cellular networks and multi-access edge computing. Strong

authentication, confidentiality, and access control are the security goals of the architecture. AS

is considered always secure and is responsible for the provision of required keys for the

communication between the sensor nodes and the smartphones (end users). This architecture

allows the use of asymmetric or symmetric cryptography in the communications among the

different architecture elements.

2.1.3 State-of-the-Art

There are two common VPN solutions: i) IPSec and ii) OpenVPN.

OpenVPN has become the de facto standard in VPNs today. It uses SSL/TLS for key exchange

and encryption. OpenVPN is open-source and according to an independent review in 2017 by

Cryptography Engineering [7], there were no major vulnerabilities. OpenVPN is fully

functional on three major operating systems (Windows, macOS, and Linux). A plethora of

ciphers and encryption methods can be used.

IPSec is actually a set of protocols working together [8]. Layer 2 Tunnelling Protocol (L2TP)

is used for the tunnelling of the VPN, transferring the messages’ payload. Regarding security

protocols, IPSec offers encrypting and negotiating keys. In that way, additional security is

offered at the IP layers in the form of encryption with additional complexity. Another way of

achieving security is certificates and pre-shared private keys. There are studies that recognise

complexity as the main drawback of IPSec [9].

A third VPN solution named WireGuard is presented in [10]. This third solution could avoid

the complexity of IPSec and perform better than OpenVPN. WireGuard makes use of

asymmetric key cryptography and state-of-the-art cryptographic algorithms and protocols such

as NOISE, BLAKE2 and Curve25519. It seems that the potentials of this new VPN solution are

high. In any case, according to its claims, it is “faster, simpler, and leaner” than the other VPN

solutions.

The authors of [11] made a comparison experiment in order to help system administrators to

solve the problem of how to choose the best VPN solution, based on their system requirements.

The research question was how the performance differs among the state-of-the-art VPN

solutions. The results were values in Mbits/sec regarding packets sent from iPerf to the target

server. The results showed:

• Any VPN solution is slower than no VPN implementation.

• IPSec shows fast throughput due to the compression of data when this is an option

(Linux).

• WireGuard is the best performer in Windows.

• OpenVPN is the slowest in every operating system.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - June 30, 2022

2.2 Early Deployment and Integration

EdgeSec VPN is based on the open-source software n2n1. The initial version of EdgeSec VPN

is uploaded on the MARVEL Docker2 image registry and can be downloaded from the

MARVEL platform3. In this section, we will describe the current development, deployment,

and integration status of the component namely EdgeSec VPN with respect to the whole

MARVEL platform.

2.2.1 Development

For the development of EdgeSec VPN, three virtual machines (VM) are used. The first VM has

the role of the Super Node whereas the other two VMs have the role of edge nodes. The

operating system of the VMs is Ubuntu Linux version 18.04 LTS the size of the RAM is 4GB

and the disk is 40GB.

EdgeSec VPN is provided through the n2n software and it is not meant to be self-contained

meaning that it is possible to route traffic across n2n and non-n2n networks. The component is

containerised with Docker for easier deployment. For EdgeSec VPN, the first layer of Docker

image is based on the Ubuntu:18.04 image.

The resulted EdgeSec VPN image can be found on the MARVEL docker image registry and

can be downloaded or shared upon request.

2.2.2 Early Deployment

The architecture of the EdgeSec VPN adopts the architecture of n2n, as shown in Figure 2.

There are two key components: edge nodes and Super Nodes. The edge nodes are the peers

participating in the network. The Super Nodes are used by the edge nodes for discovering other

edge nodes. The Super Nodes are also used for routing the traffic when the nodes are behind

symmetrical firewalls. The n2n and therefore the EdgeSec VPN, is a peer-to-peer VPN that

works on the second layer of the OSI model, allowing the peers to cross NAT and firewalls and

be reachable. Edge nodes that participate in the same virtual network form a community. Super

Nodes are able to serve more than one community and a single computer can join multiple

communities. Within a community, encryption of the packets is feasible with the use of an

encryption key. Edge nodes establish direct communication among themselves via UDP

however when this is not possible, due to special NAT circumstances, then the Super Node can

facilitate the relay of the packets.

EdgeSec VPN is containerised with Docker to simplify the deployment. The relevant Docker

file consists of the following commands:

1. FROM ubuntu:18.04
2. RUN apt-get update && apt-get install -y build-essential

net-tools autoconf pkg-config

3. RUN mkdir -p /usr/ipsec
4. WORKDIR /usr/ipsec
5. COPY ./ .
6. RUN ./autogen.sh
7. RUN ./configure
8. RUN make

1 https://www.ntop.org/products/n2n/

2 https://www.docker.com

3 https://marvel-platform.eu/image/edgesec_vpn

https://www.ntop.org/products/n2n/
https://www.docker.com/
https://marvel-platform.eu/image/edgesec_vpn

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - June 30, 2022

9. RUN make install
10. EXPOSE 4194/udp

11. CMD ["sh", "init_script.sh"]

After the initial build of the image, we need to start a Super Node in a machine that has port

4194 exposed to internet with the following command:

1. sudo docker run -it -p 139.91.58.106:4194:4194/udp --name

n2n_supernode marvel-ipsec supernode -p 4194 -c community.list

-f

Then, we will be able to connect the respecting edge nodes with the following command:

1. sudo docker run -it --privileged --net=host --name n2n_edge
marvel-ipsec edge -d n2n0 -c community -k pass1 -l

139.91.58.106:4194 -f

Figure 2: The n2n architecture4

2.2.3 Integration with MARVEL

In MARVEL, several components are required to be deployed across three different layers, (i)

edge, (ii) fog, and (iii) cloud. In order to manage the deployment of components with

Kubernetes5, all three layers must be part of the Kubernetes cluster. Kubernetes by design

requires that all pods can communicate with other pods on any node without NAT which comes

in direct contradiction with the actual setup of having remote nodes. The EdgeSec VPN

provides the solution here, due to the fact that it brings together all the participating nodes as if

they were under the same local network making any NAT or firewall transparent to the

communication between them.

Essentially all participating computing devices form a full mesh network where every device

has a direct connection with every other device as depicted in Figure 3. For example, a drone

that is located in the edge layer can ping within one hop a server located at the fog as well as a

4 https://www.ntop.org/products/n2n/

5 https://kubernetes.io

https://www.ntop.org/products/n2n/
https://kubernetes.io/

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - June 30, 2022

server located at the cloud. The EdgeSec VPN is instantiated as a Docker container within the

computing device leveraging the microservices approach.

Figure 3: EdgeSec VPN forms a full mesh topology

2.3 Use Cases and Related Components

This section describes the MARVEL use cases that EdgeSec VPN participates in. In addition,

an overview of the related components is presented. EdgeSec VPN is also presented in Figure

1 as part of the subsystem named “Security, Privacy, and Data Protection”. As shown in the

figure, EdgeSec VPN secures the communications between every component that either

participates in the edge, fog or cloud layer of MARVEL.

2.3.1 Related Components

The majority of MARVEL components will be deployed within Kubernetes. However not all

components that are going to be deployed within Kubernetes are also meant to run at the cloud

layer where Kubernetes is. This raised the need for having nodes that exist at the fog and at the

edge layer to join the Kubernetes cluster at the cloud. Kubernetes by design requires that all

pods can communicate with other pods on any node without NAT which comes in direct

contradiction with the actual setup of having remote nodes. The EdgeSec VPN provides the

solution here, due to the fact that it brings together all the participating nodes as if they were

under the same local network making any NAT or firewall transparent to the communication

between them.

EdgeSec VPN becomes the underlying network that allows each remote node to join the

Kubernetes cluster at the cloud. This implies that all components that are deployed in

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - June 30, 2022

Kubernetes essentially utilise the EdgeSec VPN as they traverse the tunnel created by the

EdgeSec VPN.

2.3.2 EdgeSec VPN in UNS Use Case

For the UNS1 – Drone Experiment use case, we had to deal with the fact that all the involved

computing devices are accessing the internet via proxy. In order to build the docker image on

the UNS premises, we had to include the appropriate environment variables in the Dockerfile.

The modified Dockerfile with the required proxy environment variables follows:

Table 1: Modified Dockerfile with proxy environment variables

1. FROM ubuntu:18.04
2. ENV http_proxy 'http://proxy.uns.ac.rs:8080'
3. ENV https_proxy 'http://proxy.uns.ac.rs:8080'
4. RUN apt-get update && apt-get install -y build-essential

net-tools autoconf pkg-config

5. RUN mkdir -p /usr/ipsec
6. WORKDIR /usr/ipsec
7. COPY ./ .
8. RUN ./autogen.sh
9. RUN ./configure
10. RUN make

11. RUN make install

12. EXPOSE 4194/udp

13. CMD ["sh", "init_script.sh"]

The infrastructure of UNS consists of a server that is located at the fog layer, a Raspberry Pi

that is located at the edge layer and an Intel NUC that is mounted on a drone also located at the

edge. The proxy that is used in the UNS infrastructure created unexpected communication

issues between the edge nodes and the Super Node that is located at the cloud in PSNC’s

infrastructure. This communication is necessary for nodes to announce themselves and discover

other nodes.

The adopted solution was to instantiate a secondary Super Node at the fog layer and configure

the edge nodes to connect to this secondary Super Node. Having a secondary Super Node on

the premises of UNS allows us to bypass the proxy issue. The secondary Super Node is able to

communicate directly with the main Super Node at the Cloud after configuring the necessary

port forwarding at the fog layer required by a Super Node. The two Super Nodes form a special

community, called federation. When a Super Node is part of a federation, it propagates its

knowledge about all the edges, to the other Super Nodes in the federation (Figure 4).

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - June 30, 2022

Figure 4: EdgeSec VPN in UNS Use Case

2.3.3 EdgeSec VPN in GRN Use Cases

For the GRN3 – “Traffic Conditions and Anomalous Events” and GRN4 – “Junction Traffic

Trajectory Collection” use cases, no proxy was present in the infrastructure and therefore no

extra modification was required to the initial Dockerfile. The infrastructure of GRN consists of

a server that is located at the fog layer and a workstation located at the edge layer. The

communication between those nodes at the GRN and the Super Node at the cloud in PSNC’s

infrastructure is unhindered and therefore no additional Super Node was required. Nodes are

able to directly announce themselves and discover other nodes via the Super Node.

The communication between the participating nodes is limited to the traffic that matches the

network subnet defined by the EdgeSec VPN. This means that all unrelated traffic such as

browsing the internet or downloading updates, etc. is not routing through the VPN, thus limiting

the overhead of the VPN channel (Figure 5).

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - June 30, 2022

Figure 5: EdgeSec VPN in GRN Use Cases

2.3.4 EdgeSec VPN in MT Use Cases

For the MT use cases, i.e., MT1 – “Monitoring of Crowded Areas” and MT3 – “Monitoring of

Parking Places”, no proxy was present in the infrastructure and therefore no extra modification

was required to the initial Dockerfile. The fog layer of the infrastructure for the MT use cases

is actually hosted in FBK’s infrastructure. FBK is hosting two workstations that are located at

the fog layer. Only one of them is meant to be part of the EdgeSec VPN. The communication

between the workstation at the FBK and the Super Node at the cloud in PSNC’s infrastructure

is unhindered and therefore no additional Super Node was required. The workstation is able to

directly announce itself and discover other nodes via the Super Node.

The aforementioned setup introduced new requirements in order to comply with security

policies present at the FBK network. The first requirement is to route all the traffic via the

EdgeSec VPN and not only the traffic that matches the network subnet defined by the EdgeSec

VPN. The second requirement is that EdgeSec VPN should not interfere with the

communication between the two workstations internally.

In order to address the first requirement, a new VM has been instantiated in the cloud. The role

of this newly created VM is to act as a gateway to the internet for the workstation at the FBK.

This gateway will route all the traffic originating from the workstation through PSNC’s

infrastructure. Additionally, custom static routes are added to the routing table of the

workstation, forcing the traffic to be routed through the VPN gateway. The second requirement

is addressed by carefully modifying the routing table of the workstation without interfering with

the internal communication of the two workstations.

The final outcome of the aforementioned setup is depicted in Figure 6. Workstation 1 and

Workstation 2 are connected internally via a switch. Workstation 1, accesses internet via the

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - June 30, 2022

main router of the FBK’s network whereas Workstation 2 accesses internet via the VM hosting

the VPN gateway at the cloud in PSNC’s infrastructure.

Figure 6: EdgeSec VPN in MT Use Case

2.4 Early Experimental Results

This section demonstrates the experiments that were performed to explore the capabilities of

EdgeSec VPN.

2.4.1 Testbed Setup

The testbed that was used is the same as the one used for the development of EdgeSec VPN.

Three VMs were created using Proxmox as hypervisor (Figure 7). The first VM has the role of

the Super Node whereas the other two VMs have the role of edge nodes. The operating system

of the VMs is Ubuntu Linux version 20.04 LTS, the size of the RAM is 4GB, and the disk is

50GB. All the machines have direct access to internet without the presence of NAT.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - June 30, 2022

Figure 7: Virtual Machines in Proxmox

2.4.2 Experiments

At the first VM, we execute the Super Node script. The appropriate command follows:

1. sudo docker run -it -p 139.91.58.106:4194:4194/udp --name

n2n_supernode marvel-ipsec supernode -p 4194 -c community.list

-f -v

The IP address is 139.91.58.106, the port for the incoming connections is 4194, the name for

the container identification is “n2n_supernode” and the name of the docker image is “marvel-

ipsec”. Finally, the “community.list” corresponds to a file with the names of the communities

that the Super Node will serve. In this case, the file contains the community “community”. The

result of the command is presented in Figure 8.

Figure 8: The output of the Super Node execution script

At the next virtual machine, we execute the script for the edge node. The command and its

description follow:

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - June 30, 2022

1. sudo docker run -it --privileged --net=host --name n2n_edge
marvel-ipsec edge -d n2n0 -c community -k pass1 -l

139.91.58.106:4194 -f

More specifically, “n2n_edge” is the name for the container identification, “marvel-ipsec” is

the docker image, “community” is the community that the node will join, “pass1”is the

password, “139.91.58.106” is the IP address and “4194” is the port number of the Super Node.

The result of the first edge node command is presented in Figure 10.

Figure 9: The output of the first Edge Node

At the last VM, we start the script for the edge node, one more time. The IP address of the edge

node was automatically assigned by the Super Node. The command for the second Edge Node

and its description follows:

1. sudo docker run -it --privileged --net=host --name

n2n_edge marvel-ipsec edge -d n2n0 -a 192.168.50.200 -c

community -k pass1 -l 139.91.58.106:4194 -f

Again, “n2n_edge” is the name for the container identification, “marvel-ipsec” is the docker

image, “community” is the community that the node will join, “pass1”is the password,

“139.91.58.106” is the IP address and “4194” is the port number of the Super Node.

Finally, the result of the command is presented in Figure 10.

Data is encrypted

using AES cipher

IP address is assigned

automatically by

super node

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - June 30, 2022

Figure 10: The output of the second Edge Node

In order to test the connectivity with and without the deployment of EdgeSec VPN, we use the

ping command. First, we send 100 ping packets from the first edge node to the second edge

node using the public IPs and then we do the same using the VPN IPs (Figure 11). In both cases,

we have 0% packet loss.

Figure 11: Ping connectivity experiment

2.4.3 Results

In order to test the overhead that is introduced by the deployment of EdgeSec VPN (in terms of

network traffic latency), we use the ping command again. First, we send 20 ping packets from

the first edge node to the second edge node using the public IPs and then we do the same using

the VPN IPs. We repeat the same test with payload 100 bytes, 500 bytes, and 1000 bytes (Figure

12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17). The ICMP header and IP version 4

header add extra 28 bytes to the packet.

Data is encrypted

using AES cipher

IP address is

manually set

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - June 30, 2022

Figure 12: First edge node pings the public IP of the second edge node with payload 100 bytes

Figure 13: First edge node pings the VPN IP of the second edge node with payload 100 bytes

Figure 14: First edge node pings the public IP of the second edge node with payload 500 bytes

Figure 15: First edge node pings the VPN IP of the second edge node with payload 500 bytes

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - June 30, 2022

Figure 16: First edge node pings the public IP of the second edge node with payload 1000 bytes

Figure 17: First edge node pings the VPN IP of the second edge node with payload 1000 bytes

Based on the ping measurements, we created the corresponding tables to compare the network

traffic before and after the EdgeSec VPN is deployed (Table 2, Table 3, Table 4). We measure

the Round-trip time (RTT) which is the duration in milliseconds (ms) it takes for a network

request to be transmitted from the first edge node to the second edge node plus the duration of

the return.

Table 2: Packet size 100 bytes

RTT Ping the public IP Ping the VPN IP Overhead

Minimum 0.434ms 0.937ms 0.503ms

Average 0.511ms 1.082ms 0.571ms

Maximum 0.694ms 1.780ms 1.086ms

Standard deviation 0.067ms 0.174ms 0.107ms

Table 3: Packet size 500 bytes

RTT Ping the public IP Ping the VPN IP Overhead

Minimum 0.455ms 0.952ms 0.497ms

Average 0.539ms 1.090ms 0.551ms

Maximum 0.870ms 1.578ms 0.708ms

Standard deviation 0.092ms 0.142ms 0.05ms

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - June 30, 2022

Table 4: Packet size 1000 bytes

RTT Ping the public IP Ping the VPN IP Overhead

Minimum 0.488ms 0.927ms 0.439ms

Average 0.568ms 1.094ms 0.526ms

Maximum 0.900ms 1.439ms 0.539ms

Standard deviation 0.086ms 0.108ms 0.022ms

Additionally, we tried to verify that data in transit is encrypted. To that end, we run a simple

python-based http server on the second edge node (Figure 18) and we attempt to request the

contents of the webpage from the first edge node using both the public as well as the VPN IP.

Figure 18: Python-based http server on second edge node

Initially, we make the request using the public IP (Figure 19) and we are able to receive the

response.

Figure 19: Request to the http server using the public IP

With the help of tcpdump command, we are able to verify that data in transit is not encrypted

when using the public IP (Figure 20).

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - June 30, 2022

Figure 20: Tcpdump showing the content of the web page in clear text

We then make the request using the VPN IP (Figure 21) and we are again able to receive the

response.

Figure 21: Request to the http server using the VPN IP

Again, with the help of tcpdump command we are able to verify that data in transit is now

encrypted when using the VPN IP (Figure 22).

Content of the web

page is clear text

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - June 30, 2022

Figure 22: Tcpdump showing the content of the web page is encrypted

2.5 KPIs

In this section, the Key Performance Indicators (KPIs) that are related to EdgeSec VPN, Task

4.3 and by extension to D4.2, will be presented and discussed.

2.5.1 Project-related KPIs

Table 5 contains the project-related KPIs that concern the component EdgeSec VPN, which is

implemented in Task 4.3 in the context of the MARVEL platform.

First, the goals of the project-related KPI with identifier KPI-O1-E3-2 will be achieved by

encrypting any collected data using modern encryption techniques before being transmitted.

The data will be decrypted in order to be processed at the desired processing layer. The end-to-

end encrypted communications will be performed by EdgeSec VPN. EdgeSec VPN v.0. is

uploaded on the MARVEL registry and the VPN client can be downloaded by anyone interested

in using it. EdgeSec VPN at its current state is implemented using the IPsec protocol, and P2P

encryption is performed. The infrastructure consists of a VPN Super Node and VPN clients.

The goals of the project-related KPI with identifier KPI-O3-E3-1 with respect to EdgeSec VPN

will be achieved by encrypting the collected data and establishing secure communication

channels between each processing layer. Secure computing will be achieved using the EdgeSec

TEE component in conjunction with EdgeSec VPN. Both components have been uploaded to

the MARVEL registry (v0). At its current state, EdgeSec VPN enables an encrypted tunnel and

protects the confidentiality and integrity of data between the participating nodes. It removes the

router, ISP, and any other middle-man from the list of components that need to be trusted. ISP

snooping, attacks over insecure wireless networks as well as compromised networking

equipment are among the threats that are avoided.

Regarding the project-related KPI with identifier iKPI-2.2, the system will be protected from

the harmful effects of at least three attacks. Such attacks could be man-in-the-middle,

eavesdropping, and/or impersonation. Of course, the security and robustness of the system is

not limited only to those attacks. FORTH currently provides EdgeSec VPN that secures the

network communications (network traffic exchanges between MARVEL components will be

Content of the web

page is encrypted

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - June 30, 2022

transferred encrypted) and EdgeSec TEE that offers trusted and protected execution in

environments that cannot be trusted, when sensitive data needs to be processed.

Table 5: Project-related KPIs that concern EdgeSec VPN

KPI ID KPI Description Strategy
Related

Task

Related

Component

KPI-O1-E3-2 The end-to-end data flow

from the edge to the

cloud, will be 100%

encrypted.

No unencrypted data will ever be

transmitted by/to any processing

layer (E2F2C).

T4.3 EdgeSec VPN

KPI-O3-E3-1 Realise a secure

computing framework at

all the processing layers.

Ensure that there are no weak

links in the E2F2C chain, every

layer and communication channel

between them shall be secure.

T4.3 EdgeSec VPN,

EdgeSec TEE

iKPI-2.2 At least three (3)

different cyber threats

avoided due to E2F2C.

Cyber threats that could otherwise

potentially be exploited to harm

the system, but their impact is

minimised due to the security

features offered by E2F2C.

T4.3 EdgeSec VPN,

EdgeSec TEE

2.5.2 Component-related KPIs

The component-related KPIs that concern EdgeSec VPN are presented in Table 6. More

specifically, with EdgeSec VPN, MARVEL aims to minimise the effort for the end user to

configure the component. In addition, another goal is to leave a minimum imprint in the network

traffic after deploying EdgeSec VPN. Finally, MARVEL aims to effectively avoid at least three

distinct cyber threats while providing encryption for data in transit.

Considering the fact that EdgeSec VPN is offered through a Docker container, the time that is

required by the end user in order to setup the underlying environment and configure EdgeSec

VPN is significantly reduced. In addition, setting up EdgeSec VPN does not require advanced

knowledge of networking systems, since everything is offered within the container image. The

only manual configuration that is required by the end user is to provide an IP address and a port

number both corresponding to the Super Node. Thus, the end user is only required to run the

EdgeSec VPN container.

Regarding the scalability KPI, as already shown by the ping measurements in Table 2, Table 3,

and Table 4 the deployment of the EdgeSec VPN has a minimum increase in network traffic

latency.

EdgeSec VPN by design removes ISP and any other middle-man from the list of components

that need to be trusted. Threats such as ISP snooping, attacks over insecure wireless networks

as well as compromised networking equipment are avoided.

Finally, we have demonstrated in Figure 22, that data in transit is encrypted, thus addressing

the last KPI that refers to the Communication Security.

Table 6: Component-related KPIs that concern EdgeSec VPN

KPI Metric Expected Result Relevant Project KPI

Usability Effort needed by end

user

Least possible manual

tuning for component users

KPI-O1-E3-2,

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - June 30, 2022

Scalability Network performance

metrics (latency)

Zero or barely noticeable

increase in network traffic

latency due to the

deployment of EdgeSec

KPI-O3-E3-1,

iKPI-2.2

Effectiveness for

Avoiding Cyber Threats

Number of threats

avoided

3 distinct cyber threats

avoided

Communication Security Amount of encrypted

data in transit

100% of data will be end-

to-end encrypted

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - June 30, 2022

3 Trusted Execution on the Edge (EdgeSec TEE)

In this section, EdgeSec TEE is presented and described. EdgeSec TEE is the second component

that brings security and privacy features to the complete E2F2C framework, developed within

the MARVEL project. More specifically, EdgeSec TEE is based on the technology of Trusted

Execution Environments that enable the confidential processing of sensitive data and execution

of parts of code that should not be exposed. EdgeSec TEE is available through a container that

can operate on top of modern Intel processors since it is dependent on the Intel SGX technology.

In the following sections, we provide some background information regarding TEEs,

containers, and the state-of-the-art on these two topics. Then, we describe the basic

development and deployment details, while we locate the related project and component KPIs

and we discuss about their correlation with EdgeSec TEE and how they can be realised within

the context of MARVEL. Due to the very specific technical requirements of the EdgeSec TEE

underlying technology, the component will be fully integrated after M18, so the final version

of this deliverable (i.e., D4.5) will contain details about the results of EdgeSec TEE.

3.1 Background

In this section, background information regarding Trusted Execution Environments (TEEs) and

containers will be briefly presented. This information will allow the reader to be introduced

with the basics of the main technologies that will be used and examined in this section. Finally,

the state-of-the-art in secure containers will be discussed.

3.1.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is an area within the main processor that allows

secure, protected, and confidential execution. TEEs guarantee that the code itself and the data

that needs to be processed are located inside protected and isolated execution environments that

enable confidentiality and integrity, even if processed in untrusted environments. An untrusted

environment could be, amongst others, the operating system, the hypervisor, the drivers, the

management stack, the system’s memory, and I/O devices. Furthermore, in cases of outsourced

applications, even in a seemingly healthy environment, there is always the possibility of an

honest-but-curious cloud provider, willing to learn and extract information regarding the users

or the system utilisation. Several vendors incorporate hardware technologies that can be utilised

to implement TEEs; as for instance, AMD’s Secure Processor6, ARM’s TrustZone7, MultiZone

Security Trusted Execution Environment from RISC-V8, and Intel’s Software Guard

Extensions (SGX)9. In the context of MARVEL, FORTH chooses to employ the Intel SGX

technology since it is a mature, well-documented technology, which is also widely examined

by the research community.

Intel SGX is a hardware-assisted mechanism in the form of an instruction set architecture (ISA)

extension to the Intel architecture. It allows secure attestation and sealing to application

software that is executed in a secure environment. This secure environment is called “enclave”.

The main purpose of these extensions is the protection of selected code parts and data from dis-

closure or modification in untrusted environments. The enclaves are protected by the CPU that

6 https://www.amd.com/en/technologies/pro-security

7 https://www.arm.com/technologies/trustzone-for-cortex-a

8 https://hex-five.com/multizone-security-tee-riscv/

9 https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

https://www.amd.com/en/technologies/pro-security
https://www.arm.com/technologies/trustzone-for-cortex-a
https://hex-five.com/multizone-security-tee-riscv/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - June 30, 2022

is in charge of any access to the enclave memory or other protected areas of execution. Any

instruction that reads or writes to the enclave and is not part of the enclave itself, is prohibited.

Assuming an untrusted or even a malicious operating system, hypervisor or firmware, Intel

SGX is able to protect the confidentiality of the enclave pages. An Intel SGX application is

divided into the following parts (i.e., untrusted and trusted), as depicted in Figure 23.

Figure 23: An Intel SGX application is divided into an untrusted and trusted part. Privileged system code does

not have access to the trusted part of the Intel SGX application at any time

The code and data that are part of the enclave are stored in a DRAM subset, namely the

Processor Reserved Memory (PRM). PRM has a contiguous range, which is not accessible by

any system software or other peripherals. Moreover, the contents of the enclaves are stored in

the Enclave Page Cache (EPC), a subset of PRM. Software that is not part of the enclave is not

able to access the EPC. For Intel Skylake CPUs, the EPC size is between 64 MB and 128 MB

and SGX provides a paging mechanism for swapping pages between the EPC and untrusted

DRAM. The data of the enclave that has to be written to the disk is encrypted and checked for

its integrity. Every time that data are transferred from the cache to the main memory, they get

encrypted via an extra on-chip memory encryption engine (MEE). The enclave is decrypted

only within the CPU itself, and it is accessible only for code and data that are part of the same

enclave. This provides protection to the code from being accessed and examined by other code.

Between enclaves, SGX enables local attestation. Additionally, in the case of a third-party

application or software, SGX allows remote attestation to ensure that the application is

uncompromised and therefore can be trusted. SGX enables the remote system to establish a

connection with the enclave, using an end-to-end encrypted channel.

3.1.2 Containers

A container is a standalone system entity consisted of software code that is packed with all the

required packages and libraries (i.e., dependencies) enabling an application to be executed

consistently and self-sufficiently across different computing environments. Concisely, a

container image includes everything needed to enable an application run, offered as an

executable package of software10. At runtime, container images become containers enabling

execution.

10 https://www.docker.com/resources/what-container/

https://www.docker.com/resources/what-container/

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - June 30, 2022

Docker is the most popular platform that enables the creation and management of containers. It

is a runtime environment that uses Docker images to deploy applications or software in a

containerised fashion, built on top of popular operating systems and distributions. The

orchestration of different containers in operation can be handled by a container orchestrator,

like Kubernetes. Kubernetes is an open-source project that enables the deployment, scalability,

and management automation of multiple containers with multiplexed applications.

Containers are offered like a virtualised operating system and share similar functionalities with

VMs; yet, they should not be confused. Their differences are illustrated in Figure 24. To begin

with, VMs run on top of a hypervisor and each VM is comprised of its own guest operating

system with any necessary libraries and files. Taking into consideration that on a single physical

machine several VMs can be present, there is a significant consumption of resources and

overheads. A container, on the other hand, shares the same host OS or kernel, something that

makes it lighter, with essentially less overhead.

Figure 24: Differences between VMs and containers

3.1.3 State-of-the-Art

Trusted Execution Environments (TEEs) have been widely examined by the research

community with the aim to enable the confidentiality of code execution and user data in

environments that should not be trusted. As the need for lower costs, higher performance, and

scalability rises, outsourcing applications to the cloud has become common. As already

mentioned, TEEs, such as Intel SGX, can guarantee data and code protection. Thus, a

significant number of works focus on proposing the exploitation of this technology for

outsourced applications in the cloud. For instance, VC3 [1] and Opaque [12] offer privacy-

preserving data analytics in the cloud using Intel SGX. EnclaveDB [13] is a database engine

that can guarantee confidentiality, integrity, and freshness for data and queries. In addition,

EndBox [14], ShieldBox [15], and SafeBricks [16] focus on securing middlebox functionality

using Intel SGX, while TrustAV [17] is a cloud-based malware scanning solution based on Intel

SGX. Andromeda [18] is a framework that provides secure enclaves for the Android OS to

mitigate attacks that target sensitive or critical code, data and communication channels. Finally,

there are works that enable the execution of unmodified applications within enclaves

[19][20][21][22].

SCONE [23] is based on the Intel SGX technology and offers a secure container mechanism

for Docker. The design of SCONE leads to (i) a small trusted computing base (TCB) and (ii) a

low-performance overhead. More specifically, SCONE offers a secure C standard library

interface that transparently encrypts and decrypts the data I/O. To reduce the performance

impact of thread synchronisation and system calls within SGX enclaves, SCONE supports user-

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - June 30, 2022

level threading and asynchronous system calls. A high-level overview of the secure

containerisation with Docker with respect to SCONE is shown in Figure 25.

Figure 25: SCONE offers secure containers (with Docker)

Except for SCONE, there are some alternative secure container designs, such as Haven [24]

that follows an alternative design. In TensorSCONE [25], authors integrate TensorFlow11 with

SCONE to enable secure executions of machine learning computations in untrusted

infrastructures. Yet, in TensorSCONE, the GPU utilisation is not supported as in the traditional

TensorFlow framework. Finally, Graviton [26] is an architecture for supporting trusted

execution environments on GPUs, since it enables applications to offload security- and

performance-sensitive kernels and data to a GPU, executing the kernels in isolation from other

code running on the GPU.

3.2 Early Deployment and Integration

EdgeSec TEE is based on the SCONE confidential computing technology. The initial version

of EdgeSec TEE mechanism is based on SCONE, which is appropriately configured for python

applications to run inside Intel SGX enclaves. The initial version of EdgeSec TEE is uploaded

on the MARVEL docker image registry and can be downloaded12 or shared upon request. In

this section, we will describe the current development, deployment, and integration status of

the component namely EdgeSec TEE with respect to the whole MARVEL platform.

3.2.1 Development

For the development of EdgeSec TEE, a VM is utilised. Intel SGX can be virtualised (i) when

the host system supports the Intel SGX technology, (ii) when SGX is enabled either explicitly

in the BIOS or via the software enabling procedure, and (iii) when Linux kernel version 5.13

or later is used both in the host and the guest VMs13. Both host and guest operating systems are

Ubuntu Linux (version 20.04.4 LTS) with a Linux kernel 5.13.4. The CPU is an Intel(R) Core

(TM) i7-7700 CPU and a KVM hypervisor is used. The Docker version is 20.10.12.

EdgeSec TEE is provided through the SCONE functionality that supports the execution of

Python applications inside the Intel SGX enclaves. SCONE follows precisely the traditional

Docker workflow. The Docker workflow enables the creation of Docker images that include

the Python engine together with the Python applications. What SCONE does, is to perform the

encryption of the Python programs and guarantee their confidentiality and integrity when

executed. After the Python engine starts inside an Intel SGX enclave, the SCONE runtime

11 https://www.tensorflow.org

12 https://marvel-platform.eu/image/docker-sgx

13 Virtualizing Intel SGX: https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-

guard-extensions-with-kvm-and-qemu.html

https://www.tensorflow.org/
https://marvel-platform.eu/image/docker-sgx
https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu.html
https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu.html

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - June 30, 2022

transparently attests the Python engine together with the supporting filesystem and only then,

SCONE runtime can get the encryption key in order to initiate the secure execution. SCONE

support the execution of Python programs inside SGX enclaves, while there are available

several Docker images for the different Python versions and engines.

For EdgeSec TEE, Python 3.7.3 is used (within an Alpine Linux 3.10 OS version). The resulted

EdgeSec TEE image can be found on the MARVEL docker image registry and can be

downloaded14 or shared upon request.

3.2.2 Early Deployment

EdgeSec TEE requires an Intel-SGX enabled machine and the installation of the Docker

software. Each application that is secured with EdgeSec TEE lays on top of a machine that

supports Intel SGX, as it is illustrated in Figure 26. In order to use EdgeSec TEE and take full

advantage of the security characteristics that it offers, an application developer needs to follow

the following steps: (i) the developer needs to get access to infrastructure that is Intel SGX-

enabled, (ii) the developer downloads the EdgeSec TEE’s docker image that is uploaded to the

MARVEL registry by FORTH, (iii) the developer launches the EdgeSec TEE container from

this image, (iv) the developer copies the python application inside the container’s file system

and installs any required python library or package, (v) the developer executes the python

application that is secured by SCONE during the total execution time. In the following

paragraphs, the steps after downloading the EdgeSec TEE image are discussed in more detail.

Figure 26: An overview of EdgeSec TEE

Once downloaded from the MARVEL docker image registry, the EdgeSec TEE component can

be deployed by the following certain steps:

1. docker login registry.marvel-platform.eu
2. docker pull registry.marvel-platform.eu/docker-sgx:0
3. docker run -it registry.marvel-platform.eu/docker-sgx:0

/bin/sh

14 https://marvel-platform.eu/login?next=/image/docker-sgx

https://marvel-platform.eu/login?next=/image/docker-sgx

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - June 30, 2022

An example of a Python command (i.e., print) executed within the image of EdgeSec TEE that

is uploaded on the MARVEL image registry is shown in Figure 27.

Figure 27: An example python command within the image of EdgeSec TEE

As already mentioned, the Python version that is supported by EdgeSec TEE is 3.7.3 (in an

environment of Alpine Linux 3.10). The installation of packages and libraries within the

container is possible. For instance, to install the popular Python libraries namely scipy and

scikit-learn, the following commands can be used (i.e., Figure 28). As shown in Figure 29, the

installation of the Python libraries is successful, enabling the operation of Python programs to

be performed exactly as in traditional setups (i.e., without the support of Intel SGX, SCONE,

and EdgeSec TEE). Within the container of EdgeSec TEE, however, the Python application is

executed within Intel SGX enclaves, which offer security, code integrity, and data

confidentiality. At this point, we have to accentuate that these packages (e.g., scipy and scikit-

learn) are not installed inside the image that is uploaded to the MARVEL registry, and if

necessary, they have to be installed following the commands shown in Figure 28 by the

developer or user of EdgeSec TEE. Other packages and libraries can be installed following a

similar procedure.

Figure 28: Commands to install Python libraries (e.g., joblib, numpy, scikit-learn, scipy and threadpoolctl)

within EdgeSec TEE.

Figure 29: Successful installation of Python libraries within the docker image of EdgeSec TEE (i.e., joblib,

numpy, scikit-learn, scipy and threadpoolctl)

3.2.3 Integration with MARVEL

Up until this point, EdgeSec TEE can be used and tested by any partner that participates in the

MARVEL project by downloading the EdgeSec TEE image that exists in the MARVEL

registry, following the instructions that were described in the previous section (Section 3.2).

Since the integration process is still work in progress, a detailed and final integration plan

cannot be completely outlined in the current deliverable. The integration of EdgeSec TEE with

the whole MARVEL platform will be fully discussed in the following and final version of this

deliverable (i.e., D4.5).

3.3 Use Cases and Related Components

This section is destined to present the MARVEL uses cases that EdgeSec TEE will participate

in. In addition, we will offer an overview of the related components that will connect with

EdgeSec TEE. EdgeSec TEE is also presented in Figure 1 as part of the subsystem named

“Security, Privacy, and Data Protection”. As shown in the figure, EdgeSec TEE can potentially

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - June 30, 2022

participate in any layer as long as the hardware and software infrastructure facilitate its

deployment requirements. The requirements include but are not limited to an Intel SGX-enabled

CPU and a component implemented using the Python programming language.

3.3.1 Related Components

EdgeSec TEE will be fully integrated into the whole MARVEL platform after M18. Thus, at

this point, the interconnection of EdgeSec TEE and other MARVEL components is not

finalised. Details about the related components of EdgeSec TEE will be shared in the following

version of the deliverable (i.e., D4.5).

3.3.2 EdgeSec TEE in MARVEL Use Cases

Similarly, as EdgeSec TEE will be integrated and tested as part of the MARVEL platform after

M18, we will provide more details about it and the respecting MARVEL use cases in the

following version of the deliverable (i.e., D4.5).

3.4 Early Experimental Results

This section will demonstrate the experiments that were performed to explore the capabilities

of EdgeSec TEE. Since EdgeSec TEE will be fully integrated within the MARVEL platform

after M18, the experimental results have not been explored yet. This section will be fully

described in the following and final version of the deliverable (i.e., D4.5).

3.4.1 Testbed Setup

This section will be fully explored after M18. Yet, in Section 3.2, we describe the testbed setup

for the early deployment of EdgeSec TEE before M18. More specifically, for the development

and early deployment of EdgeSec TEE, we use a VM that has the following characteristics. The

CPU that was used in the experiments performed is an Intel Core i7-7700 operating at 3.6 GHz

and the main memory is 4GBytes. The L3 cache (i.e., 16MiB) and the memory controller are

shared across the CPU cores and the integrated GPU. Each CPU core is equipped with 64KiB

of L1 cache and 512KiB of L2 cache. The docker version is 20.10.12 (build e91ed57). The

docker image of EdgeSec TEE has a Linux kernel (version 5.13) with an Alpine Linux 3.10

operating system.

3.4.2 Experiments

Since the experiments of EdgeSec TEE as part of the MARVEL platform will be presented in

the following deliverable (i.e., D4.5), we will be able to discuss them in full detail there. Yet in

Section 3.2.2, we present some snapshots of EdgeSec TEE enabling the secure execution of a

simple python program.

3.4.3 Results

Similarly, this section will be fully explored after M18, when EdgeSec TEE will be fully

deployed and connected with other components to participate in MARVEL use cases.

3.5 KPIs

In this section, the Key Performance Indicators (KPIs) that are related to EdgeSec TEE, Task

4.3 and by extension to D4.2 will be presented and discussed.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - June 30, 2022

3.5.1 Project-related KPIs

Table 7 enumerates the project-related KPIs that concern the component EdgeSec TEE, which

is implemented in Task 4.3 in the context of the MARVEL platform.

More specifically, the goals of the project-related KPI with identifier KPI-O3-E3-1 will be

achieved by: (i) attesting edge devices to ensure that no untrusted components flood the system

with fraud data, (ii) encrypting collected data and establishing secure communication channels

between each processing layer, (iii) exploring in-chip memory encryption technologies that will

further enhance the security of the processing devices. Secure computing will be achieved using

the EdgeSec TEE component in conjunction with EdgeSec VPN. Both components have been

uploaded to the MARVEL registry (v0). At its current state, EdgeSec TEE enables

programming using the python language and related libraries, such as scikit. In the future, we

plan to provide more flexibility in terms of programming languages and libraries supported if

it is necessary by other components or the pilot use cases.

Regarding the project-related KPI with identifier iKPI-2.2, the system will be protected from

the harmful effects of at least three attacks. As already discussed in Section 2.5, FORTH

currently provides EdgeSec VPN that secures the network communications and EdgeSec TEE

that offers trusted and protected execution.

Table 7: Project-related KPIs that concern EdgeSec TEE

KPI ID KPI Description Strategy
Related

Task

Related

Component

KPI-O3-E3-1 Realise a secure

computing framework at

all the processing layers.

Ensure that there are no weak

links in the E2F2C chain, every

layer and communication channel

between them shall be secure.

T4.3 EdgeSec VPN,

EdgeSec TEE

iKPI-2.2 At least three (3)

different cyber threats

avoided due to E2F2C.

Cyber threats that could otherwise

potentially be exploited to harm

the system, but their impact is

minimised due to the security

features offered by E2F2C.

T4.3 EdgeSec VPN,

EdgeSec TEE

3.5.2 Component-related KPIs

The component-related KPI that concerns EdgeSec TEE is presented in Table 8. More

specifically, with EdgeSec TEE, MARVEL aims to effectively avoid at least three distinct cyber

threats. As already mentioned, EdgeSec TEE offers security and privacy guarantees in

environments that should not be trusted, since it is based on the Intel SGX technology that offers

a combo of cybersecurity, encryption, and verification capabilities. Some of the attacks that

Intel SGX targets for mitigation are software and physical attacks, memory mapping attacks,

and cache timing attacks amongst many others [27]. For instance, attacking the system memory

(DRAM) of a machine is a serious and common threat, while it has been shown that an

adversary with physical access to a machine can potentially read and/or modify memory

contents. With Intel SGX, an autonomous hardware unit called the Memory Encryption Engine

(MEE) is offered, which is able to protect the confidentiality, integrity, and freshness of the

CPU-DRAM traffic over some memory range [28]. In addition, even though CPU side-channel

attacks are out of the threat model scope of the Intel SGX technology, Intel stays up-to-date and

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - June 30, 2022

constantly provides guidelines to help developers harden their code15, while they also offer bug

bounty competitions to encourage researchers to find and disclose new side-channel

vulnerabilities16. Thus, EdgeSec TEE greatly contributes to the realisation of this specific KPI,

by effectively avoiding physical and cyber threats.

Table 8: Component-related KPIs that concern EdgeSec TEE

KPI Metric Expected Result Relevant Project KPI

Effectiveness for

Avoiding Cyber Threats

Number of threats

avoided

3 distinct cyber threats

avoided

KPI-O3-E3-1,

iKPI-2.2

15 https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf

16 https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html

https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - June 30, 2022

4 GPU-accelerated Stream Processing on the Edge (GPURegex)

In this section, GPURegex is presented, described, and evaluated based on the performance

achieved as a standalone component. GPURegex is the component that brings performance

acceleration features to the complete E2F2C framework, developed within the MARVEL

project. More specifically, GPURegex is based on the Single Instruction – Multiple Data

(SIMD) type of parallel processing, taking advantage of modern processors (either CPUs or

accelerators), and OpenCL, a framework for writing programs that uniformly execute across

heterogeneous platforms. The component is offered as an OpenCL program that is able to be

executed on top of a hardware device when the proper runtime and libraries are installed.

GPURegex offers the pattern matching functionality, accelerated.

In the following sections, we provide some background information regarding GPU-accelerated

stream processing and pattern matching, as well as the state-of-the-art on these two topics.

Then, we describe the development and deployment details, while we locate the related project

and component KPIs. Finally, we discuss about their correlation with GPURegex and how they

can be realised within the context of MARVEL.

GPURegex will be used to accelerate the searching of keywords against audio and video

captions (offered by the AAC tool of TAU). Since the input will be only available after M18,

we allow the evaluation of the tool using several public datasets with audio or video captions

identified and shared by TAU. We expect that these data formats will fairly resemble the actual

data resulted from AAC.

4.1 Background

In this section, basic background information regarding GPU acceleration of stream processing

and pattern matching will be presented. In addition, we will discuss the state-of-the-art that

concerns GPU-acceleration of stream processing and pattern matching.

4.1.1 GPU-Accelerated Stream Processing

Processing in a streaming fashion is a programming technique that facilitates parallel

processing. Image, video, and signal processing were originally suited for stream processors,

while presently general-purpose computing can be achieved when the nature of the processing

is computationally heavy, not memory intensive. GPUs, due to their architectural design are

ideal for fast and highly-parallelised computations, since their numerus, powerful cores enable

this kind of execution.

The continuous processing of data streams is useful in numerous applications, such as network

traffic inspection and log processing, AI and real-time predictions and continuous monitoring

of healthcare/transportation/manufacturing data amongst others. Thus, accelerating stream

processing for near real-time scenarios’ requirements is crucial but feasible – realised by

streaming processors and SIMD-enabled hardware, like GPUs.

4.1.2 GPU-Accelerated Pattern Matching

Pattern matching is the procedure of identifying if a certain keyword (i.e., pattern) is part of an

expression (i.e., input). Due its computational characteristics and requirements, pattern

matching processing can be parallelised (depending on the algorithm used) allowing streaming

capabilities.

GPURegex is based on the Aho-Corasick algorithm [29]. Aho-Corasick is one of the most

widely used algorithms for string pattern matching and is the optimal solution for multiple

patterns searching, since it enables simultaneous pattern matching. This simultaneous matching

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - June 30, 2022

can be achieved when the set of patterns is preprocessed. In the preprocessing phase, one

automaton is being built, which will be eventually used in the matching phase. Each character

of the text-based input is processed only once during the matching phase. The Aho-Corasick

algorithm has the property that, theoretically, the processing time does not explicitly depend on

the number of patterns. Given a set of patterns, the algorithm constructs a pattern matching

machine (i.e., the automaton), that matches all patterns against the input one byte at a time. The

implementation of GPURegex is based on the Aho-Corasick algorithm due to the processing

nature, which enables the easy parallelisation of the underlying computations.

In the following sections, we describe how Aho-Corask is used and implemented for

GPURegex.

4.1.3 State-of-the-Art

Pattern matching is the core operation of several network packet processing applications, such

as firewalls, intrusion detection, L7 filtering, and traffic classification. Thus, it is very common

when searching for pattern matching applications, to encounter works in the domain of network

inspection. However, pattern matching is not only destined for network processing applications.

For instance, pattern matching is used for system log processing, continuous monitoring of

healthcare/transportation/manufacturing data and bioinformatics, like RNA structure

alignments. Thus, there are numerous and diverse research domains that are benefitted from

optimised versions of traditional pattern matching algorithms.

In the meantime, GPUs have become very popular due to a substantial performance boost that

provide to many individual network traffic inspection applications that are based on the

parallelisation of the pattern matching computations. Related works include but are not limited

to GPU-accelerated intrusion detection [30][31][32][33], cryptography [34], and IP routing

[35]. For instance, Gnort accelerates the pattern matching engine of the Snort IDS using a

discrete GPU. Similarly, Kargus performs load balancing in pattern matching workloads and is

compatible with Snort IDS [36]. MIDeA offers a multi-parallel intrusion detection architecture

tailored to multi-queue NICs, multiple CPUs, and multiple GPUs [33]. DFC offers accelerated

string matching tailored to packet processing by reducing memory accesses and cache misses

[37].

In addition, there have been proposed several programmable network traffic processing

frameworks, such as Snap [38] and GASPP [39], that manage to simplify the development of

GPU-accelerated network traffic processing applications.

Other works take advantage of the shared integrated GPU that is packed with the main processor

in the same die in order to accelerate or offload network packet processing applications

[40][41][42]. In APUNet, authors propose the utilisation of integrated GPUs to accelerate

packet processing workloads without paying the overheads of memory transactions between

the host and discrete GPUs [40]. Papadogiannaki et al. [41] have proposed a scheduling

approach that, based on performance policies (such as high throughput or low power

consumption), determines the most suitable combination of heterogeneous devices (i.e., CPU,

integrated or discrete GPUs) for efficient execution of network packet processing workloads

(such as DPI or network packet encryption). In NBA, authors extend the functionality of a

network router to leverage hardware accelerators for network packet processing load balancing

[43]. In addition, there are works that perform GPU-accelerated pattern matching for metadata

searching to enable encrypted network traffic analysis and inspection [44][45].

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - June 30, 2022

4.2 Early Deployment and Integration

GPURegex is a real-time high-speed pattern matching engine that leverages the parallelism

properties of general-purpose GPUs (GPGPUs) to accelerate the process of string and/or regular

expression matching. The initial version of GPURegex is uploaded on the MARVEL docker

image registry and can be downloaded or it can be shared upon request. More specifically,

GPURegex is available for two different hardware setups: (i) a hardware setup with an Intel

CPU17, and (ii) a hardware setup with an Intel CPU and an integrated (on chip) GPU18. In the

first hardware setup, the drivers that are installed in the container are destined for OpenCL-

enabled CPUs, while in the second hardware setup, the drivers that are installed in the container

are destined for shared, integrated, OpenCL-enabled GPUs, like Intel HD Graphics.

In this section, we will describe the current implementation, deployment and integration status

of the component namely GPURegex with respect to the whole MARVEL platform.

4.2.1 Implementation

As already discussed, pattern matching includes intensive computations and can be

significantly accelerated using the right hardware architectures and an algorithm

implementation with operations that can be parallelised. GPURegex is implemented based on

the Aho-Corasick algorithm and pre-compiled DFA automata. Thus, GPURegex is able to

perform simultaneous multi-pattern matching within a single pass of the input. A high-level

overview of GPURegex as it is used in MARVEL can be found in Figure 30. In this section,

we discuss the implementation details of the component GPURegex.

Figure 30: High-level overview of GPURegex in MARVEL

GPURegex supports string searching and regular expression matching operations. For the

development of GPURegex, all the GPU-accelerated pattern matching operations are

implemented using the OpenCL library, provided through a C API. GPURegex enables the

processing of the incoming input, which is text-based, and when the processing is over it returns

the reported matches. In the context of MARVEL, GPURegex will be used to accelerate the

17 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

18 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - June 30, 2022

intensive pattern matching operations for fast event detection, even though traditionally, this

component has been specifically designed to accelerate the pattern matching procedure of

security applications such as network intrusion detection systems, load balancers, and firewalls

[31][41][44][45].

The pattern matching procedure is described as follows. Initially, the patterns are compiled into

DFA state machines and state transition tables. A GPURegex user can compile a single pattern

to a single DFA or combine different patterns into a single one. The compilation process is

performed once, before the execution of the pattern matching engine, and thus, it can be

performed offline by the CPU, during the initialisation phase of the user application without

adding any runtime overheads. Depending on the GPU architecture, the state table is copied to

the memory of the discrete GPU or mapped to the memory space that is shared between the

CPU and the integrated GPU. During the pattern matching phase, each thread searches against

a different portion of the input data. The algorithm processes the input one character (one

character corresponds to one byte) at a time and for each consumed byte, the matching

algorithm switches the current state according to the state transition table. The size of the state

transition table is number of states X alphabet size. For instance, to support the

standard ASCII character-set for both patterns and input, the alphabet size is 128. The number

of states is completely dependent on the patterns and the resulted DFA state machine. A

simplified example is shown in Figure 31.

Figure 31: Construction of the state transition table

As already mentioned, for a GPU to process data, we need first to copy the data to the

corresponding GPU memory space from the main memory. When the GPU is discrete, these

data transfers add a time overhead due to the PCIe bus, which is relatively slow and it is

becoming an overhead when the application is memory intensive and requires constant memory

transfers (e.g., CPU-GPU-CPU). An illustration of the memory transfers’ requirements in an

integrated-GPU format versus a discrete-GPU format is presented in Figure 32. Thus, in the

very first version of GPURegex (GPURegex v.0), we introduce an implementation specifically

for OpenCL-enabled integrated GPUs (such as Intel HD Graphics) that share the same memory

space with the main processor19. In addition, we implemented another version of GPURegex to

target OpenCL-enabled processors (such as Intel CPUs) for cases where a shared GPU is not

present in the hardware setup that is available20.

19 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

20 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - June 30, 2022

Figure 32: Architectural comparison of an integrated GPU, packed with the main processor in the same CPU die

versus a discrete, dedicated GPU

4.2.2 Early Deployment

GPURegex can be deployed to any OpenCL-enabled processor or hardware accelerator, such

as dedicated, discrete GPUs or shared, integrated GPUs. In the first version of GPURegex that

has been uploaded to the MARVEL registry and is available to any MARVEL partner, FORTH

introduces an implementation for integrated GPUs21 and an implementation for main

processors22 for hardware setups that do not offer a GPU.

As illustrated in Figure 33, a GPURegex Docker container can be deployed on top of any

OpenCL-enabled hardware device. OpenCL drivers are required to be installed in the specific

docker container before the execution of GPURegex. Each vendor (e.g., Intel, NVIDIA) and

each hardware device (e.g., CPU, discrete GPU, integrated GPU) is supported by vendor and

device specific OpenCL drivers. For instance, the OpenCL drivers that are destined for Intel

integrated GPUs are different to those that are destined for NVIDIA GPUs. Thus, normally, a

new OpenCL driver must be installed for every hardware device change. As already stated,

GPURegex is available via two images, uploaded to the MARVEL image registry (i.e., Intel

CPU and Intel HD Graphics GPU).

Figure 33: An overview of GPURegex

Once downloaded from the MARVEL docker image registry, the GPURegex component can

be deployed by the following certain steps:

21 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

22 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - June 30, 2022

1. docker login registry.marvel-platform.eu
2. docker pull registry.marvel-platform.eu/gpuregex-intel-cpu:1
3. docker run -it registry.marvel-platform.eu/gpuregex-intel-

cpu:1 /bin/sh

An example of GPURegex’s execution in the container loaded by the image uploaded on the

MARVEL image registry is shown in Figure 34. We can see that GPURegex returns the input

lines that contain patterns that match against them. In this specific example, patterns

“pattern01” and “pattern02” are matched, while pattern “pattern00” is not contained

in the input file. The contents of the pattern file, namely “patterns_demo”, and the contents of

the input file, namely “input_demo”, are presented in the same figure. GPURegex is compiled

using the command: $ make, and executed using the command: $./bin/gpuregex -p

patterns_demo -i input_demo, where -p accepts the pattern file name and -i accepts the

input file name.

Figure 34: An example run of GPURegex inside the container destined for Intel CPUs

4.2.3 Integration with MARVEL

Up until this point, GPURegex can be used and tested by any partner that participates in the

MARVEL project by downloading the GPURegex images that exist in the MARVEL registry,

following the instructions that were described in the previous section (Section 4.2.2). Since

GPURegex - in the context of the MARVEL project - will participate in a pipeline receiving

input from a component that can only be deployed after M18 (i.e., AAC from TAU), the entire

deployment and integration details of GPURegex will be fully outlined in the following

deliverable (i.e., D4.5). Thus, in these sections, FORTH describes the testbed setup that is

located at FORTH premises and is used for the development of the GPURegex that has been

uploaded to the MARVEL registry.

4.3 Use Cases and Related Components

In this section, we briefly describe the component Automated Audio Captioning (AAC) that is

planned to pair with GPURegex in a processing pipeline, in the context of the MARVEL

project. Yet, since AAC will be ready after M18, the entire deployment and integration details

of GPURegex will be fully outlined in the following deliverable (i.e., D4.5). As a component

of the whole MARVEL platform, GPURegex is presented in Figure 1. As part of the subsystem

named “Optimised E2F2C Processing and Deployment”, GPURegex’s relation with the AAC

component is shown. In this conceptual architecture figure, GPURegex is placed within the

cloud layer, but can also be trained or operate in different layers of the platform. More details

will be described in the following version of this deliverable (D4.5).

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - June 30, 2022

4.3.1 Related Components

AAC is a cross-modal translation task in artificial intelligence that connects audio processing

and natural language processing. The automated audio captioning component generates a

descriptive textual description to describe the content of an audio clip. These textual

descriptions can be used to assist the decision-making process in other components. The AAC

component can collaborate and enhance the predictive behaviour of other components by

providing high-level information about the audio content.

The input to the AAC component is an audio signal, and the output is a sentence that describes

the audio signal, for instance, “Birds chirp while people talk in the background”. The output is

a properly formulated sentence that not only describes the sound events but also the spatial-

temporal relation between different objects as well as the activities involved. In the learning

stage, the component learns the mapping between the input audio signal and the corresponding

captions, and at the inference stage, the component predicts the captions for audio input. The

learned knowledge depends on the data utilised during the learning stage. The system

development requires an audio dataset consisting of audio samples and the corresponding

manually generated reference captions. The current state-of-the-art for the AAC system is based

on relatively large neural networks with encoder-decoder architectures or transformer-based

sequence-to-sequence architectures. An overview of the AAC component is presented in Figure

35.

Figure 35: Overview of AAC

4.3.2 GPURegex in MARVEL Use Cases

As already discussed, GPURegex in the context of the MARVEL project will participate in a

pipeline and will receive input from the AAC component that can only be deployed after M18.

Thus, the entire deployment and integration details of GPURegex will be fully outlined in the

following deliverable (i.e., D4.5). In this deliverable, we test GPURegex using several public

datasets that contain captions from audio and video sources. These datasets are close to the

input that GPURegex will receive from AAC. So, we expect that the differences of this early

experimental results will not be significant to those of the actual deployment of GPURegex in

the context of MARVEL.

4.4 Early Experimental Results

In this section, FORTH will present the early experimental results of GPURegex in detail.

4.4.1 Testbed Setup

GPURegex in its current form, can be executed on top of an Intel CPU and on top of an Intel

integrated GPU, and it is available in the MARVEL image registry via two different images

“gpuregex-intel-cpu” and “gpuregex-intel-gpu”. Since a CPU, rather than a graphics

processor, is the most typical device in a hardware setup of an experimental environment, in

this section we present the experimental results of “gpuregex-intel-cpu”.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - June 30, 2022

For the performance evaluation of GPURegex, we use a VM that has the following

characteristics. The CPU that was used in the experiments performed is an Intel Core i7-7700

operating at 3.6 GHz and the main memory is 4GBytes. The L3 cache (i.e., 16MiB) and the

memory controller are shared across the CPU cores and the integrated GPU. Each CPU core is

equipped with 64KiB of L1 cache and 512KiB of L2 cache.

The docker image has a Linux kernel (version 5.13) with an Ubuntu 16.04.7 LTS operating

system. The OpenCL version installed is 2.1, with platform name “Intel(R) CPU Runtime for

OpenCL (TM) Applications” and driver version 18.1.0.0920.

4.4.2 Experiments

As already mentioned, GPURegex in the context of the MARVEL project will participate in a

pipeline that will receive input from the AAC component that can only be deployed after M18.

Since there is no available input for GPURegex yet, in this deliverable we will use several

public datasets that include captions extracted from audio and video (in several formats: e.g.,

csv, json, yaml) and could resemble the output of AAC. TAU specifically proposed the

following captioning datasets: the Clotho dataset23, the AudioCaps dataset24, and the MACS

dataset25. Another dataset that was proposed by TAU, was the Audio Caption Hospital dataset26.

Unfortunately, processing was not possible due to the character encoding that was not part of

the ASCII character-set that GPURegex supports (256 ASCII character-set).

The Clotho dataset consists of three main csv files, namely clotho_captions_development.csv

(1.3MBytes), clotho_captions_evaluation.csv (354KBytes), clotho_captions_validation.csv

(360KBytes). Each file contains a number of lines and each line contains five captions extracted

by one audio/video file. A line looks like the following example:

“Distorted_AM_Radio_noise.wav, A muddled noise of broken channel of
the TV, A television blares the rhythm of a static TV., Loud television

static dips in and out of focus, The loud buzz of static constantly

changes pitch and volume., heavy static and the beginnings of a signal

on a transistor radio”

For each one of these files, there is a respecting metadata file that contains -- amongst others -

- the keywords that were exported by those captions: “Distorted_AM_Radio_noise.wav,

noise ; radio, …”. To construct our pattern file, we extract the unique keywords and we

save them into a pattern file. The pattern file consists of 6623 unique fixed strings. Searching

for the patterns against the input file clotho_captions_development.csv results in a total of 3840

matches (out of the 3840 total sentences). This means that all 3840 input lines contain at least

one of the patterns.

The AudioCaps dataset consists of three csv files, namely train.csv (3.5MBytes), test.csv

(393KBytes), val.csv (168KBytes). Each file contains a number of lines and each line contains

a single caption for a single audio capture. A line looks like the following example: “91139,

r1nicOVtvkQ, 130, A woman talks nearby as water pours” (the four columns

correspond to the following: audiocap_id, youtube_id, start_time, caption). To

construct our pattern file, we extract the unique keywords and save them into a pattern file. The

pattern file consists of 7414 unique fixed strings. Searching for the patterns against the input

23 https://zenodo.org/record/4783391#.YovyVS0RpTa

24 https://github.com/cdjkim/audiocaps

25 https://zenodo.org/record/5114771#.YovyXC0RpTa

26 https://zenodo.org/record/4671263#.YovyWS0RpTa

https://zenodo.org/record/4783391#.YovyVS0RpTa
https://github.com/cdjkim/audiocaps
https://zenodo.org/record/5114771#.YovyXC0RpTa
https://zenodo.org/record/4671263#.YovyWS0RpTa

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - June 30, 2022

file train.csv results in a total of 49839 matches (out of the 49839 total sentences). This means

that all 49839 input lines contain at least one of the patterns.

The MACS dataset contains a single file, namely MACS.yaml (2.7MBytes). An example of the

entries that are contained in the file follows:

files:

- filename: airport-barcelona-0-0-a.wav

 annotations:

 - annotator_id: 233

 sentence: a person whistling and singing

 tags:

 - adults_talking

 - music

 - annotator_id: 105

 sentence: people are talking whistling and singing

 tags:

 - adults_talking

To construct our pattern file, we extract the tags in the file and keep the unique keywords. In

addition, if there is the character “_” between two different words, we split the tags and keep

them both. This results in a pattern file with 16 unique keywords (fixed strings). Concerning

the input file, we extracted only the “sentence” fields from the yaml file, in order to avoid

patterns matching against the tags themselves (the exported file size is 933KBytes). As is, the

patterns that match against the input lines result in 14573 matches (out of the 17275 total

sentences). Since the keywords contain words like “talking” or “voices”, we add a pre-

processing step to keep the origins, like “talk” or “voice”, respectively. This action results in a

total of 15284 matches. This means that 15284 input lines include at least one of the patterns.

4.4.3 Results

Since the related KPIs address the performance metrics of GPURegex to be throughput and

execution time, in this section we will perform two corresponding benchmarks that concern

those two metrics. To begin with, we evaluate the processing performance of GPURegex using

the three public datasets shared by TAU (i.e., Clotho, AudioCaps, and MACS), using the

corresponding pattern files and inputs. We compare the performance achieved by the

GPURegex executed on top of the CPU versus the GNU grep utility that is also based on the

Aho-Corasick algorithm (using the -F option that enables fixed strings searching) and runs on

the CPU, as well. In addition, we build several pattern files (with different state transition

counts) and input files (with different sizes) and we execute GPURegex to present how the

processing performance achieved is based on these parameters. We perform the same

benchmarks (same pattern file, same input files) with the GNU grep utility to enable

performance comparisons.

For the Clotho dataset, we use the pattern file that was constructed by the keywords that were

extracted by the captions. Each one of these patterns is a fixed string, with a total of 6623

patterns. The pattern sizes are very diverse with the maximum sized pattern being 62Bytes

while the shortest pattern is 1Byte. The resulting automaton has 20788 state transitions. The

average GPURegex processing throughput is 3282 Mbits/second (among 30 GPURegex

executions using the same pattern file and input file that is 1.3MBytes). Similarly, the average

processing execution time (latency) is 3500 microseconds, whereas the CPU version of Aho-

Corasick achieves processing in 12000 microseconds. This means that the speedup of

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - June 30, 2022

GPURegex, in this case, is more than x3, due to the parallel processing, and specifically due to

the Single Instruction/Multiple Data (SIMD) model that OpenCL facilitates.

For the AudioCaps dataset, we use the pattern file that was constructed by the keywords that

were extracted by the captions (found in the fourth column). Each one of these patterns is a

fixed string, with a total of 7414 patterns. The pattern sizes are also diverse with the maximum

sized pattern being 19Bytes while the shortest pattern is 2Bytes. The resulting automaton has

14465 state transitions. Even though the number of the patterns is larger than in the first

example, their characteristics (length reaches up to 19Bytes versus the length of the 62Bytes

from the first automaton) lead to a shorter state transitions table. The average GPURegex

processing throughput is 3200 Mbits/second (among 30 GPURegex executions using the same

pattern file and input file that is 3.5MBytes). Similarly, the average processing execution time

(latency) is 2000 microseconds, whereas the CPU version of Aho-Corasick achieves processing

in 28000 microseconds. This means that the speedup of GPURegex, in this case, is more than

x10. This essential performance difference appears due to the large input file size. GPURegex

handles the input files, optimally, with respect to maximising processing performance and

enabling full data parallelisation and SIMD processing.

For the MACS dataset, we use the pattern file that was constructed by the tags that were

extracted by the sentences and were part of the yaml file provided in the dataset. Each one of

these patterns is a fixed string, with a total of 16 patterns. The maximum sized pattern is 12Bytes

while the shortest pattern is 3Bytes. The resulting automaton has 68 state transitions, due to the

short pattern file. The average GPURegex processing throughput is 6748 Mbits/second (among

30 GPURegex executions using the same pattern file and input file that is 933KBytes).

Similarly, the average processing execution time (latency) is 626 microseconds, whereas the

CPU version of Aho-Corasick achieves processing in 3500 microseconds. This means that the

speedup of GPURegex in this case is more than x5.

For the last experiment, we generate two synthetic input files and one pattern file. The

synthesised pattern and input files are generated using a simple python script, which takes as

arguments the number of lines to be generated and the number of characters for each line,

printing the corresponding randomly selected ASCII alphanumeric characters. Both input files

contain 10K lines of 100Bytes (its size is 987KBytes) and 1500Bytes (its size is 15MBytes) per

line, respectively. The pattern file consists of 1000 lines with 10Bytes pattern length. For the

microbenchmarks, we measure the throughput and execution time. Again, we measure the

processing performance of GPURegex, comparing it to the processing performance of GNU

Grep which is built for CPU execution. We present the throughput and execution time in two

separate tables (i.e., Table 9 and Table 10). More specifically, using the smaller input file,

GPURegex achieves an average processing throughput of 3200 Mbits/second (the average

execution time is 660ms), while GNU Grep exits with an average processing throughput of

789Mbits/second (the average execution time is 10000ms). Using the larger input file,

GPURegex achieves an average processing throughput of 3330 Mbits/second (the average

execution time is 7200ms), while GNU Grep exits with an average processing throughput of

723Mbits/second (the average execution time is 166000ms).

In all experiments, GPURegex succeeds better performance, when compared to the GNU Grep

utility.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - June 30, 2022

Table 9: Processing throughput of GPURegex and GNU Grep (measured in Mbits/second)

Throughput GPURegex GNU Grep

Input Length 100B (length

per line)

1500B (length

per line)

100B (length

per line)

1500B (length

per line)

10K Lines 3200 Mbits/sec 3330 Mbits/sec 789 Mbits/sec 723 Mbits/sec

Table 10: Processing time of GPURegex and GNU Grep (measured in microseconds)

Execution Time GPURegex GNU Grep

Input Length 100B (length

per line)

1500B (length

per line)

100B (length

per line)

1500B (length

per line)

10K Lines 660 ms 7200 ms 10000 ms 166000 ms

4.5 KPIs

In this section, FORTH will present the relation of the GPURegex component to the project-

and component-related KPIs in the context of the MARVEL project.

4.5.1 Project-related KPIs

The project-related KPI that concerns the component, namely GPURegex, which is

implemented in Task 4.3 in the context of the MARVEL platform is presented in Table 11.

More specifically, the KPI proposes the acceleration of the pattern matching procedure after

the utilisation of the GPURegex component. The processing performance is calculated with the

performance metrics of throughput and latency. As discussed in Section 4.4, the sustained

processing performance achieved using the OpenCL-enabled CPU offers significant processing

speedups, more than 10% of a similar CPU implementation.

Table 11: Project-related KPIs that concern GPURegex

KPI ID KPI Description Strategy
Related

Task

Related

Component

KPI-O1-E1-2 Increase of data

throughput and decrease

of access latency by

10%.

Access latency is defined by the

response time of the overall

system, while the throughput is

defined as the amount of data that

can be processed per unit of time.

T4.1,

T4.2

GPURegex

4.5.2 Component-related KPIs

The component-related KPI that concerns GPURegex is presented in Table 12. As similarly

stated in Section 4.5.1, GPURegex offers significant processing speed up. We evaluate

GPURegex using the “throughput” and “execution time” metrics (i.e., latency). The actual

result meets and succeeds the expected one, as described in Section 4.4 and the previous section

(Section 4.5.1).

Table 12: Component-related KPIs that concern GPURegex

KPI Metric Expected Result Relevant Project KPI

Efficiency Throughput and

Execution time

At least 10% processing

speed-up

KPI-O1-E1-2

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - June 30, 2022

5 Conclusions

In this deliverable, entitled D4.2 “Security assurance and acceleration in the E2F2C framework

– initial version” we presented the work performed in the context of Task 4.3 “Security and

acceleration in the complete E2F2C”, within the scope of WP4 “MARVEL E2F2C distributed

ubiquitous computing framework” and the MARVEL project under Grant Agreement No.

957337.

Specifically, the main three components are presented and discussed. The three components

have been developed in the context of Task 4.3 and offer security and acceleration features in

the complete E2F2C2 MARVEL framework. The security-related components are EdgeSec

VPN and EdgeSec TEE. EdgeSec VPN secures the communications using end-to-end network

encryption, while EdgeSec TEE shields the execution of sensitive data processing applications

within trusted regions of memory. The component that offers acceleration in the pattern

matching procedure is GPURegex, which takes advantage of the SIMD parallel processing

architectural design and modern processors, like powerful multi-core CPUs or GPUs.

This deliverable corresponds to the initial version of “Security assurance and acceleration in

the E2F2C framework”. In D4.5, the final version of this deliverable, the three components will

be explored and evaluated within the context of the MARVEL project as integral parts of the

whole framework and the use cases defined.

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - June 30, 2022

6 References

[1] Zhang, Z., Zhang, Y. Q., Chu, X., & Li, B. (2004). An overview of virtual private network (VPN):

IP VPN and optical VPN. Photonic network communications, 7(3), 213-225.

[2] Hauser, F., Häberle, M., Schmidt, M., & Menth, M. (2020). P4-IPsec: site-to-site and host-to-site

VPN with IPsec in P4-based SDN. IEEE Access, 8, 139567-139586.

[3] Alrowaily, M., & Lu, Z. (2018, October). Secure edge computing in IoT systems: review and case

studies. In 2018 IEEE/ACM Symposium on Edge Computing (SEC) (pp. 440-444). IEEE.

[4] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, undetectability, unobservability,

pseudonymity, and identity management-a consolidated proposal for terminology,” Version v0, vol.

31, p. 15, 2008.

[5] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-preserving in edge

computing paradigm: Survey and open issues,” IEEE Access, vol. 6, pp. 18 209–18 237, 2018

[6] Durresi, M., Subashi, A., Durresi, A., Barolli, L., & Uchida, K. (2019). Secure communication

architecture for internet of things using smartphones and multi-access edge computing in

environment monitoring. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1631-

1640

[7] Hopkins, J. and Green, M. (2019). OpenVPN 2.4 Evaluation Summary and Report. [online] Private

Internet Access Blog. Available at: https://www.privateInternetaccess.com/blog/2017/05/openvpn-

2-4-evaluationsummary-report/ [Accessed 16 Aug. 2019].

[8] Cisco. (2019). Security and VPN - Support Documentation. Retrieved from

https://www.cisco.com/c/en/us/tech/security-vpn/index.html

[9] Ferguson, N., & Schneier, B. (2003). A Cryptographic Evaluation of IPSec. Retrieved from

https://www.schneier.com/academic/paperfiles/paper-IPSec.pdf

[10] Donenfeld, J. (2018). WireGuard: Next Generation Kernel Network Tunnel [Ebook] (1st ed.).

Retrieved from http://www.wireguard.com/papers/wireguard .pdf.

[11] Osswald, L., Haeberle, M., & Menth, M. (2020). Performance Comparison of VPN Solutions

[12] Schuster, Felix, et al. "VC3: Trustworthy data analytics in the cloud using SGX." 2015 IEEE

symposium on security and privacy. IEEE, 2015.

[13] Zheng, Wenting, et al. "Opaque: An oblivious and encrypted distributed analytics platform." 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 2017.

[14] Priebe, Christian, Kapil Vaswani, and Manuel Costa. "EnclaveDB: A secure database using

SGX." 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.

[15] Goltzsche, David, et al. "Endbox: Scalable middlebox functions using client-side trusted

execution." 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN). IEEE, 2018.

[16] Trach, Bohdan, et al. "Shieldbox: Secure middleboxes using shielded execution." Proceedings of the

Symposium on SDN Research. 2018.

[17] Poddar, Rishabh, et al. "{SafeBricks}: Shielding Network Functions in the Cloud." 15th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 18). 2018.

[18] Deyannis, Dimitris, et al. "Trustav: Practical and privacy preserving malware analysis in the

cloud." Proceedings of the tenth ACM conference on data and application security and privacy.

2020.

[19] Deyannis, Dimitris, et al. "Andromeda: Enabling Secure Enclaves for the Android

Ecosystem." International Conference on Information Security. Springer, Cham, 2021.

[20] Baumann, Andrew, Marcus Peinado, and Galen Hunt. "Shielding applications from an untrusted

cloud with haven." ACM Transactions on Computer Systems (TOCS) 33.3 (2015): 1-26.

[21] Shinde, Shweta, et al. "Panoply: Low-TCB Linux Applications With SGX Enclaves." NDSS. 2017.

[22] Tian, Hongliang, et al. "Sgxkernel: A library operating system optimized for intel

SGX." Proceedings of the Computing Frontiers Conference. 2017.

[23] Tsai, Chia-Che, Donald E. Porter, and Mona Vij. "{Graphene-SGX}: A Practical Library {OS} for

Unmodified Applications on {SGX}." 2017 USENIX Annual Technical Conference (USENIX ATC

17). 2017.

[24] Arnautov, Sergei, et al. "{SCONE}: Secure linux containers with intel {SGX}." 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16). 2016.

[25] Baumann, Andrew, Marcus Peinado, and Galen Hunt. "Shielding applications from an untrusted

cloud with haven." ACM Transactions on Computer Systems (TOCS) 33.3 (2015): 1-26.

https://www.privateinternetaccess.com/blog/2017/05/openvpn-2-4-evaluationsummary-report/
https://www.privateinternetaccess.com/blog/2017/05/openvpn-2-4-evaluationsummary-report/
https://www.cisco.com/c/en/us/tech/security-vpn/index.html
https://www.schneier.com/academic/paperfiles/paper-IPSec.pdf
http://www.wireguard.com/papers/wireguard%20.pdf

MARVEL D4.2 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - June 30, 2022

[26] Kunkel, Roland, et al. "Tensorscone: A secure tensorflow framework using intel sgx." arXiv preprint

arXiv:1902.04413(2019).

[27] Volos, Stavros, Kapil Vaswani, and Rodrigo Bruno. "Graviton: Trusted Execution Environments on

{GPUs}." 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).

2018.

[28] Costan, Victor, and Srinivas Devadas. "Intel SGX explained." Cryptology ePrint Archive (2016).

[29] Gueron, Shay. "A memory encryption engine suitable for general purpose processors." Cryptology

ePrint Archive(2016).

[30] Aho, Alfred V., and Margaret J. Corasick. "Efficient string matching: an aid to bibliographic

search." Communications of the ACM 18.6 (1975): 333-340.

[31] Smith, Randy, et al. "Evaluating GPUs for network packet signature matching." 2009 IEEE

International Symposium on Performance Analysis of Systems and Software. IEEE, 2009.

[32] Vasiliadis, Giorgos, et al. "Gnort: High performance network intrusion detection using graphics

processors." International workshop on recent advances in intrusion detection. Springer, Berlin,

Heidelberg, 2008.

[33] Vasiliadis, Giorgos, et al. "Regular expression matching on graphics hardware for intrusion

detection." International Workshop on Recent Advances in Intrusion Detection. Springer, Berlin,

Heidelberg, 2009.

[34] Vasiliadis, Giorgos, Michalis Polychronakis, and Sotiris Ioannidis. "MIDeA: a multi-parallel

intrusion detection architecture." Proceedings of the 18th ACM conference on Computer and

communications security. 2011.

[35] Harrison, Owen, and John Waldron. "Practical Symmetric Key Cryptography on Modern Graphics

Hardware." USENIX Security Symposium. Vol. 195. 2008.

[36] Han, Sangjin, et al. "PacketShader: a GPU-accelerated software router." ACM SIGCOMM Computer

Communication Review 40.4 (2010): 195-206.

[37] Jamshed, Muhammad Asim, et al. "Kargus: a highly-scalable software-based intrusion detection

system." Proceedings of the 2012 ACM conference on Computer and communications security.

2012.

[38] Choi, Byungkwon, et al. "{DFC}: Accelerating string pattern matching for network

applications." 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI

16). 2016.

[39] Sun, Weibin, and Robert Ricci. "Fast and flexible: Parallel packet processing with GPUs and

click." Architectures for Networking and Communications Systems. IEEE, 2013.

[40] Vasiliadis, Giorgos, et al. "{GASPP}: A {GPU-Accelerated} Stateful Packet Processing

Framework." 2014 USENIX Annual Technical Conference (USENIX ATC 14). 2014.

[41] Go, Younghwan, et al. "{APUNet}: Revitalizing {GPU} as Packet Processing Accelerator." 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 2017.

[42] Papadogiannaki, Eva, et al. "Efficient software packet processing on heterogeneous and asymmetric

hardware architectures." IEEE/ACM Transactions on Networking 25.3 (2017): 1593-1606.

[43] Giakoumakis, Giannis, et al. "Pythia: Scheduling of concurrent network packet processing

applications on heterogeneous devices." 2020 6th IEEE Conference on Network Softwarization

(NetSoft). IEEE, 2020.

[44] Kim, Joongi, et al. "NBA (network balancing act) a high-performance packet processing framework

for heterogeneous processors." Proceedings of the Tenth European Conference on Computer

Systems. 2015.

[45] Papadogiannaki, Eva, and Sotiris Ioannidis. "Acceleration of intrusion detection in encrypted

network traffic using heterogeneous hardware." Sensors 21.4 (2021): 1140.

[46] Papadogiannaki, Eva, Dimitris Deyannis, and Sotiris Ioannidis. "Head (er) Hunter: fast intrusion

detection using packet metadata signatures." 2020 IEEE 25th International Workshop on Computer

Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE, 2020.

	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Relation to other Work Packages, Deliverables and Activities
	1.3 Contribution to WP4 and Project Objectives
	1.4 Structure of the Report

	2 Secure Communication on the Edge (EdgeSec VPN)
	2.1 Background
	2.1.1 Virtual Private Networks
	2.1.2 Secure Peer-to-Peer Communications
	2.1.3 State-of-the-Art

	2.2 Early Deployment and Integration
	2.2.1 Development
	2.2.2 Early Deployment
	2.2.3 Integration with MARVEL

	2.3 Use Cases and Related Components
	2.3.1 Related Components
	2.3.2 EdgeSec VPN in UNS Use Case
	2.3.3 EdgeSec VPN in GRN Use Cases
	2.3.4 EdgeSec VPN in MT Use Cases

	2.4 Early Experimental Results
	2.4.1 Testbed Setup
	2.4.2 Experiments
	2.4.3 Results

	2.5 KPIs
	2.5.1 Project-related KPIs
	2.5.2 Component-related KPIs

	3 Trusted Execution on the Edge (EdgeSec TEE)
	3.1 Background
	3.1.1 Trusted Execution Environments
	3.1.2 Containers
	3.1.3 State-of-the-Art

	3.2 Early Deployment and Integration
	3.2.1 Development
	3.2.2 Early Deployment
	3.2.3 Integration with MARVEL

	3.3 Use Cases and Related Components
	3.3.1 Related Components
	3.3.2 EdgeSec TEE in MARVEL Use Cases

	3.4 Early Experimental Results
	3.4.1 Testbed Setup
	3.4.2 Experiments
	3.4.3 Results

	3.5 KPIs
	3.5.1 Project-related KPIs
	3.5.2 Component-related KPIs

	4 GPU-accelerated Stream Processing on the Edge (GPURegex)
	4.1 Background
	4.1.1 GPU-Accelerated Stream Processing
	4.1.2 GPU-Accelerated Pattern Matching
	4.1.3 State-of-the-Art

	4.2 Early Deployment and Integration
	4.2.1 Implementation
	4.2.2 Early Deployment
	4.2.3 Integration with MARVEL

	4.3 Use Cases and Related Components
	4.3.1 Related Components
	4.3.2 GPURegex in MARVEL Use Cases

	4.4 Early Experimental Results
	4.4.1 Testbed Setup
	4.4.2 Experiments
	4.4.3 Results

	4.5 KPIs
	4.5.1 Project-related KPIs
	4.5.2 Component-related KPIs

	5 Conclusions
	6 References

