BN Horizon 2020
{ } Europc—.fan. ‘ European Union funding
jakodel Commission for Research & Innovation

Big Data technologies and extreme-scale analytics

@NMARVYE

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D4.2: Security assurance and acceleration in E2F2C framework —
initial versiont

Abstract: This deliverable is the initial version of the security assurance and acceleration in the
E2F2C framework and it describes the initial version of the work conducted in Task 4.3, which
is part of the WP4. Security assurance is achieved by two components. The first component is
named EdgeSec Virtual Private Network (EdgeSec VPN). EdgeSec VPN secures the
communications-between the different components of the MARVEL platform within the
different layers (i.e., Edge, Fog, Cloud). The second component, namely EdgeSec Trusted
Execution Environment (EdgeSec TEE), enables confidential and secure execution of
applications.that process sensitive data. Acceleration is achieved through GPURegex, which is
a component that offers GPU-accelerated stream processing. More specifically, GPURegex
accelerates the pattern matching procedure. In this deliverable, we discuss about these tools,
their relation to the MARVEL project and how they address the objectives and KPIs defined.

Contractual Date of Delivery 30/06/2022
Actual Date of Delivery 30/06/2022
Deliverable Security Class Public
Editor Eva Papadogiannaki, Sotiris loannidis (FORTH)
Contributors FORTH, TAU, UNS
Quality Assurance Borja Saez (IFAG)

Dragana Bajovic (UNS)

T The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957337.

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

The MARVEL Consortium

Participant
Short Name

Participant organisation name

Country

FOUNDATION FOR
1 RESEARCH AND FORTH Coordinator EL
TECHNOLOGY HELLAS
INFINEON TECHNOLOGIES

2 AG IFAG Principal Contractor DE
3 AARHUS UNIVERSITET AU Principal Contractor DK
4 ATOS SPAIN SA ATOS Principal Contractor ES
CONSIGLIO NAZIONALE V &
5 DELLE RICERCHE CNR Principal Contractor IT
6 INTRASOFT I g LERNATIONAL INTRA Principal Contractor LU
FONDAZIONE BRUNO .
7 KESSLER FBK Principal Contractor IT
8 AUDEERING GMBH AUD Principal Contractor DE
9 TAMPERE UNIVERSITY TAU Principal Contractor Fl
10 PRIVANOVA SAS PN Principal Contractor FR
SPHYNX TECHNOLOGY -
11 SOLUTIONS AG STS Principal Contractor CH
12 COMUNE DI TRENTO MT Principal Contractor IT

UNIVERZITET U NOVOM
13 | SADU FAKULTET TEHNICKIH UNS Principal Contractor RS
NAUKA
INFORMATION
14 | TECHNOLOGY FOR MARKET ITML Principal Contractor EL
LEADERSHIP
15 GREENROADS LIMITED GRN Principal Contractor MT
16 ZELUS IKE ZELUS Principal Contractor EL
INSTYTUT CHEMII
17 | BIOORGANICZNEJ POLSKIEJ PSNC Principal Contractor PL
AKADEMII NAUK

MARVEL -2- June 30, 2022

MARVEL D4.2

H2020-1CT-2018-20/Ne 957337

Document Revisions & Quality Assurance

Internal Reviewers
1. Borja Saez, IFAG

2. Dragana Bajovic, UNS

Revisions
Version Date By Overview
2.2 29/06/2022 Eva Papadogiannaki (FORTH) Final document
2.1.1 21/06/2022 Eva Papadogiannaki (FORTH) Minor revision after IR
2.1.0 16/06/2022 Eva Papadogiannaki (FORTH) Revision after IR (round 1)
2.0.2 14/06/2022 Dragana Bajovic (UNS) IR (round 1)
2.0.1 09/06/2022 Borja Saez (IFAG) IR (round 1)
2.0.0 07/06/2022 Editors & Contributors Document ready for IR
1.0.0 27/04/2022 Eva Papadogiannaki (FORTH) Final ToC revision
0.1.3 21/04/2022 Dragana Bajovic (UNS) Final ToC comments
0.1.2 13/04/2022 FORTH ToC revision
0.1.1 05/04/2022 Dragana Bajovic (UNS) Comments on the ToC
0.1.0 21/03/2022 Eva Papadogiannaki (FORTH) ToC
Disclaimer

The work described in this document has been conducted within the MARVEL project. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 957337. This document does not reflect the opinion of the European Union, and
the European Union is not responsible for any use that might be made of the information contained

therein.

This document contains information that is proprietary to the MARVEL Consortium partners. Neither
this document nor the information contained herein shall be used, duplicated or communicated by any
means to any third party, in whole or in parts, except with prior written consent of the MARVEL

Consortium.

MARVEL

June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Table of Contents

I SN IO 7Y = I SR 6
I IS IO ot T TSR 7
LIST OF ABBREVIATIONS ...ttt ettt ettt h e e st e et e s s aa e et e e s st e e sbessabe s sbessabessbessbassbasantas 8
EXECUTIVE SUMMARY ..ottt ettt ettt ettt st e st 1 s s ate et e s s bt ssbe s s st e s sb e s s st e s sb e s s beesbesssbassbeeasbessbbesbessrees 10
1 LN RO 10 10 L B 1\ 11
1.1 PURPOSE AND SCOPE. ... et ettt eetee et et eeeeee et e et e e e s et e et eseeeeereeeeneeseeeereeseeeereenineeeneeneneeneenereerneesaneesreeens 11
1.2 RELATION TO OTHER WORK PACKAGES, DELIVERABLES AND ACTIVITIES itteeetieeirveeereeireeesreeseeesrenans 11
1.3 CONTRIBUTION TO WP4 AND PROJECT OBIECTIVES .. .vvitieiiiitteiieesseieeesiisssesineseessssseseessssssnessssssssssenss 12
1.4 STRUCTURE OF THE REPORT ...ttiiiii ittt ettt ee e sttt e e s s etveeee s s s sfaanas i taee s e s seabbaseeessssbebeeessssanraenss 13

2 SECURE COMMUNICATION ON THE EDGE (EDGESEC VPN).........cccoitieieieecesee e 14
2.1 (27X e =010] | o T 14
2.1.1 Virtual Private NETWOTKSccoiiieieiii et sdia e iee s e e e e et eesstte e e esaa s s bie e sesea s e saraassneneas 14

2.1.2 Secure Peer-to-Peer COMMUNICALIONSeeeiieeifoiiiieiiiie e eeee st ee st eeees s eraeesibwas i e eeeeseaeee s 14

P2 TG T - | (T 0) 11y Y S TN S SRR 15

2.2 EARLY DEPLOYMENT AND INTEGRATIONuuvviileiiiiuieeesinetreeeesssbansatiessesssressesssssssssseshasssnnesesiisseneesns 16
2.2.1 DEVEIOPMENL ...ttt s de ettt b bbbttt et ane 16

2.2.2 EQrly DEPlOYMENT....c.i it e aere s bas e st te st et ettt s et e rtereeneereeresreareas 16

2.2.3 Integration With MARVELccccoiiiiiiiiicicie e ssre s tine ettt e e saeaesaesa s e enassesnennens 17

2.3 USE CASES AND RELATED COMPONENTS t.....vviieeivieeiereeeeeteeseessesssnsestinsesesdheressssesssssessessssssssesssnsesssnsees 18
2.3.1 Related COMPONENLS........ccvieieiieeisriatesse s it eeseeseeesseesestessesesarasanasessesseseensesseseessessesesseesensessessens 18

2.3.2 EAQESEC VPN iN UNS USE CaSE....ciiitereereivaseeseasiiineseeeesessessesesbtessessessessessessessessessessssesssssssessessens 19

2.3.3 EAQESEC VPN iN GRN USE CaSESeiitreerereereitanssennesesss iiimssdee e eeseessessessessessessesesssessssassessessessessens 20

2.3.4 EAQESEC VPN IN MT USE CASESoueeveiithenestioteneiienistesesiestsie et seeie st stese sttt sttt se et et sans 21

2.4 EARLY EXPERIMENTAL RESULTS....uttiiieii s iitet e sttt e s s fo e e e s ettt e e e s ettt e e e s st b et e e s s sbbbaeassssnbbaneeeeas 22
240 TSt SOUD ittt ittt bbbttt et 22

2.4.2 EXPEIIMEINES . ettt sttt ettt bkt b etk bbb bbb bbbt b et r e 23

2.4.3 (T U T S TR 25

25 [N FS T e TR 30
251 Project-related KPIS:a. ettt 30

252 ComMPONENE-TEIAEA KPScoiveiiiieierieisiee ettt b nne 31

3 TRUSTED EXECUTION ON THE EDGE (EDGESEC TEE)........ccociiiiiiiiiceeeeeeeee e 33
3.1 BACKGROUND ... ttieeiiittiiee e e eissreee e e setbetee e s eatbbaeeeesasabbaeeeeesaabbaseeesaabbbbeeeesaatbaeeeesssbbaseessabbbaeeeeesbbbaeeeesan 33
3.1.1 . Trusted EXECUtION ENVIFONMENTS......c.ucivuiiitieiiieii sttt ettt e st sb s s ae e sbe s st e s sbessab e s srassntessres 33

TR A 040 41 7= 11T 3 34

TR R T - (=0 1 (T A o A 35

3.2 EARLY DEPLOYMENT AND INTEGRATION ..vtvviiiiiiieieieeeeieiiisssisissssasssssesesssrsssssasasssssssssssssssssssssssssssssnnes 36
321 DVEIOPIMENTL. . ettt bbb bbb bbb e bbb bbbtk et 36

322 EArIY DEPIOYMENT......c.iiuiiiteieteieeie ettt bbbt bbbt et 37

3.2.3 Integration With MARVEL ..ottt e 38

3.3 USE CASES AND RELATED COMPONENTSutttiiiiiiittiieeesieitieieesssstbstesssssssbessessssbasssessssssssssssssssssessessns 38
3.3.1 Related COMPONENLS.......ciiiiitiiteitertiie ettt ettt b ettt b et st sb e b b st e e e s e e et eseeseeneebesbesbennea 39

3.3.2 EdgeSec TEE iN MARVEL USE CASEScuiueieeeuieieaieieeiesiesiestestesteseestesaeseesee e seeeesesseanessessessesnens 39

3.4 EARLY EXPERIMENTAL RESULTS...iiittiiiii ittt e sttt be e s s sttt e e s s s e bbb e e s e s sbb b e s s e s s sbbbbe e s s s sabbbaneaeeas 39
34 L TESDEA SEEUPDeiitieteite ittt ettt bt bbb bbb ettt bt b e ne bbb ene s 39

I (1<) 111 1=1 01 £SO USRURURURURPRUPTON 39

I J R T = (YU | £ 39

35 |2 R 39
3.5.1 ProjeCt-related KPIS........ccoiiiiiieiiiisieie sttt sttt st et e e sa e e esaeseeneeneeresrennens 40

3.5.2 Component-related KPISo ittt e n e e ne e nennens 40

4 GPU-ACCELERATED STREAM PROCESSING ON THE EDGE (GPUREGEX).......cccccccveivivnnnne 42

MARVEL -4 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

4.1 BACKGROUND ... oottt sttt sttt ettt r e st e e ab e e e s he e e e s Re e nR e e b e e Rt e s e e n Rt e nn e nb e enreebeenneeneeneeneenneennas 42
4.1.1 GPU-Accelerated Stream ProOCESSINGcoveiveveieiereaesesiesteseseseessessessessessessessessessesssssssessesessenses 42

4.1.2 GPU-Accelerated Pattern MatChingcccoevveieieiiiiiiisie et 42

413 StALE-OF-TNE-ATT ...ttt et b bbb 43

4.2 EARLY DEPLOYMENT AND INTEGRATIONvouvitiiitiietiiesistessstessstesstesesessesessesessessstessasessesessesessesessens 44
421 IMPIEMENTALION ...ttt b et bbbttt b et b et b et b et ebe e 44

4.2.2 EArly DEPIOYMENT ..ottt bbbt bbbt ekt sb et b et b et b e b 46

4.2.3 Integration With MARVELccciiiiii sttt ene e 47

4.3 USE CASES AND RELATED COMPONENTScotiiutiiteaiesteastesieesaesiesstessessbessssssesssasseessesssessesssessessssssesnns 47
4.3.1 Related COMPONENTS.......ciieiiteiiiteieteeet ettt b et b et b ettt ekt nn ekt nr et e b e eb e b e ene e 48

4.3.2 GPUREQGEX IN MARVEL USE CASES.....cuciieiirieiirieiesieesieestesestesessesessessssessesessesessesessessssessssessssesens 48

44 EARLY EXPERIMENTAL RESULTS. ..ccutiitietiitietieiee sttt st et st e e sae st e sbesseesbeassesbeesbesneenbesneenbesneesneennas 48
441 TESIDEA SEIUPeiterieitiiteite ettt b sttt b bt bbb bbbt s e s e et e bt eb et e b b e b 48

442 EXPEIIMENTS ...ouiiiiiiiiiitiiie sttt sttt sbe b b sae b e dhe e e Bttt et sbe e 49

A4.3 RESUIS .ottt sa e be et eR ettt sttt be et et e 50

4.5 P LS ettt bt ne et e ARttt et n et enes 52
451 ProjeCt-related KPIS.......ccoiiiiiiiieie et sdbsne st e sneabin e e e enseseeaeneeseesesnennenns 52

4.5.2 Component-related KPIS......c.ccoiiieieieicieiei et snnn et esanenasae e esseseeseeneereeneanenrenes 52

5 CONCLUSIONS ..ottt s ifane s e tBs e st se st e e be e s tea et B et sete s etesbesesrns 53
6 REFERENCES........co ottt ee et e e st e e e e teesaae e steesnaeenseessananna i T e e s teesnreenees 54

MARVEL -5- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

List of Tables
Table 1: Modified Dockerfile with proxy environment variables ... 19
Table 2: PAaCKet SIZ& 100 DYLESceeeieieiiee sttt ettt e et esaeseeeteeneestesae e e eeneeanenns 27
Table 3: Packet Size 500 DYLEScviuiiiirieieiiiee e 27
Table 4: Packet Size 1000 DYTESccuiiuiiieieiiiite ettt 28
Table 5: Project-related KPIs that concern EAgeSEC VPN ... 31
Table 6: Component-related KPIs that concern EAgeSec VPNccoviiiicieic s, 31
Table 7: Project-related KPIs that concern EAgeSEC TEEcccocoviiiic i, 40
Table 8: Component-related KPIs that concern EAgeSec TEE..........cccoceveiiiieic i, 41
Table 9: Processing throughput of GPURegex and GNU Grep (measured in Mbits/second)................ 52
Table 10: Processing time of GPURegex and GNU Grep (measured in microseconds)c.cco..... 52
Table 11: Project-related KPIs that cONCern GPUREQGEXcoveiiirierieriiiestinn e 52
Table 12: Component-related KPIs that concern GPUREQEX.............oiverabmriiinneneerieisineneseeesesie s 52

MARVEL -6- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
List of Figures

Figure 1. Conceptual architecture of the whole MARVEL platformccccoovviiiiiicii e, 12
Figure 2: The N2N rChITECTUNE ..ottt ettt e st sneeseeseeeneenes 17
Figure 3: EdgeSec VPN forms a full mesh tOpologycceieiiininieieieisesesee e 18
Figure 4: EJgeSec VPN iN UNS USE CASEccuiiriiiiiinieiieieisese sttt 20
Figure 5: EJgeSec VPN iN GRN USE CASES......cceiiiiirieriiiieieiesieste ettt sne s 21
Figure 6: EAgeSEC VPN iN MT USE CaASEcveiieiieeiieie it etes ettt ste st ste et e steste e esestesnaeaesresreenes 22
Figure 7: Virtual Machings iN PrOXMOX........c.coiiiiieiieieieeie s ste st sre et sre e tesreesnesresre s 23
Figure 8: The output of the Super Node eXecution SCHIPL........ccvveiiiiiecie e 23
Figure 9: The output of the first EAQEe NOGEcccveiiiiiiiie e 24
Figure 10: The output of the second EAge NOGE.covriieiiiiiieieeecse et e 25
Figure 11: Ping CONNECEIVILY EXPEIIMENTiiiiiieiiisieieee et et 25
Figure 12: First edge node pings the public IP of the second edge node with payload 100 bytes......... 26
Figure 13: First edge node pings the VPN IP of the second edge node with payload 100 bytes........... 26
Figure 14: First edge node pings the public IP of the second edge node with payload 500 bytes......... 26
Figure 15: First edge node pings the VPN IP of the second edge node with payload 500 bytes........... 26
Figure 16: First edge node pings the public IP of the second edge node with payload 1000 bytes....... 27
Figure 17: First edge node pings the VPN IP of the second edge node with payload 1000 bytes......... 27
Figure 18: Python-based http server on SeCond edge NOME ...u.......coveie bbb 28
Figure 19: Request to the http server using the public IP ..o i e 28
Figure 20: Tcpdump showing the content of the web page in clear textc.coceoviiiininciniienns 29
Figure 21: Request to the http server using the VPN TP ... 29
Figure 22: Tcpdump showing the content of the web page is encrypted........cccccooviviieiieiiiievciccie, 30
Figure 23: An Intel SGX application is divided into.an untrusted and trusted part. Privileged system
code does not have access to the trusted part of the Intel SGX application at any time........................ 34
Figure 24: Differences between VMS and CONtAINETS i s i et 35
Figure 25: SCONE offers secure containers (With DOCKEN).........cceeiiieiiiiiiieecsse s 36
Figure 26: An overview Of EAQESEC TEE ... 37
Figure 27: An example python command within the image of EdgeSec TEEc.ccocoeiiiiiiiinenns 38
Figure 28: Commands to install Python libraries (e.g., joblib, numpy, scikit-learn, scipy and
threadpoolctl) WithinEAGESEC TEE /.u... ..o deeesiceee e 38
Figure 29: Successful installation‘of Python libraries within the docker image of EdgeSec TEE (i.e.,
joblib, numpy, scikit-learn, scipy and threadpoolCtl)............cccoeiiiiiiiici 38
Figure 30: High-level overview of GRURegeX in MARVEL ...t 44
Figure 31: Construction of the state transition table ... 45
Figure 32: Architectural comparison of an integrated GPU, packed with the main processor in the same
CPU die versus a discrete, dediCated GPU ... 46
Figure 33: AN OVEIVIEW OF GPUREGEXc.uiiiiiiiieiiiite ettt sbe s 46
Figure 34: An'example run of GPURegex inside the container destined for Intel CPUs...................... 47
Figure 35: OVEIVIBW OF AACottt be et et e s be s re e b e besre e e e sreareenes 48

MARVEL -7- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
List of Abbreviations

AAC Automated Audio Captioning

AS Authenticator Server

API Application Programming Interface

CPU Central Processing Unit

DFA Deterministic Finite Automaton

DoA Description of Action

DRAM Dynamic Random Access Memory

EC European Commission

EPC Enclave Page Cache

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security.

ISA Instruction Set Architecture

ISP Internet Service Provider

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GRE Generic Routing Encapsulation

KPI Key Performance Indicator

L2TP Layer 2 Tunnelling Protocol

MEE Memory Encryption Engine

(OR) Operating System

PPTP Point-to-Point Tunnelling Protocol

PRM Processor Reserved Memory

RNA Ribonucleic Acid

RTT Round-Trip Time

SGX Software Guard Extensions

SIMD Single Instruction Multiple Data

SOCKS Socket Secure

SSL Secure Sockets Layer

TCB Trusted Computing Base

TEE Trusted Execution Environment

MARVEL

June 30, 2022

H2020-1CT-2018-20/Ne 957337

MARVEL D4.2

TLS Transport Layer Security
VM Virtual Machine

VPN Virtual Private Network
WP Work Package

MARVEL

June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Executive Summary

The goal of this deliverable is to present and describe the initial versions of the components that
participate in the whole MARVEL platform and enable security and acceleration features in the
complete Edge-to-Fog-to-Cloud continuum. This deliverable has been developed within the
scope of WP4 “MARVEL E2F2C distributed ubiquitous computing framework”, and more
specifically, within the scope of Task 4.3 “Security and acceleration in the complete E2F2C”
of the MARVEL project under Grant Agreement No. 957337.

The deliverable demonstrates the initial versions (development until M18) of the security
components, namely EdgeSec VPN and EdgeSec TEE, and the initial version of the component
offering the acceleration feature, namely GPURegex. EdgeSec VPN secures the
communications between the different components of the MARVEL platform within the
different layers (i.e., Edge, Fog, Cloud). EdgeSec Trusted Execution Environment (EdgeSec
TEE), enables confidential and secure execution of applications that process sensitive data.
Acceleration is achieved through GPURegex, which is. a component that offers GPU-
accelerated stream processing. More specifically, GPURegex accelerates the pattern matching
procedure. In this deliverable, we discuss about these tools, their relation to the MARVEL
project and how they address the objectives and KPIs defined.

D4.5, which is the following and ultimate version of this deliverable, will present the final
versions of the components EdgeSec VPN (i.e., security), EdgeSec TEE (i.e., security) and
GPURegex (i.e., acceleration).

MARVEL -10- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
1 Introduction

1.1 Purpose and Scope

This deliverable, entitled D4.2 “Security assurance and acceleration in the E2F2C framework
— initial version” presents the work performed in the context of Task 4.3 “Security and
acceleration in the complete E2F2C”, within the scope of WP4 “MARVEL E2F2C distributed
ubiquitous computing framework” and the MARVEL project under Grant Agreement No.
957337. As this is the initial version of the deliverable, we detail the components that have been
developed and become available through the MARVEL image registry before M18.

The components that are demonstrated in this deliverable and offer security features to the
E2F2C framework are (i) EdgeSec VPN and (ii) EdgeSec TEE. EdgeSec VPN secures the data
transfer over the network, while EdgeSec TEE offers confidential computing for python
applications that process sensitive user data. In the context of the MARVEL project, EdgeSec
VPN will be used to encrypt any data that is transferred between the MARVEL components to
meet the requirements of a strict communication security.. As EdgeSec TEE will be fully
integrated into the MARVEL platform after M18, its complete utilisation will be further
discussed in the following version of this deliverable (D4.5).

The component that enables acceleration in the E2F2C framework is GPURegex. More
specifically, what GPURegex offers is the performance acceleration of the pattern matching
procedure. GPURegex can be applied in numerous cases since pattern matching is the core
operation of several and diverse applications, from network packet processing, database search
to RNA structure alignments. In the context of the MARVEL project, GPURegex will be
probably used for keyword searching against captions exported from audio and video captures.

Thus, in this deliverable, we aim to discuss the details of the development, deployment,
integration, and performance results of the three components that bring security assurance (i.e.,
EdgeSec VPN, EdgeSec TEE) and acceleration (i.e., GPURegex) in the E2F2C framework.
During the first months of the project, EdgeSec was referred to as a complete and
interdependent component with two separate functionalities (i.e., VPN and TEE). Currently,
we believe that it is better to refer to these two distinct functionalities with two separate names,
in order to be-more coherent; thus, we discuss the two functionalities in two separate sections
(Sections 2 and 3).

1.2/ Relation to other Work Packages, Deliverables and Activities

From the Task 4.3 description below, we can understand that the security and acceleration
features are principally expected in the edge layer, some steps after the data collection from the
sensors, to securely and promptly transfer those data to the subsequent layers and participating
components. The description of Task 4.3 follows:

This task will explore remote attestation, a well-known technique, for verifying the state
of remote computing devices and for verifying the trustworthiness of the data collected
and shared by remote sensors. Moreover, trusted execution environments (such as Intel
SGX) which can enable remote attestation and further provide full memory encryption
will be explored as well (Sect. 1.4.1.5). These environments contain secure elements that
lie in the hardware chip, and support, at least, advanced cryptographic functions and
physically protected storage of private and secret keys. This will allow building a multi-
layer architecture that will provide security, trust and privacy in the edge device itself.
Finally, the utilisation of GPU accelerated streaming processing in edge devices will
also be explored in this task (Sect. 1.4.1.5). This low-end GPU acceleration in the

MARVEL -11- June 30, 2022

MARVEL D4.2

H2020-1CT-2018-20/Ne 957337

processing of streaming data is able to accelerate light computations as a pre-
processing phase, right before offloading tasks to the cloud.

The work conducted in Task 4.3 aims to offer security and acceleration in the complete E2F2C
framework, where specifically EdgeSec VPN aims to participate in the MARVEL platform as
a more holistic element, securing every step of data transmission with end-to-end network

packet encryption.

Furthermore, this deliverable has close relation with Task 3.4, where EdgeSec VPN participates
in the distribution of the Al tasks. Also, it can interact with Task 3.3, where GPURegex will
accelerate the processing of audio/video captions that will be resulted from the components that
participate there. Finally, Task 4.3 and the corresponding deliverables (i.e., D4.2 and DA4.5)
have also close relation to WP1 by addressing the project objectives and the.respecting KPIs.

Figure 1 presents the conceptual architecture of the whole MARVEL platform, where the
placement of the components EdgeSec VPN, EdgeSec TEE, and GPURegex is highlighted
using black, dashed rectangles. In the following sections, we will refer to this figure to help the
reader recognise the relation of the three components with the other MARVEL components.

Subsystem

\ E2F2C infrastructure via MARVdash |

(12
Qoo

EdgeSec TEE

EdgeSec TEE

Fog tier

Cloud tier

Edge tier

Optimized E2F2C Processing Audio, Visual and Multimodal Al Subsystem System outputs/User interface
and Deployment Subsystem
:{Federated learning Audio-visual classification Data Corpus-as-a-Service
I —— —
: ! 2 - VCC,AVCC | ViAD,AVAD | CATFlow AAC, AAVC “ et
{Compression | GPURegex AudioTagging | SED,SELD | SED@Edge | devalce [A0’ 8 queries
I i ,
i via AA(V)C ! . : %
____________ _—_m e Feature extraction Multimodal representations -
Sensing and Perception | | Security, Privacy Training A Da;a;‘a'?:ge.m ent Decision making
Subsystem and Data Protection and Distribution toolkit
Subsystem Subsystem ko
—_— Advanced visualizations e
[Cloud Deployed Models |]
S 52 Trainng o 8 ™ I
I =N I I
- /
\ vy
. —— | | = Raw AV data stream
LAty / Fog Deployed Models R A ised AV
- - || = Anonymise
§ o ;?2;“:.7,’.; % ™ data stream
E | - S e - AV data storage
E -
- = h. A —+ Inference results,
F < Verification results
c
< - Inference results stor.
{ - \ 3 e T — Metad, o |
i | GRNEdge i) s g — [EdgeDeployed Models | == —» Metadata, Contra
i o9 | % omine R data
! =
! | AVDrone A ! |L = o . Training T - Source metadata stor.
: 5 | S o ["
i | sensMiner |3 o b J Al models
i = e y
MEMS microph B . Al models repository
- 1
_______________________ — Optimised Al models
-

Figure 1: Conceptual architecture of the whole MARVEL platform

1.3 Contribution to WP4 and Project Objectives

This deliverable is the main outcome of Task 4.3, which is entitled “Security and acceleration
in the complete E2F2C”. Task 4.3 is part of WP4 “MARVEL E2F2C distributed ubiquitous
computing framework”. The description of WP4 is presented in the next paragraph.

WP4 develops the MARVEL E2F2C framework in order to fully harness, in resource-
optimised and secure way, the edge (including data capturing), fog and cloud resources
to effectively orchestrate and distribute computational and Al-related tasks (Pillar 111).
A major consideration towards this goal is the ability to perform a significant part of
the processing at the Edge or Fog. Therefore, Al-enabled devices that can run (edge-
optimised) light-weight DL models play a key role. Moreover, security and acceleration

MARVEL

-12 -

June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

methods will be enforced at all layers so as to end up with a robust, trustworthy and
fast decision support toolkit.

The objectives of WP4 are presented in the DoA as follows:

To address these challenges, WP4 objectives are to: (i) offer GPU stream processing
acceleration in edge devices and nodes; (ii) define and deploy a security strategy,
including privacy-aware algorithms, at the edge; (iii) describe innovations performed
by analogue and digital microphones that are based on MEMS technology; (iv) utilise
the openSMILE platform for audio analysis and feature extraction; (v) develop
advanced visualisation techniques to support both real-time and long term decision-
making.

Thus, this deliverable contributes to WP4 and project objectives by offering (i) GPURegex for
processing acceleration and (ii) the combination of EdgeSec VPN and EdgeSec TEE as a
security strategy with privacy-aware technologies (i.e., encrypted data transfer across the
network and Trusted Execution Environments for confidential execution).

1.4 Structure of the Report
The structure of this deliverable is outlined as follows:

e In the first section, we provide an introduction of this deliverable, highlighting its
purpose and scope, its relation to the other work packages, deliverables and activities
within the context of the MARVEL project, its contribution to WP4, and the total
objectives of the project (i.e., Section 1).

e In the second section, we present the first. security feature offered through the
component called EdgeSec VPN (i.e., Section 2), which offers encryption of data
transmitted over the network traffic.

e Then, in the third section, we present EdgeSec TEE (i.e., Section 3), which is the second
component that offers security and privacy in the complete E2F2C2, by enabling
confidential processing of code and sensitive data into isolated and encrypted memory
regions.

e In the fourth section, we present details about the component, namely GPURegex, that
offers processing acceleration of pattern matching applications, using GPUs or other
hardware devices that enable SIMD processing (i.e., Section 4).

e In the final section, we conclude this deliverable, by summarising its contents and
results (i.e., Section 5).

While EdgeSec aims to offer a unified security assurance in the context of the whole MARVEL
platform, the two involved components, namely EdgeSec VPN and EdgeSec TEE are distinct
and operate independently. Thus, we present the two components in two distinct sections, so as
not to perplex the two technologies.

MARVEL -13- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
2 Secure Communication on the Edge (EdgeSec VPN)

In this section, EdgeSec VPN is presented and described. EdgeSec VPN is the first component
that brings security and privacy features to the complete E2F2C framework, developed within
the MARVEL project. More specifically, EdgeSec VPN is based on the technology of peer-to-
peer VPNS.

In the following sections, we provide some background information regarding VPNS, secure
peer-to-peer communications, and the related state-of-the-art. We describe the basic
development and deployment details. Then, we locate the relevant project and component KPlIs.
Finally, we discuss about their correlation with EdgeSec VPN and how they can be realised
within the context of MARVEL.

2.1 Background

In this section, background information related to EdgeSec VPN is presented. More
specifically, we discuss the basics of Virtual Private Networks (VPNSs), secure peer-to-peer
communications and the state-of-the-art.

2.1.1 Virtual Private Networks

A virtual private network (VPN) is basically a connection.over the Internet from a specific
device to a target network. The term VPN is associated with encrypted transmitted data. The
encryption, although it is not a key characteristic of a VPN connection, it ensures that sensitive
data is safely transmitted and prevents unauthorised entities from eavesdropping on the traffic.
Corporate environments usually make use of VPNSs.

The term VPN is used to describe the communication among a closed user group, using a shared
network infrastructure. The available public infrastructure is used for the realisation of the
private network operation: /Addressing, connectivity, access control, etc. are offered in the same
way a conventional private network would offer them. The major advantage of VPN is cost
savings since it eliminates the need for long-distance leased lines, operational support, etc. The
main disadvantage is that its performance depends on factors that cannot be controlled by the
use of a VPN, especially if this VPN uses the internet for the communication of its participants.
A number of different VPN protocols have been created, such as PPTP, L2TP, GRE, IPSec,
SOCKS: These protocols enable -authentication and encryption, two very desirable
characteristics of a virtual private network [1].

Another definition sets VPN as an extension of private networks across public networks, with
additional authentication and encryption to network traffic. Internet Protocol Security (IPsec)
is one of the VPN protocols that is quite popular. It is standardised by the Internet Engineering
Task Force (IETF), and it offers protection on the Internet Protocol (IP) layer [2].

2.1.2 Secure Peer-to-Peer Communications

Secure peer-to-peer communication is the goal in many different contexts involving dissimilar
technologies.

Edge computing is an emerging paradigm that promises data processing that is done at or near
the collectors of data, limiting the possibility for a central cloud computing infrastructure to run
beyond its capability. In such a framework, security aspects have been raised [3]. Technologies
such as Pseudonymity, Unobservability, Unlinkability, and Anonymity are used for privacy
preservation [4]. On the other hand, Confidentiality, Integrity, Availability, Access control, and
authentication are the factors for the security evaluation of a system [5]. An ideally reliable
system offering edge computing does not disclose a user’s identity, behaviour, and location.

MARVEL -14 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

These kinds of requirements place barriers to the broader deployment of such systems.
However, the goal is to collect and process a large amount of data without revealing a user’s
private information.

A security architecture that includes an authenticator server (AS) is proposed in [6] as the
solution to systems that use cellular networks and multi-access edge computing. Strong
authentication, confidentiality, and access control are the security goals of the architecture. AS
is considered always secure and is responsible for the provision of required keys for the
communication between the sensor nodes and the smartphones (end users). This architecture
allows the use of asymmetric or symmetric cryptography in the communications among the
different architecture elements.

2.1.3 State-of-the-Art
There are two common VPN solutions: i) IPSec and ii) OpenVPN.

OpenVPN has become the de facto standard in VPNs today. Ituses SSL/TLS for key exchange
and encryption. OpenVPN is open-source and according to an independent review in 2017 by
Cryptography Engineering [7], there were no major vulnerabilities. OpenVPN. is fully
functional on three major operating systems (Windows, macOS, and Linux). A plethora of
ciphers and encryption methods can be used.

IPSec is actually a set of protocols working together [8]. Layer 2 Tunnelling Protocol (L2TP)
is used for the tunnelling of the VPN, transferring the messages’ payload. Regarding security
protocols, IPSec offers encrypting and negotiating keys. In that way, additional security is
offered at the IP layers in the form of encryption with additional complexity. Another way of
achieving security is certificates and pre-shared private keys. There are studies that recognise
complexity as the main drawback of IPSec [9].

A third VPN solution named WireGuard is presented in [10]. This third solution could avoid
the complexity of IPSec and perform better than OpenVPN. WireGuard makes use of
asymmetric key cryptography and state-of-the-art eryptographic algorithms and protocols such
as NOISE, BLAKE?2 and Curve255109. It seems that the potentials of this new VPN solution are
high. In any case, according toits claims, it is “faster, simpler, and leaner” than the other VPN
solutions.

The authors of [11] made a comparison experiment in order to help system administrators to
solve the problem of how to choose the best VPN solution, based on their system requirements.
The research question was how the performance differs among the state-of-the-art VPN
solutions. The results were values in Mbits/sec regarding packets sent from iPerf to the target
server. The results showed:

e Any VPN solution is slower than no VPN implementation.

e [PSec shows fast throughput due to the compression of data when this is an option
(Linux).

e WireGuard is the best performer in Windows.

e OpenVPN is the slowest in every operating system.

MARVEL -15- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

2.2 Early Deployment and Integration

EdgeSec VPN is based on the open-source software n2n'. The initial version of EdgeSec VPN
is uploaded on the MARVEL Docker? image registry and can be downloaded from the
MARVEL platform?. In this section, we will describe the current development, deployment,
and integration status of the component namely EdgeSec VPN with respect to the whole
MARVEL platform.

2.2.1 Development

For the development of EdgeSec VPN, three virtual machines (VM) are used. The first VM has
the role of the Super Node whereas the other two VMs have the role of edge nodes. The
operating system of the VMs is Ubuntu Linux version 18.04 LTS the size of the RAM is 4GB
and the disk is 40GB.

EdgeSec VPN is provided through the n2n software and it is not meant to be self-contained
meaning that it is possible to route traffic across n2n and non-n2n networks. The component is
containerised with Docker for easier deployment. For EdgeSec VPN, the first layer of Docker
image is based on the Ubuntu:18.04 image.

The resulted EdgeSec VPN image can be found on the MARVEL docker image registry and
can be downloaded or shared upon request.

2.2.2 Early Deployment

The architecture of the EdgeSec VPN adopts the architecture of n2n, as shown in Figure 2.
There are two key components: edge nodes and - Super Nodes. The edge nodes are the peers
participating in the network. The Super Nodes are used by the edge nodes for discovering other
edge nodes. The Super Nodes are also used for routing the traffic when the nodes are behind
symmetrical firewalls. The n2n and therefore the EdgeSec VPN, is a peer-to-peer VPN that
works on the second layer of the OSI model, allowing the peers to cross NAT and firewalls and
be reachable. Edge nodes that participate in the same.virtual network form a community. Super
Nodes are able to serve more than one community and a single computer can join multiple
communities. Within a community, encryption of the packets is feasible with the use of an
encryption key. Edge nodes establish direct communication among themselves via UDP
however when this is not possible, due to special NAT circumstances, then the Super Node can
facilitate the relay of the packets.

EdgeSec VPN is containerised with Docker to simplify the deployment. The relevant Docker
file consists of the following commands:

1. FROM ubuntu:18.04
2. RUN apt-get update && apt-get install -y build-essential
net-tools autoconf pkg-config

RUN mkdir -p /usr/ipsec

WORKDIR /usr/ipsec

COPY ./

RUN ./autogen.sh

RUN ./configure

RUN make

O J oy U b W

1 https://www.ntop.org/products/n2n/

2 https://www.docker.com

3 https://marvel-platform.eu/image/edgesec_vpn

MARVEL -16 - June 30, 2022

https://www.ntop.org/products/n2n/
https://www.docker.com/
https://marvel-platform.eu/image/edgesec_vpn

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

9. RUN make install
10. EXPOSE 4194 /udp
11. CMD ["sh", "init script.sh"]

After the initial build of the image, we need to start a Super Node in a machine that has port
4194 exposed to internet with the following command:

1. sudo docker run -it -p 139.91.58.106:4194:4194/udp --name
n2n_supernode marvel-ipsec supernode -p 4194 -c community.list
-f

Then, we will be able to connect the respecting edge nodes with the following command:

1. sudo docker run -it --privileged --net=host --name n2n edge
marvel-ipsec edge -d n2n0 -c¢ community -k passl -1
139.91.58.106:4194 -f

Edge
MNode Edge
Mode

Edge
MNode .
R Super | o] Super [»| Edge
Mode Mode MNode
Edge Edge Edge
Mode Mode Mode

Figure 2: The n2n architecture*

2.2.3 AIntegration with MARVEL

In MARVEL, several components are required to be deployed across three different layers, (i)
edge, (ii) fog, and (iii) cloud. In order to manage the deployment of components with
Kubernetes®, all three layers must be part of the Kubernetes cluster. Kubernetes by design
requires that all pods can'communicate with other pods on any node without NAT which comes
in direct contradiction with the actual setup of having remote nodes. The EdgeSec VPN
provides the solution here, due to the fact that it brings together all the participating nodes as if
they were under the same local network making any NAT or firewall transparent to the
communication between them.

Essentially all participating computing devices form a full mesh network where every device
has a direct connection with every other device as depicted in Figure 3. For example, a drone
that is located in the edge layer can ping within one hop a server located at the fog as well as a

4 https://www.ntop.org/products/n2n/

5 https://kubernetes.io

MARVEL -17 - June 30, 2022

https://www.ntop.org/products/n2n/
https://kubernetes.io/

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

server located at the cloud. The EdgeSec VPN is instantiated as a Docker container within the
computing device leveraging the microservices approach.

CLOUD

Figure 3: EdgeSec VPN forms.a full mesh topology

2.3 Use Cases and Related Components

This section-describes the MARVEL use cases that EdgeSec VPN participates in. In addition,
an overview of the related components-is presented. EdgeSec VPN is also presented in Figure
1 as part of the subsystem named “Security, Privacy, and Data Protection”. As shown in the
figure, EdgeSec VPN secures the communications between every component that either
participates in the edge, fog or cloud layer of MARVEL.

2.3.1 Related Components

The majority of MARVEL components will be deployed within Kubernetes. However not all
components that are going to be deployed within Kubernetes are also meant to run at the cloud
layer where Kubernetes is. This raised the need for having nodes that exist at the fog and at the
edge layer to join the Kubernetes cluster at the cloud. Kubernetes by design requires that all
pods can communicate with other pods on any node without NAT which comes in direct
contradiction with the actual setup of having remote nodes. The EdgeSec VPN provides the
solution here, due to the fact that it brings together all the participating nodes as if they were
under the same local network making any NAT or firewall transparent to the communication
between them.

EdgeSec VPN becomes the underlying network that allows each remote node to join the
Kubernetes cluster at the cloud. This implies that all components that are deployed in

MARVEL -18 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Kubernetes essentially utilise the EdgeSec VPN as they traverse the tunnel created by the
EdgeSec VPN.

2.3.2 EdgeSec VPN in UNS Use Case

For the UNS1 — Drone Experiment use case, we had to deal with the fact that all the involved
computing devices are accessing the internet via proxy. In order to build the docker image on
the UNS premises, we had to include the appropriate environment variables in the Dockerfile.
The modified Dockerfile with the required proxy environment variables follows:

Table 1: Modified Dockerfile with proxy environment variables

FROM ubuntu:18.04

ENV http proxy 'http://proxy.uns.ac.rs:8080"

ENV https proxy 'http://proxy.uns.ac.rs:8080'

RUN apt-get update && apt-get install -y build-essential
net-tools autoconf pkg-config

S N

5. RUN mkdir -p /usr/ipsec

6. WORKDIR /usr/ipsec

7. COPY ./

8. RUN ./autogen.sh

9. RUN ./configure

10. RUN make

11. RUN make install

12. EXPOSE 4194 /udp

13. CMD ["sh", "init script.sh"]

The infrastructure of UNS consists of a server that is located at the fog layer, a Raspberry Pi
that is located at the edge layerand an Intel NUC that is mounted on a drone also located at the
edge. The proxy that is‘used in the UNS infrastructure created unexpected communication
issues between the edge nodes and the Super Neode that is located at the cloud in PSNC’s
infrastructure. This‘communication.is necessary for nodes to announce themselves and discover
other nodes.

The adopted solution was to instantiate a secondary Super Node at the fog layer and configure
the edge nodes to connect to this secondary Super Node. Having a secondary Super Node on
the premises of UNS allows us to bypass the proxy issue. The secondary Super Node is able to
communicate directly with the main Super Node at the Cloud after configuring the necessary
port forwarding at the fog layer required by a Super Node. The two Super Nodes form a special
community, called federation. When a Super Node is part of a federation, it propagates its
knowledge about all the edges, to the other Super Nodes in the federation (Figure 4).

MARVEL -19- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

UNS infrastructure PSNC infrastructure
OpenStack VMs

FOG

L]
",
‘.
.
‘.
.
L}

Internet

. % Proxy
EDGE % \

docker
VPN edge client

docker
VPN edge client

MARVdash

Drone Raspberry Pi

Figure 4: EdgeSec VPN in UNS Use Case

2.3.3 EdgeSec VPN in GRN Use Cases

For the GRN3 — “Traffic Conditions and Anomalous Events” and GRN4 — “Junction Traffic
Trajectory Collection™ use cases, no proxy was present in the infrastructure and therefore no
extra modification was required.to the initial. Dockerfile. The infrastructure of GRN consists of
a server that is_located at the fog layer and a workstation located at the edge layer. The
communication between those nodes at the GRN and the Super Node at the cloud in PSNC’s
infrastructure is unhindered and therefore no additional Super Node was required. Nodes are
able to directly announce themselves and discover other nodes via the Super Node.

The communication between the participating nodes is limited to the traffic that matches the
network subnet defined by the EdgeSec VPN. This means that all unrelated traffic such as
browsing the internet or downloading updates, etc. is not routing through the VPN, thus limiting
the overhead of the VPN channel (Figure 5).

MARVEL -20- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

GRN infrastructure T T - PSNC infrastructure
OpenStack VMs

other nodes

FOG

SERVER

EDGE

MARVdash

Workstation

Figure 5: EdgeSec VPN.in GRN Use Cases

2.3.4 EdgeSec VPN in MT Use Cases

For the MT use cases, i.e., MT1 — “Monitoring of Crowded Areas” and MT3 — “Monitoring of
Parking Places”, no proxy was present in the infrastructure and therefore no extra modification
was required to the initial Dockerfile. The fog layer-of the infrastructure for the MT use cases
is actually hosted in FBK’s infrastructure. FBK is hosting two workstations that are located at
the fog layer. Only one of them'is meant to be part of the EdgeSec VPN. The communication
between the workstation at the FBK and the Super Node at the cloud in PSNC’s infrastructure
is unhindered and therefore no additional Super Node was required. The workstation is able to
directly-announce itself and discover other nodes via the Super Node.

The aforementioned setup introduced new requirements in order to comply with security
policies present at the FBK network. The first requirement is to route all the traffic via the
EdgeSec VPN and not only the traffic that matches the network subnet defined by the EdgeSec
VPN. The second. requirement is that EdgeSec VPN should not interfere with the
communication between the two workstations internally.

In order to address the first requirement, a new VM has been instantiated in the cloud. The role
of this newly created VM is to act as a gateway to the internet for the workstation at the FBK.
This gateway will route all the traffic originating from the workstation through PSNC’s
infrastructure. Additionally, custom static routes are added to the routing table of the
workstation, forcing the traffic to be routed through the VPN gateway. The second requirement
is addressed by carefully modifying the routing table of the workstation without interfering with
the internal communication of the two workstations.

The final outcome of the aforementioned setup is depicted in Figure 6. Workstation 1 and
Workstation 2 are connected internally via a switch. Workstation 1, accesses internet via the

MARVEL -21- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

main router of the FBK’s network whereas Workstation 2 accesses internet via the VM hosting
the VPN gateway at the cloud in PSNC’s infrastructure.

FBK infrastructure PSNC infrastructure
OpenStack VMs

FOG
Internet traffic
via VPN gateway

S—

:' Worksjationl Workstation 2
.
- Ethernet Ethernet

H

Internet traffic

via main router
.

Router

Figure 6: EdgeSec VPN in MT Use Case

2.4 Early Experimental Results

This section demonstrates the experiments that were performed to explore the capabilities of
EdgeSec VVPN.

2.471 Testbed Setup

The testbed that was used is the same as the one used for the development of EdgeSec VPN.
Three VMs were created using Proxmox as hypervisor (Figure 7). The first VM has the role of
the Super Node whereas the other two VMs have the role of edge nodes. The operating system
of the VMs is Ubuntu Linux version 20.04 LTS, the size of the RAM is 4GB, and the disk is
50GB. All the machines have direct access to internet without the presence of NAT.

MARVEL -22- June 30, 2022

MARVEL D4.2

H2020-1CT-2018-20/Ne 957337

Summary
Console
Hardware
Cloud-Init
Options
Task History
Monitor
Backup
Replication
Snapshots
Firewall

Permissions

X(PRO MO < Virtual Environment 6.4-14 Search
Server View
111 (HA) -
112 (openhab) &
113 (BBB) —
114 (snortaidhealthsec) 2
L 115 (EdgeSecVPNEdgeMNode1) -
&} 116 (EdgeSecVPNSuperNode)
S} 117 (EdgeSecVPNEdgeMode2) o
600 (semioticssdn) =
601 (Orchestrator)
602 (semioticsmininet) @
603 (BackendPatternEngine)
604 {PatternSdnTestQOnly) e
605 (SemioticsKubernetes) 9
606 (SFCGUI)
607 (MQTTREST) v
) 629 (mispCYBERSANE) '
2 630 {mispCONCORDIA) -

& Documentation |[MNWCEEAUIN 5 Re e

Virtual Machine 115 (EdgeSecVPNEdgeNode1) on node 'spica’ Start

Add Remove Edit

Memaory

Processors

BIOS

Display

Machine

SCSI Controller
CD/DVD Drive (ide2)
Hard Disk (scsi0)
Network Device (netl)

oo - f

) Shutdown »_ Console

4.00 GiB

4 (2 sockets, 2 cores)

Default (SeaBIOS)

Default

Default (id40fx)

VirtlO SCSI

localisofubuntu-20.04.2-live-server-amd64.iso, media=cdr. .
local-raid:vm-115-disk-0,size=50G
virtio=46:88:3B:AA:8C:BD bridge=vmbr0 firewall=1

Figure 7: Virtual Machines in Proxmox

2.4.2 Experiments
At the first VM, we execute the Super Node script: " The appropriate command follows:

1. sudo docker run -it -p 139.91.58.106:4194:4194/udp
n2n_supernode marvel-ipsec supernode
-f

--name
-p 4194 -c community.list
-v

The IP address is 139.91.58.106, the port for the incoming connections is 4194, the name for
the container identification is “n2n_supernode” and the name of the docker image is “marvel-
ipsec”. Finally, the “community.list” corresponds to a file with the names of the communities
that the Super Node will serve. In this case, the file contains the community “community”. The
result of the command.is presented in Figure 8.

.fstart_
_utils
[sn_utils
[sn_utils
[sn utils.c:

‘community' [total: 1]

/24 to community 'marvelnet’

rom community.list

- community name matching from com

commun 1ty
assigned sub-network
loaded 1 flx‘s—d—namp rummunlhps
loaded © regular

[sn utils.c 0] started shared secrets calculation for edge authentication
[sn 6] calculated shared secrets for edge authentication

[sn 45] calculating dynamic keys
[supernode.c:588] WARNING: using default federation name;

TESTING ONLY, usage

ustum Tpdp|ar1un name (-
17: 3 [sn utils

UT a

1s highly r

0] started shared secrets calculation for

mended!

[sn utils
[supernode
[supernode
[supernode
[supernode
[supernode.c
[sn utils.c:

] calculated shared secrets for

edge authentication

[supernode.c:659]

edge authentication
supe 1s listening on UI 4194 (main)
supern opened :
supernode is listening on TC
supernode is listening on UDP 5€ (management)
drupplnq privileges to uid=65534, gid=65534

5 y created resolver thread

‘lepF-I'IIIJdF- started

(aux)

[sn wtils.
[sn utils
[sn utils
[sn wtils.c:1097

locked community '
assign IP
created edge

Commun

y' to unencrypted headers
to tap adapter of edge
;41408
created edge } p 144983

S R R R

Figure 8: The output of the Super Node execution script

At the next virtual machine, we execute the script for the edge node. The command and its
description follow:

MARVEL -23- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

1. sudo docker run -it --privileged --net=host --name n2n edge
marvel-ipsec edge -d n2n0 -c community -k passl -1
139.91.58.106:4194 -f

More specifically, “n2n_edge” is the name for the container identification, “marvel-ipsec” is
the docker image, “community” is the community that the node will join, “passl”is the
password, “139.91.58.106 " is the IP address and “4194” is the port number of the Super Node.

The result of the first edge node command is presented in Figure 10.

(%] 11. edgenodel

vagrant@edgenodel:~/1psec$./start_edge.sh

05/Jun/2022 17:16:28 [edge utils.c:3774] adding supernode =
05/Jun/2022 17:16:28 [edge.c:1045] WARNING: switching to AES as key wag
05/Jun/2022 17:16:28 [edge.c:1085] starting n2n edge 3.0.0 Mar 10 2¢

05/Jun/2022 17:16:28 [edge.c:10911 =oing polITiar n

05/Jun/2022 17:16:28 [edge.c:(892] using AES cipher.

05/Jun/2022 17:16:28 [edge utils.cC. 552 " nun i supernodes in the 1¢

05/Jun/2022 17:16:28 [edge utils.c:394] supernode 0 => 14194

05/Jun/2022 17:16:28 [edge utils.c:4831 s f - sasaliar

05/Jun/2022 17:16:28 [edge.c:11227 automatically assign IP address by supernode

05/Jun/2022 17:16:28 [edge.c:1194] o0 NLGIoTER=SUREtowoupornad asking for
P addr

05/Jun/ 2022 i - > received REGISTER_SUPER_ACK from supernode for IP address asignme
b created_Local tap device IP: , Mask: 259.255.255.0,

IARNING: n2n has not been compiled with libcap-dev; some commands
super node
05/ 3] dropping privileges to uid=65534, gid=65534
05/Jun/ Z0% jo.C:1329] edge started
05/Jun/2022 17:16:28 [edge_utils.c:1132] su ss1 y Jowned multicast group 11968
05/Jun/2022 17:16:28 [edge utils.c:2730] [0K] edge <<< >>> supernode

Figure 9: The output of the first Edge Node

At the last VM, we start the script for the edge node, one more time. The IP address of the edge
node was automatically assigned by the Super Node. The command for the second Edge Node
and its description follows:

l:sudo docker run -it --privileged --net=host --name
n2n edge marvel-ipsec edge -d n2n0 -a 192.168.50.200 -c
community -k passl -1 139.91.58.106:4194 -f

Again, “n2n_edge™ is the name for the container identification, “marvel-ipsec” is the docker
image, “‘community” is the community that the node will join, “passl”is the password,
“139.91.58.106” is.the IP address and “4194” is the port number of the Super Node.

Finally, the result of the command is presented in Figure 10.

MARVEL -24 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

IS/ 7. edgenode2

vagrant@edgenode2:~/1psec$./start _edge.sh

05/Jun/2022 17:16:31 [edge utils.c:3774] adding supernode =

05/Jun/2022 17:16:31 [edge.c:1045] WARNING: switching to AES as key waas

05/Jun/2022 17:16:31 [edge.c:1085] starting n2n edge 3.0.0 Jun 5 24

05/Jun/2022 17:16:31 [edge.c:1091). =ang : on: .

05/Jun/2022 17:16:31 [edge.c(1092] using AES cipher.

05/Jun/2022 17:16:31 [edge utils.C 5527 ! i “supernodes in the I

05/Jun/2022 17:16:31 [edge utils.c:394] supernode 0 => 14194

05/Jun/2022 17:16:31 [edge utils.c:4831 s ooy lyoa= thread

05/Jun/2022 17:16:31 [edge.c:11167 Use manually set IP address

05/Jun/2022 17:16:31 [edge.c:1221] created local tap device IP: Lask: 255.255.255.0,
MAC:

05/Jun/2022 17: i - | WARNING: n2n has not been compiled with libcap-dev; some commands
may fail

05/Jun/202 dropping privileges to uld=65534, gid=65534

O"i)/)lln/:)(‘)} manua yset edge started

05/Jun/2027 :1132] s 5sf y jJoined multicast group :1968
05/Jun/2022 2 tLs.C:2730] [0K] edge <<< >>> supernode

Figure 10: The output of the second Edge Node

In order to test the connectivity with and without the deployment of EdgeSec VPN, we use the
ping command. First, we send 100 ping packets from the first edge node to the second edge
node using the public IPs and then we do the same using the VPN IPs (Figure 11). In both cases,
we have 0% packet loss.

(% 18. edgenodel

vagrant@edgenodel:~$ ping -c 100 -q
PING () 56(84) bytes of data.

- pwng statistics ---
100 packets transmitted, 100 received, 0% packet loss, time 101335ms

rtt min/avg/max/mdev = 0.428/0.552/2.396/0.196 ms
vagrant@edgenodel:~$ ping -c 100 -q
PING () 56(84) bytes of data.

- puwng statistics ---

100 packets transmitted, 100 received, 0% packet loss, tumne 99320ms
rtt min/avg/max/mdev = 0.857/1.054/1.934/0.152 ms
vagrant@edgenodel:~$ |

Figure 11: Ping connectivity experiment

2.4.3 Results

In order to test the overhead that is introduced by the deployment of EdgeSec VPN (in terms of
network traffic latency), we use the ping command again. First, we send 20 ping packets from
the first edge node to the second edge node using the public IPs and then we do the same using
the VPN IPs. We repeat the same test with payload 100 bytes, 500 bytes, and 1000 bytes (Figure
12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17). The ICMP header and IP version 4
header add extra 28 bytes to the packet.

MARVEL -25- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

x

vagrant@edgenodel:~/1psec$ ping -c 20 -s 100 -q
PING () 100(128) bytes of data.

- piwng statistics ---

20 packets transmitted, 20 received, 0% packet loss, tuime 19456ms
rtt min/avg/max/mdev = 0.434/0.511/0.694/0.067 ms
vagrant@edgenodel:~/1ipsec$ |}

Figure 12: First edge node pings the public IP of the second edge node with payload 100 bytes

N\

vagrant@edgenodel:~/1psec$ ping -c 20 -s 100 -q
PING () 100(128) bytes of data.

- pwng statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19041ms
rtt min/avg/max/mdev = 0.937/1.082/1.780/0.174 ms
vagrant@edgenodel:~/ipsec$ |}

Figure 13: First edge node pings the VPN IP of the second edge node with payload 100 bytes

x

vagrant@edgenodel:~/1psec$ ping -c 20 -s 500 -q
PING () 500(528) bytes of data.

-—- pwng statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19623ms
rtt min/avg/max/mdev = 0.952/1.096/1.578/0.142 ms
vagrant@edgenodel:~/ipsec$ |}

Figure 14: First edge node pings the public IP of the second edge node with payload 500 bytes

x

vagrant@edgenodel:~/1psec$ ping -c 20 -s 500 -q
PING () 500(528) bytes of data.

= pung statistics ---

20 packets transmitted, 20 received, 0% packet loss, time 19023ms
rtt min/avg/max/mdev = 0.952/1.096/1.578/0.142 ms
vagrant@edgenodel:~/ipsec$ |}

Figure 15: First edge node pings the VPN IP of the second edge node with payload 500 bytes

MARVEL -26 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

S 20, edge ode

20 -s 1000 -

PING 139.91 () 1000(1028) bytes of data.

t loss, time 19401ms
6 ms

% 20. edgenodel —

vagrant@edgenodel:~/1psec$ ping -c 20 -s 1060 -
PING () 1060(1828) bytes of data.

¢et loss, time 19043ms

Figure 17: First edge node pings the VPN IP of the second edge node with payload 1000 bytes

Based on the ping measurements, we created the corresponding tables to compare the network
traffic before and after the EdgeSec VPN is deployed (Table 2, Table 3, Table 4). We measure
the Round-trip time (RTT) which is the duration in milliseconds (ms) it takes for a network
request to be transmitted from the first edge node to the second edge node plus the duration of
the return.

Table 2: Packet size 100 bytes
RTT Ping the public IU Ping the VPN IP Overhead
Minimum 0.434ms 0.937ms 0.503ms
. Average 0.511ms 1.082ms 0.571ms
Maximum 0:694ms 1.780ms 1.086ms
Standard deviation 0.067ms 0.174ms 0.107ms

Table 3: Packet size 500 bytes
RTT Ping the public IP | Ping the VPN IP | Overhead
0.952ms 0.497ms
Average 0.539ms 1.090ms 0.551ms
Maximum 0.870ms 1.578ms 0.708ms
Standard deviation 0.092ms 0.142ms 0.05ms

Minimum 0.455ms

MARVEL -27 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
Table 4: Packet size 1000 bytes

RTT Ping the public IP | Ping the VPN IP | Overhead

0.927ms 0.439ms

Average 0.568ms 1.094ms 0.526ms

Minimum 0.488ms

Maximum 0.900ms 1.439ms 0.539ms
Standard deviation 0.086ms 0.108ms 0.022ms

Additionally, we tried to verify that data in transit is encrypted. To that end, we run a simple
python-based http server on the second edge node (Figure 18) and we attempt to request the
contents of the webpage from the first edge node using both the public as well as the VPN IP.

I EIngI"II:I ded

vagran t@edgenode?
\ ant{@@edgenode
Serving HTTP on 6.

ET / HT

"GET / HTTP/1.1"

ET / HTTP/1.1"
/ HTTP/1.1"
/ HTTP/1.1"

Figure 18: Python-based http server on second edge node

Initially, we make the requestusing the public IP (Figure 19) and we are able to receive the
response.

%! 32. edgenodel

vagrant@edgenodel:~$ curl http://139,.91,58.105:8000

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Directory listing for /</title>

</head>

<body>

<hi>Directory listing for /</hi>

<hr>

<l1>hello world</11>

<hr>

</body>

</html>

vagrant@edgenodel:~$ i

Figure 19: Request to the http server using the public IP

With the help of tcpdump command, we are able to verify that data in transit is not encrypted
when using the public IP (Figure 20).

MARVEL -28 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

%] 20. edgenode1

Content-type
Content-Length: 3

18:24:38.015625 IP edgenodel.ics.forth.gr.40916 > ubuntu.ics.forth.gr.8000: Flags 3, win 581, options [nop,nop,TS val 2875258051 ecr 234573

P ubuntu. ics. forth.gr.8000 > edgenodel. ics.forth.gr.409% Y [FP.], seq 156:508, ack 83, win 569, options [nop,nop,TS val 2345739
, length 344

N AR A
HTML PUBLIC -/ TD HTML 4.81//EN" / .org/TR/htmld/strict dtd">

aquiv="Content-T tent="text/html; charse}
tory listing fo itle>

Figure 20: Tcpdump showing the content of the web page in clear text

We then make the request using the VPN IP (Figure 21) and we are again able to receive the
response.

I8/ 32. edgenodel

vagrant@edgenodel:~$ curl http://192,168,560,200:8000

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

<title>Directory listing for /</title>

</head>

<body>

<hi>Directory listing for /</hl>
<hr>

<li1>hello world</11>

<hr>

</body>

</html>

vagrant@edgenodel:~$ [J

Figure 21: Request to the http server using the VPN IP

Again, with the help of tcpdump command we are able to verify that data in transit is now
encrypted when using the VPN IP (Figure 22).

MARVEL -29- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

UDP, length 120
o Pt emis s allaaBias

Figure 22: Tcpdump showing the content of the web page is encrypted

2.5 KPIs

In this section, the Key Performance Indicators (KPIs) that are related to EdgeSec VPN, Task
4.3 and by extension to D4.2, will be presented and discussed.

2.5.1 Project-related KPIs

Table 5 contains the project-related KPIs that concern the'component EdgeSec VPN, which is
implemented in Task 4.3'in the context of the MARVEL platform.

First, the goals of the project-related KPI with identifier KPI1-O1-E3-2 will be achieved by
encrypting any collected data using modern encryption techniques before being transmitted.
The data will be decrypted in order to be processed at the desired processing layer. The end-to-
end encrypted communications will be performed by EdgeSec VPN. EdgeSec VPN v.0. is
uploaded on the MARVEL registry andthe VPN client can be downloaded by anyone interested
in using it. EdgeSec VPN at its current state is implemented using the IPsec protocol, and P2P
encryption is performed. The infrastructure consists of a VPN Super Node and VPN clients.

The goals of the project-related KPI with identifier KPI-O3-E3-1 with respect to EdgeSec VPN
will be achieved by encrypting the collected data and establishing secure communication
channels between each processing layer. Secure computing will be achieved using the EdgeSec
TEE component in conjunction with EdgeSec VPN. Both components have been uploaded to
the MARVEL registry (v0). At its current state, EdgeSec VPN enables an encrypted tunnel and
protects the confidentiality and integrity of data between the participating nodes. It removes the
router, ISP, and any other middle-man from the list of components that need to be trusted. ISP
snooping, attacks over insecure wireless networks as well as compromised networking
equipment are among the threats that are avoided.

Regarding the project-related KPI with identifier iKPI-2.2, the system will be protected from
the harmful effects of at least three attacks. Such attacks could be man-in-the-middle,
eavesdropping, and/or impersonation. Of course, the security and robustness of the system is
not limited only to those attacks. FORTH currently provides EdgeSec VPN that secures the
network communications (network traffic exchanges between MARVEL components will be

MARVEL -30- June 30, 2022

MARVEL D4.2

H2020-1CT-2018-20/Ne 957337

transferred encrypted) and EdgeSec TEE that offers trusted and protected execution in

environments that cannot be trusted, when sensitive data needs to be processed.

Table 5: Project-related KPIs that concern EdgeSec VPN

KPI Description

Strategy

Related
Task

Related
Component

KPI-O1-E3-2 | The end-to-end data flow | No unencrypted data will ever be T4.3 EdgeSec VPN
from the edge to the transmitted by/to any processing
cloud, will be 100% layer (E2F2C).
encrypted.
KPI-O3-E3-1 Realise a secure Ensure that there are no weak T4.3 EdgeSec VPN,
computing framework at links in the E2F2C chain, every
all the processing layers. | layer and communication channel EdgeSec TEE
between them shall be secure:
iKP1-2.2 At least three (3) Cyber threats that could otherwise | T4.3 EdgeSec VPN,
different cyber threats potentially be exploited to harm
avoided due to E2F2C. the system, but their impact is EdgeSec TEE
minimised due to the security
features offered by E2F2C.

2.5.2 Component-related KPIs

The component-related KPIs that concern-EdgeSec VPN are presented in Table 6. More
specifically, with EdgeSec VPN, MARVEL aims-to minimise the effort for the end user to
configure the component. In addition, another goal is to leave a minimum imprint in the network
traffic after deploying EdgeSec VPN. Finally, MARVEL aims to effectively avoid at least three
distinct cyber threats while providing encryption for data in transit.

Considering the fact that EdgeSec VPN is offered through a Docker container, the time that is
required by the end user in order to setup the underlying environment and configure EdgeSec
VPN is significantly reduced. In‘addition, setting up EdgeSec VPN does not require advanced
knowledge of networking systems, since everything is offered within the container image. The
only manual-configuration that is required by the end user is to provide an IP address and a port
number both corresponding to the Super Node. Thus, the end user is only required to run the
EdgeSec VPN container.

Regarding the scalability KPI, as already shown by the ping measurements in Table 2, Table 3,
and Table 4 the deployment of the EdgeSec VPN has a minimum increase in network traffic
latency.

EdgeSec VPN by design removes ISP and any other middle-man from the list of components
that need to be trusted. Threats such as ISP snooping, attacks over insecure wireless networks
as well as compromised networking equipment are avoided.

Finally, we have demonstrated in Figure 22, that data in transit is encrypted, thus addressing
the last KPI that refers to the Communication Security.

Table 6: Component-related KPIs that concern EdgeSec VPN

Expected Result

Relevant Project KPI

Usability

Effort needed by end

user

Least possible manual

tuning for component users

KPI-O1-E3-2,

MARVEL

-31-

June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Scalability Network performance Zero or barely noticeable KPI-O3-E3-1,
metrics (latency) increase in network traffic iKPJ-2.2
latency due to the '
deployment of EdgeSec
Effectiveness for Number of threats 3 distinct cyber threats
Avoiding Cyber Threats avoided avoided
Communication Security | Amount of encrypted 100% of data will be end-
data in transit to-end encrypted

MARVEL -32- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
3 Trusted Execution on the Edge (EdgeSec TEE)

In this section, EdgeSec TEE is presented and described. EdgeSec TEE is the second component
that brings security and privacy features to the complete E2F2C framework, developed within
the MARVEL project. More specifically, EdgeSec TEE is based on the technology of Trusted
Execution Environments that enable the confidential processing of sensitive data and execution
of parts of code that should not be exposed. EdgeSec TEE is available through a container that
can operate on top of modern Intel processors since it is dependent on the Intel SGX technology.

In the following sections, we provide some background information regarding TEEs,
containers, and the state-of-the-art on these two topics. Then, we describe the basic
development and deployment details, while we locate the related project and component KPIs
and we discuss about their correlation with EdgeSec TEE and how they can be realised within
the context of MARVEL. Due to the very specific technical requirements of the EdgeSec TEE
underlying technology, the component will be fully integrated after M18, so the final version
of this deliverable (i.e., D4.5) will contain details about the results of EdgeSec TEE.

3.1 Background

In this section, background information regarding Trusted Execution Environments (TEES) and
containers will be briefly presented. This information will allow the reader to be introduced
with the basics of the main technologies that will be used and examined in this section. Finally,
the state-of-the-art in secure containers will be discussed.

3.1.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is an area within.the main processor that allows
secure, protected, and confidential execution. TEEs guarantee that the code itself and the data
that needs to be processed are located inside protected and isolated execution environments that
enable confidentiality and integrity, even if processed in untrusted environments. An untrusted
environment could be, amongst others, the operating system, the hypervisor, the drivers, the
management stack, the system’s memory, and 1/O devices. Furthermore, in cases of outsourced
applications, even in a seemingly healthy environment, there is always the possibility of an
honest-but-curious cloud provider, willing to learn and extract information regarding the users
or the system utilisation. Several vendors incorporate hardware technologies that can be utilised
to implement TEEs; as for instance, AMD’s Secure Processor®, ARM’s TrustZone’, MultiZone
Security Trusted Execution Environment from RISC-V8 and Intel’s Software Guard
Extensions (SGX)°. In the context of MARVEL, FORTH chooses to employ the Intel SGX
technology since. it is a mature, well-documented technology, which is also widely examined
by the research community.

Intel SGX is a hardware-assisted mechanism in the form of an instruction set architecture (ISA)
extension to the Intel architecture. It allows secure attestation and sealing to application
software that is executed in a secure environment. This secure environment is called “enclave”.
The main purpose of these extensions is the protection of selected code parts and data from dis-
closure or modification in untrusted environments. The enclaves are protected by the CPU that

6 https://www.amd.com/en/technologies/pro-security

7 https://www.arm.com/technologies/trustzone-for-cortex-a

8 https://hex-five.com/multizone-security-tee-riscv/

9 https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

MARVEL -33- June 30, 2022

https://www.amd.com/en/technologies/pro-security
https://www.arm.com/technologies/trustzone-for-cortex-a
https://hex-five.com/multizone-security-tee-riscv/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

is in charge of any access to the enclave memory or other protected areas of execution. Any
instruction that reads or writes to the enclave and is not part of the enclave itself, is prohibited.
Assuming an untrusted or even a malicious operating system, hypervisor or firmware, Intel
SGX is able to protect the confidentiality of the enclave pages. An Intel SGX application is
divided into the following parts (i.e., untrusted and trusted), as depicted in Figure 23.

Untrusted Code Trusted Code
. = >
1 - Create Enclave S .
sH
2 - Call Trusted - .\
\ . 3 - Process Secrets
\ 4 - Return
5 - Normal Execution

Intel SGX Application i

Privileged System Code
0S, BIOS, Hypervisor

Figure 23: An Intel SGX application is divided into an untrusted and trusted part. Privileged system code does
not have access to the trusted part.of the Intel SGX application at any time

The code and data that are part of the enclave are stored in a DRAM subset, namely the
Processor Reserved Memory (PRM). PRM has acontiguous range, which is not accessible by
any system software or other-peripherals. Moreover, the contents of the enclaves are stored in
the Enclave Page Cache (EPC), a subset of PRM. Software that is not part of the enclave is not
able to access the EPC. For Intel Skylake CPUs, the'EPC size is between 64 MB and 128 MB
and SGX provides‘a paging mechanism for swapping pages between the EPC and untrusted
DRAM. The data of the enclave that has to be written to the disk is encrypted and checked for
its integrity. Every time that data are transferred from the cache to the main memory, they get
encrypted-via an extra on-chip memory encryption engine (MEE). The enclave is decrypted
only within the CPU itself, and it is accessible only for code and data that are part of the same
enclave. This provides protection to the code from being accessed and examined by other code.
Between enclaves, SGX enables local attestation. Additionally, in the case of a third-party
application or software, SGX allows remote attestation to ensure that the application is
uncompromised and therefore can be trusted. SGX enables the remote system to establish a
connection with the enclave, using an end-to-end encrypted channel.

3.1.2 Containers

A container is a standalone system entity consisted of software code that is packed with all the
required packages and libraries (i.e., dependencies) enabling an application to be executed
consistently and self-sufficiently across different computing environments. Concisely, a
container image includes everything needed to enable an application run, offered as an
executable package of software®®. At runtime, container images become containers enabling
execution.

10 https://www.docker.com/resources/what-container/

MARVEL -34- June 30, 2022

https://www.docker.com/resources/what-container/

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Docker is the most popular platform that enables the creation and management of containers. It
is a runtime environment that uses Docker images to deploy applications or software in a
containerised fashion, built on top of popular operating systems and distributions. The
orchestration of different containers in operation can be handled by a container orchestrator,
like Kubernetes. Kubernetes is an open-source project that enables the deployment, scalability,
and management automation of multiple containers with multiplexed applications.

Containers are offered like a virtualised operating system and share similar functionalities with
VMs; yet, they should not be confused. Their differences are illustrated in Figure 24. To begin
with, VMs run on top of a hypervisor and each VM is comprised of its own guest operating
system with any necessary libraries and files. Taking into consideration that on a single physical
machine several VMs can be present, there is a significant consumption of resources and
overheads. A container, on the other hand, shares the same host OS-or kernel, something that
makes it lighter, with essentially less overhead.

Virtual Machines Containers

VM (Guest) 1 VM (Guest) 2
App1 || AppN | App1 || App N Container 1 Container 2

App App

Libraries, etc. | Libraries, etc.

Libraries, etc. | Libraries, etc.
Guest OS Guest OS
Docker
Hypervisor
0s
0s
Physical Host Machine
Physical Host Machine

Figure 24: Differences between VMs and containers

3.1.3 State-of-the-Art

Trusted Execution Environments (TEES)-have been widely examined by the research
community with-the aim to enable the confidentiality of code execution and user data in
environments that should not be trusted. As the need for lower costs, higher performance, and
scalability rises, outsourcing applications to the cloud has become common. As already
mentioned, TEEs, such as Intel SGX, can guarantee data and code protection. Thus, a
significant number of waorks focus on proposing the exploitation of this technology for
outsourced applications in the cloud. For instance, VC3 [1] and Opaque [12] offer privacy-
preserving data analyticsn the cloud using Intel SGX. EnclaveDB [13] is a database engine
that can guarantee confidentiality, integrity, and freshness for data and queries. In addition,
EndBox [14], ShieldBox [15], and SafeBricks [16] focus on securing middlebox functionality
using Intel SGX, while TrustAV [17] is a cloud-based malware scanning solution based on Intel
SGX. Andromeda [18] is a framework that provides secure enclaves for the Android OS to
mitigate attacks that target sensitive or critical code, data and communication channels. Finally,
there are works that enable the execution of unmodified applications within enclaves
[19][20][21]]22].

SCONE [23] is based on the Intel SGX technology and offers a secure container mechanism
for Docker. The design of SCONE leads to (i) a small trusted computing base (TCB) and (ii) a
low-performance overhead. More specifically, SCONE offers a secure C standard library
interface that transparently encrypts and decrypts the data 1/O. To reduce the performance
impact of thread synchronisation and system calls within SGX enclaves, SCONE supports user-

MARVEL -35- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

level threading and asynchronous system calls. A high-level overview of the secure
containerisation with Docker with respect to SCONE is shown in Figure 25.

Image repository Docker (engine)
Image creation el PR Enclave
Docker (client)

Figure 25: SCONE offers secure containers (with Docker)

Except for SCONE, there are some alternative secure container designs, such as Haven [24]
that follows an alternative design. In TensorSCONE [25], authors integrate TensorFlow!! with
SCONE to enable secure executions of machine <learning computations in untrusted
infrastructures. Yet, in TensorSCONE, the GPU utilisation is not supported as in the traditional
TensorFlow framework. Finally, Graviton [26]is an architecture for supporting trusted
execution environments on GPUs, since it enables applications to offload security- and
performance-sensitive kernels and data to a GPU, executing the kernels in isolation from other
code running on the GPU.

3.2 Early Deployment and Integration

EdgeSec TEE is based on the SCONE confidential computing technology. The initial version
of EdgeSec TEE mechanism is based on SCONE, which is appropriately configured for python
applications to run inside Intel SGX enclaves. The initial version of EdgeSec TEE is uploaded
on the MARVEL docker image registry and can be downloaded'? or shared upon request. In
this section, we will‘describe the current development, deployment, and integration status of
the component namely EdgeSec TEE with respect to the whole MARVEL platform.

3.2.1 Development

For the development of EdgeSec TEE,;a VM is utilised. Intel SGX can be virtualised (i) when
the host system supports the Intel SGX technology, (ii) when SGX is enabled either explicitly
in the BIOS or via the software enabling procedure, and (iii) when Linux kernel version 5.13
or later is used both in the host and the guest VMs!3, Both host and guest operating systems are
Ubuntu Linux (version 20.04.4 LTS) with a Linux kernel 5.13.4. The CPU is an Intel(R) Core
(TM) i7-7700 CPU and-a KVM hypervisor is used. The Docker version is 20.10.12.

EdgeSec TEE is provided through the SCONE functionality that supports the execution of
Python applications inside the Intel SGX enclaves. SCONE follows precisely the traditional
Docker workflow. The Docker workflow enables the creation of Docker images that include
the Python engine together with the Python applications. What SCONE does, is to perform the
encryption of the Python programs and guarantee their confidentiality and integrity when
executed. After the Python engine starts inside an Intel SGX enclave, the SCONE runtime

11 https://www.tensorflow.org

12 https://marvel-platform.eu/image/docker-sgx

13 Virtualizing Intel SGX: https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-
guard-extensions-with-kvm-and-gemu.html

MARVEL -36 - June 30, 2022

https://www.tensorflow.org/
https://marvel-platform.eu/image/docker-sgx
https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu.html
https://www.intel.com/content/www/us/en/developer/articles/technical/virtualizing-intel-software-guard-extensions-with-kvm-and-qemu.html

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

transparently attests the Python engine together with the supporting filesystem and only then,
SCONE runtime can get the encryption key in order to initiate the secure execution. SCONE
support the execution of Python programs inside SGX enclaves, while there are available
several Docker images for the different Python versions and engines.

For EdgeSec TEE, Python 3.7.3 is used (within an Alpine Linux 3.10 OS version). The resulted
EdgeSec TEE image can be found on the MARVEL docker image registry and can be
downloaded'* or shared upon request.

3.2.2 Early Deployment

EdgeSec TEE requires an Intel-SGX enabled machine and the installation of the Docker
software. Each application that is secured with EdgeSec TEE lays on‘top of a machine that
supports Intel SGX, as it is illustrated in Figure 26. In order to use EdgeSec TEE and take full
advantage of the security characteristics that it offers, an application developer needs to follow
the following steps: (i) the developer needs to get access to infrastructure that is Intel SGX-
enabled, (ii) the developer downloads the EdgeSec TEE’s docker image that.is uploaded to the
MARVEL registry by FORTH, (iii) the developer launches the EdgeSec TEE container from
this image, (iv) the developer copies the python application inside the container’s file system
and installs any required python library or package, (v) the developer executes the python
application that is secured by SCONE during the total execution time. In the following
paragraphs, the steps after downloading the EdgeSec TEE image are discussed in more detail.

ey e e
MARVEL's Application I
(secured)

MARVEL's
EdgeSec TEE

Application Developer in MARVEL

Gets access to infrastructure with Intel SGX support & Docker
Downloads EdgeSec TEE image from MARVEL registry

Launches EdgeSec TEE container from EdgeSec TEE Docker image
Copies python application to container

Installs any required libraries

Launches python application (secured)

Python libraries,
packages, dependencies

SCONE Python Image
(Docker)

DL AWNR

Intel SGX enabled
machine

Figure 26: An overview of EdgeSec TEE

Once downloaded from the MARVEL docker image registry, the EdgeSec TEE component can
be deployed by the following certain steps:

1. docker login registry.marvel-platform.eu

2. docker pull registry.marvel-platform.eu/docker-sgx:0

3. docker run -it registry.marvel-platform.eu/docker-sgx:0
/bin/sh

14 https://marvel-platform.eu/login?next=/image/docker-sgx

MARVEL -37- June 30, 2022

https://marvel-platform.eu/login?next=/image/docker-sgx

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

An example of a Python command (i.e., print) executed within the image of EdgeSec TEE that
is uploaded on the MARVEL image registry is shown in Figure 27.

[vagrant@scone:~$ docker run -it registry.marvel-platform.eu/docker-sgx:@ /bin/sh
[/ # python3

Python 3.7.3 (default, May 3 2019, 11:24:39)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
[>>> print("Hello MARVEL")
Hello MARVEL

>>>]

Figure 27: An example python command within the image of EdgeSec TEE

As already mentioned, the Python version that is supported by EdgeSec TEE is 3.7.3 (in an
environment of Alpine Linux 3.10). The installation of packages and libraries within the
container is possible. For instance, to install the popular Python libraries namely scipy and
scikit-learn, the following commands can be used (i.e., Figure 28). As shown in Figure 29, the
installation of the Python libraries is successful, enabling the operation of Python programs to
be performed exactly as in traditional setups (i.e., without the support of Intel SGX; SCONE,
and EdgeSec TEE). Within the container of EdgeSec TEE, however, the Python application is
executed within Intel SGX enclaves, which® offer security, .code integrity, and data
confidentiality. At this point, we have to accentuate that these packages (e.g., scipy and scikit-
learn) are not installed inside the image that is uploaded to the MARVEL registry, and if
necessary, they have to be installed following the commands shown in Figure 28 by the
developer or user of EdgeSec TEE. Other packages and libraries can be installed following a
similar procedure.

/ # apk --no-cache add lapack libstdc++ && apk --no-cache add --virtual .builddeps g++ gcc gfortran

musl-dev lapack-dev && pip install scipy scikit-learn &% apk del .builddeps && rm -rf /root/.cachel

Figure 28: Commands to.install Python libraries (e.g., joblib, numpy, scikit-learn, scipy and threadpoolctl)
within EdgeSec TEE.

Successfully built scipy scikit-learn numpy

Installing collected packages: numpy, scipy, joblib, threadpoolctl, scikit-learn
Successfully installed joblib-1.1.0 numpy-1.21.6 scikit-learn-1.0.2 scipy-1.7.3 threadpoolctl-3.1.0

Figure29: Successful installation of Python‘libraries within the docker image of EdgeSec TEE (i.e., joblib,
numpy, scikit-learn, scipy and threadpoolctl)

3.2.3 Integration with MARVEL

Up until this point, EdgeSec TEE can be used and tested by any partner that participates in the
MARVEL project by downloading the EdgeSec TEE image that exists in the MARVEL
registry, following the instructions that were described in the previous section (Section 3.2).
Since the integration process is still work in progress, a detailed and final integration plan
cannot be completely outlined in the current deliverable. The integration of EdgeSec TEE with
the whole MARVEL platform will be fully discussed in the following and final version of this
deliverable (i.e., D4.5).

3.3 Use Cases and Related Components

This section is destined to present the MARVEL uses cases that EdgeSec TEE will participate
in. In addition, we will offer an overview of the related components that will connect with
EdgeSec TEE. EdgeSec TEE is also presented in Figure 1 as part of the subsystem named
“Security, Privacy, and Data Protection”. As shown in the figure, EdgeSec TEE can potentially

MARVEL -38 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

participate in any layer as long as the hardware and software infrastructure facilitate its
deployment requirements. The requirements include but are not limited to an Intel SGX-enabled
CPU and a component implemented using the Python programming language.

3.3.1 Related Components

EdgeSec TEE will be fully integrated into the whole MARVEL platform after M18. Thus, at
this point, the interconnection of EdgeSec TEE and other MARVEL components is not
finalised. Details about the related components of EdgeSec TEE will be shared in the following
version of the deliverable (i.e., D4.5).

3.3.2 EdgeSec TEE in MARVEL Use Cases

Similarly, as EdgeSec TEE will be integrated and tested as part of the MARVEL platform after
M18, we will provide more details about it and the respecting MARVEL use cases in the
following version of the deliverable (i.e., D4.5).

3.4 Early Experimental Results

This section will demonstrate the experiments that were performed to explore the capabilities
of EdgeSec TEE. Since EdgeSec TEE will be fully integrated within the MARVEL platform
after M18, the experimental results have not been explored yet. This section will be fully
described in the following and final version of the deliverable (i.e., D4.5).

3.4.1 Testbed Setup

This section will be fully explored after M18. Yet, in Section 3.2, we describe the testbed setup
for the early deployment of EdgeSec TEE before M18. More specifically, for the development
and early deployment of EdgeSec TEE, we use a VM that has the following characteristics. The
CPU that was used in the experiments performed is an Intel Core i7-7700 operating at 3.6 GHz
and the main memory is 4GBytes. The L3 cache (i.e., 16MiB) and the memory controller are
shared across the CPU cores and the integrated GPU. Each CPU core is equipped with 64KiB
of L1 cache and 512KiB of L2 cache. The docker version is 20.10.12 (build €91ed57). The
docker image of EdgeSec TEE has a Linux kernel (version 5.13) with an Alpine Linux 3.10
operating system:.

3.4.2 EXperiments

Since the experiments of EdgeSec TEE as part of the MARVEL platform will be presented in
the following deliverable (i.e., D4.5), we will be able to discuss them in full detail there. Yet in
Section 3.2.2, we present some snapshots of EdgeSec TEE enabling the secure execution of a
simple python program.

3.4.3 Results

Similarly, this section will be fully explored after M18, when EdgeSec TEE will be fully
deployed and connected with other components to participate in MARVEL use cases.

3.5 KPIs

In this section, the Key Performance Indicators (KPIs) that are related to EdgeSec TEE, Task
4.3 and by extension to D4.2 will be presented and discussed.

MARVEL -39- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

3.5.1 Project-related KPIs

Table 7 enumerates the project-related KPIs that concern the component EdgeSec TEE, which
is implemented in Task 4.3 in the context of the MARVEL platform.

More specifically, the goals of the project-related KPI with identifier KPI1-O3-E3-1 will be
achieved by: (i) attesting edge devices to ensure that no untrusted components flood the system
with fraud data, (ii) encrypting collected data and establishing secure communication channels
between each processing layer, (iii) exploring in-chip memory encryption technologies that will
further enhance the security of the processing devices. Secure computing will be achieved using
the EdgeSec TEE component in conjunction with EdgeSec VPN. Both components have been
uploaded to the MARVEL registry (v0). At its current state, EdgeSec TEE enables
programming using the python language and related libraries, such as.scikit. In the future, we
plan to provide more flexibility in terms of programming languages and libraries supported if
it is necessary by other components or the pilot use cases.

Regarding the project-related KPI with identifier iKPI-2.2, the system will be protected from
the harmful effects of at least three attacks. As already discussed in Section 2.5, FORTH
currently provides EdgeSec VPN that secures the network communications and EdgeSec TEE
that offers trusted and protected execution.

Table 7: Project-related KPIs that concern EdgeSec TEE

Related Related
Task Component

KPI ID KPI Description Strategy

KPI-0O3-E3-1 Realise a secure Ensure that there are no weak T4.3 EdgeSec VPN,
computing framework at | links in the E2F2C chain, every
all the processing layers. | layerand communication channel EdgeSec TEE
between them shall be secure.
iKP1-2.2 At least three (3) Cyber threats that could otherwise | T4.3 EdgeSec VPN,
different cyber threats potentially be exploited to harm
avoided due to E2F2C. the system, but their impact is EdgeSec TEE

minimised due to the security
features offered by E2F2C.

3.5.2 .Component-related KPIs

The“component-related KPI that” concerns EdgeSec TEE is presented in Table 8. More
specifically, with EdgeSec TEE, MARVEL aims to effectively avoid at least three distinct cyber
threats. As already mentioned, EdgeSec TEE offers security and privacy guarantees in
environments that should not be trusted, since it is based on the Intel SGX technology that offers
a combo of cybersecurity, encryption, and verification capabilities. Some of the attacks that
Intel SGX targets for mitigation are software and physical attacks, memory mapping attacks,
and cache timing attacks amongst many others [27]. For instance, attacking the system memory
(DRAM) of a machine is a serious and common threat, while it has been shown that an
adversary with physical access to a machine can potentially read and/or modify memory
contents. With Intel SGX, an autonomous hardware unit called the Memory Encryption Engine
(MEE) is offered, which is able to protect the confidentiality, integrity, and freshness of the
CPU-DRAM traffic over some memory range [28]. In addition, even though CPU side-channel
attacks are out of the threat model scope of the Intel SGX technology, Intel stays up-to-date and

MARVEL -40 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

constantly provides guidelines to help developers harden their code®, while they also offer bug
bounty competitions to encourage researchers to find and disclose new side-channel
vulnerabilities'®. Thus, EdgeSec TEE greatly contributes to the realisation of this specific KPI,

by effectively avoiding physical and cyber threats.
Table 8: Component-related KPIs that concern EdgeSec TEE

Metric Expected Result Relevant Project KPI
Effectiveness for Number of threats 3 distinct cyber threats KPI-03-E3-1,
Avoiding Cyber Threats avoided avoided iKPI-2.2

15 https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf

16 https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html

MARVEL -41 - June 30, 2022

https://www.intel.com/content/dam/develop/external/us/en/documents/180204-sgx-sdk-developer-guidance-v1-0.pdf
https://www.intel.com/content/www/us/en/security-center/bug-bounty-program.html

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
4 GPU-accelerated Stream Processing on the Edge (GPURegex)

In this section, GPURegex is presented, described, and evaluated based on the performance
achieved as a standalone component. GPURegex is the component that brings performance
acceleration features to the complete E2F2C framework, developed within the MARVEL
project. More specifically, GPURegex is based on the Single Instruction — Multiple Data
(SIMD) type of parallel processing, taking advantage of modern processors (either CPUs or
accelerators), and OpenCL, a framework for writing programs that uniformly execute across
heterogeneous platforms. The component is offered as an OpenCL program that is able to be
executed on top of a hardware device when the proper runtime and libraries are installed.
GPURegex offers the pattern matching functionality, accelerated.

In the following sections, we provide some background information regarding GPU-accelerated
stream processing and pattern matching, as well as the state-of-the-art on these two topics.
Then, we describe the development and deployment details, while we locate the related project
and component KPIs. Finally, we discuss about their correlation with GPURegex and how they
can be realised within the context of MARVEL.

GPURegex will be used to accelerate the searching of keywords against audio and video
captions (offered by the AAC tool of TAU). Since the input will be only available after M18,
we allow the evaluation of the tool using several public datasets with audio or video captions
identified and shared by TAU. We expect that these data formats will fairly resemble the actual
data resulted from AAC.

4.1 Background

In this section, basic background information regarding GPU acceleration of stream processing
and pattern matching will be presented. In addition, we will discuss the state-of-the-art that
concerns GPU-acceleration of stream processing and pattern matching.

4.1.1 GPU-Accelerated Stream Processing

Processing in a streaming fashion is a programming technique that facilitates parallel
processing. Image,. video, and signal processing were originally suited for stream processors,
while presently general-purpose computing can be achieved when the nature of the processing
iIs computationally heavy, not memory intensive. GPUs, due to their architectural design are
ideal for fast and highly-parallelised computations, since their numerus, powerful cores enable
this kind of execution.

The continuous processing of data streams is useful in numerous applications, such as network
traffic inspection and log processing, Al and real-time predictions and continuous monitoring
of healthcare/transportation/manufacturing data amongst others. Thus, accelerating stream
processing for near real-time scenarios’ requirements is crucial but feasible — realised by
streaming processors and SIMD-enabled hardware, like GPUs.

4.1.2 GPU-Accelerated Pattern Matching

Pattern matching is the procedure of identifying if a certain keyword (i.e., pattern) is part of an
expression (i.e., input). Due its computational characteristics and requirements, pattern
matching processing can be parallelised (depending on the algorithm used) allowing streaming
capabilities.

GPURegex is based on the Aho-Corasick algorithm [29]. Aho-Corasick is one of the most
widely used algorithms for string pattern matching and is the optimal solution for multiple
patterns searching, since it enables simultaneous pattern matching. This simultaneous matching

MARVEL -42 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

can be achieved when the set of patterns is preprocessed. In the preprocessing phase, one
automaton is being built, which will be eventually used in the matching phase. Each character
of the text-based input is processed only once during the matching phase. The Aho-Corasick
algorithm has the property that, theoretically, the processing time does not explicitly depend on
the number of patterns. Given a set of patterns, the algorithm constructs a pattern matching
machine (i.e., the automaton), that matches all patterns against the input one byte at a time. The
implementation of GPURegex is based on the Aho-Corasick algorithm due to the processing
nature, which enables the easy parallelisation of the underlying computations.

In the following sections, we describe how Aho-Corask is used and implemented for
GPURegex.

4.1.3 State-of-the-Art

Pattern matching is the core operation of several network packet processing applications, such
as firewalls, intrusion detection, L7 filtering, and traffic classification. Thus, it is very common
when searching for pattern matching applications, to encounter works in the domain of network
inspection. However, pattern matching is not only destined for network processing applications.
For instance, pattern matching is used for system log processing, continuous monitoring of
healthcare/transportation/manufacturing data and bioinformatics, like RNA structure
alignments. Thus, there are numerous and diverse research domains that are benefitted from
optimised versions of traditional pattern matching algorithms.

In the meantime, GPUs have become very popular due to a substantial performance boost that
provide to many individual network traffic inspection applications that are based on the
parallelisation of the pattern matching computations. Related works include but are not limited
to GPU-accelerated intrusion detection [30][31][32][33], cryptography [34], and IP routing
[35]. For instance, Gnort accelerates the pattern matching engine of the Snort IDS using a
discrete GPU. Similarly, Kargus performs load balancing in pattern matching workloads and is
compatible with Snort IDS [36]. MIDeA offers a multi-parallel intrusion detection architecture
tailored to multi-queue NICs, multiple CPUs, and multiple GPUs [33]. DFC offers accelerated
string matching tailored to packet processing by reducing memory accesses and cache misses
[37].

In addition, there have been proposed several programmable network traffic processing
framewaorks, such as Snap [38] and GASPP [39], that manage to simplify the development of
GPU-accelerated network traffic processing applications.

Other works take advantage of the shared integrated GPU that is packed with the main processor
in the same die in order to accelerate or offload network packet processing applications
[40][41][42]. In APUNet, authors propose the utilisation of integrated GPUs to accelerate
packet processing workloads without paying the overheads of memory transactions between
the host and discrete GPUs [40]. Papadogiannaki et al. [41] have proposed a scheduling
approach that, based on performance policies (such as high throughput or low power
consumption), determines the most suitable combination of heterogeneous devices (i.e., CPU,
integrated or discrete GPUSs) for efficient execution of network packet processing workloads
(such as DPI or network packet encryption). In NBA, authors extend the functionality of a
network router to leverage hardware accelerators for network packet processing load balancing
[43]. In addition, there are works that perform GPU-accelerated pattern matching for metadata
searching to enable encrypted network traffic analysis and inspection [44][45].

MARVEL -43 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

4.2 Early Deployment and Integration

GPURegex is a real-time high-speed pattern matching engine that leverages the parallelism
properties of general-purpose GPUs (GPGPUS) to accelerate the process of string and/or regular
expression matching. The initial version of GPURegex is uploaded on the MARVEL docker
image registry and can be downloaded or it can be shared upon request. More specifically,
GPURegex is available for two different hardware setups: (i) a hardware setup with an Intel
CPUY, and (ii) a hardware setup with an Intel CPU and an integrated (on chip) GPU8, In the
first hardware setup, the drivers that are installed in the container are destined for OpenCL-
enabled CPUs, while in the second hardware setup, the drivers that are installed in the container
are destined for shared, integrated, OpenCL-enabled GPUs, like Intel HD Graphics.

In this section, we will describe the current implementation, deployment and integration status
of the component namely GPURegex with respect to the whole MARVEL platform.

4.2.1 Implementation

As already discussed, pattern matching includes intensive. computations and can be
significantly accelerated using the right hardware architectures and an algorithm
implementation with operations that can be parallelised. GPURegex is implemented based on
the Aho-Corasick algorithm and pre-compiled DFA automata. Thus, GPURegex is able to
perform simultaneous multi-pattern matching within a single pass of the input. A high-level
overview of GPURegex as it is used in MARVEL can be found in Figure 30. In this section,
we discuss the implementation details of the component GPURegex.

Signatures of
anomalous

events DFA Compilation

e

TRANSFORMED INPUT:
RAW INPUT: text-based representation

Y
audio (andfor visual) data of raw input data DFA
I —l
Data Buffers
%
—_—

Figure 30: High-level overview of GPURegex in MARVEL

OUTPUT:
1: match - (: no match

GPURegex supports string searching and regular expression matching operations. For the
development of GPURegex, all the GPU-accelerated pattern matching operations are
implemented using the OpenCL library, provided through a C APl. GPURegex enables the
processing of the incoming input, which is text-based, and when the processing is over it returns
the reported matches. In the context of MARVEL, GPURegex will be used to accelerate the

17 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

18 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

MARVEL -44 - June 30, 2022

https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

intensive pattern matching operations for fast event detection, even though traditionally, this
component has been specifically designed to accelerate the pattern matching procedure of
security applications such as network intrusion detection systems, load balancers, and firewalls
[31][41][44][45].

The pattern matching procedure is described as follows. Initially, the patterns are compiled into
DFA state machines and state transition tables. A GPURegex user can compile a single pattern
to a single DFA or combine different patterns into a single one. The compilation process is
performed once, before the execution of the pattern matching engine, and thus, it can be
performed offline by the CPU, during the initialisation phase of the user application without
adding any runtime overheads. Depending on the GPU architecture, the state table is copied to
the memory of the discrete GPU or mapped to the memory space that'is.shared between the
CPU and the integrated GPU. During the pattern matching phase, each thread searches against
a different portion of the input data. The algorithm processes the input one character (one
character corresponds to one byte) at a time and for each-consumed byte, the matching
algorithm switches the current state according to the state transition table. The size of the state
transition table is number of states X alphabet size. FoOr instance, to support the
standard ASCII character-set for both patterns and input, the alphabet size is 128. Thé number
of states is completely dependent on the patterns and the resulted DFA state machine. A
simplified example is shown in Figure 31.

alphabet

State machine

H E aTa R aTn
T]

Yoy Yo

-~ -~

he

her

+—— states

W N2 O
o W o o

0 i
2 0
0 0
0 0

State transition table

Figure 31: Construction of the'state transition table

As already mentioned, for a GPU to process data, we need first to copy the data to the
corresponding GPU memory space from the main memory. When the GPU is discrete, these
data transfers add a time overhead due to the PCle bus, which is relatively slow and it is
becoming an overhead when the application is memory intensive and requires constant memory
transfers (e.g., CPU-GPU-CPU). An illustration of the memory transfers’ requirements in an
integrated-GPU format versus a discrete-GPU format is presented in Figure 32. Thus, in the
very first version of GPURegex (GPURegex v.0), we introduce an implementation specifically
for OpenCL-enabled integrated GPUs (such as Intel HD Graphics) that share the same memory
space with the main processor®. In addition, we implemented another version of GPURegex to
target OpenCL-enabled processors (such as Intel CPUs) for cases where a shared GPU is not
present in the hardware setup that is available?°.

19 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

20 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL -45 - June 30, 2022

https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

PN CPU cores
[+ CPU cores E Shared L3 cache
E Shared L3 cache a CPU die
«+ Integrated GPU !] pé.e |
CPU die I
' | Discrete GPU |

Figure 32: Architectural comparison of an integrated GPU, packed with the main processor in the same CPU die
versus a discrete, dedicated GPU

4.2.2 Early Deployment

GPURegex can be deployed to any OpenCL-enabled processor or hardware accelerator, such
as dedicated, discrete GPUs or shared, integrated GPUSs: In the first version of GPURegex that
has been uploaded to the MARVEL registry and is available to.any MARVEL partner, FORTH
introduces an implementation for integrated GPUs?' and ‘an implementation for main
processors?? for hardware setups that do not offer a GPU.

As illustrated in Figure 33, a GPURegex Docker container can be deployed on top of any
OpenCL-enabled hardware device. OpenCL drivers are required to be installed in the specific
docker container before the execution of GPRURegex. Each vendor (e.g., Intel, NVIDIA) and
each hardware device (e.g., CPU, discrete GPU, integrated GPU) is supported by vendor and
device specific OpenCL drivers. For instance, the'OpenCL drivers that are destined for Intel
integrated GPUs are different to those that are destined for NVIDIA GPUs. Thus, normally, a
new OpenCL driver must be installed for every hardware device change. As already stated,
GPURegex is available via two images, uploaded to the MARVEL image registry (i.e., Intel
CPU and Intel HD Graphics GPU).

GPURegex Docker container

— CPU cores

Shared L3 cache

DRAM

— Integrated GPU

OpenCL drivers

Figure 33: An overview of GPURegex

Once downloaded from the MARVEL docker image registry, the GPURegex component can
be deployed by the following certain steps:

2 https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu

22 https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL -46 - June 30, 2022

https://marvel-platform.eu/login?next=/image/gpuregex-intel-gpu
https://marvel-platform.eu/login?next=/image/gpuregex-intel-cpu

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

1. docker login registry.marvel-platform.eu

2. docker pull registry.marvel-platform.eu/gpuregex—-intel-cpu:l

3. docker run -it registry.marvel-platform.eu/gpuregex-intel-
cpu:l /bin/sh

An example of GPURegex’s execution in the container loaded by the image uploaded on the
MARVEL image registry is shown in Figure 34. We can see that GPURegex returns the input
lines that contain patterns that match against them. In this specific example, patterns
“pattern01” and “pattern02” are matched, while pattern “pattern00” is not contained
in the input file. The contents of the pattern file, namely “patterns_demo”, and the contents of
the input file, namely “input_demo”, are presented in the same figure. GRURegex is compiled
using the command: $ make, and executed using the command: $ <. /bin/gpuregex -p
patterns demo -i input demo, Where -p accepts the pattern file name and -i accepts the
input file name.

[vagrantiscone:~$ docker run —-it gpuregex—intel-cpu:2 /bin/bash
[root@flaf7blc4fed: fusr/gpuregex# ./ /bin/gpuregex —p patterns_demo —-i input_demo
max state: 9

max states: 1@

trc: 18

this line contaims pattern pattern@l

this line contains pattern pattern@2
[root@flaf7blc4fed: /usr/gpuregex# cat patterns_demo

patternB@

patternB8l

patternB2

[root@flaf7blc4fed: fusr/gpuregex# cat input_demo
this line does not contain a pattern

this line contaims pattern pattern@il

this line neither contains a pattern

this line contaims pattern pattern@2
root@flaf7blc4fed: fusr/gpuregex# [J

Figure 34: An example run of GPURegex inside the container destined for Intel CPUs

4.2.3 Integration with MARVEL

Up until this point,,GPURegex can be used and tested by any partner that participates in the
MARVEL project by downloading the GPURegex images that exist in the MARVEL registry,
following the instructions that were described in the previous section (Section 4.2.2). Since
GPURegex - in the context of the MARVEL project - will participate in a pipeline receiving
input from a component that can only be deployed after M18 (i.e., AAC from TAU), the entire
deployment and integration details of GPURegex will be fully outlined in the following
deliverable (i.e., D4.5). Thus, in these sections, FORTH describes the testbed setup that is
located at FORTH premises and is used for the development of the GPURegex that has been
uploaded to the MARVEL registry.

4.3 Use Cases and Related Components

In this section, we briefly describe the component Automated Audio Captioning (AAC) that is
planned to pair with GPURegex in a processing pipeline, in the context of the MARVEL
project. Yet, since AAC will be ready after M18, the entire deployment and integration details
of GPURegex will be fully outlined in the following deliverable (i.e., D4.5). As a component
of the whole MARVEL platform, GPURegex is presented in Figure 1. As part of the subsystem
named “Optimised E2F2C Processing and Deployment”, GPURegex’s relation with the AAC
component is shown. In this conceptual architecture figure, GPURegex is placed within the
cloud layer, but can also be trained or operate in different layers of the platform. More details
will be described in the following version of this deliverable (D4.5).

MARVEL -47 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

4.3.1 Related Components

AAC is a cross-modal translation task in artificial intelligence that connects audio processing
and natural language processing. The automated audio captioning component generates a
descriptive textual description to describe the content of an audio clip. These textual
descriptions can be used to assist the decision-making process in other components. The AAC
component can collaborate and enhance the predictive behaviour of other components by
providing high-level information about the audio content.

The input to the AAC component is an audio signal, and the output is a sentence that describes
the audio signal, for instance, “Birds chirp while people talk in the background”. The output is
a properly formulated sentence that not only describes the sound events but also the spatial-
temporal relation between different objects as well as the activities involved. In the learning
stage, the component learns the mapping between the input audio signal and the corresponding
captions, and at the inference stage, the component predicts the captions for audio input. The
learned knowledge depends on the data utilised during the learning stage. The system
development requires an audio dataset consisting of audio samples and the corresponding
manually generated reference captions. The current state-of-the-art for the AAC system is based
on relatively large neural networks with encoder-decoder architectures or transformer-based
sequence-to-sequence architectures. An overview of the AAC component is presented in Figure
35.

Input Output
Audio Word Word People yelling while
encoder decoder predictor a siren wails
Audio Encoded Encoded Caption
audio caption
information

Figure 35: Overview of AAC

4.3.2 GPURegex in MARVEL Use Cases

As already discussed, GPURegex in the context of the MARVEL project will participate in a
pipeline and will receive input from the AAC component that can only be deployed after M18.
Thus, the entire deployment and integration details of GPURegex will be fully outlined in the
following deliverable (i.e., D4.5). In this deliverable, we test GPURegex using several public
datasets that contain captions from audio and video sources. These datasets are close to the
input that GRURegex will receive from AAC. So, we expect that the differences of this early
experimental results will not be significant to those of the actual deployment of GPURegex in
the context of MARVEL.

4.4 Early Experimental Results
In this section, FORTH will present the early experimental results of GPURegex in detail.

4.4.1 Testbed Setup

GPURegex in its current form, can be executed on top of an Intel CPU and on top of an Intel
integrated GPU, and it is available in the MARVEL image registry via two different images
“gpuregex-intel-cpu” and “gpuregex-intel-gpu”. Since a CPU, rather than a graphics
processor, is the most typical device in a hardware setup of an experimental environment, in
this section we present the experimental results of “gpuregex-intel-cpu”.

MARVEL -48 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

For the performance evaluation of GPURegex, we use a VM that has the following
characteristics. The CPU that was used in the experiments performed is an Intel Core i7-7700
operating at 3.6 GHz and the main memory is 4GBytes. The L3 cache (i.e., 16MiB) and the
memory controller are shared across the CPU cores and the integrated GPU. Each CPU core is
equipped with 64KiB of L1 cache and 512KiB of L2 cache.

The docker image has a Linux kernel (version 5.13) with an Ubuntu 16.04.7 LTS operating
system. The OpenCL version installed is 2.1, with platform name “Intel(R) CPU Runtime for
OpenCL (TM) Applications” and driver version 18.1.0.0920.

4.4.2 Experiments

As already mentioned, GPURegex in the context of the MARVEL project.will participate in a
pipeline that will receive input from the AAC component that can only be deployed after M18.
Since there is no available input for GPURegex yet, in this deliverable we will use several
public datasets that include captions extracted from audio and video (in several formats: e.g.,
csv, json, yaml) and could resemble the output of AAC. TAU specifically proposed the
following captioning datasets: the Clotho dataset?, the AudioCaps dataset?*, and the MACS
dataset?. Another dataset that was proposed by TAU, was the Audio Caption Hospital dataset?®.
Unfortunately, processing was not possible due to.the character encoding that was not part of
the ASCII character-set that GPURegex supports (256 ASCII character-set).

The Clotho dataset consists of three main csv files, namely clotho_captions_development.csv
(1.3MBytes), clotho_captions_evaluation.csv (354KBytes), clotho captions_validation.csv
(360K Bytes). Each file contains a number of lines and each line contains five captions extracted
by one audio/video file. A line looks like the following example:

“Distorted AM Radio noise.wav, A muddled noise of broken channel of
the TV, A television blares the rhythm of a static TV., Loud television
static dips in and.out of focus, The loud buzz of static constantly
changes pitch and<volume., heavy static and the beginnings of a signal

on a transistor’radio”

For each one of these files, there is a respecting metadata file that contains -- amongst others -
- the keywords-that. were exported by those captions: “Distorted AM Radio noise.wav,
noise ; radio, ..”. To construct our pattern file, we extract the unique keywords and we
save them into a pattern file. The pattern file consists of 6623 unique fixed strings. Searching
for the patterns against the input file clotho_captions_development.csv results in a total of 3840
matches (out of the 3840 total sentences). This means that all 3840 input lines contain at least
one of the patterns.

The AudioCaps dataset consists of three csv files, namely train.csv (3.5MBytes), test.csv
(393K Bytes), val.csv (168KBytes). Each file contains a number of lines and each line contains
a single caption for a single audio capture. A line looks like the following example: “91139,
rlnicOvtvkQ, 130, A woman talks nearby as water pours” (the four columns
correspond to the following: audiocap id, youtube id, start time, caption). TO
construct our pattern file, we extract the unique keywords and save them into a pattern file. The
pattern file consists of 7414 unique fixed strings. Searching for the patterns against the input

23 hitps://zenodo.org/record/4783391#.YovyVSORpTa

24 https://github.com/cdjkim/audiocaps
2 https://zenodo.org/record/5114771#.YovyXCORpTa
26 https://zenodo.org/record/4671263#.YovyWSORpTa

MARVEL -49 - June 30, 2022

https://zenodo.org/record/4783391#.YovyVS0RpTa
https://github.com/cdjkim/audiocaps
https://zenodo.org/record/5114771#.YovyXC0RpTa
https://zenodo.org/record/4671263#.YovyWS0RpTa

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

file train.csv results in a total of 49839 matches (out of the 49839 total sentences). This means
that all 49839 input lines contain at least one of the patterns.

The MACS dataset contains a single file, namely MACS.yaml (2.7MBytes). An example of the
entries that are contained in the file follows:

files:
- filename: airport-barcelona-0-0-a.wav
annotations:
- annotator id: 233
sentence: a person whistling and singing
tags:
- adults talking
- music
- annotator id: 105
sentence: people are talking whistling and_.singing
tags:
- adults_talking

To construct our pattern file, we extract the tags in the file and keep the unique keywords. In
addition, if there is the character “ between two different words, we split the tags and keep
them both. This results in a pattern file with 16 unique keywords (fixed strings). Concerning
the input file, we extracted only the “sentence” fields from the yaml file, in order to avoid
patterns matching against the tags themselves (the exported file size is 933KBytes). As is, the
patterns that match against the input lines result in 14573 matches (out of the 17275 total
sentences). Since the keywords contain words like “talking” or “voices”, we add a pre-
processing step to keep the origins, like “talk™ or “voice”, respectively. This action results in a
total of 15284 matches. This means that 15284 input lines include at least one of the patterns.

4.4.3 Results

Since the related KPIs address the performance metrics of GPURegex to be throughput and
execution time, In this section we will perform two corresponding benchmarks that concern
those twometrics. To begin with, we evaluate the processing performance of GPURegex using
the three public datasets shared by TAU (i.e., Clotho, AudioCaps, and MACS), using the
corresponding pattern files and “inputs. We compare the performance achieved by the
GPURegex executed on top of the CPU versus the GNU grep utility that is also based on the
Aho-Corasick algorithm (using the -F option that enables fixed strings searching) and runs on
the CPU, as well. In addition, we build several pattern files (with different state transition
counts) and input files (with different sizes) and we execute GPURegex to present how the
processing performance achieved is based on these parameters. We perform the same
benchmarks (same pattern file, same input files) with the GNU grep utility to enable
performance comparisons.

For the Clotho dataset, we use the pattern file that was constructed by the keywords that were
extracted by the captions. Each one of these patterns is a fixed string, with a total of 6623
patterns. The pattern sizes are very diverse with the maximum sized pattern being 62Bytes
while the shortest pattern is 1Byte. The resulting automaton has 20788 state transitions. The
average GPURegex processing throughput is 3282 Mbits/second (among 30 GPURegex
executions using the same pattern file and input file that is 1.3MBytes). Similarly, the average
processing execution time (latency) is 3500 microseconds, whereas the CPU version of Aho-
Corasick achieves processing in 12000 microseconds. This means that the speedup of

MARVEL -50 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

GPURegex, in this case, is more than x3, due to the parallel processing, and specifically due to
the Single Instruction/Multiple Data (SIMD) model that OpenCL facilitates.

For the AudioCaps dataset, we use the pattern file that was constructed by the keywords that
were extracted by the captions (found in the fourth column). Each one of these patterns is a
fixed string, with a total of 7414 patterns. The pattern sizes are also diverse with the maximum
sized pattern being 19Bytes while the shortest pattern is 2Bytes. The resulting automaton has
14465 state transitions. Even though the number of the patterns is larger than in the first
example, their characteristics (length reaches up to 19Bytes versus the length of the 62Bytes
from the first automaton) lead to a shorter state transitions table. The average GPURegex
processing throughput is 3200 Mbits/second (among 30 GPURegex executions using the same
pattern file and input file that is 3.5MBytes). Similarly, the average processing execution time
(latency) is 2000 microseconds, whereas the CPU version of Aho-Corasick achieves processing
in 28000 microseconds. This means that the speedup of GPURegex, in this case, is more than
x10. This essential performance difference appears due to the large input file size. GPURegex
handles the input files, optimally, with respect to maximising processing. performance and
enabling full data parallelisation and SIMD processing.

For the MACS dataset, we use the pattern file that was constructed by the tags that were
extracted by the sentences and were part of the yaml file provided in the dataset. Each one of
these patterns is a fixed string, with a total of 16 patterns. The maximum sized pattern is 12Bytes
while the shortest pattern is 3Bytes. The resulting automaton has 68 state transitions, due to the
short pattern file. The average GPURegex processing throughput is 6748 Mbits/second (among
30 GPURegex executions using the same pattern file and input file that is 933KBytes).
Similarly, the average processing execution time (latency) is 626 microseconds, whereas the
CPU version of Aho-Corasick achieves processing.in 3500 microseconds. This means that the
speedup of GPURegex in this case is more than x5.

For the last experiment,-we generate two synthetic input files and one pattern file. The
synthesised pattern and input files are generated using a simple python script, which takes as
arguments the number of lines to be generated and the number of characters for each line,
printing the corresponding randomly selected ASCII alphanumeric characters. Both input files
contain 10K lines of 100Bytes (its size is 987KBytes) and 1500Bytes (its size is 15MBytes) per
line, respectively. The pattern file consists of 1000 lines with 10Bytes pattern length. For the
microbenchmarks, we measure the throughput and execution time. Again, we measure the
processing performance of GPURegex, comparing it to the processing performance of GNU
Grep which.is built for CPU execution. We present the throughput and execution time in two
separate tables (i.e., Table 9 and Table 10). More specifically, using the smaller input file,
GPURegex achieves an average processing throughput of 3200 Mbits/second (the average
execution time is 660ms), while GNU Grep exits with an average processing throughput of
789Mbits/second (the average execution time is 10000ms). Using the larger input file,
GPURegex achieves an average processing throughput of 3330 Mbits/second (the average
execution time is 7200ms), while GNU Grep exits with an average processing throughput of
723Mbits/second (the average execution time is 166000ms).

In all experiments, GPURegex succeeds better performance, when compared to the GNU Grep
utility.

MARVEL -51- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

Table 9: Processing throughput of GPURegex and GNU Grep (measured in Mbits/second)
Throughput ‘ GPURegex ‘ GNU Grep
Input Length 100B (length 1500B (length ~ 100B (length | 1500B (length

per line) per line) per line) per line)

10K Lines ‘ 3200 Mbits/sec | 3330 Mbits/sec | 789 Mbits/sec 723 Mbits/sec

Table 10: Processing time of GPURegex and GNU Grep (measured in microseconds)
Execution Time ‘ GPURegex ‘ GNU Grep
Input Length 100B (length | 1500B (length | 100B (length 1500B (length

per line) per line) per line) per line)
10K Lines 7200 ms 10000 ms 166000 ms

45 KPIs

In this section, FORTH will present the relation of the GPURegex component to the project-
and component-related KPIs in the context of the MARVEL project.

45.1 Project-related KPIs

The project-related KPI that concerns the component, namely GPURegex, which is
implemented in Task 4.3 in the context of the MARVEL platform is presented in Table 11.
More specifically, the KPI proposes the acceleration of the pattern matching procedure after
the utilisation of the GPURegex component. The processing performance is calculated with the
performance metrics of throughput and latency. As discussed in Section 4.4, the sustained
processing performance achieved using the OpenCL-enabled CPU offers significant processing
speedups, more than 10% of a similar CPU implementation.

Table 11: Project-related KPIs that concern GPURegex

.. Related Related
KPI Description Strategy Task Component
KPI-O1-E1-2 Increase of data Access latency is defined by the T4.1, GPURegex
throughput and decrease response time of the overall T4.2
of access latency by system, while the throughput is
10%. defined as the amount of data that

can be processed per unit of time.

45.2 Component-related KPIs

The component-related KPI that concerns GPURegex is presented in Table 12. As similarly
stated in Section 4.5.1, GPURegex offers significant processing speed up. We evaluate
GPURegex using the “throughput” and “execution time” metrics (i.e., latency). The actual
result meets and succeeds the expected one, as described in Section 4.4 and the previous section
(Section 4.5.1).

Table 12: Component-related KPIs that concern GPURegex

Metric Expected Result Relevant Project KPI

Efficiency Throughput and At least 10% processing KPI-O1-E1-2
Execution time speed-up

MARVEL -52 - June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
5 Conclusions

In this deliverable, entitled D4.2 “Security assurance and acceleration in the E2F2C framework
— initial version” we presented the work performed in the context of Task 4.3 “Security and
acceleration in the complete E2F2C”, within the scope of WP4 “MARVEL E2F2C distributed
ubiquitous computing framework” and the MARVEL project under Grant Agreement No.
957337,

Specifically, the main three components are presented and discussed. The three components
have been developed in the context of Task 4.3 and offer security and acceleration features in
the complete E2F2C2 MARVEL framework. The security-related components are EdgeSec
VPN and EdgeSec TEE. EdgeSec VPN secures the communications usingend-to-end network
encryption, while EdgeSec TEE shields the execution of sensitive data processing applications
within trusted regions of memory. The component that offers acceleration in the pattern
matching procedure is GPURegex, which takes advantage of the SIMD parallel processing
architectural design and modern processors, like powerful multi-core CPUs or GPUs.

This deliverable corresponds to the initial version of “Security assurance and acceleration in
the E2F2C framework”. In D4.5, the final version of this deliverable, the three components will
be explored and evaluated within the context of the MARVEL project as integral parts of the
whole framework and the use cases defined.

MARVEL -53- June 30, 2022

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337
6 References

[1] Zhang, Z., Zhang, Y. Q., Chu, X., & Li, B. (2004). An overview of virtual private network (VPN):
IP VPN and optical VPN. Photonic network communications, 7(3), 213-225.

[2] Hauser, F., Haberle, M., Schmidt, M., & Menth, M. (2020). P4-1Psec: site-to-site and host-to-site
VPN with IPsec in P4-based SDN. IEEE Access, 8, 139567-139586.

[3] Alrowaily, M., & Lu, Z. (2018, October). Secure edge computing in 10T systems: review and case
studies. In 2018 IEEE/ACM Symposium on Edge Computing (SEC) (pp. 440-444). IEEE.

[4] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability, undetectability, unobservability,
pseudonymity, and identity management-a consolidated proposal for terminology,” Version v0, vol.
31, p. 15, 2008.

[5] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security and privacy-preserving in edge
computing paradigm: Survey and open issues,” IEEE Access, vol. 6, pp: 18 209-18 237, 2018

[6] Durresi, M., Subashi, A., Durresi, A., Barolli, L., & Uchida, K. (2019). Secure communication
architecture for internet of things using smartphones and multi-access edge computing in
environment monitoring. Journal of Ambient Intelligence and Humanized Computing, 10(4), 1631-
1640

[7] Hopkins, J. and Green, M. (2019). OpenVPN 2.4 Evaluation Summary and Report. [online] Private
Internet Access Blog. Available at: https://www.privatelnternetaccess.com/blog/2017/05/openvpn-
2-4-evaluationsummary-report/ [Accessed 16 Aug.-2019].

[8] Cisco. (2019). Security and VPN - Support Documentation. Retrieved from
https://www.cisco.com/c/en/us/tech/security-vpn/index.htmi

[9] Ferguson, N., & Schneier, B. (2003). A Cryptographic Evaluation of IPSec. Retrieved from
https://www.schneier.com/academic/paperfiles/paper-1PSec.pdf

[10]Donenfeld, J. (2018). WireGuard: Next. Generation Kernel ‘Network. Tunnel [Ebook] (1st ed.).
Retrieved from http://www.wireguard.com/papers/wireguard .pdf.

[11]Osswald, L., Haeberle, M., & Menth, M. (2020). Performance Comparison of VPN Solutions

[12]Schuster, Felix, et al. "VC3: Trustworthy data analytics in the cloud using SGX." 2015 IEEE
symposium on security and privacy. IEEE, 2015.

[13]Zheng, Wenting, et al. "Opaque: An oblivious and encrypted distributed analytics platform.” 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 2017.

[14]Priebe, Christian, Kapil Vaswani, and Manuel Costa. "EnclaveDB: A secure database using
SGX." 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018.

[15]Goltzsche, David, et al. "Endbox: Scalable middlebox functions using client-side trusted
execution.” 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018.

[16]Trach, Bohdan, et al. "Shieldbox: Secure middleboxes using shielded execution.” Proceedings of the
Symposium on SDN Research. 2018.

[17]Poddar, Rishabh, et al. "{SafeBricks}: Shielding Network Functions in the Cloud." 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18). 2018.

[18]Deyannis, Dimitris, et al. "Trustav: Practical and privacy preserving malware analysis in the
cloud.” Proceedings of the tenth ACM conference on data and application security and privacy.
2020.

[19]Deyannis, Dimitris, et al. "Andromeda: Enabling Secure Enclaves for the Android
Ecosystem." International Conference on Information Security. Springer, Cham, 2021.

[20]Baumann, Andrew, Marcus Peinado, and Galen Hunt. "Shielding applications from an untrusted
cloud with haven." ACM Transactions on Computer Systems (TOCS) 33.3 (2015): 1-26.

[21]Shinde, Shweta, et al. "Panoply: Low-TCB Linux Applications With SGX Enclaves." NDSS. 2017.

[22]Tian, Hongliang, et al. "Sgxkernel: A library operating system optimized for intel
SGX." Proceedings of the Computing Frontiers Conference. 2017.

[23]Tsai, Chia-Che, Donald E. Porter, and Mona Vij. "{Graphene-SGX}: A Practical Library {OS} for
Unmodified Applications on {SGX}." 2017 USENIX Annual Technical Conference (USENIX ATC
17). 2017.

[24]Arnautov, Sergei, et al. "{SCONE}: Secure linux containers with intel {SGX}." 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 2016.

[25]Baumann, Andrew, Marcus Peinado, and Galen Hunt. "Shielding applications from an untrusted
cloud with haven.” ACM Transactions on Computer Systems (TOCS) 33.3 (2015): 1-26.

MARVEL -54 - June 30, 2022

https://www.privateinternetaccess.com/blog/2017/05/openvpn-2-4-evaluationsummary-report/
https://www.privateinternetaccess.com/blog/2017/05/openvpn-2-4-evaluationsummary-report/
https://www.cisco.com/c/en/us/tech/security-vpn/index.html
https://www.schneier.com/academic/paperfiles/paper-IPSec.pdf
http://www.wireguard.com/papers/wireguard%20.pdf

MARVEL D4.2 H2020-1CT-2018-20/Ne 957337

[26]Kunkel, Roland, et al. "Tensorscone: A secure tensorflow framework using intel sgx." arXiv preprint
arXiv:1902.04413(2019).

[27]Volos, Stavros, Kapil Vaswani, and Rodrigo Bruno. "Graviton: Trusted Execution Environments on
{GPUs}." 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
2018.

[28]Costan, Victor, and Srinivas Devadas. "Intel SGX explained." Cryptology ePrint Archive (2016).

[29]Gueron, Shay. "A memory encryption engine suitable for general purpose processors.” Cryptology
ePrint Archive(2016).

[30]Aho, Alfred V., and Margaret J. Corasick. "Efficient string matching: an aid to bibliographic
search." Communications of the ACM 18.6 (1975): 333-340.

[31]Smith, Randy, et al. "Evaluating GPUs for network packet signature matching." 2009 IEEE
International Symposium on Performance Analysis of Systems and Software. IEEE, 2009.

[32] Vasiliadis, Giorgos, et al. "Gnort: High performance network intrusion detection using graphics
processors.” International workshop on recent advances in intrusion’detection. Springer, Berlin,
Heidelberg, 2008.

[33]Vasiliadis, Giorgos, et al. "Regular expression matching on graphics hardware for intrusion
detection." International Workshop on Recent Advances in Intrusion Detection. Springer, Berlin,
Heidelberg, 2009.

[34]Vasiliadis, Giorgos, Michalis Polychronakis, and Sotiris loannidis. "MIDeA: a multi-parallel
intrusion detection architecture." Proceedings of the 18th ACM conference on Computer and
communications security. 2011.

[35]Harrison, Owen, and John Waldron. "Practical Symmetric Key Cryptography on Modern Graphics
Hardware." USENIX Security Symposium. Vol. 195. 2008.

[36]Han, Sangjin, et al. "PacketShader: a GPU-accelerated software router.” ACM SIGCOMM Computer
Communication Review 40.4 (2010): 195-206.

[37]Jamshed, Muhammad Asim, et al. "Kargus: a highly-scalable software-based intrusion detection
system."” Proceedings of the 2012 ACM conference on Computer and communications security.
2012.

[38]Choi, Byungkwon, et al. "{DFC}. Accelerating string pattern matching for network
applications.” 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). 2016.

[39]Sun, Weibin, and Robert Ricci. "Fast and flexible: Parallel packet processing with GPUs and
click." Architectures for Networking and Communications Systems. IEEE, 2013.

[40]Vasiliadis, Giorgos, et al. "{GASPP}: A {GPU-Accelerated} Stateful Packet Processing
Framework." 2014 USENLX Annual Technical Conference (USENIX ATC 14). 2014.

[41]Go, Younghwan, et al. "{APUNet}: Revitalizing {GPU} as Packet Processing Accelerator." 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). 2017.

[42]Papadogiannaki, Eva, et al. "Efficient software packet processing on heterogeneous and asymmetric
hardware architectures.” IEEE/ACM Transactions on Networking 25.3 (2017): 1593-1606.

[43]Giakoumakis, Giannis, et al. "Pythia: Scheduling of concurrent network packet processing
applications on heterogeneous devices.” 2020 6th IEEE Conference on Network Softwarization
(NetSoft). IEEE, 2020.

[44]Kim, Joongi, et al. "NBA (network balancing act) a high-performance packet processing framework
for heterogeneous processors.” Proceedings of the Tenth European Conference on Computer
Systems. 2015.

[45]Papadogiannaki, Eva, and Sotiris loannidis. "Acceleration of intrusion detection in encrypted
network traffic using heterogeneous hardware." Sensors 21.4 (2021): 1140.

[46]Papadogiannaki, Eva, Dimitris Deyannis, and Sotiris loannidis. "Head (er) Hunter: fast intrusion
detection using packet metadata signatures." 2020 IEEE 25th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE, 2020.

MARVEL -55- June 30, 2022

	List of Tables
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Relation to other Work Packages, Deliverables and Activities
	1.3 Contribution to WP4 and Project Objectives
	1.4 Structure of the Report

	2 Secure Communication on the Edge (EdgeSec VPN)
	2.1 Background
	2.1.1 Virtual Private Networks
	2.1.2 Secure Peer-to-Peer Communications
	2.1.3 State-of-the-Art

	2.2 Early Deployment and Integration
	2.2.1 Development
	2.2.2 Early Deployment
	2.2.3 Integration with MARVEL

	2.3 Use Cases and Related Components
	2.3.1 Related Components
	2.3.2 EdgeSec VPN in UNS Use Case
	2.3.3 EdgeSec VPN in GRN Use Cases
	2.3.4 EdgeSec VPN in MT Use Cases

	2.4 Early Experimental Results
	2.4.1 Testbed Setup
	2.4.2 Experiments
	2.4.3 Results

	2.5 KPIs
	2.5.1 Project-related KPIs
	2.5.2 Component-related KPIs

	3 Trusted Execution on the Edge (EdgeSec TEE)
	3.1 Background
	3.1.1 Trusted Execution Environments
	3.1.2 Containers
	3.1.3 State-of-the-Art

	3.2 Early Deployment and Integration
	3.2.1 Development
	3.2.2 Early Deployment
	3.2.3 Integration with MARVEL

	3.3 Use Cases and Related Components
	3.3.1 Related Components
	3.3.2 EdgeSec TEE in MARVEL Use Cases

	3.4 Early Experimental Results
	3.4.1 Testbed Setup
	3.4.2 Experiments
	3.4.3 Results

	3.5 KPIs
	3.5.1 Project-related KPIs
	3.5.2 Component-related KPIs

	4 GPU-accelerated Stream Processing on the Edge (GPURegex)
	4.1 Background
	4.1.1 GPU-Accelerated Stream Processing
	4.1.2 GPU-Accelerated Pattern Matching
	4.1.3 State-of-the-Art

	4.2 Early Deployment and Integration
	4.2.1 Implementation
	4.2.2 Early Deployment
	4.2.3 Integration with MARVEL

	4.3 Use Cases and Related Components
	4.3.1 Related Components
	4.3.2 GPURegex in MARVEL Use Cases

	4.4 Early Experimental Results
	4.4.1 Testbed Setup
	4.4.2 Experiments
	4.4.3 Results

	4.5 KPIs
	4.5.1 Project-related KPIs
	4.5.2 Component-related KPIs

	5 Conclusions
	6 References

