

Big Data technologies and extreme-scale analytics

Multimodal Extreme Scale Data Analytics for Smart Cities Environments

D3.2: Efficient deployment of AI-optimised ML/DL models –

initial version†

Abstract: The purpose of this deliverable is to describe the MARVEL Edge-to-Fog-Cloud

framework as the deployment layer for the AI/DL MARVEL components. This framework

incorporates the deployment logic that is hidden behind MARVdash, the proposed Kubernetes

dashboard for instantiating services as orchestrated containers, and deploying them to desired

execution sites based on optimisation strategy. The main goal of the optimisation strategy is for

MARVEL components to be deployed into Kubernetes nodes based on their resource

requirements and the resource offerings of the actual nodes. Moreover, this deliverable will

describe methods for compressing machine learning algorithms/models based on the resources

available at the edge (e.g., reducing the size and operation time of million-parameter deep

learning models). Such compression could minimise the computational overhead on the edge

servers.

Contractual Date of Delivery 30/06/2022

Actual Date of Delivery 30/06/2022

Deliverable Security Class Public

Editor Manos Papoutsakis, Anthi Barmpaki,
Manolis Michalodimitrakis (FORTH)

Contributors FBK, AUD, AU, TAU, CNR, UNS,

ITML, INTRA, ATOS, ZELUS, STS

 Quality Assurance Alessio Brutti (FBK)

Goran Martic (UNS)

† The research leading to these results has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No 957337.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 2 - June 30, 2022

The MARVEL Consortium

Part.

No.
Participant organisation name

Participant

Short Name
Role Country

1

FOUNDATION FOR

RESEARCH AND

TECHNOLOGY HELLAS

FORTH Coordinator EL

2
INFINEON TECHNOLOGIES

AG
IFAG Principal Contractor DE

3 AARHUS UNIVERSITET AU Principal Contractor DK

4 ATOS SPAIN SA ATOS Principal Contractor ES

5
CONSIGLIO NAZIONALE

DELLE RICERCHE
CNR Principal Contractor IT

6
INTRASOFT INTERNATIONAL

S.A.
INTRA Principal Contractor LU

7
FONDAZIONE BRUNO

KESSLER
FBK Principal Contractor IT

8 AUDEERING GMBH AUD Principal Contractor DE

9 TAMPERE UNIVERSITY TAU Principal Contractor FI

10 PRIVANOVA SAS PN Principal Contractor FR

11
SPHYNX TECHNOLOGY

SOLUTIONS AG
STS Principal Contractor CH

12 COMUNE DI TRENTO MT Principal Contractor IT

13

UNIVERZITET U NOVOM

SADU FAKULTET TEHNICKIH

NAUKA

UNS Principal Contractor RS

14

INFORMATION

TECHNOLOGY FOR MARKET

LEADERSHIP

ITML Principal Contractor EL

15 GREENROADS LIMITED GRN Principal Contractor MT

16 ZELUS IKE ZELUS Principal Contractor EL

17

INSTYTUT CHEMII

BIOORGANICZNEJ POLSKIEJ

AKADEMII NAUK

PSNC Principal Contractor PL

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 3 - June 30, 2022

Document Revisions & Quality Assurance

Internal Reviewers

1. Alessio Brutti, (FBK)

2. Goran Martic, (UNS)

Revisions

Version Date By Overview

0.8 30/6/2022 Editors Addressed comments from the PC.

0.7 21/6/2022 Editors Addressed comments from IR1 and IR2.

0.6 20/6/2022 IR2 (FBK, UNS) Comments from IR1 and IR2

0.5 17/6/2022 Editors Addressed comments from IR1 and IR2.

0.4 10/06/2022 IR (FBK, UNS) Comments from IR1 and IR2

0.3 06/06/2022 Editors Consolidated version for internal review

0.1 19/04/2022 Editors ToC.

Disclaimer

The work described in this document has been conducted within the MARVEL project. This project has
received funding from the European Union’s Horizon 2020 research and innovation programme under

grant agreement No 957337. This document does not reflect the opinion of the European Union, and

the European Union is not responsible for any use that might be made of the information contained

therein.

This document contains information that is proprietary to the MARVEL Consortium partners. Neither
this document nor the information contained herein shall be used, duplicated or communicated by any

means to any third party, in whole or in parts, except with prior written consent of the MARVEL

Consortium.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 4 - June 30, 2022

Table of Contents

LIST OF TABLES .. 6

LIST OF LISTINGS... 7

LIST OF FIGURES .. 8

LIST OF ABBREVIATIONS .. 9

EXECUTIVE SUMMARY .. 11

1 INTRODUCTION... 12

1.1 PURPOSE AND SCOPE .. 12
1.2 RELATION TO OTHER WORK PACKAGES, DELIVERABLES, AND ACTIVITIES ... 12
1.3 STRUCTURE OF THE REPORT ... 12

2 AVAILABLE CONTAINER IMAGES OF MARVEL COMPONENTS ... 13

2.1 AI SUBSYSTEM ... 13
2.1.1 Visual Anomaly Detection – ViAD ... 13
2.1.2 Audio-Visual Anomaly Detection – AVAD ... 14
2.1.3 Visual Crowd Counting – VCC .. 15
2.1.4 Audio-Visual Crowd Counting AVCC .. 16
2.1.5 Sound Event Detection – SED .. 17
2.1.6 Audio Tagging - AT .. 18
2.1.7 CATFlow... 19
2.1.8 Text Anomaly Detection - TAD ... 19

2.2 SECURITY, PRIVACY AND DATA PROTECTION SUBSYSTEM ... 20
2.2.1 EdgeSec Virtual Private Network (VPN) ... 20
2.2.2 EdgeSec Trusted Execution Environment (TEE) .. 21
2.2.3 VideoAnony ... 22
2.2.4 AudioAnony .. 25
2.2.5 VAD (devAIce) .. 26

2.3 DATA MANAGEMENT AND DISTRIBUTION SUBSYSTEM ... 28
2.3.1 StreamHandler ... 28
2.3.2 Data Fusion Bus - DFB .. 30
2.3.3 DatAna .. 34
2.3.4 Hierarchical Data Distribution - HDD .. 35

2.4 E2F2C SUBSYSTEM .. 37
2.4.1 GPURegex .. 37
2.4.2 DynHP .. 37
2.4.3 FedL .. 40

2.5 SYSTEM OUTPUTS SUBSYSTEM ... 43
2.5.1 SmartViz ... 43
2.5.2 MARVEL Data Corpus-as-a-Service .. 47

3 E2F2C DEPLOYMENT APPROACH ... 50

3.1 ARCHITECTURE OF THE MARVEL E2F2C FRAMEWORK ... 50
3.1.1 Kubernetes .. 50
3.1.1.1 Cluster Architecture... 50
3.1.1.2 Containers.. 52
3.1.1.3 Load balancing and networking .. 55
3.1.2 Virtual Private Network – VPN .. 56
3.1.2.1 VPN architecture ... 56
3.1.2.2 Necessity of VPN.. 57
3.1.2.3 Implementation .. 57

3.2 DEPLOYMENT METHOD .. 58
3.1.3 Taints/Tolerations... 60
3.1.3.1 Concepts .. 60
3.1.3.2 Concept usage .. 60

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 5 - June 30, 2022

3.1.3.3 MARVEL examples .. 61
3.1.4 Affinity .. 61
3.1.4.1 Concept .. 61
3.1.4.2 Concept usage .. 62
3.1.4.3 MARVEL examples .. 62

3.3 FUTURE PLANS – DEPLOYMENT OPTIMISATION .. 65

4 MODEL OPTIMISATION FOR EFFICIENT INFERENCE ... 66

4.1 CENTRALISED COMPRESSION METHODS ... 66
4.1.1 DynHP .. 66
4.1.1.1 Background on Soft pruning .. 66
4.1.1.2 Incremental Hard Pruning .. 68
4.1.1.3 Dynamic Batch Sizing .. 69
4.1.1.4 Model definition and available models.. 70
4.1.1.5 Performance evaluation... 70
4.1.2 AVCC Compression through DynHP ... 72

4.2 EFFICIENT FEDERATED METHODS ... 73
4.2.1 Federated Compression.. 73

5 KPIS ... 77

5.1 PROJECT-RELATED KPIS .. 77
5.2 COMPONENT-RELATED KPIS.. 78

6 CONCLUSION ... 79

7 REFERENCES .. 80

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 6 - June 30, 2022

List of Tables

Table 1: Applying taints/tolerations and node affinity in Kubernetes ... 63
Table 2: Dataset description ... 70
Table 3: Performance on MNIST ... 71
Table 4: Performance on Fashion-MNIST ... 71
Table 5: Performance on CIFAR-10 .. 72

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 7 - June 30, 2022

List of Listings

Listing 1: ViAD Dockerfile ... 14
Listing 2: AVAD Dockerfile .. 15
Listing 3: VCC Dockerfile ... 15
Listing 4: AVCC Dockerfile .. 16
Listing 5: Sound Event Detection Dockerfile .. 18
Listing 6: Acoustic Scene Classification Dockerfile ... 18
Listing 7: TAD container creation commands ... 20
Listing 8: EdgeSec VPN Dockerfile .. 21
Listing 9: EdgeSec container creation commands ... 21
Listing 10: VideoAnony Dockerfile... 25
Listing 11: Initialisation script for VideoAnony .. 25
Listing 12: AudioAnony Dockerfile .. 25
Listing 13: Initialisation script for AudioAnony .. 26
Listing 14: Voice Activity Detection Dockerfile ... 27
Listing 15: StreamHandler Dockerfile ... 30
Listing 16: Data Fusion Bus Dockerfile... 34
Listing 17: Commands for uploading Docker Image to MARVdash - HDD .. 36
Listing 18: GPURegex container creation commands ... 37
Listing 19: GPURegex execution commands .. 37
Listing 20: Docker pull command.. 38
Listing 21: DynHP Dockerfile ... 39
Listing 22: Structure of the DynHP root directory... 39
Listing 23: Commands for uploading Docker image to MARVdash - dynHP 40
Listing 24: FedL server Dockerfile .. 41
Listing 25: FedL client Dockerfile ... 42
Listing 26: Integration of FedL into existing Deep Learning models .. 42
Listing 27: SmartViz Dockerfile .. 47
Listing 28: Dockerfile snippet .. 54
Listing 29: Service object snippet .. 56
Listing 30: Taints example for the GRN Edge host machine .. 61
Listing 31: Toleration example for the GRN Edge host machine .. 61
Listing 32: Labelling example for the GRN Edge host machine ... 63
Listing 33: Affinity example for the GRN Edge host machine ... 63

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 8 - June 30, 2022

List of Figures

Figure 1: HDD Docker image in Docker Hub ... 36
Figure 2: Data Corpus Infrastructure ... 48
Figure 3: Kubernetes cluster architecture .. 51
Figure 4: Kubernetes main components ... 52
Figure 5: Docker basic concepts .. 53
Figure 6: n2n VPN architecture - source: https://www.ntop.org/products/n2n 56
Figure 7: VPN creates an underlaying network for remote Kubernetes nodes 57
Figure 8: VPN implementation in GRN use cases ... 58
Figure 9: Docker images tab in MARVdash UI... 59
Figure 10: Templates tab in MARVdash UI .. 59
Figure 11: Deployment of a service though MARVdash UI ... 60
Figure 12: Kubernetes Affinity, Taints and Tolerations concepts in a node. .. 62
Figure 13: Standard MLP definition .. 70
Figure 14: MLP definition using DynHP primitives.. 70
Figure 15: Training error over communication rounds .. 74
Figure 16: Validation Error over Comm. rounds ... 75
Figure 17: Test Error for clients 1 and 2 over comm. rounds .. 75
Figure 18: Model size during training and compression .. 76

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 9 - June 30, 2022

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

AT Audio Tagging

AVAD Audio-Visual Anomaly Detection

AVCC Audio-Visual Crowd Counting

CCTV Closed-Circuit Television

CLI Command Line Interface

CPU Central Processing Unit

DFB Data Fusion Bus

DL Deep Learning

DMT Decision-Making Toolkit

DNN Deep Neural Network

E2F2C Edge to Fog to Cloud

GA Grant Agreement

GNU GNU's Not Unix

GPU Graphics Processing/Processor Unit

HDD Hierarchical Data Distribution

HDFS Hadoop Distributed Files System

HP Hard Pruning

HTTP Hypertext Transfer Protocol

IaC Infrastructure-as-Code

ICT Information and Communications Technology

LSTM Long Short-Term Memory

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

MQTT Message Queuing Telemetry Transport

NUS Non-Uniform Sampling

REST REpresentational State Transfer

RTSP Real Time Streaming Protocol

SDK Software Development Kit

SED Sound Event Detection

SOTA State Of The Art

SP Soft Pruning

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 10 - June 30, 2022

STS Site-to-Site

TAD Text Anomaly Detection

TEE Trusted Execution Environment

UI User Interface

VAD Voice Activity Detection

VCC Visual Crowd Counting

ViAD Visual Anomaly Detection

VPN Virtual Private Network

WP Work Package

YAML Ain't Markup Language

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 11 - June 30, 2022

Executive Summary

The purpose of this deliverable is to provide the current version of the MARVEL Edge-to-Fog-

to-Cloud (E2F2C) framework. The deliverable has been developed within the scope of WP3 of

the MARVEL project under Grant Agreement (GA) No. 957337.

The document reports the outcomes of Tasks T3.4 and T3.5. As per the GA, the goals of T3.4

are to:

• Provide the deployment logic that will exploit the full potential of the personalised

Federated Learning approach implemented in T3.2;

• Optimise and manage of AI and Deep Learning (DL) component deployment;

• Provide an optimisation strategy, for the component deployment, based on resource

requirement and consumption.

Therefore, the first activity of T3.4 was to create the infrastructure that will be used for the

deployment of the MARVEL components. This infrastructure consists of a set of hosts part of

a Kubernetes cluster. On top of this Kubernetes cluster, MARVdash was placed as a dashboard

service for facilitating interaction with the underlying E2F2C testbed, by supplying the landing

page for users, allowing them to launch services, design workflows, request resources, and

specify other parameters related to execution through a user-friendly interface.

The corresponding goals of T3.5 are to:

• Provide techniques and algorithms for deployment at the edge layer;

• Study the need for compression of AI/DL models based on resource availability;

• Compress such models for reduction of the computational overhead.

Therefore, the first activity of T3.5 was to create a methodology for the compression of Deep

Neural Network (DNN) model at training time. Moreover, this methodology was used for the

actual compression of the Audio-Visual Crowd Counting (AVCC) model provided by AU.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 12 - June 30, 2022

1 Introduction

One of the objectives of the MARVEL project is to create an Edge-to-Fog-to-Cloud (E2F2C)

framework on which a variety of AI/DL components can be deployed in an optimal or almost

optimal way. This framework’s aim is to realise the deployment logic that will exploit the full

potential of the personalised Federated Learning approach implemented in T3.2.

1.1 Purpose and scope

This document reports on the process of creating such an E2F2C execution environment along

with a dedicated dashboard for implementing the interaction with the underlying environment,

coordinating the execution of the data management platforms and other software components,

and mediating external accesses to any service that needs to be exposed outside the MARVEL

infrastructure.

Moreover, this document reports on the methodology that was created for the compression of

DNN model at training time, along with the actual application of this methodology to the AVCC

model provided by AU.

1.2 Relation to other work packages, deliverables, and activities

This document is closely related to all the tasks of WP3. T3.1 deals with the development of

AI-based methods for data privacy, the aim of T3.2 is the development of a Federated Learning

(FL) framework based on the distribution of data in different locations, and T3.3 tackles the

development of multimodal audio-visual AI models. The deployment logic will exploit the full

potential of the personalised Federated Learning approach implemented in T3.2. It will be used

by the AI MARVEL components that will make use of the AI methods and techniques of the

aforementioned tasks.

Moreover, Kubernetes dashboard for the MARVEL E2F2C framework will be used for the

deployment of all of the rest MARVEL components, which are in charge of functionalities other

than the AI model training and inference. Such components are responsible for data transferring

and management. That fact relates this document with i) all the other tasks in different work

packages (WPs) that are dedicated to the development of MARVEL components, and ii) all the

corresponding deliverables that describe the functionality of the aforementioned components.

Additionally, this document is related to WP5 tasks, since the general aim of the WP is the

successful delivery of the MARVEL E2F2C framework, allowing for processing of extreme-

scale multimodal data on top of the distributed deployment of the ML models.

1.3 Structure of the report

The document is organised in the following way. Section 2 provides a description of all the

MARVEL components that use the MARVdash Kubernetes dashboard to be deployed in one

(or more) of the nodes of the corresponding E2F2C cluster. Additionally, this section includes

the description of the corresponding Docker images creating process, one of the necessary

deployment step. Section 3 focuses on the MARVEL E2F2C framework, explaining the

underlying Kubernetes architecture, the containerisation and virtualisation techniques that are

used, and the native to Kubernetes tools and techniques that we explored. Moreover, this section

includes future plans for the MARVdash component. Section 4 is dedicated to federated

learning, mentioning centralised compression methods and efficient federated methods. The

compression methods include DynHP and AVCC. Section 5 is dedicated to the description of

the corresponding KPIs and to what extent they are fulfilled based on the work carried out until

M18 of the project lifetime. Section 6 summarises the conclusions of the deliverable.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 13 - June 30, 2022

2 Available container images of MARVEL components

The backbone of the created MARVEL E2F2C execution environment is a Kubernetes cluster,

which allows the deployment of all the MARVEL components on its nodes. The deployment

of a component/service in the Kubernetes context takes advantage of the containerisation

packaging, creating isolated fully packaged and portable computing environments. This section

describes how such execution environments were created for each of the individual MARVEL

components, in the form of Docker containers.

2.1 AI subsystem

2.1.1 Visual Anomaly Detection – ViAD

Description:

The ViAD component learns a representation of “normality” from video frames taken from a

scene and marks any deviations from this normality as an anomaly. Therefore, an anomaly can

be any novel event that has not occurred in the scene before. During inference, the input to this

component is a series of video frames from the same scene as the training data, and the output

is a flag specifying whether or not there are any anomalies in each frame. Optionally, the

component can mark specific areas of the frame, which are containing some kind of anomaly.

Docker Image:

As it can be seen in Listing 1, the base image for the creation of the ViAD docker image is the

tensorflow:2.4.1. The following RUN command installs prerequisite software. After that, the

main code of the component is copied and installed in the created container. The very last CMD

command in the Dockerfile starts the component.

FROM tensorflow/tensorflow:2.4.1

RUN apt-key adv --fetch-keys

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf86

3cc.pub && \

 apt-get update && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/mudas-0.2.1-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.2.1-py3-none-any.whl --no-

dependencies

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

WORKDIR /app

COPY containers/container_source/av_cc_backbone_v10.h5 /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/source_avcc_vcc.py /app/

COPY containers/avcc/avcc_GRN3_C11/config.py /app/

COPY containers/avcc/avcc_GRN3_C11/output_schema.yaml /app/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 14 - June 30, 2022

CMD python /app/source_avad_vad.py

Listing 1: ViAD Dockerfile

2.1.2 Audio-Visual Anomaly Detection – AVAD

Description:

Similar to ViAD, the AVAD component learns a representation of “normality” from video

frames taken from a scene as well as an audio clip from the scene and marks any deviations

from this normality as an anomaly. Therefore, an anomaly can be any novel event that has not

occurred in the scene before. During inference, the input to this component is a series of video

frames from the same scene as the training data as well as the corresponding audio clip, and the

output is a flag specifying whether or not there are any anomalies in each frame. Optionally,

the component can mark specific areas of the frame, which are containing anomaly, however,

the audio clip is not marked for anomalies.

Docker Image:

The structure of the AVAD Dockerfile is basically the same as that of the ViAD component.

As we can see in Listing 2, the base image is once again the tensorflow:2.4.1. The first RUN

command installs the prerequisite software, while the next commands copy and install the main

code of the component. The CMD command at the end of the Dockerfile starts the AVAD

component as the last action of the creation of the corresponding container.

FROM tensorflow/tensorflow:2.4.1

RUN apt-key adv --fetch-keys

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf86

3cc.pub && \

 apt-get update && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/mudas-0.2.1-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.2.1-py3-none-any.whl --no-

dependencies

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

WORKDIR /app

COPY containers/container_source/av_cc_backbone_v10.h5 /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/source_avcc_vcc.py /app/

COPY containers/avcc/avcc_GRN3_C11/config.py /app/

COPY containers/avcc/avcc_GRN3_C11/output_schema.yaml /app/

CMD python /app/source_avad_vad.py

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 15 - June 30, 2022

Listing 2: AVAD Dockerfile

2.1.3 Visual Crowd Counting – VCC

Description:

The VCC component counts the total number of people present in a given image. Since the

annotations in the training data specify the locations of the heads, crowd counting can be viewed

as counting the total number of heads present in the image. The input to this component is an

image from a scene that may contain people, and the output is a number representing the total

count of people in that scene. Optionally, the output may contain a heatmap specifying the

density of people for each pixel of the image (also known as “density map”).

Docker Image:

Once again, the structure of the VCC Dockerfile follows the structure of the previous two

components. The tensorflow:2.4.1 is the base image. The following commands install the

needed libraries and the main code of the component. The last command in the next listing

(Listing 3) starts the VCC component itself.

FROM tensorflow/tensorflow:2.4.1

RUN apt-key adv --fetch-keys

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf86

3cc.pub && \

 apt-get update && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/mudas-0.2.1-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.2.1-py3-none-any.whl --no-

dependencies

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

WORKDIR /app

COPY containers/container_source/av_cc_backbone_v10.h5 /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/source_avcc_vcc.py /app/

COPY containers/vcc/vcc_MT1_C12/config.py /app/

COPY containers/vcc/vcc_MT1_C12/output_schema.yaml /app/

CMD python /app/source_avcc_vcc.py --limit 3

Listing 3: VCC Dockerfile

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 16 - June 30, 2022

2.1.4 Audio-Visual Crowd Counting AVCC

Description:

Similar to VCC, the AVCC component counts the total number of people present in a given

image. However, in the audio-visual case, the input also contains the ambient audio clip taken

from the scene. This audio can help improve the accuracy of crowd counting in situations where

the image quality is not optimal due to low illumination, occlusion, low resolution or a noisy

capture device. Since the annotations in the training data specify the locations of the heads,

crowd counting can be viewed as counting the total number of heads present in the image. The

input to this component is an image from a scene that may contain people as well as the

corresponding audio clip, and the output is a number representing the total count of people in

that scene. Optionally, the output may contain a heatmap specifying the density of people for

each pixel of the image (also known as “density map”).

Docker Image:

AVCC is the last one in a series of MARVEL components with similar Dockerfiles. AVCC

Dockerfile is depicted in Listing 4 below.

FROM tensorflow/tensorflow:2.4.1

RUN apt-key adv --fetch-keys

https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf86

3cc.pub && \

 apt-get update && \

 apt-get install -y libgl1 libsndfile1 && \

 apt-get install -y ffmpeg && \

 apt-get clean

COPY containers/container_source/mudas-0.2.1-py3-none-any.whl /tmp/

RUN pip install --default-timeout=100 /tmp/mudas-0.2.1-py3-none-any.whl --no-

dependencies

COPY containers/container_source/requirements.txt /tmp/

RUN pip install --default-timeout=100 -r /tmp/requirements.txt

WORKDIR /app

COPY containers/container_source/av_cc_backbone_v10.h5 /app

COPY containers/container_source/utils.py /app/

COPY containers/container_source/source_avcc_vcc.py /app/

COPY containers/avcc/avcc_UNS_F1/config.py /app/

COPY containers/avcc/avcc_UNS_F1/output_schema.yaml /app/

CMD python /app/source_avcc_vcc.py --limit 3

Listing 4: AVCC Dockerfile

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 17 - June 30, 2022

2.1.5 Sound Event Detection – SED

Description:

The SED component provides the detection of characteristic sounds in short time units. A

characteristic sound is a sound that can be described by a specific label, i.e., a sound event. This

functionality is used in the various use cases of MARVEL to offer the ability to detect actions

and events through sound. The specific sound events will be dependent on the use cases and the

detection of the sound events can be used as standalone information or as complementary

information to other systems. A SED component takes as an input an audio signal and provides

detection of sound events in pre-specified units of time. The component is developed to run on

powerful computing nodes: either with a high-performance Central Processing Unit (CPU) or

with a computer system having а Graphics Processing/Processor Unit (GPU) available. The

component is designed to operate in real-time while consuming real-time audio-visual streams.

Docker Image:

In Listing 5, we report how to build the Docker Image of the current version of the SED

component. Note that the docker image can evolve along with the MARVEL project with new

functionalities.

Python:3.9-bullseye is the chosen base image. The ENV commands define some environmental

variables in the newly created Docker container. The following set of commands installs

necessary libraries for the functionality of the component. The second of the last command

creates a dedicated user, while the USER command switches to that user. Finally, the CMD

command starts the SED component.

FROM python:3.9-bullseye

ENV PYTHONDONTWRITEBYTECODE=1

ENV PYTHONUNBUFFERED=1

COPY requirements.txt .

RUN python -m pip install -r requirements.txt

RUN apt-get update -y && apt-get install -y --no-install-recommends build-

essential gcc libsndfile1

RUN apt-get update -y && apt-get upgrade -y && apt-get install -y ffmpeg

WORKDIR /app

COPY ai.py /app/

COPY base_process.py /app/

COPY daemon.py /app/

COPY receiver.py /app/

COPY start_local_server.py /app/

COPY transmitter.py /app/

COPY utils.py /app/

COPY config/ /app/config/

COPY model/ /app/model/

COPY dev/ /app/dev/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 18 - June 30, 2022

RUN adduser -u 5678 --disabled-password --gecos "" appuser && chown -R appuser

/app

USER appuser

CMD ["python", "daemon.py"]

Listing 5: Sound Event Detection Dockerfile

2.1.6 Audio Tagging - AT

Description:

The AT component provides information about the activity of characteristic sounds inside audio

segments with predefined fixed lengths. This functionality is used in the various use cases of

MARVEL to offer the ability to recognise sounds related to actions or events with coarse time

resolution. The specific sound classes recognised will be dependent on the use cases and the

recognised sound class activity can be used as standalone information or as complementary

information to other systems. The component uses the same code base as the SED component.

Docker Image:

The Docker image of AT is created using the same Dockerfile that SED uses (see 2.1.5).

FROM python:3.9-bullseye

ENV PYTHONDONTWRITEBYTECODE=1

ENV PYTHONUNBUFFERED=1

COPY requirements.txt .

RUN python -m pip install -r requirements.txt

RUN apt-get update -y && apt-get install -y --no-install-recommends build-

essential gcc libsndfile1

RUN apt-get update -y && apt-get upgrade -y && apt-get install -y ffmpeg

WORKDIR /app

COPY ai.py /app/

COPY base_process.py /app/

COPY daemon.py /app/

COPY receiver.py /app/

COPY start_local_server.py /app/

COPY transmitter.py /app/

COPY utils.py /app/

COPY config/ /app/config/

COPY model/ /app/model/

COPY dev/ /app/dev/

RUN adduser -u 5678 --disabled-password --gecos "" appuser && chown -R appuser

/app

USER appuser
CMD ["python", "daemon.py"]

Listing 6: Acoustic Scene Classification Dockerfile

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 19 - June 30, 2022

2.1.7 CATFlow

Description:

CATFlow is a software asset developed by GRN, where the input is a video stream and the

output is a list of traffic objects tracked over the camera field of view. CATFlow classifies

vehicles into six different classes: car, bus, light goods vehicles, heavy good vehicles, bicycle,

and motorcycle. In addition, each object (e.g., vehicle or pedestrian) is tracked and its trajectory

extracted and stored for visualisation or further processing.

In the current implementation, the Real-Time Streaming Protocol (RTSP) streaming protocol

is used to receive a video stream and each frame is grabbed using FFMPEG. Each frame is

sequentially fed first into an object detector (YOLO4 trained on specific traffic object classes

provided by the transport authorities) and then a multi-object tracker (MOSSE) to track traffic

entities moving across the scene. Geometry-based algorithms are used to compute variables of

interest such as vehicle speed over a predetermined trajectory. Pedestrians on the other hand

are handled differently since they often follow a random path thus speed cannot be calculated

using these geometrical methods.

To safeguard GRN’s IP on the CATFlow software asset, the CATFlow configurator was

uploaded as part of the MARVEL registry. This configurator is then responsible for pulling the

CATFlow image onto the device from GRN’s Azure registry.

Docker Image:

The CATFlow image itself is split into 2 files: a Dockerfile-base and a Dockerfile. The

Dockerfile-base will build an image consisting of all the libraries necessary to run CATFlow

(i.e., ffmpeg, CUDNN, python, OpenCV, etc). The parent image is NVIDIA’s cuda image. This

was done in order to reduce the build time for the CATFlow image since these libraries rarely

change. After building the base image, the code is added. The code is written in Python but

compiled into Cython. These steps - excluding the base image build - are handled automatically

as part of GRN’s CI/CD pipeline. Hence, the image is always up-to-date.

The Configurator image follows the same idea of being split into 2 parts. The code itself is not

compiled to Cython – however, this is subject to change in future releases. The Configurator

will pull the built CATFlow image from GRN’s repository using Docker commands. Similarly,

the image is always up-to-date as it follows the same CI/CD pipeline.

The images themselves are built on a Ubuntu 20.04 system. CUDA 11.2.1, CUDNN 8 and

Python 3.9 are being used along with OpenCV 4.5.2. The compute capability of the GPU under

use by CATFlow needs to be addressed as this will affect the base image. This is due to the

CUDA architectures compiled by OpenCV when building the image. The corresponding

Dockerfile is not presented in this document, as it does for other MARVEL components, due

to privacy reasons. We want to avoid exposing any sensitive information regarding the

component itself or the sources of its input.

2.1.8 Text Anomaly Detection - TAD

Description:

TAD is a component that automatically detects anomalous events in data, for example,

anomalous vehicle velocities and trajectories. TAD takes as input the JSON messages outputted

from CATFlow and after processing flags any anomalous behaviour. The TAD component also

requires the storage and access to a Dataset of CATFlow outputs such that a model of the normal

behaviour on the scene being observed is developed and updated. The current TAD version

considers the speed of vehicles and flags anomalous low or high values.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 20 - June 30, 2022

The current implementation of the TAD component makes use of the CATFlow output,

specifically the vehicle speed calculation. In addition, TAD accesses the GRN CATFlow

database to model the vehicle speed normally observed on the road segment being monitored.

The TAD can also use a preloaded model instead of accessing the database, such that the

anomaly detection tool can still be used in the event of the database being inaccessible. During

the last step, TAD performs a z-score test for any new vehicle speed value extracted from the

CATFlow output and if the new data point is not within the range of the Z-score test, the TAD

flags or raises an alarm to indicate the occurrence of the anomalous event.

In the current implementation, two types of anomalies can be detected; (a) anomalously low

speeds, and (b) anomalously high speeds. Anomalously low speeds usually indicate that either

a vehicle has stopped moving, possibly creating an obstruction or unusual traffic jams.

Anomalously high-speed events usually indicate vehicles that are over speeding (velocity

beyond sign posted limit) and are useful in estimating the safety of the road segment under

observation.

Docker Image:

The corresponding TAD image is built on an Ubuntu 20.04 system with python 3.9. The

packages required are installed through the docker file. Listing 7 shows the commands for the

manual deployment of TAD using the created Docker image.

docker login registry.marvel-platform.eu

docker pull registry.marvel-platform.eu/tad:0

docker run -it registry.marvel-platform.eu/tad:0 /bin/sh

Listing 7: TAD container creation commands

The first command logins the user in the MARVEL platform registry. A pull command follows

that fetches the available image, while the run command creates the corresponding container

from the downloaded image. As a result, a TAD container is created and started.

2.2 Security, privacy and data protection subsystem

2.2.1 EdgeSec Virtual Private Network (VPN)

Description:

EdgeSec VPN adopts the n2n architecture, according to which there are two key components:

edge and Super nodes. The edge nodes use the Super Nodes for discovering other edge nodes.

The Super Nodes are also used for routing the traffic when the nodes are behind symmetrical

firewalls. The n2n, and therefore the EdgeSec VPN, is a peer-to-peer VPN that works on the

second layer of the OSI model, allowing the peers to maintain reachability across NATs and

firewalls. Edge nodes that participate in the same virtual network form a community. Super

Nodes are able to serve more than one community and a single computer can join multiple

communities.

Docker Image:

The Docker Image of the EdgeSec VPN is created using the Dockerfile depicted in Listing 8.

As it can be seen, the base image that is used is the one for Ubuntu 18.04. Some prerequisite

software is installed according to the first lines of the Dockerfile. Then, the main code of the

component is copied and installed in the container. The port 4194 is exposed to the outside

world, while the last command starts the component.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 21 - June 30, 2022

FROM ubuntu:18.04

RUN apt-get update && \

 apt-get install -y build-essential net-tools autoconf pkg-config

RUN mkdir -p /usr/ipsec

WORKDIR /usr/ipsec

COPY ./ .

RUN ./autogen.sh

RUN ./configure

RUN make

RUN make install

EXPOSE 4194/udp

CMD ["sh", "init_script.sh"]

Listing 8: EdgeSec VPN Dockerfile

2.2.2 EdgeSec Trusted Execution Environment (TEE)

Description:

EdgeSec TEE requires an Intel-SGX enabled machine and the installation of the Docker

software. Each application that is secured with EdgeSec TEE lays on top of a machine that

supports Intel SGX. In order to use EdgeSec TEE and take full advantage of the security

characteristics that it offers, an application developer needs to follow these steps:

(i) get access to infrastructure that is Intel SGX-enabled,

(ii) download the EdgeSec TEE’s docker image that is uploaded to the MARVEL

registry by FORTH,

(iii) launch the EdgeSec TEE container from this image,

(iv) copy the python application inside the container’s file system and install any

required python library or package,

(v) execute the python application that is secured by SCONE during the total execution

time.

Docker Image:

Once downloaded from the MARVEL docker image registry, the EdgeSec TEE component can

be deployed by the following certain steps:

docker login registry.marvel-platform.eu

docker pull registry.marvel-platform.eu/docker-sgx:0

docker run -it registry.marvel-platform.eu/docker-sgx:0 /bin/sh

Listing 9: EdgeSec container creation commands

As a result, an EdgeSec TEE container is created and started. The Python version that is

supported by EdgeSec TEE is 3.7.3 (in an environment of Alpine Linux 3.10). It is possible to

install packages and libraries within the container. After the successful installation of Python

libraries, “normal” operation of Python programmes is enabled as in traditional setups (i.e.,

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 22 - June 30, 2022

without the support of Intel SGX, SCONE and EdgeSec TEE). Within the container of EdgeSec

TEE, however, the Python application is executed within Intel SGX enclaves, which offer

security, code integrity and data confidentiality. Examples for EdgeSec TEE execution and

libraries installation are available in Deliverable 4.2.

2.2.3 VideoAnony

Description:

VideoAnony aims to anonymise the detected faces and car plates from raw video feeds coming

from the Closed-Circuit Television (CCTV) cameras from each pilot site. The anonymisation

is performed via image redaction methods, starting from classic image processing techniques,

such as blurring, towards the more advanced GAN-based face-swapping techniques, which is

under development within the MARVEL project. Current VideoAnony component receives the

incoming raw video stream either via RTSP or direct cable access. It then employs the yolov5

detector for face and car plate detection which is finetuned with related public dataset and pilot-

provided annotations. With the detected regions of interest, the component finally blurs them.

In addition, we are also developing a lighter version of the advanced GAN-based face swapping

model based on state-of-the-art methods. In the early phase, we specifically addressed the

challenges of pose preservation and varying size of the detected faces from CCTV videos, while

in the current phase we are focusing on reducing the computational complexity of the model.

The ongoing efforts are mainly guided by a couple of directions, i.e., components replacement

and weight quantisation, whose results are not yet conclusive at the moment.

Docker Image:

In Listing 10, we report how to build the Docker image (i.e., Dockerfile) of the current version

of VideoAnony. Note that the docker image will be evolved along with the MARVEL project

with new functionalities included, e.g., streaming output, and incorporating face-swapping for

anonymisation.

Start FROM Nvidia PyTorch image

https://ngc.nvidia.com/catalog/containers/nvidia:pytorch

FROM nvcr.io/nvidia/pytorch:21.10-py3

ARG USER=standard

ARG USER_ID=1000 # uid from the previus step

ARG USER_GROUP=standard

ARG USER_GROUP_ID=1000 # gid from the previus step

ARG USER_HOME=/home/${USER}

create a user group and a user (this works only for debian based images)

RUN groupadd --gid $USER_GROUP_ID $USER \

 && useradd --uid $USER_ID --gid $USER_GROUP_ID -m $USER

Install linux packages

RUN apt-get update && apt-get upgrade -y

RUN \

 DEBIAN_FRONTEND=noninteractive apt-get install -y libgl1-mesa-glx libsm6

libxext6 libxrender-dev libglib2.0-0

Install python dependencies

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 23 - June 30, 2022

COPY requirements.txt .

RUN python -m pip install --upgrade pip

RUN pip uninstall -y torch torchvision torchtext

RUN pip install --no-cache -r requirements.txt \

 torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f

https://download.pytorch.org/whl/cu113/torch_stable.html

Install base dependencies + gstreamer

RUN pip uninstall -y opencv-python

RUN apt-get update

RUN DEBIAN_FRONTEND=noninteractive apt-get -y install ffmpeg

RUN \

 DEBIAN_FRONTEND=noninteractive \

 apt-get -y install build-essential \

 cmake \

 pkg-config \

 libgtk-3-dev \

 libavcodec-dev \

 libavformat-dev \

 libswscale-dev \

 libv4l-dev \

 libxvidcore-dev \

 libx264-dev \

 libjpeg-dev \

 libpng-dev \

 libtiff-dev \

 gfortran \

 openexr \

 libatlas-base-dev \

 python3-dev \

 python3-numpy \

 libtbb2 \

 libtbb-dev \

 libdc1394-22-dev

RUN \

 DEBIAN_FRONTEND=noninteractive \

 apt-get install -y libgstreamer1.0-0 \

 gstreamer1.0-plugins-base \

 gstreamer1.0-plugins-good \

 gstreamer1.0-plugins-bad \

 gstreamer1.0-plugins-ugly \

 gstreamer1.0-libav \

 gstreamer1.0-doc \

 gstreamer1.0-tools \

 gstreamer1.0-x \

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 24 - June 30, 2022

 gstreamer1.0-alsa \

 gstreamer1.0-gl \

 gstreamer1.0-gtk3 \

 gstreamer1.0-qt5 \

 gstreamer1.0-pulseaudio \

 gstreamer1.0-rtsp \

 libgstreamer1.0-dev \

 libgstreamer-plugins-base1.0-dev \

 cmake \

 protobuf-compiler \

 libgtk2.0-dev \

 ocl-icd-opencl-dev

Clone OpenCV repo

WORKDIR /

RUN git clone https://github.com/opencv/opencv.git

WORKDIR /opencv

RUN git checkout 4.5.4

Build OpenCV

RUN mkdir /opencv/build

WORKDIR /opencv/build

RUN ln -s /opt/conda/lib/python3.8/site-packages/numpy/core/include/numpy

/usr/include/numpy

RUN cmake -D CMAKE_BUILD_TYPE=RELEASE \

 -D INSTALL_PYTHON_EXAMPLES=ON \

 -D INSTALL_C_EXAMPLES=OFF \

 -D PYTHON_EXECUTABLE=$(which python) \

 -D BUILD_opencv_python2=OFF \

 -D CMAKE_INSTALL_PREFIX=$(python -c "import sys; print(sys.prefix)") \

 -D PYTHON3_EXECUTABLE=$(which python3) \

 -D PYTHON3_INCLUDE_DIR=$(python -c "from distutils.sysconfig import

get_python_inc; print(get_python_inc())") \

 -D PYTHON3_PACKAGES_PATH=$(python -c "from distutils.sysconfig import

get_python_lib; print(get_python_lib())") \

 -D WITH_FFMPEG=ON \

 -D WITH_GSTREAMER=ON \

 -D BUILD_EXAMPLES=ON ..

RUN make -j$(nproc)

Install OpenCV

RUN make install

RUN ldconfig

Create working directory

RUN mkdir -p /app

WORKDIR /app

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 25 - June 30, 2022

set container user

USER $USER

Listing 10: VideoAnony Dockerfile

Then the init_script.sh invokes the python code for the main script of video anonymisation,

where you will provide the source file (either a live stream or a video file) to be anonymised.

One example is provided as follows:

#!/bin/sh

python src/anonymize.py --source data/videos

Listing 11: Initialisation script for VideoAnony

2.2.4 AudioAnony

Description:

The AudioAnony component is based on a basic signal processing technique and generates a

new waveform applying a modification of the associated poles, computed from the LPC

coefficients on a frame basis; as such, the related formant positions are moved, modifying the

spectral envelope and therefore the voice characteristics while the speech content is preserved.

The formant shifting is controlled by a single parameter, the so-called McAdams coefficient.

This component operates together with the VAD module so that waveform modifications only

take place when speech is detected. In absence of speech, the unmodified waveform is

transmitted instead.

Docker Image:

In Listing 12, we report how to build the example Docker image (i.e., Dockerfile):

FROM python:3.8-slim-buster

RUN apt-get update && apt-get -y install libsndfile-dev

COPY requirements.txt .

RUN python -m pip install --upgrade pip

RUN pip install --no-cache-dir -r requirements.txt

RUN mkdir -p /app

WORKDIR /app

Copy contents

COPY . /app

CMD ["bash", "init_script.sh"]

Listing 12: AudioAnony Dockerfile

The init_script.sh invokes the python code for the conversion process with the proper arguments

according to the availability of an accompanying segmentation file:

audio_dir=/app/data/audio

target_dir=/app/runs

sfx="_conv.wav"

wavL=`ls -1 ${audio_dir}/*.wav 2>/dev/null`

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 26 - June 30, 2022

if [-z ${wavL}]; then

 echo "no wav files found in ${audio_dir}"

 exit

else

 for wav in ${wavL}; do

 id=`basename ${wav} .wav`

 wav_out=${target_dir}/${id}${sfx}

 seg=`dirname $wav`/${id}.json

 if test -f ${seg}; then

 echo "converting ${wav} to ${wav_out} using ${seg}"

 python src/conversion.py --filename $wav --filenameout $wav_out --coeff

-1 --seg ${seg}

 else

 echo "converting ${wav} to ${wav_out}"

 python src/conversion.py --filename $wav --filenameout $wav_out --coeff

-1

 fi

 done

fi

conversion.py accepts the following arguments:

--filename WAVFILE file to be processed

--seg SEG optional json file with speech segmentation

--filenameout WAVFILE name of the output file

--coeff FLOAT conversion coefficient; if -1 the coefficient is chosen randomly

between 0.8 and 1.2

Listing 13: Initialisation script for AudioAnony

2.2.5 VAD (devAIce)

Description:

devAIce is a Software Development Kit (SDK) written in C++, and represents AUD’s modular

technology that wraps all its AI technologies for intelligent audio analytics, including the

award-winning openSMILE, an audio features extraction tool in a high-dimensional space.

devAIce is optimised to run on powerful computing nodes (GPUs, CPUs) but also on high-end

edge devices (Raspberry Pi). Furthermore, another trimmed-down version containing only

openSMILE toolkit can be extracted if needed and can be deployed on edge devices with very

limited computational resources, although no use case currently requires it.

devAIce exposes multiple interfaces in Python, iOS, Android, and C. Although this is not a

limitation where it cannot be used with different programming languages and platforms,

however, in that case, the end user has to manually build his own wrapper around the C

interface, as it has done to provide the Python, iOS and Android.

As mentioned previously, devAIce contains multiple AI subsystems, each function in its own

way and needs to be configured separately. One of those subsystems is the Voice Activity

Detection (VAD) module. Being the module of interest in R1, the AI model that has been

trained to output frame-level predictions. A second layer, purely algorithmic, exploits those

frame-level predictions and aggregates them based on certain conditions and parameters, in

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 27 - June 30, 2022

order to provide the speech segments boundaries as final output. This model adopts a feed-

forward Long Short-Term Memory (LSTM) architecture with attention and has been trained on

a very large amount of artificially mixed data. During the project, the model has been retrained

with a recent state-of-the-art architecture to also detect music segments within the audio

sequence.

Docker Image:

In the first stages, ongoing discussions were taking place to decide the efficient way to deploy

devAIce VAD. Being a key component in the audio anonymisation pipeline along with

AudioAnony, it will detect the speech segments from an ongoing audio stream, which will be

anonymised before being forwarded to the next layers for further analysis (fog and cloud). It is

decided now that VAD+AudioAnony will construct together a new AV source, which

consumes the AV streams from the pilot’s microphones and exposes the anonymised version

to the other AI components (e.g., SED). As a result, VAD and AudioAnony will be fused and

referred to as a single composite component for resource and performance-wise reasons that

have been tackled in detail during the focused meetings. Both components will then be part of

the same docker image, which will be implemented and deployed in R1 on the edge (on

Raspberry pies in the case of MT network).

However, a first version of the docker image, containing only VAD has been published before

a decision has been taken to combine VAD and AudioAnony. The image initialises the python

virtual environment responsible for running the VAD module and runs devAIce Command Line

Interface (CLI) on a test wav file to output speech segments. The contents of the docker file

used to create the image are listed in Listing 14 below, however, this image will not be used in

the later stages of the project.

FROM python:3.8

RUN apt-get update && apt-get -y install libsndfile-dev

COPY requirements.txt .

COPY devAIce-SDK-3.4.0-2022-02-23 .

RUN python -m pip install --upgrade pip

RUN pip install --no-cache-dir -r requirements.txt

RUN pip install devAIce-SDK-3.4.0-2022-02-23/bin/python/devaice-3.4.0-py3-none-

linux_x86_64.whl

RUN mkdir -p ./sample

WORKDIR ./sample

Copy test wav file and run vad on CLI

COPY test.wav .
CMD ["bash", “../devAIce-SDK-3.4.0-2022-02-23/bin/linux-x86_64/devaice-sdk-cli –
vad –resource_root=../devAIce-SDK-3.4.0-2022-02-23/res test.wav”]

Listing 14: Voice Activity Detection Dockerfile

However, the command being run in the docker file is just for test purposes and is not suitable

for our real-time use cases. Therefore, for this purpose, a python script has been set. The script

ingests audio stream using PyAudio, applies devAIce VAD module in a separate thread, and

devAIce VAD+Music model in another thread. The first thread goal is to detect speech

segments, anonymise them and store them in memory. If no speech is detected, the audio is

stored in memory as it is. The other thread outputs the boundaries of the speech and music

segments, with stdout being the terminal console. At the end of the script, when the stream is

manually closed, the collected anonymised audio will be exported as a wav file for integrity

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 28 - June 30, 2022

check. This same script will be adapted to connect with the pilot’s microphones and cameras,

and the collected audio instead of being exported will be forwarded through RTSP. With

regards to speech and music segments, the inference results will be forwarded to the adequate

MQTT topic.

This described script exists under the name “rtsp_audio_test_w_vad.py”, and accepts as

parameter the resource path of the devAIce SDK as -r/--resource_path, which is a required

argument that contains the path to the folder containing the legitimate devAIce license file.

2.3 Data management and distribution subsystem

2.3.1 StreamHandler

Description:

INTRA’s StreamHandler Platform is a distributed streaming platform for handling real-time

data based on Apache Kafka. It can efficiently ingest and handle massive amounts of data into

processing pipelines, both for real-time and batch processing. The platform and its underlying

technologies can support any type of data-intensive Information and Communications

Technology (ICT) services (Artificial Intelligence, Business Intelligence, etc.) in different

environments, from cloud to edge.

In the context of MARVEL, StreamHandler contributes with a newly developed module that

aims at providing audio-visual data management capabilities. To that end, StreamHandler:

• Receives and efficiently archives live streams of audio-visual binary data from all

relevant MARVEL sensors, devices, and components during system operation;

• Provides access to archived audio-visual binary data to the MARVEL UI (SmartViz) by

editing and compiling bespoke audio-visual data upon demand, that correspond to a

specific anomaly/event detected by the AI components.;

• Supports the expansion of the data set of the DataCorpus by relaying selected archived

audiovisual data to it.

The StreamHandler AV module is based on Python 31, rtsp-simple-server2, minIO3, FastAPI4,

and Docker5 technologies.

Docker Image:

Concerning MARVEL’s first integrated version, the deployment of StreamHandler will take

place on the fog servers of each pilot, so that only selections of data are propagated to the cloud.

However, in the future, StreamHandler might also be deployed on edge and/or cloud layers as

dimmed necessary. All of its instances will be controlled by the Kubernetes environment

provided by MARVdash.

The component consists of the following services:

• StreamHandlerAPI

• minioscripting

• minioserver

1 https://www.python.org/

2 https://github.com/aler9/rtsp-simple-server

3 https://min.io/

4 https://fastapi.tiangolo.com/

5 https://www.docker.com/

https://www.python.org/
https://github.com/aler9/rtsp-simple-server
https://min.io/
https://fastapi.tiangolo.com/
https://www.docker.com/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 29 - June 30, 2022

• rtspserver

• ffmpeg

Below, in Listing 15, the corresponding Ain't Markup Language (YAML) files are depicted.

FROM python:3.10-slim-bullseye

RUN apt-get update

RUN apt-get install -y ffmpeg

WORKDIR /code

COPY ./requirements.txt /code/requirements.txt

RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt

COPY ./app /code/app

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "80"]

#ffmpeg dockerfile

FROM ubuntu:latest

RUN apt-get update && apt-get install -y ffmpeg

#minioserver docker-compose

version: "3.9" # optional since v1.27.0

services:

 minio:

 image: minio/minio:latest

 ports:

 - "9001:9001"

 - "9000:9000"

 environment:

 - MINIO_ROOT_USER=minio

 - MINIO_ROOT_PASSWORD=minio123

 command: "server --console-address :9001 /data "

 volumes:

 - ../minio_data/:/data

 networks:

 - rtsp-server_marvel-network

networks:

 rtsp-server_marvel-network:

 external: true

#minio-scripting docker-compose

version: "3.9" # optional since v1.27.0

services:

 minio:

 image: minio/mc

 entrypoint: bash -x /tmp/minio_client_script.sh

 volumes:

 - ../segmentation_data/:/data

 - ./:/tmp/

 networks:

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 30 - June 30, 2022

 - rtsp-server_marvel-network

networks:

 rtsp-server_marvel-network:

 external: true

#minio-server docker-compose

version: "3.9" # optional since v1.27.0

services:

 minio:

 image: minio/minio:latest

 ports:

 - "9001:9001"

 - "9000:9000"

 environment:

 - MINIO_ROOT_USER=minio

 - MINIO_ROOT_PASSWORD=minio123

 command: "server --console-address :9001 /data "

 volumes:

 - ../minio_data/:/data

 networks:

 - rtsp-server_marvel-network

networks:

 rtsp-server_marvel-network:

 external: true

Listing 15: StreamHandler Dockerfile

For more information about StreamHandler the reader is referred to deliverable D2.2 -

Management and distribution Toolkit – initial version.

2.3.2 Data Fusion Bus - DFB

Description:

The DFB is a customisable component that implements a trustworthy way of transferring large

volumes of heterogeneous data between several connected components and the permanent

storage. It comprises a collection of dockerised, open-source components which allow easy

deployment and configuration as needed.

DFB’s architectural design addresses several challenges that are raised by both the large volume

and the heterogeneous nature of data from different sources, taking into consideration the needs

and restrictions of the employed components. The main addressed challenges include:

• seamless aggregation of data with different structures or formats;

• a cluttering threat to the components due to the quantity of the input data;

• access to data through a common, safe, easy-to-consume interface.

Inherent to DFBs design is the efficient handling of the enormous volume of the data that need

storage and manipulation, as well as mechanisms to remediate potential bottlenecks, lag, or

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 31 - June 30, 2022

high network load. These design decisions enable horizontal scalability while providing a

solution that is cloud-native with stateless components capable of being flexibly deployed. DFB

follows the middleware approach by aligning data streams for time and granularity and creating

a User Interface (UI) that serves as the interface of the platform, customised to aggregate

multiple streams, thereby allowing seamless service of data to the network analysis and

visualisation.

The key capabilities of DFB are:

• Data aggregation from heterogeneous data sources and data stores.

• Real-time analytics, offering ready-to-use ML algorithms for classification, clustering,

regression, and anomaly detection.

• An extendable and highly customisable UI for Data Analytics, manipulation, and

filtering, as well as functionality for managing the platform.

• Web Services for exploiting the platform outputs for Decision Support.

• Applications for Smart Production, Digitisation, and IoT, among others.

In the context of the initial version of the MARVEL integrated framework, the DFB deployment

was designed to meet the requirements of the respective use cases that were defined for this

release. To that end, the DFB was foreseen to be deployed at the cloud layer and specifically at

the OpenStack infrastructure node managed by PSNC. Three instances of the DFB are

configured to run for increased reliability and performance.

The DFB is composed of a set of different services that were deployed through MARVdash.

For each service, a container image and an associated YAML configuration template document

were uploaded to MARVdash using its web interface. The deployed DFB services are:

• Kafka. Distributed streaming platform for managing the streams of inference results

produced by AI components in MARVEL. Three instances of this service were

deployed.

• DataFusion connector. DataFusion connector for the ElasticSearch search engine for

transferring information published on Kafka topics for persistent storage.

• ElasticSearch is a distributed, multitenant-capable, full-text search engine used for the

persistent storage of all incoming inference results in MARVEL. This service also

includes Kibana, a free and open user interface that allows visualisation of

ElasticSearch data.

• DataFusion es-proxy. DataFusion es-proxy is Elasticsearch search engine for exposing

a REpresentational State Transfer (REST) Application Programming Interface (API)

to access the Elasticsearch data and perform queries (used by SmartViz).

• Prometheus. Prometheus event monitoring and alerting platform, configured for key

measurements related to the Kafka operation and performance.

• Jmx-exporter. JMX service for scraping a kafka broker and exporting related metrics

to Prometheus. One instance is deployed per Kafka service.

• Grafana. Interactive visualisation web application for the metrics aggregated at

Prometheus.

Docker Image:

Listing 16 below reports an indicative YAML file that was used for the deployment

configuration of the core Kafka service image through MARVdash.

kafka.template.yaml

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 32 - June 30, 2022

apiVersion: v1

kind: Service

metadata:

 name: ${NAME}

spec:

 ports:

 - name: broker

 port: 9092

 selector:

 app: cp-kafka

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: cp-kafka

spec:

 podManagementPolicy: OrderedReady

 replicas: ${SERVERS}

 serviceName: ${NAME}

 selector:

 matchLabels:

 app: cp-kafka

 template:

 metadata:

 labels:

 app: cp-kafka

 spec:

 # affinity:

 # podAntiAffinity:

 # preferredDuringSchedulingIgnoredDuringExecution:

 # - podAffinityTerm:

 # labelSelector:

 # matchExpressions:

 # - key: app

 # operator: In

 # values:

 # - cp-kafka

 # topologyKey: kubernetes.io/hostname

 # weight: 1

 containers:

 - command:

 - sh

 - -c

 - |

 export KAFKA_BROKER_ID=${HOSTNAME##*-} && \

 export

KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://${HOSTNAME}.${NAME}.${NAMESPACE}.svc:9092

,EXTERNAL://${HOST_IP}:$((31090 + ${KAFKA_BROKER_ID})) && \

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 33 - June 30, 2022

 mkdir -p ${PRIVATE_DIR}/.cp-kafka-$KAFKA_BROKER_ID/data && \

 find /etc -type f -exec sed -i "s|/var/lib/kafka/*|${PRIVATE_DIR}/.cp-

kafka-$KAFKA_BROKER_ID/|" {} \; && \

 unset KAFKA_HOST; unset KAFKA_PORT && \

 /etc/confluent/docker/run

 env:

 - name: HOST_IP

 valueFrom:

 fieldRef:

 fieldPath: status.hostIP

 - name: KAFKA_HEAP_OPTS

 value: -Xmx1G -Xms1G

 - name: KAFKA_ZOOKEEPER_CONNECT

 value: ${ZOOKEEPER}

 # - name: KAFKA_METRIC_REPORTERS

 # value: "io.confluent.metrics.reporter.ConfluentMetricsReporter"

 - name: CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS

 value: PLAINTEXT://${NAME}:9092

 - name: KAFKA_LISTENER_SECURITY_PROTOCOL_MAP

 value: PLAINTEXT:PLAINTEXT,EXTERNAL:PLAINTEXT

 # - name: KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR

 # value: "3"

 - name: KAFKA_JMX_PORT

 value: "5555"

 - name: KAFKA_AUTO_CREATE_TOPICS_ENABLE

 value: "true"

 - name: KAFKA_LOG_RETENTION_BYTES

 value: '5368709120'

 - name: KAFKA_LOG_RETENTION_MS

 value: '7200000'

 image: confluentinc/cp-kafka:5.3.1

 imagePullPolicy: IfNotPresent

 name: cp-kafka-broker

 ports:

 - containerPort: 9092

 name: broker

 updateStrategy:

 type: RollingUpdate

kind: Template

name: Kafka with custom retention

description: Distributed streaming platform. log.retention.bytes = 5GB,

log.retention.ms = 2 hours

singleton: yes

datasets: no

variables:

- name: NAMESPACE

 default: default

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 34 - June 30, 2022

- name: NAME

 default: kafka

- name: SERVERS

 default: 3

 help: Set to an odd number from 3 and above

- name: ZOOKEEPER

 default: zookeeper

 help: ZooKeeper service name

- name: PRIVATE_DIR

 default: /private

Listing 16: Data Fusion Bus Dockerfile

2.3.3 DatAna

Description:

DatAna is one of the Data Management Platforms dealing with the ingestion, transformation

and routing of the inference results provided by the AI subsystem components towards the DFB

for further visualisation or connection to the MARVEL Data Corpus. As such, it plays an

important role in the interconnection of the inference models results and the MARVEL system

throughout the computing continuum (E2F2C).

DatAna is based in the Apache NiFi ecosystem (Apache NiFi, NiFi Registry and Apache

MiNiFi). In MARVEL, DatAna interfaces with the inference results from the AI subsystem via

dedicated message brokers (MQTT) deployed in the different layers of the system. Each of the

AI inference modules working over an AV stream produces a message in a dedicated topic with

the results in MQTT. The nearest DatAna instance in the layer, which is the NiFi or MiNiFi

service deployed in the same infrastructure as the MQTT, subscribes to these topics, retrieves

the messages and further processes them to comply with the specific models of Alerts,

Anomalies or MediaEvents defined as unified data models for the project. Therefore, the

integration of the system is loosely coupled and facilitates the interaction among components.

As hinted in the previous paragraphs, the deployment of DatAna in MARVEL is done in

multiple layers and instances and comprises several tools. In particular, DatAna requires

deployment of at least one instance per layer and use case. This means that at least one instance

of Apache NiFi must be deployed at the MARVEL cloud (NiFi master), and one instance must

be deployed in each of the fog servers of the pilots (one instance per pilot). Each of the fog NiFi

instances at the fog must enable communication with the NiFi master in the cloud. Similarly,

several MiNiFi agents (instances) might be developed at the edge devices controlled by the

Kubernetes environment.

Docker Image:

In the case of Apache NiFi, the docker image is inherited from the v1.15.3 version of Apache

NiFi provided in the docker hub. For the deployment of NiFi in MARVdash, a helm chart of

NiFi based on the cetic helm chart6 has been provided and adapted. A YAML file for NiFi has

been tailored and uploaded to MARVdash for each of the instances of NiFi to be deployed for

each architecture layer and pilot, including some properties to be populated to indicate the

6 https://www.cetic.be/

https://www.cetic.be/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 35 - June 30, 2022

deployment infrastructure, location of the internal NiFi repositories, etc. The YAML is not

provided here, as it is more than 1200 lines long.

For MiNiFi, a similar approach has been used. The official docker image for x86/64-based

systems corresponds to the one downloadable from docker hub. For ARM-based systems (i.e.,

Raspberry Pi) a dedicated docker image of MiNiFi has been uploaded to MARVdash. Dedicated

YAML files for the deployment in MARVdash have been also produced and uploaded.

To enable the communication of the NiFi and MiNiFi instances via NiFi Site-to-Site (STS)

protocol, a security via TLS certificates has been enabled among the instances, on a client-

server basis. In practical terms, this means that after the deployment of all instances as

MARVdash services, some updates of the services configurations are required to copy and

make available the adequate certificates pointing to the specific end-points where the NiFis in

the different layers have been deployed.

Besides the pure DatAna deployment, although DatAna does not include a message broker as

part of the component, docker images of Mosquitto MQTT have been provided to enable the

deployment of the message broker at the different layers using MARVdash.

Once deployed, a set of data flows have been defined for each of the inference model output

ingestion, transformation and compliance with the data models required by the DFB. These data

flows have been prepared in the required DatAna instances and layers in accordance with the

use cases implemented in the pilots for M18.

More information about DatAna and its deployment can be found in the MARVEL project

deliverable D2.2.

2.3.4 Hierarchical Data Distribution - HDD

Description:

HDD is a set of distributed algorithmic schemes for guaranteeing latency requirements while

effectively prolonging network lifetime in wireless edge networks. The current MARVEL

design of HDD considers the problem of Apache Kafka data topic partitioning optimisation.

Apache Kafka uses partitions to scale a topic across many brokers for producers to write data

in parallel, and also to facilitate parallel reading of consumers. Even though Apache Kafka

provides some out-of-the-box optimisations, it does not strictly define how each topic shall be

efficiently distributed into partitions. The well-formulated fine-tuning that is needed in order to

improve an Apache Kafka cluster performance is still an open research problem. HDD first

models the Apache Kafka topic partitioning process for a given topic. After that, HDD takes

under consideration a set of metrics such as number of brokers, constraints and application

requirements on throughput, OS load, replication latency and unavailability, to find how many

partitions are needed. This constitutes the formulation of an optimisation problem

computationally intractable. Furthermore, HDD implements two simple, yet efficient heuristics

to solve the problem: the first tries to minimise and the second to maximise the number of

brokers used in the cluster. HDD manages to respect the hard constraints on replication latency

and perform efficiently with respect to unavailability time and OS load, using the system

resources in a prudent way.

Docker Image:

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 36 - June 30, 2022

Figure 1: HDD Docker image in Docker Hub

HDD is currently implemented in GNU's Not Unix (GNU) Octave, a high-level programming

language primarily intended for scientific computing and numerical computation. Octave helps

in solving linear and nonlinear problems numerically, and for performing other numerical

experiments using a language that is mostly compatible with MATLAB. The selection of

Octave over MATLAB was performed just before we proceeded to the containerisation process

of HDD. The commercial licensing of MATLAB greatly influenced the selection process, and

Octave was selected in order to avoid complicated licensing constraints in MARVdash.

The docker image of the HDD is therefore dependent on Octave. In order to build the HDD

image, we decided to first pull the GNU Octave docker image, as displayed below. The GNU

Octave image actually contains an installation on Ubuntu Linux.

As shown in Figure 1, the current version of HDD’s Octave is 6.2.0. We aim at maintaining the

versioning of HDD’s Octave updated with respect to the actual Octave Docker image. HDD’s

code has then to be uploaded to the running Octave image.

To upload the HDD image on MARVdash, we used the endpoint registry.marvel-platform.eu

with our dashboard credentials, as follows (example):

docker build –t hdd:2 .

docker image tag gnuoctave/octave:6.2.0 registry.marvel-platform.eu/hddv0:2

docker login registry.marvel-platform.eu

docker push registry.marvel-platform.eu/hdd:2

Listing 17: Commands for uploading Docker Image to MARVdash - HDD

After this finished, we were able to view the HDD image in the registry frontend in the

dashboard (under "Images").

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 37 - June 30, 2022

2.4 E2F2C subsystem

2.4.1 GPURegex

Description:

GPURegex can be deployed to any OpenCL-enabled processor or hardware accelerator, such

as discrete GPUs or integrated GPUs. In the first version of GPURegex that has been uploaded

to the MARVEL registry and is available to any MARVEL partner, FORTH introduces an

implementation for integrated GPUs (i.e., Intel HD Graphics7) and an implementation for main

processors (i.e., Intel CPUs at URL8) for hardware setups that do not offer a GPU. A GPURegex

Docker container can be deployed on top of any OpenCL-enabled hardware device. OpenCL

drivers are required to be installed in the specific docker container before the execution of

GPURegex. Each vendor (e.g., Intel, NVIDIA) and each hardware device (e.g., CPU, discrete

GPU, integrated GPU) is supported by vendor and device-specific OpenCL drivers, libraries

and runtimes. For instance, the OpenCL drivers that are destined for Intel integrated GPUs are

different to those that are destined for NVIDIA GPUs. As already stated, GPURegex is

available via two images, uploaded to the MARVEL image registry (i.e., Intel CPU and Intel

HD Graphics GPU).

Docker Image:

Once downloaded from the MARVEL docker image registry, the GPURegex component can

be deployed by the following certain steps (Listing 18):

docker login registry.marvel-platform.eu

docker pull registry.marvel-platform.eu/gpuregex-intel-cpu:1

docker run -it registry.marvel-platform.eu/gpuregex-intel-cpu:1 /bin/sh

Listing 18: GPURegex container creation commands

GPURegex returns the input lines that contain patterns that match against them. GPURegex is

compiled and executed using the commands (Listing 19):

$ make

$./bin/gpuregex -p patterns_demo -i input_demo

Listing 19: GPURegex execution commands

where -p accepts the pattern file name and -i accepts the input file name. Examples for

GPURegex execution are available in Deliverable 4.2.

2.4.2 DynHP

Description:

DynHP is a methodology for training a DNN model and compressing it at the same time. The

type of compression operated by DynHP is pruning, i.e., the parameters of a DNN are zero-ed

at training time. DynHP operates structured pruning where the idea is to “remove” entire

neurons of a DNN or entire convolutional filters. Compression-wise, structured pruning is more

7 https://marvel-platform.eu/image/gpuregex-intel-gpu

8 https://marvel-platform.eu/image/gpuregex-intel-cpu

https://marvel-platform.eu/image/gpuregex-intel-gpu
https://marvel-platform.eu/image/gpuregex-intel-cpu

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 38 - June 30, 2022

effective since it allows removing entire groups of parameters. DynHP performs hard pruning.

With “hard pruning” the parameters that are “switched off” during training cannot be recovered

afterwards. DynHP combines structured pruning with hard pruning. Since the structured hard

pruning process might degrade the performance of the training, DynHP can adopt a strategy to

alleviate that. Precisely, it tunes adaptively the size of the minibatches depending on gradient-

related information and the amount of available memory.

Docker Image:

DynHP is developed using the Pytorch Framework and it needs the CUDA11 environment to

run on GPUs. Therefore, the DynHP image is based on the nvidia/cuda:11.1.1-base-

ubuntu20.04 image. It is possible to pull an image with CUDA 11.1 using (Listing 20):

$ docker pull nvidia/cuda:11.1.1-base-ubuntu20.04

Listing 20: Docker pull command

The Docker file of DynHP image is as follows:

FROM nvidia/cuda:11.1.1-base-ubuntu20.04

Remove any third-party apt sources to avoid issues with expiring keys.

RUN rm -f /etc/apt/sources.list.d/*.list

Install some basic utilities

RUN apt-get update && apt-get install -y \

 curl \

 ca-certificates \

 sudo \

 git \

 bzip2 \

 libx11-6 \

 && rm -rf /var/lib/apt/lists/*

Create a working directory

RUN mkdir /app

WORKDIR /app

Create a non-root user and switch to it

RUN adduser --disabled-password --gecos '' --shell /bin/bash user \
 && chown -R user:user /app

RUN echo "user ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/90-user

USER user

All users can use /home/user as their home directory

ENV HOME=/home/user

RUN chmod 777 /home/user

ENV PATH=/home/user/miniconda/bin:$PATH

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 39 - June 30, 2022

RUN curl -sLo ~/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-
py39_4.12.0-Linux-x86_64.sh \

 && chmod +x ~/miniconda.sh \

 && ~/miniconda.sh -b -p ~/miniconda \

 && rm ~/miniconda.sh \

 && conda install -y python==3.9 \

 && conda clean -ya

ENV TZ=UTC

RUN sudo ln -snf /usr/share/zoneinfo/$TZ /etc/localtime

RUN mkdir -p /app/dynhp_v1

RUN mkdir -p /app/dynhp_v1/compression-output

RUN mkdir -p /app/dynhp_v1/dataset

COPY . /app/dynhp_v1/

RUN sudo mv /app/dynhp_v1/home/user/.jupyter /home/user/

RUN sudo chmod 777 -R /app/dynhp_v1

RUN sudo apt-get update \

 && sudo apt install -y software-properties-common \

 && sudo add-apt-repository ppa:deadsnakes/ppa \

 && sudo apt-get install -y libsndfile1-dev \

 && sudo rm -rf /var/lib/apt/lists/*

WORKDIR /app/dynhp_v1/

RUN python3.9 -m pip install -r requirements.txt

RUN python3.9 -m pip install jupyterlab pandas numpy scipy

Set the default command to start the jupyter-lab

CMD jupyter-lab --no-browser --port=8686 --ip 0.0.0.0

Listing 21: DynHP Dockerfile

The creation of the docker image assumes that the DynHP source code is present on the machine

where the image is created. This can be achieved by cloning the DynHP repo as follows:

$ git clone git@git.marvel-project.eu:marvel/dynhp/dynhp-compressor.git docker-
img

Listing 22: Structure of the DynHP root directory

The commands for the Docker image creation are the following:

mailto:git@git.marvel-project.eu:marvel/dynhp/dynhp-compressor.git

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 40 - June 30, 2022

docker build –t dynhp:2 .

docker tag dynhp:2 registry.marvel-platform.eu/dynhp:2

docker login registry.marvel-platform.eu
docker push registry.marvel-platform.eu/dynhp:2

Listing 23: Commands for uploading Docker image to MARVdash - dynHP

When executed, the DynHP image returns a shell prompt that can be used to run the

compression on the model present in the library and all the necessary python scripts to interact

with the AI Model Repository and the MARVEL Data Corpus.

2.4.3 FedL

Description:

FedL is a component developed by UNS for the MARVEL project architecture. FedL contains

implementation of high-performance Federated Learning training process for Deep Learning

models.

Federated Learning is a training paradigm which allows for distributed privacy-preserving

training of Machine Learning (ML) models. In Federated Learning, the training data is never

shared with anyone and it is kept at the ingestion source, i.e., partial training is performed near

the data source. Typically, in a Federated Learning scenario, there are multiple clients which

perform the training with their local data, and a central collection and orchestration point –

Federated Learning server, which is then used to perform averaging of all the client models and

to provide a global model which is created by combining (averaging) all the client models. This

global model is then saved and can be reused for future training or inference. In this way of

training, we obtain a model similar to a theoretical model which is trained on all the available

client data altogether but, the client data never leaves its source, thus ensuring privacy. Only

the parameters (updates, gradients) of the ML models are shared with the server and not the

training/input data. If necessary for some models, we can even combine this approach with

differential privacy methods by injecting noise into the parameter updates which are shared

between the clients and the server. This is another step to ensure that the shared parameter data

is harder to reverse engineer to actual training data.

For the MARVEL project needs, FedL component develops a specialised Federated Learning

strategy which is meant to optimise the federated learning process in the case of flaky (not

consistent) client-server communication. Communication issues are always present in large

heterogeneous systems. Addressing these issues is the one of the goals pf this custom federated

learning strategy. The Tcustom Non-Uniform Sampling (NUS) strategy (names NUS – non-

uniform sampling strategy) allows for some clients to be temporarily unavailable during

federated learning. It also saves bandwidth by only requesting client training results if the client

data is considered valuable to the global server model, based on several metrics such as number

of client data points, model metrics such as accuracy, model gradient variance, client

availability history, client training and merging history and others.

Docker Image:

Docker images for the FedL component are a natural extension of the Docker images which are

used for Deep Learning models which need to be trained in a Federated Learning process. FedL

works by extending the training code of these models to utilise communication between the

clients training on local data and the server which is used to perform orchestration.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 41 - June 30, 2022

The FedL server is a model independent component, meaning that its Docker image can be

reused for multiple use cases. The configuration of the server (e.g., choice of strategy, number

of clients) is configurable on the server side (parameters available also in MARVdash).

We will now briefly show how to build example Docker images for a PyTorch based simple

neural network model.

In Listing 24, a snippet from the Dockerfile of FedL server is depicted:

FROM python:3.8

Install flower and dependencies for machine learning

RUN python3 --version

RUN pip3 install torch==1.8.2+cpu torchvision==0.9.2+cpu torchaudio==0.8.2 -f

https://download.pytorch.org/whl/lts/1.8/torch_lts.html

RUN pip3 install flwr==0.17.0

Copy code in final step so code changes don't invalidate the

previous docker layers

WORKDIR /opt/marvel

COPY *.py .

COPY *.sh .

EXPOSE 8080/udp

EXPOSE 8080/tcp

Start the FL server

Listing 24: FedL server Dockerfile

For the server image, we need to expose port 8080 (both udp and tcp) for client communication.

Code for the custom FedL strategy is imported to the image as well. Llast line runs the FedL

server.

A snippet of the Dockerfile for the corresponding client is shown in Listing 25:

FROM python:3.8

Install flower and dependencies for machine learning

RUN python3 --version

RUN pip3 install torch==1.8.2+cpu torchvision==0.9.2+cpu torchaudio==0.8.2 -f

https://download.pytorch.org/whl/lts/1.8/torch_lts.html

RUN pip3 install flwr==0.17.0

Copy code in final step so code changes don't invalidate the

previous docker layers

WORKDIR /opt/marvel

COPY *.py .

COPY *.sh .

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 42 - June 30, 2022

Default values:

ENV CID=1

ENV SERVER_ADDRESS=localhost:8080

ENV NB_CLIENTS=5

ENV EPOCHS=10

Start the FL client

CMD python3 client.py --cid=$CID --server_address=$SERVER_ADDRESS --

nb_clients=$NB_CLIENTS --epochs=$EPOCHS

Listing 25: FedL client Dockerfile

Since we have the same dependencies, layers from the server image can be reused. Here we

expose some environment variables such as server address, client id (CID), total number of

clients (NB_CLIENTS), number of training epochs per round of Federated Learning training

(EPOCHS). These parameters can be externally configured.

Finally, the code snippet in Listing 26 demonstrates how to integrate FedL into existing Deep

Learning models. This code is for a TensorFlow/Keras based AVCC model from AU, but it can

be adapted to any standard Deep Learning model.

class AVCCClient(fl.client.NumPyClient):

 def __init__(self, *args, **kwargs):

 super().__init__(*args, **kwargs)

 self.model, self.train_sequence, self.test_sequence, self.val_sequence =

train_backbone(0) # 0 epochs, only to init model

 def get_parameters(self):

 return self.model.get_weights()

 def fit(self, parameters, config):

 self.model.set_weights(parameters)

 self.model = train_backbone(1)

 return self.model.get_weights(), len(self.train_sequence), {}

 def evaluate(self, parameters, config):

 self.model.set_weights(parameters)

 loss, accuracy = self.model.evaluate(self.test_sequence)

 return loss, len(self.test_sequence), {"accuracy": accuracy}

Listing 26: Integration of FedL into existing Deep Learning models

As it can be seen from the code, FedL client is completely model agnostic, we just need the

interfaces to train the model, and to obtain its parameters and metrics as is.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 43 - June 30, 2022

2.5 System outputs subsystem

2.5.1 SmartViz

Description:

The system outputs of MARVEL are realised through the Decision-Making Toolkit (DMT)

which aims at assisting stakeholders in short and long-term decision-making. DMT is based on

Zelus’ SmartViz component which is a collection of advanced visualisation tools, offering

multi-purpose data representations and visualisations.

SmartViz is a versatile data visualisation solution that empowers domain experts to discover

patterns, behaviours, and correlations of data items. It consists of a set of visualisation tools

developed to allow a more straightforward exploratory analysis of data by using interactive

presentations, intuitive monitoring dashboards, and configurable visual representations.

SmartViz can visualise data coming in real-time or in batch mode and it can be used to provide

visualisation configurations, covering the needs of a variety of users that are required to address

all MARVEL stakeholders.

Using its Data Intake adapters, SmartViz is capable of connecting with multiple data sources

and then uses its internal data API and configuration options to produce predefined as well as

user-defined visualisation dashboards. The output of the adapters is handled by a middleware,

that transforms information into internal data representations, which can afterwards feed the

visualisations. The Frontend part of the tool is served as a web application directly accessible

by end-users.

Docker Image:

SmartViz consists of two images, one for the Frontend and one for the Middleware part, and it

also uses a nginx web server to act as proxy for the internal services. There are two Dockerfiles

as seen below for each part of the application and a docker-compose.yaml file.

Middleware Dockerfile:

FROM node:14

WORKDIR /usr/src/app/srv

COPY package.json package-lock.json .

RUN npm install

COPY . .

CMD ["node", "server.js"]

Frontend Dockerfile:

FROM node:14 As builder

WORKDIR /usr/src/app/smartviz

COPY package.json package-lock.json ./

RUN npm install

COPY . .

RUN npm run build -- --base-href='/smartviz/'

FROM nginx

COPY --from=builder /usr/src/app/smartviz/dist /usr/share/nginx/html/smartviz

#COPY ./nginx.conf /etc/nginx/conf.d/default.conf

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 44 - June 30, 2022

CMD ["/bin/sh", "-c", "envsubst <

/usr/share/nginx/html/smartviz/assets/env.template.js >

/usr/share/nginx/html/smartviz/assets/env.js && exec nginx -g 'daemon off;'"]

Docker-compose.yaml:

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/force-ssl-redirect: '"true"'

 nginx.ingress.kubernetes.io/proxy-read-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-send-timeout: "3600"

 nginx.ingress.kubernetes.io/proxy-body-size: "0"

 name: $NAME

spec:

 rules:

 - host: $HOSTNAME

 http:

 paths:

 - backend:

 serviceName: $NAME

 servicePort: 80

apiVersion: v1

kind: Service

metadata:

 name: $NAME

spec:

 type: ClusterIP

 ports:

 - port: 80

 selector:

 app: $NAME

apiVersion: v1

kind: ConfigMap

metadata:

 name: nginx-config

data:

 default.conf: |

 upstream server {

 server 127.0.0.1:8000;

 }

 upstream smartviz {

 server 127.0.0.1:8080;

 }

 server {

 listen 80;

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 45 - June 30, 2022

 location /smartviz {

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_pass http://smartviz;

 }

 location /server {

 rewrite ^/server/(.*) /$1 break; # works for both /server and

/server/

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_pass http://server/;

 }

 }

apiVersion: v1

kind: ConfigMap

metadata:

 name: smartviz-config

data:

 default.conf: |

 #refresh page -> point index to get the route info

 server {

 listen 8080;

 location / {

 root /usr/share/nginx/html; #nginx root html

 index index.html index.htm;

 try_files $uri $uri/ /smartviz/index.html =404; #subfolder index path

 }

 include /etc/nginx/extra-conf.d/*.conf;

 }

apiVersion: apps/v1

kind: Deployment

metadata:

 name: $NAME

spec:

 replicas: 1

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 46 - June 30, 2022

 selector:

 matchLabels:

 app: $NAME

 template:

 metadata:

 labels:

 app: $NAME

 spec:

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80

 volumeMounts:

 - name: nginx-config-volume

 mountPath: /etc/nginx/conf.d/default.conf

 subPath: default.conf

 - name: server

 image: stellamarkop/dmtserv:$VERSION

 ports:

 - containerPort: 8000

 env:

 - name: PORT

 value: "8000" #server running internally at 8000; if you want to

change the port you should change the default.conf && exposed Port accordingly.

 - name: KAFKA_URL

 value: $KAFKA #set kafka IP + Port (broker)

 - name: TOPIC

 value: $TOPIC #topic env var format MUST be: topic1

 - name: EL

 value: http://$ELASTICSEARCH #set elastic search IP + Port

 - name: INDEX

 value: $INDEX #set one available index of elastic

 - name: smartviz

 image: stellamarkop/dmtsmartviz:$VERSION

 ports:

 - containerPort: 8080

 env:

 - name: SERV_HOST

 value: https://$HOSTNAME/server

 - name: SOCKET_HOST

 value: https://$HOSTNAME #server base IP for Socket.io; adjust the IP

url according your host environment. Server runs under nginx proxy pass(thats

why port is 4200)- we have configured in Angular to request Socket under /server

subdomain.

 volumeMounts:

 - name: smartviz-config-volume

 mountPath: /etc/nginx/conf.d/default.conf

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 47 - June 30, 2022

 subPath: default.conf

 volumes:

 - name: nginx-config-volume

 configMap:

 name: nginx-config

 defaultMode: 0644

 - name: smartviz-config-volume

 configMap:

 name: smartviz-config

 defaultMode: 0644

kind: Template

name: SmartViz

description: SmartViz frontend

singleton: yes

datasets: no

variables:

- name: NAME

 default: smartviz

- name: HOSTNAME

 default: smartviz.example.com

- name: VERSION

 default: test

 help: Container version/tag

- name: KAFKA

 default: kafka:9092

 help: Kafka service endpoint

- name: TOPIC

 default: test

 help: Kafka topic

- name: ELASTICSEARCH

 default: example:9200

 help: Elasticsearch service endpoint

- name: INDEX

 default: mappings

 help: Elasticsearch index

Listing 27: SmartViz Dockerfile

2.5.2 MARVEL Data Corpus-as-a-Service

Description:

The MARVEL Data Corpus is going to store complete datasets (with anonymised and annotated

data). It receives data from the piloting environments (e.g., video/audio for surveillance

cameras) and stores it in a Big Data repository. Then, the user, either internal (other MARVEL

components and partners) or external (research and industrial communities), can search and

download the underlying files and facilitate machine learning (ML) processes.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 48 - June 30, 2022

The core file repository is implemented by the Hadoop Distributed Files System (HDFS), while

the management of this Big Data database is performed via HBase. There are also components

that offer the interface between the administrator user and these elements, such as the Ambari

web interface and the ELK stack. The HBase/Hadoop system is comprised of several

subcomponents. The data files themselves are stored in HDFS Data Nodes. In a clustered

environment, that data storage is distributed among several Region Servers, with every Region

Server controlling a set of Data Nodes. The HBase Master manages the assignment of these

regions and the main database operations (e.g., create, update, delete tables, etc.). Then,

ZooKeeper, which is part of HDFS, retains a live cluster status. Finally, the Name Node

maintains metadata information for all physical data blocks. A high-level abstraction is depicted

in the following figure.

Figure 2: Data Corpus Infrastructure

The Corpus also deploys augmentation techniques. The user can apply them in order to create

augmented versions of the existing datasets. For example, the user can adjust the brightness of

a video that was recorded during morning time to represent the same results in the afternoon

time. Then, the ML components can also parse this data and create a more robust evaluation

process for the case where they will have to process a livestream during afternoon.

Moreover, there are JAVA applications that implement the programmable interfaces with the

repository and develop functionality, such as storing a file or whole dataset, updating existing

files/datasets, search for information and retrieving the related files, etc.

Also, there are graphical interfaces that assist the use of the Corpus by the end-user. The user

can review the already ingested datasets and their content, as well as update them or upload

new ones.

Concerning the deployment of the system, all these components are dockerised. In the

MARVEL backend/cloud server and the MARVdash, there is the main Data Corpus VM. This

includes the elements of the Master HBase/Hadoop Node, the Name Node, the graphical

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 49 - June 30, 2022

interfaces, the Python augmentation libraries, and the JAVA applications that implement the

programmable interfaces and the integration with other MARVEL components (i.e., DFP and

StreamHandler).

Then, for the cluster, there is one VM for each Data Node. Each VM has a maximum hard disk

space (e.g., 300TB), which is managed by the Data Node. As the volume of the ingested datasets

is increased, VMs are added. The goal is to reach 3.3 PB storage until M36.

Docker Image:

A set of Docker images have been created and deployed for Data Corpus. The following list

summarises them:

Hadoop:

• hadoop-namenode:2.0.0-hadoop2.7.4-java8

• hadoop-datanode:2.0.0-hadoop2.7.4-java8

• hadoop-nodemanager:2.0.0-hadoop2.7.4-java8

• hadoop-resourcemanager:2.0.0-hadoop2.7.4-java8

• hadoop-historyserver:2.0.0-hadoop2.7.4-java8

HBase:

• hbase-master:1.0.0-hbase1.2.6

• hbase-regionserver:1.0.0-hbase1.2.6

• Zookeeper

• zookeeper:3.4.10

• Ambari

• docker-ambari

ELK:

• elasticsearch:elastdocker-7-17.0

• logstash:elastdocker-7-17.0

• kibana:elastdocker-7.17.0

Python augmentations:

• augmentation_libraries

JAVA application:

• docker-hbase_fileservice

GUI:

• aungular-gui_service

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 50 - June 30, 2022

3 E2F2C deployment approach

This section is devoted to the description of the main elements of the MARVEL E2F2C

framework. In the first subsection, we describe i) what is Kubernetes; ii) cluster architecture;

iii) containerisation technique that is used; and iv) the necessity of a VPN. The second

subsection depicts how a suitable execution environment is chosen for each MARVEL

component deployment, and the third section talks about the next steps.

3.1 Architecture of the MARVEL E2F2C framework

3.1.1 Kubernetes

Kubernetes is a portable, extensible, open-source platform for managing containerised

workloads and services, that facilitates both declarative configuration and automation. It has a

large, rapidly growing ecosystem. The name Kubernetes originates from Greek language,

meaning helmsman or pilot. K8s as an abbreviation and results from counting the eight letters

between the "K" and the "s". Google open-sourced the Kubernetes project in 2014 [1].

The main advantages of Kubernetes are:

• It manages containers. Containers are lightweight, portable and immutable.

• It is distributed in nature (=Kubernetes cluster). It takes care of network, resource

management, scaling, and resource failures.

• It runs “everywhere” (any scale, any architecture). Any host machine with Docker and

Kubernetes tools installed can be part of a Kubernetes cluster. That makes Kubernetes

OS independent and hardware independent.

Kubernetes is an orchestration engine for container technologies. Kubernetes can make the

deployment process faster and easier and also run updates with almost zero downtime.

Furthermore, Kubernetes can detect and restart services when a process inside a container

crashes. One of the advantages of the container orchestration is that the user traffic is load

balanced across the various containers. In case of running out of hardware resources, if the

nodes are scaled appropriately applications don’t fail. Furthermore, Kubernetes allows you to

mount and add storage to run stateful applications.

The most basic objects in Kubernetes are:

• Pod, which is a group of one or more containers, with shared storage and network

resources, and a specification for how to run the containers.

• Deployment, which is an object that is constituted by a collection of pods defined by

a template and a replica count. Replica count indicates the number of pods/containers

we want to run.

• Service, which is an object that provides a stable endpoint in order to direct traffic to

the desired pods. This endpoint remains the same even if the aforementioned pods

change.

• Ingress, which is the object which exposes an endpoint of our application to traffic

external to Kubernetes cluster, typically Hypertext Transfer Protocol (HTTP).

3.1.1.1 Cluster Architecture

When Kubernetes tools are deployed, a cluster is initiated. A Kubernetes cluster, depicted in

Figure 3, consists of a set of worker machines, which in Kubernetes are called nodes. Nodes

run containerised applications. Every cluster has at least one worker node. The worker node(s)

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 51 - June 30, 2022

host the Pods which are the components of the application workload. The control plane manages

the worker nodes and the Pods in the cluster.

Figure 3: Kubernetes cluster architecture9

In the MARVEL environment, the control plane is installed on a VM deployed on PSNC’s

OpenStack offering. Other VMs deployed on PSNC will also become nodes of the Kubernetes

cluster and will form the Cloud of the MARVEL architecture. The devices that form Edge and

Fog will become nodes of this Kubernetes Cluster, respectively.

The control plane's components are responsible for making global decisions. This includes

scheduling, as well as detecting and responding to cluster events. If, for example, a

deployment's replicas fails, then a new pod will start.

9 source: https://discuss.newrelic.com/t/relic-solution-what-you-need-to-know-about-new-relic-when-deploying-with-

docker/52492

https://discuss.newrelic.com/t/relic-solution-what-you-need-to-know-about-new-relic-when-deploying-with-docker/52492
https://discuss.newrelic.com/t/relic-solution-what-you-need-to-know-about-new-relic-when-deploying-with-docker/52492

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 52 - June 30, 2022

Figure 4: Kubernetes main components10

The main components of the control plane, included in Figure 4, are:

• kube-apiserver, which is a component that exposes the Kubernetes API.

• etcd, which is a consistent and highly-available key-value store used as Kubernetes'

backing store for all cluster data.

• kube-scheduler, which is the control plane component that watches for newly created

Pods with no assigned node, and selects a node for them to run on.

• kube-controller-manage, which is the control plane component that runs controller

processes.

• cloud-controller-manager, which is the Kubernetes control plane component that

embeds cloud-specific control logic.

Node components run on every node on each layer, maintaining running pods and providing

the Kubernetes runtime environment. These components are:

• kubelet, which is an agent that runs on each node in the cluster and is responsible for

reassuring that containers are running in a Pod.

• kube-proxy, which is a network proxy that also runs on each node of the cluster,

implementing part of the Kubernetes Service concept.

• Container runtime, which is the software that is responsible for running containers.

3.1.1.2 Containers

Docker containers have become the de-facto standard format and are well adopted by the

community of the software developers. Containerisation, in general, is categorised as a

virtualisation technology in a lightweight form. A container is able to package an application

along with its dependencies and its execution environment into a unit used for software

development and running of an application on any system [2]. A Dockerfile is the mean to

define the contents of a Docker container in a declarative way, including instructions for

software deployment, variable definition, command execution, etc. [3], following the concept

10 source: https://kubernetes.io/docs/concepts/overview/components/

https://kubernetes.io/docs/concepts/overview/components/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 53 - June 30, 2022

of Infrastructure-as-Code (IaC) [4]. IaC allows for easier distribution and edit of configurations,

and provisioning of the same environment every time.

A virtualisation technique at the operating system level is used by containers to achieve process

and network isolation. Linux Containers (LXC) could be considered as forerunner achieving

isolation with the use of chroot, cgroups, and namespaces. Docker containers extend LXC

offering additional functionality, such as portable container images. A docker container image

is an object that includes the contents of a container and can be easily transferred and deployed

across individual hosts. Containers are considered least resource intense than the other

virtualisation techniques, like Virtual Machines (VMs). In comparison with a VM, containers

use the kernel of their hosts and do not emulate a whole operating system, reducing the

necessary resources [5].

Figure 5: Docker basic concepts11

The Dockerfile is a text document that includes declarative instructions that describe the

contents of a Docker container. In simpler words, a Dockerfile contains all the commands that

can be called on the command line to build a Docker image. Listing 28 depicts such a Dockerfile

including some of the most used instructions. What follows is a short explanation of the

included instructions to offer a basic understanding of the Dockerfile format. The FROM

instruction specifies the base image on which the corresponding Docker container will be built.

It can be an operating system or another existing container. According to best practices, this

initial image should be as minimal as possible. The FROM instruction is mandatory for every

Dockerfile. In this example, the base image is the one of ubuntu operating system, version

18.04.

An optional instruction is that of the MAINTAINER. This instruction refers to the name and

email of the maintainer of the Dockerfile. Setting environmental variables with an instruction

is also an option. The ENV instruction initialises a variable. In our example, it is used for the

definition of a Kafka instance endpoint (IP address and port) and a corresponding topic.

RUN is a rather general instruction that allows for the execution of any shell command within

the container. Most of the time, it is used to retrieve dependencies, compile and install software.

In our example, it is used for java and maven installations.

11 source: https://borosan.gitbook.io/docker-handbook/basic-consepts

https://borosan.gitbook.io/docker-handbook/basic-consepts

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 54 - June 30, 2022

ADD and its sister instruction COPY are used for transferring files into the newly created

container from the host. ADD, on top of the transfer functionality, can use a URL as source

path and unpack compressed files.

The EXPOSE instruction specifies a network port for the Docker container to enable network

communication. This port is the port that the underlying container process listens to. Port 9000

is exposed in our example.

WORKDIR instruction specifies the working directory of the container. Other instructions such

as RUN, CMD, ADD, COPY will be executed in this defined directory. We could say that

WORKDIR includes mkdir and cd commands.

Finally, CMD instruction represents the command that the container executes when the built

image is launched and the container is started. If more than one CMD instructions are included

in a Dockerfile, only the last one is executed. The difference with the RUN instruction is that

the latter creates a new intermediate image layer on top of the previous one. In our example,

the CMD instruction runs a jar file that will start the process of the container.

FROM ubuntu:18.04

MAINTAINER Manos Papoutsakis <paputsak@ics.forth.gr>

define kafkaEndpoint (IP:port)

ENV kafkaEndpoint 127.0.0.1:9092

define TopologyChangesTopic

ENV topologyChangesTopic TopologyChanges

install java 8

RUN apt update

RUN apt install -y openjdk-8-jdk

install maven 3

RUN apt install -y maven

get the source code

ADD . /home/smartcontroller/SmartController

open to the world

EXPOSE 9000

run

WORKDIR /home/smartcontroller/SmartController

CMD ["java", "-jar", "./target/spring-boot-kafka-app-0.0.1-SNAPSHOT.jar"]

Listing 28: Dockerfile snippet

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 55 - June 30, 2022

3.1.1.3 Load balancing and networking

Kubernetes has its own network model according to which each Pod has its own IP address.

Pods are considered instances of running processes in the Kubernetes cluster. There is no need

for creating links between Pods and mapping container ports to host ports. As a result, as far as

network functionalities, such as port allocation, naming, service discovery, load balancing,

application configuration, and migration, are concerned, Pods are treated as VMs or normal

physical hosts, i.e., part of a network.

The requirements of a Kubernetes implementation are the following:

• A pod can communicate with all pods in different nodes without NAT.

• Agents on a node (e.g., system daemons, kubelet) can communicate with all pods of the

node.

• Pods pin the host network of a node can communicate with all other pods of other nodes

without NAT (applies to Linux).

Moreover, IP addresses of a Kubernetes network make sense only at the Pod scope. Containers

included in a Pod have their own network namespace (IP and MAC address). According to that,

containers of the same pod reach each other using localhost and have to coordinate regarding

the ports they are using. As a result, containers within a Pod communicate with each other via

loopback, while Pods themselves use the cluster networking for the communication at their

level.

Regarding the exposure of an application to the outside of the Kubernetes cluster world, a

Kubernetes Service can be used. A running application may use a set of Pods. Kubernetes gives

to those Pods an IP address and a DNS name, while it undertakes the load-balancing across

them. A Service defines a logical set of Pods and a policy by which to access them. The set of

Pods targeted by a Service is usually determined by a selector. The existence of a Service is

justified by the non-permanent nature of the Pods. They can be created and destroyed depending

on the current state of the cluster and desired application deployment. Services hide the

complexity of keeping track of the set of Pods that an application is coupled with.

Listing 29 depicts a Service object and how it is defined in Kubernetes. This piece of code

creates a Service with name “nginx”. This Service targets TCP port 80 on any Pod with label

“app.kubernetes.io/name: webserver”, as the selector defines. Moreover, the targetport

webserver-service of the created Service is bind to port 80 of the Pod. The webserver-service

is the name that is given to a specific port, defined in the corresponding Pod object.

apiVersion: v1

kind: Service

metadata:

 name: nginx

spec:

 selector:

 app.kubernetes.io/name: webserver

 ports:

 - name: port-name

 protocol: TCP

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 56 - June 30, 2022

 port: 80

 targetPort: webserver-service

Listing 29: Service object snippet

Finally, the Service object can be used for exposing application functionality only to the internal

of a Kubernetes cluster.

3.1.2 Virtual Private Network – VPN

3.1.2.1 VPN architecture

The VPN solution that is used in the MARVEL E2F2C framework is based on the n2n12

architecture. As it can be seen in Figure 6, there are two key components: Edge Nodes and

Super Nodes. The Edge Nodes are the peers participating in the network, while the Super Nodes

are used by the Edge Nodes for discovering other Edge Nodes. Moreover, Super Nodes are used

for routing the traffic when the nodes are behind symmetrical firewalls.

Due to the presented architecture, a peer-to-peer network is created that works on the second

layer of the OSI model13, allowing the peers to cross NAT and firewalls and being reachable.

Edge nNodes that participate in the same virtual network form a community. Super Nodes are

able to serve more than one community and a single computer can join multiple communities.

Within a community encryption of the packets is feasible with the use of an encryption key.

Edge nNodes establish direct communication among themselves via UDP, but when this is not

possible, due to special NAT circumstances, then the Super Node can facilitate the relay of the

packets.

Figure 6: n2n VPN architecture - source: https://www.ntop.org/products/n2n

12 https://www.ntop.org/products/n2n/

13 https://www.imperva.com/learn/application-security/osi-model/

https://www.ntop.org/products/n2n
https://www.ntop.org/products/n2n/
https://www.imperva.com/learn/application-security/osi-model/

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 57 - June 30, 2022

3.1.2.2 Necessity of VPN

As it is already mentioned, Kubernetes is the backbone of the MARVEL E2F2C framework,

where most of the MARVEL components will be deployed. However, many components are

not going to be deployed within the actual network that the original Kubernetes nodes have

created (cloud layer). This raised the need for nodes that exist at the fog and at the edge layer

to join the Kubernetes cluster at the cloud.

Kubernetes by design requires that all pods can communicate with other pods on any node

without NAT which comes in direct contradiction with the actual setup of having remote nodes.

VPN provides the solution here, due to the fact that it brings together all the participating nodes

as if they were under the same local network making any NAT or firewall transparent to the

communication between them (see Figure 7). VPN becomes the undelaying network that allows

each remote node to join the Kubernetes cluster at the cloud. This implies that all components

that are deployed in Kubernetes traverse the tunnel created by the VPN.

Figure 7: VPN creates an underlaying network for remote Kubernetes nodes

3.1.2.3 Implementation

The implementation of VPN in one of the project use cases that GRN is leading, is described

in this section. The infrastructure of GRN consists of a server that is located at the fog layer and

a workstation located at the edge layer (see Figure 8). A Super Node that assigns a VPN IP for

both the server and the workstation is used in the cloud in PSNC’s infrastructure. In that way,

the two machines in GRN join the same network with MARVdash and become part of the

existing Kubernetes network. Nodes are able to directly announce themselves and discover

other nodes via the Super Node.

The communication between the participating nodes is limited to the traffic that matches the

network subnet defined by the EdgeSec VPN. This means that all unrelated traffic such as

browsing the internet or downloading updates is not routing through the VPN thus limiting the

overhead of the VPN channel.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 58 - June 30, 2022

Figure 8: VPN implementation in GRN use cases

3.2 Deployment method

The deployment method though MARVdash is described in the following steps:

1. Upload the component docker image to MARVdash. To upload your image, use the

endpoint registry.marvel-platform.eu with your dashboard credentials. For example, to

upload a container image called "myimage", use the following commands:

• docker build -t myimage:2

• docker tag myimage:2 registry.marvel-platform.eu/myimage:2

• docker login registry.marvel-platform.eu # Only required once

• docker push registry.marvel-platform.eu/myimage:2

After this finishes, you should be able to view your image in the registry frontend in the

dashboard (under "Images"), as depicted in Figure 9.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 59 - June 30, 2022

Figure 9: Docker images tab in MARVdash UI

2. Create the corresponding YAML file (Template). MARVdash provides a way for

users to easily configure and start services, by integrating a service templating

mechanism based on Helm. This YAML file should include information such as

available APIs of the service, description of the node that the service is deployed at,

container image, etc. The Template YAML must be uploaded from the menu Templates

and clicking on the button “Add template” (see Figure 10).

Figure 10: Templates tab in MARVdash UI

3. Deploy the service based on the YAML file of step 2. This step is just a click on the

Actions button of the corresponding Template on the Template page of MARVdash (see

Figure 11).

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 60 - June 30, 2022

Figure 11: Deployment of a service though MARVdash UI

3.1.3 Taints/Tolerations

3.1.3.1 Concepts

One of the mechanisms Kubernetes offers are node taints and tolerations. These are similar to

applying node affinity rules but from a different perspective. So, while affinity rules have as a

target goal to attract pods to specific nodes, a tainted node repels a set of pods. In order for any

pod to run on these nodes, tolerations have to be applied to them.

Tolerations are applied to pods, and allow (but do not require) the pods to schedule onto nodes

with matching taints. Taints and tolerations cooperate and ensure that pods are scheduled to

appropriate nodes.

A tainted node can have three possible effects from the perspective of Kubernetes scheduler:

• NoSchedule, which leads the Kubernetes scheduler to only schedule pods that have the

right tolerations for the tainted nodes.

• PreferNoSchedule, which leads the Kubernetes scheduler to try to avoid scheduling

pods that don’t have the right tolerations for the tainted nodes.

• NoExecute, which leads Kubernetes tools to evict the running pods from the nodes if

the pods don’t have the right tolerations for the tainted nodes.

3.1.3.2 Concept usage

A pod is the smallest deployable unit of computing that you can create and manage in

Kubernetes. When a pod is created in Kubernetes, the scheduler is trying to assign it to each

node. If no restrictions and limitations are applied, the scheduler places the pods across the

nodes to balance them equally.

Taints and tolerations are mainly used for cases where the nodes have to be dedicated for a

reason. One of these reasons could be the necessity of a dedicated set of nodes for exclusive

use. For example, this set of nodes could be used by a particular set of use cases. In order for

this to be achieved, the node must be tainted and then the pods to have tolerations. Only the

pods with the tolerations will have access to the tainted nodes, along with any other nodes in

the cluster. Another motivation for tainting nodes is if they have special hardware. If for

example, a small subset of nodes has GPUs then it would be desirable to keep pods that don't

need the specialised hardware outside of those nodes.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 61 - June 30, 2022

As mentioned above for each use case, we have particular resources. So, we want only pods

from these use cases to run on these nodes. By default, pods have no tolerations. So, when we

taint a node, no unwanted pod can access it. In order to achieve the desired pods to access the

tainted node, we add toleration to these pods. Taints are set on nodes and tolerations are set to

pods.

Taints “tell” the node to only accept pods with certain tolerations.

3.1.3.3 MARVEL examples

For the MARVEL Kubernetes cluster to better serve the MARVEL use cases, we taint nodes

of each layer (Fog, Edge) in order to properly assign pods. In the example of the GRN Edge

host machine after the installation of the Kubernetes tools and the EdgeSec VPN, each host

machine in each layer is part of the MARVEL Kubernetes cluster.

So, in the case of the GRN Edge host machine, the node is tainted with the following command

(Listing 30)

kubectl taint nodes grnedge1 Layer=GRNEDGE1:NoSchedule

Listing 30: Taints example for the GRN Edge host machine

which means that Kubernetes Scheduler can assign to this node only pods that have toleration

added to them. So, in order for the pods to be assigned to this node, the following lines have to

be added to the corresponding YAML file. (Listing 31).

tolerations:

 - key: "Layer"

 operator: "Equal"

 value: "GRNEDGE1"

Listing 31: Toleration example for the GRN Edge host machine

Kubernetes scheduler will only schedule pods that have the right tolerations (Layer Equal to

GRNEDGE1) for the tainted node.

3.1.4 Affinity

3.1.4.1 Concept

Node affinity is a set of rules, which when applied help the scheduler to decide on which node

of the cluster to place the pod. This decision is taken with the use of selectors. A Kubernetes

Selector allows for the selection of Kubernetes resources based on the value of labels and

resource fields assigned to a group of pods or nodes.

In order for the admin of the Kubernetes cluster to set the aforementioned rules, the nodes have

to be labelled and in each pod’s definition label selectors have to be defined. Node affinity

allows a pod to specify an affinity towards a group of nodes, so it can preferably be scheduled

on them. The simplest way the admin can add the node selection constraint is by using the

nodeSelector. So, in order for the pod to run on the node, it should have defined the labels.

Node affinity has a similar approach and allows the administrator of the Kubernetes cluster to

limit the nodes where pods can be executed.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 62 - June 30, 2022

The affinity feature consists of two types of affinity. The first is Node affinity functions, which

are like the nodeSelector field but are more expressive and allow you to specify soft rules. The

other is inter-pod affinity/anti-affinity, which allows you to attract or repel Pods.

Node affinity may block or not the scheduling of a pod as described in the two cases below.

• requiredDuringSchedulingIgnoredDuringExecution: The scheduler can't schedule the

Pod unless the rule is met.

• preferredDuringSchedulingIgnoredDuringExecution: The scheduler tries to find a node

that meets the rule. If a matching node is not available, the scheduler still schedules the

Pod.

If you want to dedicate the nodes for pods and ensure they only use the dedicated nodes, then

you should additionally add a label similar to the taint to the same set of nodes (e.g.,

dedicated=usecase), and the admission controller would additionally add a node affinity.

3.1.4.2 Concept usage

Node affinity is a property of Pods that attracts them to a set of nodes either as a preference or

a hard requirement. Tolerations are applied to pods, and allow, but do not require, the pods to

schedule onto nodes with matching taints. Taints are the opposite since they allow a node to

repel a set of pods. Taints and tolerations work together to ensure that pods are not scheduled

onto inappropriate nodes. One or more taints are applied to a node; this marks that the node

should not accept any pods that do not tolerate the taints. All these Kubernetes concepts are

presented in a graphical form in Figure 12.

Figure 12: Kubernetes Affinity, Taints and Tolerations concepts in a node.

3.1.4.3 MARVEL examples

For the MARVEL Kubernetes cluster to better serve the MARVEL use cases, we label nodes

of each layer (Fog, Edge) in order to assign pods. So as an example, for the GRN Edge host

machine after the installation of the Kubernetes tools and the EdgeSec VPN, the host is part of

the MARVEL Kubernetes cluster. Then node is labelled with the following command (Listing

32).

kubectl label nodes grnedge1 Layer=GRNEDGE1

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 63 - June 30, 2022

Listing 32: Labelling example for the GRN Edge host machine

The affinity is applied to each pod by adding the following lines in the corresponding YAML

file. (Listing 33).

affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: Layer

 operator: In

 values:

 - GRNEDGE1

Listing 33: Affinity example for the GRN Edge host machine

So based on the aforementioned, the scheduler cannot schedule the Pod unless the key Layer is

GRNEDGE1.

The full circle of taints and tolerations, and node affinity is described in the following steps (see

Table 1):

Table 1: Applying taints/tolerations and node affinity in Kubernetes

Step 1 - This is a representation of pods and

nodes of a Kubernetes Cluster.

Step 2 - The different hosts are tainted in

order to be used in different use cases.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 64 - June 30, 2022

Step 3 - The nodes are tainted according to

the different Layers.

Step 4 - We add tolerations to the pods in

order to be attracted to the tainted nodes.

Step 5 - The nodes are also labelled.

Step 6 - We use node affinity to limit the

pods to the tainted and labelled nodes.

Step 7 - All pods are assigned to the desired nodes.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 65 - June 30, 2022

3.3 Future plans – Deployment optimisation

The current version of MARVdash allows for the deployment of AI and other MARVEL

components at individual nodes of the Kubernetes cluster. The owner of each component is able

to choose the cluster node for deployment. A combination of taints and tolerations, and affinity

rules can be used together to completely dedicate nodes for specific pods. A set of pods

corresponds to a given MARVEL component/application. Firstly, taints and tolerations are used

to prevent pods with no selectors from being placed on tainted nodes, and then node affinity to

prevent pods with tolerations from being placed on unlabelled nodes. However, the choice of

the execution environment of a component is made manually, altering the values attributes of

tolerations and affinity in the YAML file of each component.

Our vision regarding MARVdash is the selection of the deployment target to be made in an

automated way based on the resource availability of nodes at each of the three layers of the

MARVEL E2F2C framework. This new version of MARVdash will not demand declarative

instructions about the target deployment node for each component. The component owners will

just have to describe what are the resource requirements of their components, and MARVdash

will make the decision of the desired execution environment based on the given resource

requirements of the component and the actual availability of devices, network, and resource

consumption across the entire E2F2C framework.

Kubernetes deals with the deployment of pods with specific resource requirements. When an

application (in the form of one or more pods) is deployed in a Kubernetes cluster, the

Kubernetes scheduler selects a node for the corresponding pods to run on. Such a node has a

certain capacity for each resource type that is available for the pods to be deployed. The

Kubernetes scheduler ensures that the sum of the resource requests of the scheduled containers

of the pods is less than the capacity of the node. Even if the actual memory or CPU resource

usage on a node at any given time is low, the scheduler will not place a pod on that node if the

capacity check fails. This is a safety mechanism for potential increases in resource usage -

peaks.

In that way, we will achieve deployment optimisation, deciding where the processing should

be made, and aiming at optimising the E2F2C distributed DL architectures.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 66 - June 30, 2022

4 Model optimisation for efficient inference

4.1 Centralised compression methods

4.1.1 DynHP

In this section, we present the DynHP methodology developed for compressing DNN models

at training time. This means that the DNN is incrementally trained and compressed at the same

time. Moreover, the DynHP procedure can operate at a fixed memory budget. Such an approach

enables, at least in principle, the possibility of operating the compression on resource-

constrained devices.

The kind of compression that DynHP operates is pruning. These two terms will be used

interchangeably in the following. Specifically, with the term compression, we refer to the

identification of parameters or groups of parameters that can be zeroed without affecting

significantly the inference performance of the DNN. Note that zeroing the parameters of a DNN

does not reduce its memory footprint or the number of FLOPs. To achieve the actual reduction,

it is necessary to redefine the network without the zeroed parameters. This operation is not part

of the pruning methodology, and it is orthogonal to the specific methodology. Structured

pruning is a type of pruning suitable for such kind of compression results.

Briefly, in structured pruning, the idea is to prune groups of parameters. This is the case for

pruning some of the rows of the matrix representing a fully connected layer or some

convolutional filters of a convolutional layer. The alternative approach to structured pruning is

unstructured pruning where the parameters are pruned in a scattered fashion. The former is

more suitable for both effective memory reduction at compute time and communication time

since the model has a smaller number of parameters. The latter, instead, falls in the category of

sparsification techniques and it is beneficial, for example, only for the efficient communication

of models over the network (assuming the application of a lossless compression scheme that

exploits the sparse representation of the weight matrices).

The other distinction needed to describe DynHP regards the kind of pruning: Soft Pruning (SP)

vs Hard Pruning (HP). In SP, all the (groups of) parameters can be turned on and off during

subsequent training epochs. This kind of pruning eases the training process because if a set of

parameters was wrongly zeroed during the process, can be restored afterwards. On the other

hand, HP is a one-way procedure. Precisely when a (group of) parameter(s) is turned off (i.e.,

zeroed), it can never be restored afterwards. With SP the actual removal of the unnecessary

parameters can only happen at the end of the training, while with HP can be done incrementally

during the process. DynHP belongs to the HP family.

4.1.1.1 Background on Soft pruning

In the following, we first introduce the notation, and then we discuss the SOTA techniques for

soft pruning neural networks (during training) [6] that inspired DynHP. For the sake of clarity,

we report only the details that are necessary to make this description self-contained.

We assume to have a dataset 𝒟 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 ∈ ℝ𝑁×𝑑+𝑘 containing 𝑁 i.i.d. 𝑑-dimensional

observations 𝑥𝑖 ∈ 𝒳 ⊆ ℝ𝑑, each one accompanied by a label 𝑦𝑖 ∈ 𝒴 ⊆ ℝ𝑘. Note that we target

supervised learning problems with one or more labels per observation. The neural network

model with weights 𝛚 is denoted by the function ℎ: ℝ𝑑 → ℝ𝑘. Additionally, in the following,

we refer to the set of neurons with the symbol 𝛉. Let ℓ: ℝ𝑘 × ℝ𝑘 → ℝ be the loss function used

to evaluate the prediction accuracy of the model ℎ. The operator ⊙ is the Hadamard product,

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 67 - June 30, 2022

i.e., the element-wise product between vectors or matrices. Finally, let us denote with ∥⋅∥𝑝 the

generic 𝑝-norm.

The loss function has the following form:

𝓛(𝛚) =
𝟏

𝑵
∑ 𝓵

𝑵

𝒊=𝟏

(𝒉(𝒙𝒊; 𝛚), 𝒚𝒊) + 𝝀∥𝛚∥𝟎

Equation 1

where the first component of ℒ(𝛚) is the average loss of model ℎ over the dataset, and the

second component is the norm 𝐿0 acting as a regulariser tuned with the 0 < 𝜆 < 1 parameter.

Since the 𝐿0-norm counts the number of non-zero parameters of the neural network, using it as

a regularisation term drives the learning algorithm towards solutions having a small number of

connections whose weight is non-zero. However, the 𝐿0-norm of the weights is not a

differentiable function, which prevents the usage of any gradient-based optimisation method

from training the neural network.

To overcome the above problems, Louizos et al. [6] propose to approximate the 𝐿0-norm with

an equivalent and differentiable function. They propose a re-parametrisation of 𝛚 such that

each parameter 𝜔𝑗 (with 1 ≤ j ≤ |ω|), is defined as follows:

𝜔𝑗 = 𝜔�̃�𝑧𝑗

Equation 2

where 𝑧𝑗 ∈ {0,1} is a binary gate that controls the activation of the j-th parameter. Therefore,

the 𝐿0-norm becomes:

∥ 𝛚 ∥0= ∑ 𝑧𝑗

|𝛚|

𝑗=1

Equation 3

The main intuition is to model the gates as Bernoulli random variables:

𝑞(𝑧𝑗|𝜋𝑗) = Bern(𝜋𝑗)

Precisely, each binary gate 𝑧𝑗 has a probability 𝜋𝑗 of being active. Adopting a probabilistic

representation for the gates means that weights 𝛚 and the loss value ℓ(,) become random

variables. Therefore, the objective function expressed in Equation 1 needs to become an

average:

ℒ(�̃�, 𝛑) = 𝔼𝑞(𝐳|𝛚) [
1

𝑁
∑ ℓ

𝑁

𝑖=1

(ℎ(𝑥𝑖; �̃� ⊙ 𝐳), 𝑦𝑖)] + 𝜆 ∑ 𝜋𝑗

|𝛚|

𝑗=1

�̃�∗, 𝛑∗ = argmin�̃�,𝛑ℒ(�̃�, 𝛑)

Equation 4

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 68 - June 30, 2022

In this way, the learning process is affected by the number of active binary gates and, in

particular, we are minimising at the same time both the generalisation error and the sum of the

probabilities of the gates. However, in this form, the function ℒ(�̃�, 𝛑) is not yet suitable for

efficient gradient computation since the Bernoulli distribution is a discrete function and,

consequently, it prevents the smoothness of ℒ(�̃�, 𝛑). The solution proposed is to substitute the

Bernoulli distribution used for modelling the gates with the Hard Concrete Distribution which

is continuous and differentiable approximation. Skipping all the technical steps, the final and

differentiable version of ℒ(�̃�, 𝛑), denoted as ℛ(�̃�, 𝛟) has the following form:

ℛ(�̃�, 𝛟) =
1

𝑇
∑ (

1

𝑁
(∑ ℓ

𝑁

𝑖=1

(ℎ(𝑥𝑖; �̃� ⊙ 𝐳(𝑡)), 𝑦𝑖)) + 𝜆 ∑ (1 − 𝑄𝑠𝑗
(0|𝜙𝑗))

|𝛚|

𝑗=1

)

𝑇

𝑙=1

Equation 5

where 𝑄𝑠𝑗
(0|𝜙𝑗) is the Cumulative Distribution Function (CDF) of the Hard Concrete

Distribution. Equation 5 assumes that training occurs over 𝑇 epochs, and in each epoch, a

random draw for the activation gates is used. The first part of the equation is thus the average

over the samples of the average losses obtained at each round, which is a standard estimator for

the average value of the average loss. The second part is the average value of the number of

non-zero gates. We minimise the objective function with respect to both �̃� and 𝛟, meaning that

we learn, at the same time, the parameters �̃� and how many of them are, on average, useful for

the good predictions (𝛟).

4.1.1.2 Incremental Hard Pruning

Our Hard Pruning mechanism is based on a “one-way-only strategy” aimed at identifying and

removing the less useful neurons together with all their inward and outward connections. To

this end, we exploit the weights gating mechanism discussed above and collect detailed

statistics on gates activation during a fixed observation time window, e.g., a training epoch. At

the end of each epoch, we compute the average activation rate 𝑎𝑗 ∈ [0,1] for each gate 𝑗, and

we use such values to identify the least active neurons to be pruned.

More formally, let 𝐙 = {0,1}𝑗=1
|𝛉|

 be a vector that stores the binary information regarding the

status (i.e., active/inactive) of each neuron of a layer 𝑙.14 𝐙 is updated at the end of each epoch

to always record the active neurons in the layer. Moreover, let 𝐚 be a vector recording the

activation rate for each neuron in the layer during an epoch. 𝐚 is computed as follows:

𝐚 =
1

𝐸
∑ 𝐳𝑒

𝐸

𝑒=1

where 𝐳 is the number of times the random gates were active during an epoch and 𝐸 is the total

number of gate’s state observations (i.e., active or inactive) during a training epoch. To identify

the less active neurons in the layer, we use a hard thresholding function 𝑔(⋅, 𝛾) with fixed

threshold 𝛾:

14 For the sake of clarity, the description refers to a single layer but its extension to all the layers of the neural network is

straightforward.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 69 - June 30, 2022

𝑔(𝑥, 𝛾) = {
1 if 𝑥 ≥ 𝛾
0 otherwise

By applying element-wise function 𝑔(⋅, 𝛾) to vector 𝐚, we obtain a binary vector

�̂� = 𝑔(𝐚, 𝛾)

that identifies the most active neurons in the layer. At the end of the epoch, we use this

information to update the status of the neurons stored in 𝐙:

𝒁 = 𝒁 ⊙ �̂�

In addition, vector 𝐙 is used to create a binary matrix 𝑀. 𝑀 is finally used to set to zero all the

weights corresponding to the deactivated neurons. This HP step is repeated at the end of each

epoch for all the layers of the network.

4.1.1.3 Dynamic Batch Sizing

We now present our Dynamic Hard Pruning technique. As one might expect, our HP technique

results in an effective reduction of the size of the neural network as training progresses, but it

has a significant impact on the convergence of the training process. The worse performance is

mostly due to the interplay between the hard pruning and the training processes. We contrast

the performance degradation due to hard pruning by adapting the size of the minibatches as the

training progresses. In this way, we obtain a double benefit, because with a single parameter to

tune (i.e., the growth rate of the mini-batches, as we will explain in the following section), we

control both the speed of convergence and the total amount of memory used by the learning

process. We dynamically regulate the batch size according to the relative variance (or Variance-

To-Mean Ratio) of the gradients. Formally, let 𝑆 be the variance estimation of the gradients for

the current mini-batch and 𝐹 the value of the loss function for the current mini-batch. At the

end of each gradient computation, the new size 𝑏 of the mini-batch is computed as:

𝑏 = 𝑏 + ⌊(1 − 𝛼𝑏𝑠)
∥ 𝑆 ∥1

𝐹
⌋

where 𝛼𝑏𝑠 , ∈ [0,1] is a smoothing parameter used to drive the batch size according to the

observed variance on the gradients. However, through this method, the batch size can

indefinitely grow and, especially in resource-constrained devices, where memory is limited,

this effect might prevent the successful training of the neural network.

To overcome this problem, we adopt the following procedure. At the end of each training epoch,

after having pruned the network, we compute the memory available for the growth of the 𝑖-th

mini-batch size as the difference between the memory budget (𝒞) and the current memory

occupation of the network 𝒩𝑖.

ℬ𝑖 = 𝒞 − 𝒩𝑖

We impose the maximum increase of the mini-batch to be

𝛥ℬ𝑖 = 𝑏𝑖 + (𝒞 − 𝒩𝑖)

Denoting with �̃�𝑖+1 the “candidate” size of the mini batch and taking into account the above

maximum size limitation, we obtain that the mini-batch size at epoch 𝑖 + 1 is:

𝑏𝑖+1 = 𝑚𝑖𝑛(𝛥ℬ𝑖 , �̃�𝑖+1).

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 70 - June 30, 2022

Note that the network pruning is performed at the end of the epoch; therefore, at the beginning

of the next epoch, additional free memory might be available to grow the size of mini-batches,

i.e., ℬ𝑖+1 ≥ ℬ𝑖 always holds.

4.1.1.4 Model definition and available models

In order to apply the DynHP procedure to a DNN model, it is necessary to define the model

using the DynHP primitives. For example, let us consider the Pytorch structure a simple

Multilayer Perceptron as reported in the figure:

Figure 13: Standard MLP definition

The corresponding definition using the DynHP primitives is as follows:

Figure 14: MLP definition using DynHP primitives

Note that the difference between the modules used to build the MLP’s layers. In the latter the

Linear module is substituted by the L0Dense module which provides the functionality of a fully

connected layer with, in addition, the parameters to train the gates discussed in the previous

section. The same hold for the convolutional layers, i.e., the Pytorch Conv2d layer is substituted

by a L0Conv2d layer which, similarly to the L0Dense, provides the additional learning

parameter for the gates and all the machinery to train it.

Therefore, in order to define model compliant with the DynHP procedure, it is mandatory to

use the corresponding L0* modules.

At the moment, the DynHP provides the following L0-topologies:

• MLP

• ResNet-28-1 and WideResNet-28-10

• VGG family

4.1.1.5 Performance evaluation

DynHP has been tested on three SOTA topologies (i.e., MLP, ResNet28-1) on three benchmark

datasets (i.e., Modified National Institute of Standards and Technology (MNIST), Fashion-

MNIST and CIFAR-10).

Table 2: Dataset description

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 71 - June 30, 2022

Dataset # Images Image size (# pixels) # channels

 Training Set Test Set

MNIST 60,000 10,000 28×28 1

Fashion-MNIST 60,000 10,000 28×28 1

CIFAR-10 50,000 10,000 32×32 3

We report in Table 3 the performance evaluation on MNIST. We evaluated the sensitivity of

DynHP to the hyper-parameter 𝛼𝑏𝑠 (which regulates the growth factor of the batch size during

training) w.r.t, the accuracy expressed in terms of misclassification error, the final model size

obtained after the training and pruning process and the total memory occupation in the process.

The baseline for both Hard Pruning and Dynamic HP is the Soft pruning method introduced in

the Section 4.1.1.1.

Table 3: Performance on MNIST

Method 𝜶𝒃𝒔 Misclassification Error Model Size Tot. Memory Usage

(%) (MBytes) (GBytes)

SP (𝑏𝑠 = 512) – 1.42 (–) 1.041 (–) 5.219 (–)

HP (𝑏𝑠 = 100) – 1.41 (−0.01%) 0.206 (−88%) 1.185 (−77%)

DynHP 0.971 1.50 (+0.08%) 0.572 (−45%) 5.165 (−1%)

DynHP 0.972 1.35 (−0.07%) 0.398 (−62%) 2.736 (−48%)

DynHP 0.973 1.40 (−0.02%) 0.205 (−80%) 1.279 (−75%)

DynHP 0.974 1.45 (+0.03%) 0.217 (−79%) 1.361 (−74%)

DynHP 0.975 1.43 (+0.01%) 0.178 (−83%) 0.980 (−81%)

With both HP and DynHP is possible to prune up to 88% of parameters with negligible

performance degradation. On Fashion-MNIST, the results are in line with the previous ones.

Table 4: Performance on Fashion-MNIST

Method 𝜶𝒃𝒔 Misclassification Error Model Size Tot. Memory Usage

(%) (%) (GBytes)

SP (𝑏𝑠 = 128) – 9.96 (–) 1.041 (–) 2.866 (–)

HP (𝑏𝑠 = 128) – 10.20 (+0.24%) 0.236 (−77%) 1.377 (−52%)

DynHP 0.979 9.97 (+0.01%) 0.430 (−59%) 2.874 (0%)

DynHP 0.980 9.64 (−0.32%) 0.415 (−60%) 2.874 (0%)

DynHP 0.981 9.96 (−0.00%) 0.418 (−60%) 2.874 (0%)

DynHP 0.982 9.77 (−0.19%) 0.399 (−62%) 2.874 (0%)

DynHP 0.983 10.21 (+0.25%) 0.407 (−61%) 2.872 (0%)

DynHP 0.984 10.12 (+0,16%) 0.405 (−61%) 2.872 (0%)

DynHP 0.985 10.06 (+0.10%) 0.410 (−61%) 2.872 (0%)

DynHP 0.986 9.93 (−0.03%) 0.386 (−63%) 2.858 (0%)

DynHP 0.987 10.08 (+0.12%) 0.252 (−76%) 2.573 (−10%)

DynHP 0.988 10.23 (+0.27%) 0.135 (−87%) 0.829 (−71%)

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 72 - June 30, 2022

DynHP 0.989 10.50 (+0.54%) 0.124 (−88%) 0.611 (−79%)

Finally, using ResNet-28-1on CIFAR-10 the results are as follows:

Table 5: Performance on CIFAR-10

Method 𝜶𝒃𝒔 Misclassification Error Model Size Tot. Memory Usage

(%) (%) (MBytes)

SP (𝑏𝑠 = 256) – 7.84 (–) 1.41 (–) 882.00 (–)

HP (𝑏𝑠 = 256) – 11.12 (+3.58%) 1.28 (−9%) 856.70 (−3%)

DynHP 0.71 15.46 (+7.62%) 1.02 (−28%) 756.53 (−14%)

DynHP 0.73 14.36 (+6.52%) 1.00 (−29%) 780.16 (−12%)

DynHP 0.75 11.21 (+3.37%) 1.01 (−28%) 799.75 (−9%)

DynHP 0.77 13.20 (+5.35%) 0.99 (−30%) 763.14 (−13%)

DynHP 0.79 11.13 (+3.29%) 0.98 (−30%) 726.93 (−18%)

DynHP 0.81 12.02 (+4.18%) 0.99 (−30%) 749.39 (−15%)

DynHP 0.83 11.42 (+3.58%) 0.97 (−31%) 693.06 (−21%)

DynHP 0.85 12.36 (+4.52%) 0.97 (−31%) 637.03 (−28%)

DynHP 0.87 12.16 (+4.32%) 0.95 (−33%) 544.30 (−38%)

DynHP 0.89 11.48 (+3.64%) 0.94 (−33%) 522.12 (−41%)

4.1.2 AVCC Compression through DynHP

In this section, we report the integration activity performed to apply DynHP compression to the

AVCC model provided by AU.

First, the AVCC model was initially developed under the Tensorflow Framework. This required

an initial porting effort to implement the AVCC model and training procedure using the Pytorch

framework.

Specifically, the AVCC version considered here is the one that outputs a heatmap. We focused

on this version because it represents the backbone for the one that outputs the actual crowd-

counting (the number of heads in the input frame). From now on we will refer to the original

uncompressed outputs a heatmap as AVCC while we will refer to the one defined using the

DynHP primitives as L0AVCC.

We recall that AVCC backbone is composed of three blocks: the audio-block, the video-block,

and the fusion-block.

• In the video-block, the video frames are processed by the first 13 layers of a VGG16

network.

• In the audio-block, the audio frames are processed by the VGGish network without the

final classifier.

• The fusion-block processes at the same time the outputs of the audio-block and video-

block and outputs a heatmap.

For the definition of the equivalent L0AVCC topology, we adopted the following procedure.

• We redefined the video-block where the VGG16 model has been substituted by the

equivalent L0VGG16. As in the original version, we keep only the first 13 layers.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 73 - June 30, 2022

• We redefined the audio-block where the VGGish model has been substituted by the

equivalent L0VGGish. As in the original version, we keep only feature extraction

backbone.

• The fusion block is left untouched.

This represents a first attempt but several strategies can be adopted. The reason for leaving the

fusion block as in the original AVCC is because it contains BatchNormalization layers. Since

it is still unclear how to compress layers just before batch normalisation without affecting the

overall structure and performance, this investigation is left for future work.

The training and compression approach remains unchanged with respect to the original DynHP

methodology.

4.2 Efficient federated methods

4.2.1 Federated Compression

In this section, we report the initial activity performed to extend the DynHP methodology

beyond the centralised settings. Precisely, the original DynHP approach is designed to work

under the assumption that the dataset used for training and compressing the model is fully

available. In this activity, we wanted to take a step further, releasing such an assumption and

considering that the data needed for training the algorithm is available at different physical

locations. Moreover, such data for privacy/ownership constraints cannot be moved from the

location where it has been generated or collected in the first place. Such a scenario falls in the

category of Federated Learning, where several devices (from now on called clients) collaborate

with each other by means of a central and coordinating entity (from now on called parameter

server) to train a globally shared AI model.

Considering these assumptions, we started investigating if it was possible executing the DynHP

methodology within the Federated Learning settings. Specifically, the goal of this initial activity

is to come up with a compressed model trained in federated settings.

As in the typical federated settings we have two entities: (i) the client that trains the model on

the local dataset and (ii) the server that collects and aggregates the information shared by the

clients at each communication round.

Client side

The client executes the DynHP procedure. With respect to the centralised settings, this phase

has no differences. A model is trained and compressed on the local dataset for a certain number

of epochs. At the end of the local training, the clients obtain: (i) an updated version of the model

weights () and an updated version of the 𝛟 parameters that control the activation probability

of the gates used to prune the model. After the completion of the local training, each client

sends both the model weights and the 𝛟 to the Parameter Server for the aggregation step.

Server Side

The Parameter server collects, at each communication round, the information sent by the clients.

Formally each client 𝑘 sends the following sets of parameters: ω𝑘 , ϕ𝑘. The aggregation

algorithm adopted in this preliminary activity is FedAvg, i.e., the parameter server computes

the weighted average of the parameters to update the global model. Therefore, denoting the

global model 𝜔𝐺 and the global pruning parameters ϕ𝐺 , they are computed as follows:

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 74 - June 30, 2022

𝜔𝐺 =
1

𝐾
∑ 𝜔𝑘

𝐾

𝑖=1

ϕ𝐺 =
1

𝐾
∑ ϕ𝑘

𝐾

𝑖=1

Once the aggregation is completed, the updated set of parameters is sent to the clients for a new

round of local training and compression.

Since this is a preliminary activity, we considered a very simple scenario: 2 clients with each

one holding half of the MNIST dataset. Local datasets are id between each other. The federated

learning process is synchronous, i.e., at each communication round, all the clients communicate

their updates to the parameter server.

The local model is a L0MLP with the following topology 768-300-100-10. The loss function is

CrossEntropy.

In the following, we show the trend over the epochs for the two clients: the training error, the

Validation error, and the Test error. As we can see, even in presence of a pruning process that

shuts down the neurons, both clients are able to learn during the epochs and reach state-of-the-

art performance for this kind of model. Interestingly, we see the effect of the pruning process

in the validation error, i.e., the temporary accuracy degradation is because the pruning process

on the two clients was not yet in sync.

Figure 15: Training error over communication rounds

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 75 - June 30, 2022

Figure 16: Validation Error over Comm. rounds

Figure 17: Test Error for clients 1 and 2 over comm. rounds

This aspect becomes evident looking at the evolution of the size of the network during the

federated training process. In fact, for the first communication rounds the pruning process stales

until it starts converging at both clients, as shown in Figure 18. The final model is 60% smaller

than the initial one. These results are quite promising and make this kind of approach worth

being investigated.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 76 - June 30, 2022

Figure 18: Model size during training and compression

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 77 - June 30, 2022

5 KPIs

The section describes the relation of the main MARVEL components, associated with tasks

T3.4 and T3.5, to the project KPIs and the corresponding component-related KPIs.

5.1 Project-related KPIs

• KPI-O3-E2-1 CNR (Model compression algorithms to achieve 70% compression rates,

without a noticeable degradation of accuracy): The experiments reported in Section 4.1

using benchmark datasets, show that the target compression rate has been partially

achieved for some of the topologies considered. Results report up 88% of compression

for MLP and up to 30% for ResNET-28-1. An equivalent result is obtained also for

VGG. It is worth noting that the compression is strongly dependent on the complexity

of the learning task at hand. In the next months, the activity will focus on the

improvement of the trade-off between compression and accuracy.

• KPI-O3-E2-2 (Optimise performance (prediction accuracy, time-to-decision) of DL

deployment by 20%): This KPI is linked with the distributed execution of DL tasks.

Towards that end, the implemented E2F2C framework (Kubernetes cluster among with

MARVdash dashboard on top of it) enables DL task distributed execution, taking into

consideration the efficient use of execution resources. MARVdash contributes to the

ability to match the task resource requirements to the various execution sites available

in the MARVEL distributed environment. Consequently, it is possible to enable

improvements both in performance, particularly time-to-decision, as well as in the

sophistication of the DL models being deployed, thus enhancing prediction accuracy.

The optimisation goal of this KPI will be achieved with the future functionality of

MARVdash, planned to be implemented in the second half of the project lifetime.

• KPI-O3-E2-3 (Increase accuracy levels of real-time observations at the edge devices

by 20%): This task is related to the deployment of the compressed models on edge

devices, where the real-time requirements can be satisfied. Indirectly, it is possible to

evaluate the FLOPs required to execute the model after compression and compare it

with the FLOPs required by the original uncompressed model, by considering the

compression of the model, as reported in KPI-O3-E2-1. Precisely, in the considered

benchmarks, the FLOPs saved through compression is up to 36%.

• iKPI-1.1 (At least three (3) tools for complex/federated/distributed systems handling

extremely large volumes and streams of data): MARVdash contributes to this KPI

indirectly, by enabling the instantiation of the first version of FedL component. FedL is

scalable to a large number of FL clients and capable of handling data from multiple sites

arriving in a streaming fashion. Newer version of FedL component may raise new

requirements for MARVdash. The deployment of additional stream handling tools is

planned for the next months.

• iKPI-12.2 (Increased performance in terms of response time, throughput, and reliability

compared to a standard approach): Experiments with the FedL component, deployed

through MARVdash show the potential improvements regarding the aforementioned

metrics.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 78 - June 30, 2022

5.2 Component-related KPIs

• MARVdash: The component-related KPI for MARVdash focuses on usability. By that,

we refer to the reduced effort to specify and automate component/service deployments.

Another aspect of usability is user satisfaction when interacting with the MARVdash

user interface. The baseline for this KPI is service deployment in a Kubernetes cluster

without the functionality offered by the user-facing front end of MARVdash. A

benchmarking process was followed and reported in D5.215 for the initial MARVdash

assessment. According to the results of this process, participants rated MARVdash main

functionalities with averages in the range of 4.75 (lowest) to 6.22 (highest). These values

belong to the “Very good” category (one of them belongs to the “Excellent”) of the

corresponding qualitative assessment. Moreover, the user experience part of the

assessment showed that MARVdash’s means are above average compared with a large

number of other products. Based on that result, MARVdash could be successful in the

market.

• DynHP: The component-related KPI focuses on providing an interactive training. Since

DynHP is a training methodology, it cannot be configured as a standalone service. The

interaction with the user is required in order to configure the DNN training process, i.e.,

hyperparameter tuning, number of training epochs, etc. The DynHP component offers

a Jupyter-lab environment through which it is possible to run and monitor the

compression and training of a model on a specific dataset.

15 "D5.2: Technical evaluation and progress against benchmarks – initial version," Project MARVEL, 2020.

https://doi.org/10.5281/zenodo.6322699

https://doi.org/10.5281/zenodo.6322699

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 79 - June 30, 2022

6 Conclusion

In this document, we presented the process of creating the MARVEL E2F2C execution

environment along with a dedicated dashboard (MARVdash) for implementing the interaction

with the underlying environment, coordinating the execution of the data management platforms

and other software components, and mediating external accesses to any service that needs to be

exposed outside the MARVEL infrastructure. Moreover, a methodology for the compression

of DNN model at training time, along with the actual application of this methodology to the

AVCC model provided by AU was presented. This is the initial version of the document, while

the final version of the benchmarking document will be prepared by the end of the project

(M30), and it will contain functionalities that will be developed through the second half of the

project’s lifetime. Finally, the contribution to the MARVEL project and component-related

KPIs was described.

MARVEL D3.2 H2020-ICT-2018-20/№ 957337

MARVEL - 80 - June 30, 2022

7 References

[1] Kubernetes documentation <https://kubernetes.io/docs/concepts/overview/what-is-

kubernetes/>, accessed 5 June 2022.

[2] Open Container Initiative. Why are all these companies coming together?

<https://www.opencontainers.org/faq#n7>, accessed 5 June 2022.

[3] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, Testing Idempotence for

Infrastructure as Code. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 368–388.

[4] Y. Jiang and B. Adams, “Co-evolution of infrastructure and source code: An empirical

study,” in Proceedings of the 12th Working Conference on Mining Software Repositories,

ser. MSR’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 45–55.

[5] Cito, J., Schermann, G., Wittern, J. E., Leitner, P., Zumberi, S., & Gall, H. C. (2017, May).

An empirical analysis of the docker container ecosystem on github. In 2017 IEEE/ACM

14th International Conference on Mining Software Repositories (MSR) (pp. 323-333).

IEEE.

[6] Louizos, Welling, and Kingma, ‘Learning Sparse Neural Networks through L_0

Regularization’. arXiv preprint arXiv:1712.01312.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

	List of Tables
	List of Listings
	List of Figures
	List of Abbreviations
	Executive Summary
	1 Introduction
	1.1 Purpose and scope
	1.2 Relation to other work packages, deliverables, and activities
	1.3 Structure of the report

	2 Available container images of MARVEL components
	2.
	2.1 AI subsystem
	2.1.1 Visual Anomaly Detection – ViAD
	2.1.2 Audio-Visual Anomaly Detection – AVAD
	2.1.3 Visual Crowd Counting – VCC
	2.1.4 Audio-Visual Crowd Counting AVCC
	2.1.5 Sound Event Detection – SED
	2.1.6 Audio Tagging - AT
	2.1.7 CATFlow
	2.1.8 Text Anomaly Detection - TAD

	2.2 Security, privacy and data protection subsystem
	2.2.1 EdgeSec Virtual Private Network (VPN)
	2.2.2 EdgeSec Trusted Execution Environment (TEE)
	2.2.3 VideoAnony
	2.2.4 AudioAnony
	2.2.5 VAD (devAIce)

	2.3 Data management and distribution subsystem
	2.3
	2.3.1 StreamHandler
	2.3.2 Data Fusion Bus - DFB
	2.3.3 DatAna
	2.3.4 Hierarchical Data Distribution - HDD

	2.4 E2F2C subsystem
	2.4
	2.4.1 GPURegex
	2.4.2 DynHP
	2.4.3 FedL

	2.5 System outputs subsystem
	2.5
	2.5.1 SmartViz
	2.5.2 MARVEL Data Corpus-as-a-Service

	3 E2F2C deployment approach
	3.
	3.1 Architecture of the MARVEL E2F2C framework
	3.1.1 Kubernetes
	3.1.1.1 Cluster Architecture
	3.1.1.2 Containers
	3.1.1.3 Load balancing and networking
	3.1.2 Virtual Private Network – VPN
	3.1.2.1 VPN architecture
	3.1.2.2 Necessity of VPN
	3.1.2.3 Implementation

	3.2 Deployment method
	3.1.3 Taints/Tolerations
	3.1.3.1 Concepts
	3.1.3.2 Concept usage
	3.1.3.3 MARVEL examples
	3.1.4 Affinity
	3.1.4.1 Concept
	3.1.4.2 Concept usage
	3.1.4.3 MARVEL examples

	3.3 Future plans – Deployment optimisation

	4 Model optimisation for efficient inference
	4.
	4.1 Centralised compression methods
	4.1.1 DynHP
	4.1.1.1 Background on Soft pruning
	4.1.1.2 Incremental Hard Pruning
	4.1.1.3 Dynamic Batch Sizing
	4.1.1.4 Model definition and available models
	4.1.1.5 Performance evaluation
	4.1.2 AVCC Compression through DynHP

	4.2 Efficient federated methods
	4.2
	4.2.1 Federated Compression
	Client side
	Server Side

	5 KPIs
	5.
	5.1 Project-related KPIs
	5.2 Component-related KPIs

	6 Conclusion
	7 References

