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Abstract— Owing to the restrictions of live experimentation,
musculoskeletal simulation models play a key role in biological
motor control studies and investigations. Successful results of
which are then tried on live subjects to develop treatments as
well as robot aided rehabilitation procedures for addressing
neuromusculoskeletal anomalies ranging from limb loss, to
tendinitis, from sarcopenia to brain and spinal injuries. Despite
its significance, current musculoskeletal models are computa-
tionally expensive, and provide limited support for contact-rich
interactions which are essential for studying motor behaviors in
activities of daily living, during rehabilitation treatments, or in
assistive robotic devices. To bridge this gap, this work proposes
an automatic pipeline to generate physiologically accurate
musculoskeletal, as well as hybrid musculoskeletal-exoskeletal
models. Leveraging this pipeline we present MyoSim – a set
of computationally efficient (over 2 orders of magnitude faster
than state of the art) musculoskeletal models that support fully
interactive contact rich simulation. We further extend MyoSim
to support additional features that help simulate various real-
life changes/diseases, such as muscle fatigue, and sarcope-
nia. To demonstrate the potential applications, several use
cases, including interactive rehabilitation movements, tendon-
reaffirmation, and the co-simulation with an exoskeleton, were
developed and investigated for physiological correctness. Web-
page: https://sites.google.com/view/myosuite

I. INTRODUCTION

The agility and adaptability of the human musculoskeletal
system and its underlying neural control have long inspired
research in understanding biological motor control [1]. This
research is important to identify both the neural mechanism
implemented by the central nervous system and how the
actuation of movements is implemented in the musculoskeletal
system. Indeed, injuries, diseases and aging can cause
changes both in the central control and in the peripheral
musculoskeletal, which affect the capacity to support body
weight, maintain posture, move, and manipulate objects [2].
All of those have far reaching consequences in maintaining
human health.

The study of the musculoskeletal actuation is also critical to
develop robotic rehabilitation strategies via wearable assistive
devices [3] as well to enable equivalent capabilities in robotics
system such as cobot [4] or bioinspired controllers for legged
robots [5]. Progress in these areas is often constrained by
the scarcity of detailed human-robot experiments which
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Fig. 1: Neuromusculoskeletal model generated using the
conversion tool presented in Section II-A. A) a two degrees
of freedom (DOF) elbow model with 6 muscle-tendon units,
B) previous elbow model with an one DOF exoskeleton, and
C) Hand model with 23 Dofs and 38 muscle-tendon units..

limits our understanding of how different robotic design
and control strategies lead to a diverse repertoire of human-
robot motor skills. Accurate and computationally efficient
computer simulations of human-robot interaction can enable
devising optimal robotic technologies completely in silico,
thereby speeding up the process of translating already-tested
technologies to in vivo real-world situations. This can be
especially impactful in the neuromuscular conditions (e.g.
fatigue, sacopenia, spinal cord injury, etc), where human-
robot interaction studies are quite limited.

Human musculoskeletal system investigations have been
limited by the invasiveness of the available techniques and
by the restricted manipulations possible [6]. Computational
methods have been used to fill the gap to simulate how muscle,
bone, and joints interact for the generation of movements.
This has allowed a more detailed understanding of the neural
mechanisms to generate movements commands [7], [8] and
how disease [9], traumas [10] and perturbations affect move-
ment control [11]. Physics-based musculoskeletal simulation
engines such as OpenSim [12], AnyBody [13] and SIMM [14]
have focused on making detailed and physiologically accurate
models of the musculoskeletal system. They are widely used
in human neural-mechanical control, human robot interaction,
and rehabilitation, among others fields. However such engines
are computationally expensive and provide limited support
for contact rich interactions. Alternatively, physics engines
such as PyBullet [15], MuJoCo [16] and Dart [17] are
relatively more efficient and support contact interactions but
lack adequate support for muscle modeling (PyBullet and
Dart) or lack functionally validated musculoskeletal models.
Even though attempts have been made in adding physiological
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models in MuJoCo [18]–[20], they were limited in their
validation.

Numerical simulations can be leveraged to investigate,
understand, and modulate physical interactions between the
neuromusculoskeletal system and wearable robotic devices
(e.g. exoskeletons): they enable predictions on how the human
motor system reacts to robot assistance. This step is crucial
for the development of technologies that could effectively
enhance or restore movement capacity [21]. In contrast,
current robotic exoskeletons are currently built and tested with
limited knowledge on how the human body would respond
and adapt over time during motor interaction tasks. This is one
of the major reasons why despite progress in mechatronics
and materials, current robotic solutions have shown only
modest results and have limited clinical impact [22], [23].

Most exoskeleton/human controllers are based on biome-
chanical principles [24] or are optimized using human in the
optimization loop [25], which require first the creation of the
exoskeleton followed by user studies, leading to long iteration
times. Additionally we have a minimal understating of the
composite human-exoskeleton system properties because only
limited experimental data are available [26]. Alternatively,
simulation of neuromusculoskeletal and robotic systems can
be combined with behavior synthesis frameworks [27]–[30]
to drastically reduce the design iteration cycles. However,
these frameworks need realistic and computationally efficient
musculoskeletal models capable of simulating detailed contact
rich musculoskeletal-exoskeletal-environment interactions to
learn effective and physiologically accurate behaviors.

Here, we propose physiologically accurate (with respect
to current state of the art, e.g. OpenSim [12]) neuromus-
culoskeletal models in a novel framework - MyoSim (A
suite for musculoskeletal motor control simulation) - based
on an efficient physic engine (MuJoCo [16]) suitable to
exploit data driven Reinforcement Learning (RL) based neural
command computation to study human machine interactions.
Specifically, our contributions are:

• A fully automated model-agnostic pipeline which reduce
the tedious manual effort often required in creating new
models by optimizing existing and validated (OpenSim)
musculoskeletal models. The resulting models are nu-
merically equivalent to the original and can be simulated
two orders of magnitude faster than the original models.

• A set of computationally efficient and physiologically
accurate musculoskeletal MyoSim models generated
(Figure 1A) and rigorously validated against the state
of the art, e.g., OpenSim models.

• Embedding the MyoSim models in a framework that
supports full rigid body physics and enables contact
rich interaction with passive objects (such as household
objects, tools, etc) as well as actuated devices (such as
exoskeletons, automated doors, etc).

• Human-Robot simulations were generated as a use-
case to study musculoskeletal responses to exoskeletal
assistance. Support for biological phenomenons such
as muscle-fatigue, sarcopenia, etc were also developed
to study their effects on the overall musculoskeletal-

Fig. 2: Three-steps conversion pipeline

exoskeletal system. The resulting system is demonstrated
to show physiological correctness.

II. METHODS

In this section, the musculoskeletal model conversion tool
is explained in detail first. Then the converted MyoSim models
are outlined. Lastly, additional biological features supported
in MyoSim , such as muscle fatigue and sarcopenia, are
presented.

A. Musculoskeletal model conversion tool

We used physiologically validated and widely adopted
OpenSim musculoskeletal models as reference. Then, a layer-
by-layer automatic conversion pipeline was developed to
convert those OpenSim models into MuJoCo. The pipeline
consisted of three major conversion (Cvt) steps, as shown in
Figure 2. A validation (Vlt) module followed each conversion
step to match the converted MuJoCo model and the reference
OpenSim model. A short description of them is listed below,
followed by the detail explanations in the subsections.

1) Cvt1: geometry conversion. Parse kinematics details
(body segment lengths, joints, muscles-tendon pathways,
etc)[19] and reflective markers from OpenSim model
into MuJoCo model.
Vlt1: forward kinematics. Check that the end point
positions along the kinematic chain are matched be-
tween the two models at different joint configurations.

2) Cvt2: wrapping optimization. Optimize wrapping
constraints to guarantee that the muscle pathways are
physiologically reasonable.
Vlt2: moment arm maps. Check that moment arms of
each muscle at each joint angle are matched between
models.

3) Cvt3: force property optimization. Optimize muscle
force parameters in MuJoCo to approximate OpenSim
model’s force curves.
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Vlt3: muscle force curves. Check force-length-
activation differences between the two models.

Geometry Conversion:
OpenSim and MuJoCo geometry structures are simply defined
based on their relative position in a similar hierarchical (XML)
format. An open-access conversion code was created by Ikkala
et al [19] that parsed the bodies, joints, and muscles into the
MuJoCo modelling format. We extended their code by adding
in the conversion 1) markers and 2) wrapping surfaces for
muscles to avoid collisions with bones during movements. The
forward kinematics module (Vlt1) checks the differences of
the selected marker locations at different joint configurations
(see the Results section III-A).

Wrapping Optimization:
OpenSim and MuJoCo have different ways of defining how
muscles wrap over wrapping surfaces. In OpenSim, three
wrapping methods were defined: MidPoint, Axial, Hybrid
[31], [32]. Nevertheless, in MuJoCo, muscles can wrap over
or can be forced to pass through a surface. In order to
guarantee similar forces produced by a muscle at each joint,
an optimization was developed. We adapted both the location
where a muscle wraps on the surface in MuJoCo i.e. ‘side
site’ and the dimensions of the wrapping objects (surfaces
such as ellipsoids and torus, which are missing in MuJoCo,
were approximated with other surfaces).

The following optimization was developed:

Find: wrapping sides & wrapping object sizes:
X = {[L1, ..., Ln], [S1, ..., Sp]}

To minimize: objective function:

F =

M,J∑
m=1,j=1

(dosimm,j (Q)− dmjc
m,j (Q,X))2

When: iterate all joint angle meshes
Subject to: model kinematics; parameter bounds

(1)

where, L = (x, y, z) represents the location of side site; S =
(r, l) represents the size of wrapping e.g. cylinder dimensions;
d represents the moment arms; Q = [q1, ...qJ ] represents
joint angles; M represents the total number of muscles; J
represents the total number of joints

Particle swarm optimization (PSO) [33] was used as the
optimization method to minimize the differences of moment
arms i.e. errors, between the converted MuJoCo model and
the referencing OpenSim model for all muscles at all joints
angles. Details of this can be found in the Results section
III-A.

Force Property Optimization:
The OpenSim and the MuJoCo platforms also use different
methods for modelling muscle force properties. MuJoCo does
not consider elastic tendons, fiber pennation angles, while
OpenSim has both of them. OpenSim uses physical lengths
for the definition of optimal fiber and tendon slack lengths,
whereas, MuJoCo uses normalized value [34]. Even though
the MuJoCo muscle model is a simplified version of the Open-

Sim muscle model, it is still possible to generate similar force-
length-velocity relationships. However, the muscle property
parameters needs to be optimized, instead of directly mapping
from the OpenSim model. The following optimization was
developed to match the muscle force properties:

Find: muscle force parameters:
X = {lmin, lmax, fpmax, fmax}

To minimize: objective function:

F =

M∑
m=1

(fosim
m (lm, a)− fmjc

m (lm, a,X))2

When: iterate all muscle length lm and activation a

Subject to: muscle dynamic; parameter bounds

(2)

where, lmin is the minimal normalized muscle length when
active fiber force reaches zero; lmax is the maximum
normalized muscle length when active fiber force reaches zero;
fpmax is the normalized passive fiber force when muscle
length equal to lmax; fmax is the absolute value of maximum
muscle force; f(lm, a) represents the muscle forces when the
muscle has an activation of a and at the length of lm.

Differential evolution (DE) [35] was used as optimization
method. Muscle activation dynamics and the force-velocity
relationship are identical between the OpenSim and MuJoCo
models, as a result, they do not need to be optimized, but can
be directly transferred. Validation of this step is the errors
of force-length-activation maps between the OpenSim and
MuJoCo models. More details of it can be found in the
Results section III-A.

B. Neuromusculoskeletal systems in MyoSim

1) Elbow model: This model is based on the arm26
OpenSim model and has two degrees of freedom (shoulder
rotation and elbow flexion-extension) and 6 muscles-tendon
units (3 flexors and 3 extensors) (Fig. 1-A).

2) Exo-skeletal model: Human-Machine interaction sim-
ulations were generated as a use-case to illustrate how
musculoskeletal model response to the exoskeleton assistance
can be studied. An elbow soft exoskeleton (Cable driven
for example) was modeled as an ideal torque actuator
perfectly aligned with the elbow joint with a weight of
0.101 Kg for the upper arm and 0.111 Kg on the forearm
(Fig. 1-B). The control of the actuator was done using a
neuromusculoskeletal based controller, which represents a
ideal version of the controller presented in [36], [37]. In this
controller, a percentage of the joint torque is given back as
assistance.

3) Full hand model: This model (Fig. 1-C) is comprised
of 29 bones, with 23 Dofs, and 38 muscle-tendon units and
captures the full complexity of an adult human hand.

C. Biological phenomena supported in MyoSim

To challenge our models and to validate the results
two realistic conditions were simulated, muscle fatigue and
Sarcopenia.



1) Muscle Fatigue: Fatigue is a muscle condition that
is inherent to physical activity. Reduction of fatigue in
factory worker could decrease work related musculoskeletal
injuries as it is a contributing factor to Cumulative trauma
disorder [38]. Nevertheless, experimental tests on the effect
that exoskeletons can have in reduction of muscle fatigue
have rarely been done [39]. This is due to the difficulty of
experimentally recording the effect of fatigue at the muscle
level. Offering the possibility to test the effect of robotics
design and controller on muscle fatigue reduction would be
a game changer for the development of cobot or exoskeleton
in industrial setting.

A model of Dynamic muscle fatigue based on a dynamic
muscle fatigue model [40] was implemented in the MyoSim
. The following equation was implemented in the muscle
model:

FMax
upd (t) = FMax exp

(
kfatigue ∗

∫ t

0

−FAct
m (u)

FMax
du

)
(3)

With FMax
upd (t) the current updated maximal muscle force,

FMax the maximal force without fatigue, FAct
m the active

part of the muscle force and kfatigue a fatigue coefficient
with a value of 1.

2) Sarcopenia: As we age, muscle mass reduces, which
create a reduction of maximal force that muscles can produce.
This condition is commonly referred as Sarcopenia [41].
Between the age of 20-40 to older people a reduction of
up to 50% of grip force can be observed [42].

In the presented simulation tool, advanced sarcopenia was
modelled as a global reduction of 50% of the maximal muscle
force.

III. EXPERIMENTS AND RESULTS

A. Validation of Conversion Pipeline

A 2 joints 6 muscles (TRILong - Triceps Long, TRILat -
Triceps Lateral, TRImed - TricepsMedial, BIClong - Biceps
Long, BICshort - Biceps Short , BRA - Brachialis) OpenSim
elbow model [43] is used to validate the conversion pipeline.
The three steps validation is shown in Figure 3. The first
column shows the model appearances in OpenSim (top) and
in MuJoCo (bottom). Second column indicates the matches
of markers in forward kinematics checks. As shown in
the plot, two selected markers have identical locations in
both models, which means the match of geometry and
joint definitions. The third column shows the results of
moment arm validation. Compared to the OpenSim model,
the converted MuJoCo model after Cvt1 (Mjc_Cvt1) has
large differences (the orange dash line with triangle markers),
however after the second conversion step Cvt2, the moment
arm differences between the OpenSim model and the MuJoCo
model (Mjc_Cvt2) is greately reduced (the green dashed
lines are overlapping on the blue lines). The fourth column
shows the validation of muscle forces. A large reduction of
differences of muscle force was achieved also by applying the
third step of the pipeline. Results of this last step are indicated
by the matches between the blue solid line (OpenSim model),

and the green dash line (converted MuJoCo model after
the third step Mjc_Cvt3). The yellow dash line (converted
MuJoCo model shows the intermediate step Mjc_Cvt2).
Similar validation metrics and trends were observed in the
full hand model (Fig. 1-C) as well, results of this model are
not shown in this manuscript because of space constraints.
Please visit https://sites.google.com/view/myosuite for full
details.

B. Speed Comparison

Simulation speeds between the converted MuJoCo and
referencing OpenSim models were tested also. All models
were initialized from the neutral posture (all joint angles
equal to 0). Muscle activation were set as the square waves
switching between 0 and 1, with the duration width of 1
second. For the elbow models, ten repetitions of 5000 seconds
simulations were conducted and execution time were averaged.
Long forward simulations showed that MuJoCo elbow model
is around 170 times more efficient than the OpenSim model.
Adding more complex models with more muscles execution
times and gap increases. For example, for a full arm model
with 50 muscles, MuJoCo performs on average 900 times
faster than OpenSim (similar results were reported already
by Ikkala et al [19] who showed 600 times increase in speed
using MuJoCo as apposed to OpenSim).

C. Human Robot interaction

In the previous validated elbow model, we locked shoulder
movements and we added an exoskeleton (see II-B.2).
Simulation of human robot interaction were realized for two
experiments: I) flexion extension (between 0 - 30, 0 - 60 and
0 - 80 degrees with 2 sec hold time) with an healthy model
with different weights on the hand (task inspired by [44])
and II) static with the elbow at 90 degrees with an healthy,
Sarcopenia (see section II-C.2) and fatigue (see section II-
C.1) conditions. The trials were repeated for the standard arm
model with and without the exoskeleton support presented in
II-B.2.

We trained a joint policy of exo and muscles by means
of a Natural Policy Gradient (NPG) [45] algorithm in the
natural (healthy) condition without any weight on the hand to
reach random targets in the range of elbow flexions between
0 and 130 degrees of the elbow.

Figure 4 shows the effects of the reaching task (Experiment
I) without and with exoskeleton assistance when a load is
applied on the hand. As expected the reaching is minimally
impacted when the exoskeleton is not functional but there
is no additional perturbation. When a weight is applied the
exoskeleton is able to recover the original position with about
5 degrees error (distance of joint angles, mean ± std, 0 Kg:
4.95 ± 3.42, 1 Kg: 4.54 ± 3.12, 2 Kg: 4.34 ± 3.43). This
is obtained both with a 60% reduction of both the muscle
activation (Figure 4A, BIClong 60%, BICshort 54%, BRA
66%) and forces (Figure 4B, BIClong 60%, BICshort 58%,
BRA 67%) at the weigth of 2 Kg.

Figure 5 and Figure 6 show the effects of holding a static
position without and with exoskeleton in the presence of
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Fig. 3: Validation between the converted MuJoCo and reference OpenSim models. a). The two models, top: OpenSim; bottom:
MuJoCo. b). The forward kinematics validation. c). The moment arm validation. d). The muscle force validation. Muscle
acronyms TRIlong - Triceps Long, TRIlat - Triceps Lateral, TRImed - TricepsMedial, BIClong - Biceps Long, BICshort -
Biceps Short , BRA - Brachialis
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Fig. 4: Effects of loads on Exoskeleton assisted reaching. A policy was trained in a reaching task of exoskeleton assisted
elbow flexion to reach targets at 0 deg, 30 deg, 60 deg, 80 deg and hold the position for 2 seconds. A - Flexor muscles
activations without (blue) and with (green) exoskeleton assistance at different target positions. With exoskeleton assistance
the muscle activation required to reach the target angles was less. B - Same analysis as for A but on forces.

intrinsic perturbation to the muscle models in the form of
sarcopenia (muscle weakness) and fatigue. As expected the
holding is minimally impacted when the exoskeleton is not
functional (distance of joint angles, mean ± std: 4.12 ±
2.97) but there is no additional intrinsic perturbation (first
row of Figure 5). When intrinsic perturbation are present, the
use of the exoskeleton is able to partially recover for those
conditions (mean ± std, Sarcopenia 6.03 ± 2.97, Fatigue
11.89 ± 4.03). This is obtained both with a reduction of
the muscle activation (Figure 6A, reduction without vs with
exoskeleton of Normal, Sarcopenia and Fatigue for BIClong:
40%, 52%, 61%, BICshort: 30%, 44%, 56%; BRA: 41%,
54%, 62%) and forces (Figure 6B, reduction without vs with
exoskeleton of Normal, Sarcopenia and Fatigue for BIClong:
41%, 55%, 98%; BICshort 34%, 50%, 98%, BRA: 43%, 56%,
88%).

IV. DISCUSSION AND CONCLUSIONS

We presented and tested a new pipeline for the generation of
fast and physiologically accurate muscoloskeletal models and
simulations of human machine interface. Our results showed
that the proposed pipeline allows to generate accurate models
i.e. close to the current golden standard (i.e. Opensim), while
are over 2 order of magnitude faster. We also demonstrated the
possibility of using Reinforcement Learning to estimate neural
command to solve tasks with sophisticated musculoskeletal-
robotic models. This was possible thanks to the efficiency of
MyoSim achieved via the MuJoCo simulation engine.

The pipeline introduced in this paper extended Ikkala and
Hamalainen’s work [19] in which a conversion process of
anatomical information – geometry structures, joint defini-
tions, as well as muscle paths – from the OpenSim to the
MuJoCo format was presented. In addition, we developed
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drive the exoskeleton to a complete recovery of the function.

two new optimization steps to make sure that converted
musculoskeletal models have the closest moment arms and
muscle force properties to the reference OpenSim models.
Differences between models and formats are caused by the
different ways of determining the minimal wrapping paths
as well the muscle force-length curves. Without these two
additional steps, the converted MuJoCo models will diverge
from the physiologically accurate behaviour.

One of the most critical aspect of the proposed pipeline
was the matching of the moment arm and the force-length-
activation data from a reference OpenSim musculoskeletal
models. This step can be easily adapted to personalize the
model when subject specific data is available. However, the
required data include the explicit muscle moment arms, force-
length, force-velocity maps, which are difficult to obtain
from human subjects in vivo. Another popular personalizing
approach is based on functional tasks and joint torque fitting
that can be easily measured [46]. Whereas, this is out of the
scope of this paper, we would like to explore this direction
in the future studies.

In this manuscript, we showed examples of how by
controlling the simulated human musculoskeletal elbow-
exoskeleton we are able to produce realistic results. Namely,
the ideal exoskeleton was able to reduce the effect of
fatigue and sarcopenia in static trials. In dynamic trials, the
exoskeleton was able to reduce EMGs and muscle force
levels for different weight ranges. Still, the proposed models
of sarcopenia and fatigue are relatively simple models that do
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assisted holding. Same task and policy as for 5. A - Flexor
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assistance the muscle activation required to compensate for
the functional deficit is decreased. B - Same analysis as for
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not capture the complexity and variety of the physiological
systems e.g. differential effect of muscle size and composition.
Those models will need to be further extended to better reflect
real conditions. Their use in the context of this paper was to
show how realistic non-stationarities have an effect on the
control of the exoskeleton. Indeed, the trained policy was not
made adaptable to the new conditions (weight, sarcopenia and
fatigue), which provide further insights into how the control
might need to change also in presence of the exoskeleton to
adapt to those conditions. A validation of the control policy
against experimentally recorded EMGs will be needed.

Finally, real exoskeleton should be simulated and experi-
mental results of human-machine interaction should be used
to compare and validate the prediction of the simulation. This
is central to further develop tools to predict the effect of
robotics device on the human body or even on the central
nervous system.

Future steps of this work will involve the extension of
the MyoSim to include additional musculoskeletal models
for other body parts. Also, we will study complex motor
tasks that can be validated by experiments, with/without
machine interactions. Finally, we will explore new pipelines
for development of subject specific musculoskeletal models
based on in vivo measurements e.g. via MRI scans, ultrasound
imaging, EMG and motion recordings.
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