Published February 15, 2016 | Version 1.1.0
Dataset Open

TV Series - Networks of characters

  • 1. Université d'Avignon

Description

Description. This repository contains three sets of files related to the social networks of characters in the following episodes of 3 TV series:

  • Breaking Bad (BB): S01--S03;
  • Game of Thrones (GoT): S01--05;
  • House of Cards (HoC): S01--S02.

The three separate Graphml files (`.graphml` extension) contain the static, cumulative, conversational networks at the end of the set of episodes considered. Three images (`.jpg` extension) of the resulting static, cumulative, conversational networks at the end of the first two seasons are also provided.

The compressed archives (`.tgz` extension) provide snapshots of the conversational network of characters (Graphml format) in every scene. These files come in three flavors:

  1. Narrative smoothing based networks (denoted `ns`).
  2. Time-slice based networks, where all interactions are agglomerated every 10 scenes (denoted `'ts10`).
  3. Time-slice based networks, where all interactions are agglomerated every 40 scenes (denoted `ts40`).

The video files (`.mp4` extension) contain short animations of the dynamic networks of characters as they evolve over the whole set of episodes considered:

  • The nodes are represented by the names of the corresponding characters and the distance between two character names is inversely proportional to the weight of the corresponding edge: the closer they are at some point of the story, the more they interact then.
  • The size of each character name is proportional to the local strength of the corresponding character at the moment considered.
  • The color of each character name corresponds to his community at any moment.

Each snapshot in these animations is based on our narrative smoothing approach.

This dataset was used in the following articles:

  1. X. Bost, V. Labatut, S. Gueye, and G. Linarès, “Narrative smoothing: dynamic conversational network for the analysis of TV Series plots,” in 2nd International Workshop on Dynamics in Networks (DyNo/ASONAM), 2016, pp. 1111–1118. ⟨hal-01276708⟩ DOI: 10.1109/ASONAM.2016.7752379
  2. X. Bost, V. Labatut, S. Gueye, and G. Linarès, “Extraction de réseaux dynamiques conversationnels par lissage narratif,” in 7ème Conférence sur les modèles et lánalyse de réseaux : approches mathématiques et informatiques, 2016. ⟨hal-01385215
  3. X. Bost, V. Labatut, S. Gueye, and G. Linarès, “Extraction and analysis of dynamic conversational networks from TV series,” in Social Network Based Big Data Analysis and Applications, Springer, 2018, pp. 55–84. ⟨hal-01543938⟩ DOI: 10.1007/978-3-319-78196-9_3

Citation. If you use this dataset, please cite the article [1]


@InProceedings{Bost2016,
  author    = {Bost, Xavier and Labatut, Vincent and Gueye, Serigne and Linarès, Georges},
  title     = {Narrative smoothing: dynamic conversational network for the analysis of {TV} Series plots},
  booktitle = {2nd ASONAM International Workshop on Dynamics in Networks},
  year      = {2016},
  pages     = {1111-1118},
  address   = {San Francisco, US},
  publisher = {IEEE Publishing},
  doi       = {10.1109/ASONAM.2016.7752379},
}

Files

BB.jpg

Files (35.4 MB)

Name Size Download all
md5:13cbe55f8da7af38d16b587f4a46965f
1.3 MB Preview Download
md5:c162b9556abad5f80dd21e1e00e53281
1.1 MB Preview Download
md5:48f4d63b5df619b1ebf8222d666abc2e
36.5 kB Download
md5:23e379f15ab7c652d6fbd4506fb0bdb3
2.6 MB Download
md5:7e13bf46547782b58c9d4ca5fe689c92
178.3 kB Download
md5:3f700701896bd4dad16ab6b3ddeb02ad
264.7 kB Download
md5:055a6f3e85cf0cabd2a515f11d89715f
1.7 MB Preview Download
md5:15287d4086583141c247812a9aafba0a
3.1 MB Preview Download
md5:31633ee73a9e2774f95c99b35da9e2be
99.9 kB Download
md5:0eb77c39dbbc2a9f9560168abf37fe9d
11.6 MB Download
md5:e09dca1ece77acc405e106027b73d491
561.5 kB Download
md5:164e6cf6b5b9f7d403a9cf3af21cb546
1.1 MB Download
md5:a29e2d0912a0b2e6a4097db920d4a0a6
2.0 MB Preview Download
md5:685d402bc81adcd452641e5c998f3c53
2.2 MB Preview Download
md5:dd64359428201e3cb68b682d7b4ec5bf
60.7 kB Download
md5:30767bab43c2df05b7f793ab3c5d1e83
6.6 MB Download
md5:8219b7712318cc1bd160ab2cf9ee23e6
361.7 kB Download
md5:5bf1a78b56f492a6d1235a2a987e3dbc
538.9 kB Download

Additional details

Related works

Is documented by
Conference paper: 10.1109/ASONAM.2016.7752379 (DOI)
Journal article: 10.1007/978-3-319-78196-9_3 (DOI)
Obsoletes
Dataset: 10.6084/m9.figshare.2199646 (DOI)