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ABSTRACT

In this paper, we introduce an adaptive robotic manipulation framework to respond to the flexibil-
ity needs of common industrial tasks such as box-filling and item sorting. The proposed framework
consists of a vision module and a robot control module. The vision module is responsible for the
detection and tracking of the environment (e.g., box and the items), which is also capable of creating
an occupancy grid in real-time, to continuously update the robot trajectory planner with the occupied
portions of the detected box and their coordinates. The robot control module includes a trajectory
planner and a self-tuning Cartesian impedance controller, to implement an adaptive strategy for the
picking, placement, and sorting of the items in the box. The item-sorting strategy is based on our pre-
liminary observations on human motor behavior, implementing a trade-off between the task execution
accuracy and environmental perception uncertainty. The efficacy of the framework in performing a
flexible box-filling task using a robot, autonomously or in collaboration with a human, is evaluated
through several experiments.

1. Introduction
Recent collaborative robotic technologies have the po-

tential to add high levels of flexibility to the manufactur-
ing processes, due to their versatility and human-centric de-
sign [1]. They can not only contribute to the creation of
hybrid (human-plus-robot) and resource-efficient manufac-
turing solutions, but also can help reduce human physical
stress and automate repetitive and cognitively unexciting in-
dustrial tasks [2]. Despite this, cobots of today are mostly
exploited in structured manufacturing environments, where
a precise knowledge of the surroundings is required for their
operation. In such a way, the true potential of cobots cannot
be demonstrated, which is fast adaptation to the variabilities
arising from the environment and human co-workers.

Several research works have aimed to improve the ma-
nipulation flexibility of cobots in performing repetitive tasks
such as pick-and-place [3, 4], sorting [5, 6], and boxing [7],
through adaptive control systems [8, 9, 10] that exploit sen-
sory information such as vision [11, 12, 13], and force [14,
15]. These operations are particularly important from a flex-
ible automation perspective, since they are of a repetitive
nature, and involve large body movements that can lead to
musculoskeletal disorders in long term [16, 17].

The authors in [18] propose a control, where an online
estimation of the object pose is adopted, based on force sens-
ing during interaction and vision information provided by a
camera. Although the object pose is time-varying, its geom-
etry is modeled and known a priori. In [19], a multi-modal
sensor-based control framework for human-robot collabora-
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Figure 1: Concept illustration of flexible and collaborative
robotic box-filling and item-sorting in manufacturing industry.
The depicted reference frames represent the robot base (R),
the camera (C), the box (B), and the item (I).

tion is proposed. The robot is able to adapt to the human
intention, modifying its control strategy accordingly.

Several bin packing strategies, addressing the problem
of item sorting, have been introduced over the years in the
field of operational research [20]. Although both exact algo-
rithms [21, 22] and heuristics [23, 24, 25, 26] have been con-
sidered, they mainly rely on a priori knowledge of the items
order, besides being computationally expensive. Further-
more, these studies do not consider the variations brought
by the human counterparts (e.g., changes in item sorting)
and are mainly evaluated and performed in simulation stud-
ies. Hence, they could find their way into practice only with
a perfect knowledge of the surrounding environment and an
accurate robot trajectory planning, which are mainly typi-
cal of machine tools that do not allow for collaborative ap-
proaches.

To the best of the authors’ knowledge, very few appli-
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cations of automated box-filling and item sorting solutions
have been developed. Sgarbossa et al. [27] presented a robot
picker that can work alongside manual order picking, devel-
oping a method to assign products to different warehouse
zones. Boudella et al. [28] developed a hybrid kitting sys-
tem that is composed of a robot and an operator working
in series with the aim of delivering parts to a Just-In-Time
mixed-model assembly line. However, these existing solu-
tions are mainly devoted to allocating roles to robots and
their human counterparts, therefore tackling the item sort-
ing problem from a higher decision-making level, and not in
terms of physical sorting of articles inside a container.

To respond to the flexibility needs of common indus-
trial tasks such as pick-and-place and item-sorting, in this
work, we propose a new adaptive framework for collabora-
tive robots. The aim is to provide the system with the abil-
ity to cope with unexpected environmental and operational
changes (e.g., human interventions and box position/orientation
changes). To this end, we first decided to perform human ex-
periments to understand how humans perform typical pick-
and-place and item-sorting tasks subject to perception un-
certainties. Starting from this analysis, we defined a novel
human-inspired items placing strategy that has been embed-
ded in the presented framework. This strategy allows both
for picking objects from a conveyor and placing them in a
box, and for reorganizing items that are already lying within
the container, so as to compact them to create more room for
other articles.

The first component of this framework is a vision mod-
ule responsible of the detection and tracking of the items and
the box, where the items will be sorted. The module enables
an arbitrary placement of the box in robot workspace, which
can be even subject to displacements during the execution
of the task. The vision module is also capable of creating an
occupancy grid in real-time, to update the robot trajectory
planner with the occupied/free portions of the detected box
and their coordinates. The update is triggered at every iter-
ation of the task, i.e. every time a new item has to be sorted
in the box. Additionally, it can also detect items centers, to
allow a reorganization of the items within the box.

Robot control module consists of a trajectory planner,
which implements an adaptive strategy for the placement and
sorting of the items in the box. The execution of the planned
trajectories is achieved by a self-tuning Cartesian impedance
controller, which facilitates the adaptation of the robot end-
effector trajectories to the environmental constraints along
its path. This is achieved by implementing a stiff behavior
along the planned trajectory, and a compliant profile in other
Cartesian axes, which are tuned in real-time based on the
vision and interaction force information.

To evaluate the adaptation capacity of the proposed frame-
work to the variations of the task or the environment, we
designed a collaborative box-filling and item-sorting exper-
iments. In our setup, a box is arbitrarily placed in front of a
cobot, whose task was to pick, place, and sort a number of
motor shells in it. We demonstrate that the proposed frame-
work is robust to changes in box location, and also to hu-

man interventions where an item is added or removed from
the box during the execution of the task. This enables a hu-
man worker to intuitively collaborate with the cobot to fill
in the box with the target items, to perform it faster (similar
to a two-person operation), otherwise, the robot is capable
of performing the task autonomously. The experimental re-
sults additionally illustrate the advantage of the developed
self-tuning controller in comparison to a stiff or a compliant
interaction behavior. Finally, we show how the framework
is capable of reorganizing items already present in the box.
In fact, if they have been randomly placed, for instance due
to an operator not compacting them, this new method allows
for a more efficient packing.

2. Observations of human motor behavior
To implement a practical items placing strategy for the

robotic box-filling, we decided to get inspiration from hu-
manmotor behavior, asking 15 human subjects to fill in some
items in a box in the most natural way possible. The objec-
tive was to understand the underlying perception-action co-
ordination strategies for this particular task, and to possibly
replicate them in our robot control framework. The subjects
involved in the experiments were not professional packers,
since the goal here was not to understand the best way hu-
mans do packing, but rather to learn how uncertainties in
perception affect packing actions.

In the depicted scenario, the robotic end-effector can be
regarded as the human hand, and the camera perception sys-
tem as the human eyesight. However, we know that steer-
able human sight is much more accurate w.r.t. the artificial
perception sensing of a fixed camera, especially in unstruc-
tured and dynamically changing environments. Hence, we
decided to carry out the experiment twice for each subject:
once with the eyes uncovered to simulate a perfect visual
perception system, and once with the subjects being blind-
folded to reproduce a scenario with complete lack of visual
sensing.

The subjects were asked to place one item in the lower-
right edge of a box (see “goal” reference frame�G in Fig. 2a),
while their hand pose (�H ) was tracked with a Intel Re-
alSense Depth camera through the OpenPose library [29].
Conventionally, in industrial pick-and-place machine tools
and robotic systems, the items are directly placed in the de-
sired pose, relying on accurate sensing of the environment
and precise robot trajectory planning. Therefore, the main
objective of this analysis was to infer how the items were
placed in the goal position that was instructed to the subjects
(the box edge).

To retrieve the human items placing strategy, we decided
to analyze the trajectory executed from the moment the item
was in contact with the box layer till it was released in its goal
pose. Fig. 2a shows the three different poses of the human
arm before reaching the contact with the box (P1), during
the box layer contact (P2), and in the ending pose where the
item had to be placed (P3). Fig. 2b depicts the human pose
w.r.t. the Box frame ΣB . From here it is possible to notice
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Figure 2: Three different poses of the human arm have been illustrated in this figure: before reaching a contact with the box
(P1), during the contact (P2), and the pose where the item had to be placed (P3). On the left side, subfigure (a) depicts the
experimental snapshots of the three poses and their graphical representations, while (b) shows the human hand pose XG

H w.r.t.
the goal reference frame �G: when XG

H (z) tends to a null value we can consider the start of the sliding phase on the plane (P2).
On the right side, the plot of the sliding phase (P2 to P3) is represented in the xy plane (c), as well as the distance between the
hand and the goal dHG over time (d).

that, after having reached pose P2, the pose of the human
hand on the z − axis (blue curve) is always null, so we can
deduce that between P2 and P3 there is only a sliding motion
on the horizontal plane xy.

Based on the former considerations, we can illustrate the
trajectory computed by the human hand in 2D since the con-
tact with the box layer, i.e. from P2 to P3. Fig. 2c shows the
same trajectory tracked in Fig. 2a-b on the box plane, while
Fig. 2d shows the Euclidean distance between the hand pose
and the goal pose, dHG, over time. It is worth to notice that
the traditional positioning of the item directly on the goal
pose (classical Peg-in-hole strategy) would make P2 coin-
cide with P3, since the goal pose would be reached simul-
taneously to the contact with the box plane. With such a
strategy, in Fig. 2d, the curve would be degenerated in a sin-
gle point at the origin of the axes, since a null distance dHG
would be achieved directly.

Fifteen healthy subjects (twelvemales and three females;
age, 28.5 ± 3.9 years; weight, 74.6 ± 11.4 kg; and height,
178.2 ± 6.7 cm) participated in the overall experiments.
Fig. 3 shows the results of the 15 trials for both the uncovered
eyes case and the blindfolded one. Similarly as in Fig. 2c, we
illustrate all the subject trials in the box plane (top), and the
mean � and standard deviation � of dHG (bottom).

As can be seen from the results reported in Fig. 3, no sub-
ject placed the item directly from the top to the desired pose
(Peg-in-hole strategy). Instead, although in the first scenario
the subjects were coadiuvated by a perfect visual sensing
(Uncovered eyes), the strategy employed was to first place
the item in an empty area of the box, with an initial distance
dHG = 0.05 ± 0.08m, and then slide it towards the goal

BLINDFOLDEDUNCOVERED EYES

BOX
P2

P3

BOX

P2

P3

Figure 3: Fifteen subjects performed the item placing experi-
ment: once with uncovered eyes, and once blindfolded. With
poorer visual information, the employed sliding strategy is even
more evident.

pose. We assume that the reason of this choice stands in the
intrinsic confidence of possessing a higher accuracy in sens-
ing the external forces w.r.t. our visual perception. This be-
comes even more evident in the blindfolded scenario, where
the awareness of the environment is very poor because of the
lack of eyesight feedback, when dHG at time t = 0 reaches
values three times as high as the first case (0.16 ± 0.08m).

The results of this analysis show that the subjects barely
chose to place items directly from the top to the desired pose
(Peg-in-hole strategy), while instead they placed objects start-
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ing from a ‘safer’ initial guess and then adjusted their pose
with the help of force feedback. This distance, in our opin-
ion, was decided based on the level of perception uncer-
tainty and the required accuracy. In fact, studies in neu-
roscience found out that the best performances in reaching
tasks are achieved when humans can control both sensory
andmotor accuracy at the same time, and therefore overcom-
ing visuomotor-only uncertainties [30]. Furthermore, stud-
ies on Fitts tapping task [31], simulated through virtual re-
ality, have demonstrated that eye-hand coordination achieves
higher performanceswhen enhancedwith force feedback [32].
Other results also revealed than blind people possess en-
hanced tactile acuity, that they developed to overcome the
lack of visual feedback [33]. This can also suggest why
in our experiment, when blindfolded, subjects relied much
more on the force sensing.

Based on these results, we decided to implement an Items
placing strategy for our robotic system, that will be presented
in the next Section. In summary, the algorithm will repli-
cate human behavior in placement of the items in their de-
sired locations (decided by an occupancy grid map and a
planner), where a safe initial distance will be chosen experi-
mentally based on the the level of uncertainty present in the
perception-action system.

3. Robot framework
The presented framework aims to improve adaptability

in the typical industrial task of pick and place. The con-
cept of flexibility is at the core of this methodology, since
the environment can be continuously subject to changes in-
duced by the external agents, that can be identified by hu-
mans, other robots, or a combination of both.

The framework’s software architecture has been built with
a high modularity, to facilitate its understanding, and to en-
courage the reusability of its components. To this end, five
main modules have been built, as shown in Fig. 4: (1) a
perception module able to detect the location of the items
to be picked from the conveyor, the pose of the box where
they need to be placed, and the position of the items al-
ready lying inside the box, (2) an items placing strategy to
place the items inside the box based on the vision informa-
tion provided by the previous module, (3) an adaptive Carte-
sian impedance controller with online tunable parameters,
(4) a trajectory planner to define the robot desired motions,
and (5) a Finite State Machine that coordinates the data ex-
changed across the other modules.

3.1. Box and items detection
During close-proximity motions, each agent (e.g. hu-

mans, robots, automated machines, etc.) demands a consid-
erable level of flexibility and adaptability. For this reason, a
reliable and accurate perception system is crucial to perform
successful and harmless tasks. The vision components im-
plemented and integrated on the framework are presented,
and they are in charge of the conveyor localization, detec-
tion of the container and identification of the occupancy of
the items lying inside it.

BOX AND ITEMS
DETECTION

PICK FROM
CONVEYOR

MOVE TO
START POSE

PLACE

ITEMS
PLACING

STRATEGY

occupancy grid

start pose, û

occupancy grid, 
item diameter

data request

TRAJECTORY
PLANNER

ADAPTIVE
CARTESIAN
IMPEDANCE
CONTROLLER

point-to-point /
contact-detection

motion ended

desired pose

𝜏

impedance 
adaptation

FINITE STATE MACHINE

robot
status

vision data

CONVEYOR 
LOCALIZATION

OCCUPANCY 
GRID

conveyor pose

data request

BOX DETECTION

Figure 4: The software architecture of the framework com-
posed of 5 modules implemented as ROS nodes. The dashed
lines represent the data exchanged among the units. When a
reorganization of the items is triggered, the “Pick from con-
veyor” state is substituted with a similar primitive to pick the
item from the box itself.

Conveyor Localization: the first phase of every pick and
place task consists in picking the items from a certain lo-
cation, in our case represented by a moving conveyor. To
augment the framework flexibility, we decided to detect the
picking location at every iteration, localizing the conveyor
through vision. Since the grasping phase should be per-
formed with a fair precision, we used ArUco markers to lo-
cate the picking pose of the items on the conveyor. The
strength of this approach is the reliability and speed in the
marker pose computation, as presented in [34] and [35]. The
ASUS Xtion PRO Live camera, mounted on top on the table,
provides RGB images to the aruco_detect ROS package1,
which estimate the pose of the marker. Therefore, a fixed
transformation is applied to grasp the object properly.

Box Detection: the second perception requirement con-
sists in the detection and the pose estimation of the box to
be filled in. Since ideally the container will be transported
throughout the production process and then shipped to other
logistic departments, we decided not to use the ArUcomark-
ers concept applied above. As a matter of fact, every rect-
angular box is characterized by four corners whose location
lies on the same plane. Therefore, we implemented a de-
tection algorithm exploiting the geometric shape of the box.
The system processes the point cloud, acquired by the depth
sensor integrated in the ASUS camera, by applying a pass-
through filter. The aim is to remove the points which be-
long outside the region of interest, defined as d ≤ dtℎresℎold ,
where dtℎresℎold is the parameter which defines the distance
between the camera and the table. Through a segmenta-
tion procedure, the pre-processed point cloud is clustered
in smaller sets of points. Furthermore, the algorithm looks
for a set of points that respects specific geometrical features.
Thus, by calculating the center of the object and analyzing
the principal components, we obtained the reference frame
of the object and, accordingly to this, we estimated four can-
didate corners of the box, based on the dimensions of the

1http://wiki.ros.org/aruco_detect
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elaborated point cloud. A positive detection is acquiredwhen
at least a point is in proximity of each candidate corner.

Occupancy grid: in order to obtain the desired item place-
ment position, the framework evaluates a sorting strategy
based on an occupancy grid of the detected box content.
The high mutability of the scenario, introduced by the hu-
man agent which cooperate with the cobot to accomplish the
task, requires a dynamic update of the candidate placement
positions. The framework should be capable to neglect non-
static objects captured during the detection phase (human
upper limb). Therefore, it is necessary to obtain different
camera depth frames and merge the information to obtain a
single occupancy grid.

To this end, the algorithm processes the point clouds us-
ing a pass-through filter, which exploits the pose and the di-
mensions resulting from the box detection. The bottom of
the box is removed from the resulting point clouds, in or-
der to consider just the border of the box and its content.
Then, since the occupancy grid is a discretized 2D represen-
tation of the space, a projection of the point cloud on the xy
plane is required to distinguish the occupied cells from the
free ones. In [36], the authors proposed an approach to iter-
atively update the cell occupancy state. The following for-
mula is based on binary Bayes filter in log odds form with
an inverse measurement model:

lit = lt−1 + log
p(xi|zt)

1 − p(xi|zt)
− log

p(xi)
1 − p(xi)

, (1)

where lit is the log odds at time t of the i-th cell, xi is the
occupancy state of the cell, p(xi) is the probability that the
i-th cell is occupied, while p(xi|zt) is the probability that the
i-th cell is occupied given the depth sensor data z at time
t. Since, the i-th cell have the same probability to occupied
rather than free, we assumed p(xi) = 0.5. In this way (1) can
be written as:

lit = lt−1 + log
p(xi|zt)

1 − p(xi|zt)
. (2)

By calculating the belief factor, function of log odds ra-
tio, the algorithm assigned a value from 0 (free cell) to 1 (oc-
cupied cell) to each cell, representing the occupancy proba-
bility:

belt(xi) = 1 −
1

1 − exp lit
. (3)

Items detection: usually, in industrial scenarios, com-
ponents machined and placed in boxes are characterized by
the same shape. For this reason, the problem of recogniz-
ing the contents of the box has been addressed through a
two-dimensional geometric approach. Therefore, an a pri-
ori knowledge of the shapes of all the objects that will be
arranged in the box is necessary. At the moment, the frame-
work is able to recognize circular items of different radius
(e.g. gears, motor shells, etc.), however, the software archi-
tecture allows simple integration of different shape detectors.
The images acquired by the camera mounted on top of the
box are processed through the OpenCV library. Following a

first pre-processing through Canny Edge detection, the result
obtained is used as input for the Hough Circle detector algo-
rithm, based on Hough Gradient Method [37]. The items
thus identified in the two-dimensional image are mapped in
3D and projected in the occupancy grid map.

3.2. Items placing strategy
To ensure flexibility during the placing phase, we as-

sume that at every iteration the items inside the box can
be subject to pose changes, for instance due to the collab-
oration with human agents performing the task in the same
container. Mainly, the environmental variables in these situ-
ations are identified by two elements: the change of the items
quantity/position inside the box and the variation of the box
pose in the environment.

In order to correctly place the picked items in a box,
we designed a strategy that ensures robustness to potential
environmental changes between the placing of an item and
its successor, based on the observations (Sec. 2) on humans
performing a similar task. The human-inspired strategy in-
cludes an initial placing of the object in a collision-free area
where no object/border is detected, and then a slidingmotion
on the box plane towards the desired goal pose identified by
the algorithm.

Alg. 1 shows the pseudo-code implementation of themethod
hereafter described. The open source code implementing
this strategy is also available2. The algorithm receives as in-
puts an Occupancy Grid (OG), and the diameter of the item
d, and returns the starting pose start where the item needs
to be placed in the box, before being pushed in the direction
given by the other output variable, the unit vector û. This
strategy is needed to compact the items inside the box, and
augments the tolerance to perception accuracy.

Although, as a proof of concept, we consider the shape
of the items to be cylindrical, another item shape would not
affect the algorithm core, e.g., for a square-shaped object, we
can consider its side as d. On the other hand, for non-convex
items, the algorithm considers the smallest square with side
d that can contain the non-convex item.

TheOG information, besides the occupancy probability
(OP) of each cell, include the height of the grid that can be
regarded as the grid rows, its width corresponding to the
number of columns, its resolution, and its frame calculated
w.r.t. the camera frame. We defineD as the minimum num-
ber of grid cells where d can fit, by finding the smallest inte-
ger greater than or equal to d divided by the grid resolution.

The essence of the algorithm resides in the search of an
OG subgrid, named goalGrid, of dimensionD ×D with all
empty cells, i.e. withOP less than 0.2, and in finding another
empty subgrid, named borderGrid, of dimensionD ×D along
the contour of the first one. Like that, the item can be first
placed in the borderGrid and then pushed towards the goal-
Grid until a contact with the box border or with other al-
ready placed items is found. To this end, the algorithm scans
all the possible goalGrids starting from the one localized
at the bottom-right, which corresponds to the OG element

2https://gitlab.iit.it/pietrobalatti/items_placing_strategy
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Algorithm 1 Items placing algorithm
Input: OG,d
Output: start, û
rows = OGℎeigℎt
columns = OGwidtℎ
D = ceil(d∕OGresolution)
for r = 0 to rows-D do

for c = 0 to columns-D do
goalGrid → (r : r+D, c : c+D)
if emptyGrid(goalGrid) then
goalx = (c +D∕2) ⋅OGresolution
goaly = (r +D∕2) ⋅OGresolution
borderGrids = getBorderGrids(goalGrid)
for each bg in borderGrids do

if emptyGrid(bg) then
bgweigℎt = getOuterCellsOP (bg)
candidateStartGrids.add(bg)

end if
end for
if size(candidateStartGrids) > 0 then
startGrid = MinWGrid(candidateStartGrids)

else
startGrid = goalGrid

end if
startx = (startGridx +D∕2) ⋅OGresolution
starty = (startGridy +D∕2) ⋅OGresolution
⃖⃗u = goal − start
û = u⃗

|u⃗|
return start, û

end if
end for

end for

(0,0), assigning at each iteration a new potential goalGrid
and checking if it is empty. Once it is found, the goal pose
coordinates (x,y) are set as the central element of the exam-
ined subgrid multiplied by the OG resolution. The algo-
rithm moves forward to look for the best start pose coordi-
nates by looking for the borderGrids, that can be regarded as
the 8 subgrids around the goalGrid (see the central part of
Fig. 5). Each borderGrid that is found to be empty is added
to the candidateStartGrids list, with associated a weight that
is the result of the sum of theOP of each cell lying on the ex-
ternal outline of the subgrid. Next, the startGrid is selected
as the one with minimum weight among the candidateStart-
Grids list. If the candidateStartGrids list is empty, it means
that only one OG subgrid is empty, so the startGrid is set
equal to the goalGrid, implying a peg-in-hole like motion.
Similarly as explained above for the goalGrid, the start pose
coordinates (x,y) are set as the central element of the exam-
ined subgrid multiplied by the OG resolution. Finally, the
unit vector û can be computed normalizing ⃖⃗u, that is the vec-
tor connecting start and goal coordinates.

To improve the framework efficiency and show enhanced
robustness, we also propose an additional strategy aimed to
reorganize items already present in the box. The main goal
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height = 17 17

width = 32 16
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ITEM info 13

12

11

10

9

d = 7cm 8

D = 4 7

6

Legend 5

Items already placed 4

goalGrid 3
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Figure 5: Occupancy grid example (top) with the illustration
of the potential borderGrids (center), and the candidateStart-
Grids (bottom) that would be extracted with the occupancy
grid above.

of this strategy is to compact articles lying in the container,
to create more space for other items. The core of this method
relies on the one presented above inAlg. 1, with a few changes
that are described hereafter. First of all, the Items reorganiz-
ing algorithm receives as input also the items’ centers thanks
to the Items detectionmodule described in Sec. 3.1. Each of
these items is checked, so as to retrieve if it has already been
placed by the algorithm. If so, the cells of theOG relative to
that item are added to OG∗, a support occupancy grid that
considers only the items already stacked by the strategy (ini-
tialized as a copy ofOG, without all the portions of the grid
containing the detected items). On the other hand, if the item
has still to be placed, Alg. 1 is executed taking into account
the modified OG∗. Once the item is placed, its final pose
gets added to a vector that stores which items have already
been reorganized in the box. Alg. 2 presents a pseudo-code
of the illustrated method.

3.3. Adaptive Cartesian impedance controller
During the last decades, most robotized industrial pick

and place tasks have been designed with position controlled
robots, since theywere dealingwith structured environments,
where all the informationwas known a priori. However, with
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Algorithm 2 Items reorganizing algorithm
Input: OG,d,detectedItems
OG∗ = OG
removeOGPortions(OG∗,detectedItems)
for i in detectedItems do

if i in reorganizedItems then
addOGPortion(OG∗,i)

else
start, û = Algorithm 1(OG∗,d)
reorganizedItems.add(i)

end if
end for

the recent introduction of collaborative robots and in situa-
tions that include humans collaborating with robots, these
kind of controllers are not anymore suitable, since they lack
safety and adaptation capacity. On the other hand, Cartesian
impedance control techniques have demonstrated to be able
to safely end efficiently achieve any arbitrary quasi-static be-
havior at the robot end-effector [38, 39].

The robot controller here implemented is based on aCarte-
sian impedance controller, which can online adapt its impedance
parameters. Relying on torque sensing/actuation, the con-
troller is responsible of computing the robot joint torques
vector � ∈ ℝn needed to reach the desired poses Xd ∈ ℝ6
externally commanded, e.g. by means of a trajectory plan-
ner, as:

� =M(q)q̈ + C(q, q̇)q̇ + g(q) + �ext, (4)

�ext = J (q)TF c + �st, (5)

where n is the number of joints, q ∈ ℝn is the joint an-
gles vector, J ∈ ℝ6×n is the robot arm Jacobian matrix,
M ∈ ℝn×n is the mass matrix, C ∈ ℝn×n is the Coriolis
and centrifugal matrix, g ∈ ℝn is the gravity vector and �ext
is the external torque vector. F c represents the forces vector
in the Cartesian space and �st the second task torques pro-
jected onto the null-space of J . The second task torques are
added to keep a configuration as similar as the initial one
to avoid joint limit configurations and are given by the dif-
ference between the initial joint configuration qi(n) and the
measured joint position qm(n) pre-multiplied by the differ-
ence between the identity matrix I(n × n) and the product
between the Jacobian pseudo-inverse J † with J :

�st = (I − J †J ) ⋅ (qi − qm). (6)

Forces F c ∈ ℝ6 are calculated as follows:

F c = Kc(Xd −Xm) +Dc(Ẋd − Ẋm), (7)

whereKc ∈ ℝ6×6 andDc ∈ ℝ6×6 represent respectively the
Cartesian stiffness and damping matrix, Xd and Xm ∈ ℝ6
the Cartesian desired and measured position, Ẋd and Ẋm ∈
ℝ6 their corresponding velocity profiles.

Robot workspace 
Box

𝛴R

Stiff along the insertion
Compliant in other directions

𝛴B

Figure 6: The adaptive impedance controller implements a
stiff profile along the motion vector, and a soft profile in other
directions, to allow adaptation to the constraints along robot
path.

To achieve better interaction performances, the impedance
parameters are tuned online so as to keep a compliant profile
during most of the motions, unless required by the task. This
method has already been demonstrated to guarantee safer in-
teractions when coming in contact with unexpected human
collisions [40], and unknown environments [41].

On the other hand, the task can also require considerable
tracking accuracy along the motion vector, and at the same
time flexibility along the other directions so as to adapt to un-
predicted obstacles or external disturbances. In these cases,
the impedance parameters need to be tuned in such a way
they are stiff in the direction of the motion, and compliant
along the other axes. This is achieved by tuning the major
axis of the Cartesian stiffness and damping ellipsoids in the
direction of interaction:

Kdes
c = U�kUT , Ddes

c = U�dUT , (8)

where the diagonal matrix �k = diag(kℎigℎ, klow, klow) and
�d = diag(dℎigℎ, dlow, dlow) elements are respectively the
desired stiffness and damping coefficients along the direc-
tion of the vectors composing the U basis. The U columns
are the basis vectors, the first one represents the desired mo-
tion vector, and the other two are shaped to form an orthonor-
mal basis [41]. The sketch in Fig. 6 clarifies graphically this
concept: being stiff along themotion vector and compliant in
the other directions makes the robot adapt if an unexpected
obstacle is found.

To ensure smooth operations and to avoid sudden jumps
when switching between adapation mode and free space, the
impedance matrices change smoothly according to the fol-
lowing law:

Kc = f ∗ Kdes
c + (1.0 − f ) ∗ Kc

Dc = f ∗ Ddes
c + (1.0 − f ) ∗ Dc (9)

where f is a filter, set with a low value and depending on
the control loop frequency, and Kdes

c and Ddes
c are respec-

tively the Cartesian desired stiffness and damping matrices
computed in (8).
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3.4. Trajectory planner
The presented trajectory planner offers two different types

of trajectories. The first one is a classical point-to-point mo-
tion, computed by means of a fifth-order polynomial, that
given a starting and a target pose, computes the intermediate
waypoints. The second one is given by a contact-detection
motion, that when receives as input a unit vector and a thresh-
old force, starts moving the robot end-effector from the cur-
rent pose towards the unit vector direction until the forces
along that direction go beyond a given threshold. This unit,
which continuously reads the robot status, also regulates the
switching between the Finite State Machine states by trig-
gering motion-ending acknowledgments.

3.5. Pick and place Finite State Machine
The design of a Finite State Machine (FSM) is needed to

regulate the data exchanged among the presented modules.
Every state communicates with the Trajectory planner, ask-
ing for a desiredmotion (point-to-point or contact-detection)
and receiving a motion ended acknowledgment, that serves
as input to move on to the next state.

The FSM primitive motions can be summarized in three
main states: pick an item from the conveyor, move it to a
starting pose in the box, and place it towards the border/other
items. “Pick from conveyor” sends a data request to the per-
ception module “Conveyor localization” subunit and waits
until the conveyor pose is sent back. Notice that, since a
successful box detection is given only when static objects
are perceived, if the human agent is simultaneously placing
some items, the robot pauses its motion until he/she moves
away. This enhances the framework’s safety for the workers.

Once the conveyor pose is retrieved, the FSM sends to
the Trajectory planner first a request for a point-to-pointmo-
tion that leads the robot end-effector above the conveyor, and
then a contact-detection motion that moves the robot down
until a contact with the conveyor is detected. The robotic
gripper can now grasp the item.

Note that, while carrying out the Items reorganizing strat-
egy, the “Pick from conveyor” state is substituted by a sim-
ilar motion that instead of picking the object from the con-
veyor, picks it directly from the box (exploiting the item pose
detected by the perception unit), as described at the end of
Sec. 3.2.

Next, in the “Move to start pose” state, the robot needs
to reach the pose identified in Alg. 1 as start. To do so,
a data request is sent to the Box and items detection unit,
that returns the current box OG, containing the data of the
probability occupancy of every cell grid, its height, width
and resolution, and the origin of the box reference frame ΣB .
This information, along with the item diameter, are then sent
to the Items placing strategy module that returns the start
pose and the unit vector û, that are translated in the robot
frame through the transformation:

T RI = T
R
CT

C
BT

B
I (10)

where T RI represent the transformation from the item refer-

(a) (b)

ASUS Xtion
Pro Live

ArUco marker
Moving conveyor

Franka Emika Panda

Box

Items

Figure 7: The experimental setup (a) includes a Franka Emika
Panda robotic arm, an ASUS Xtion Pro Live camera, a moving
conveyor with motor shells, and a box placed on the robot
workbench. The view from the camera (b) shows the box and
the detected ArUco marker sticked to the moving conveyor.

ence frame �I to the robot reference frame �R (see Fig. 1).
The robot first moves above the start pose with a point-

to-point motion, and then down until a contact with the box
is detected (with a contact-detection motion), as in the pre-
vious state. Finally, in the “Place” state, the robot moves
towards the direction given by û with a contact-detection
motion until a contact with the border or other items already
present in the box is found. This is done activating the impedance
adaptation strategy along the direction of the motion, so as
to ensure a more efficient item placing. This processes is re-
peated until there are items on the conveyor and/or there is a
box with empty occupancy subgrids available.

4. Experimental setup
The presented software architecture, depicted in Fig. 4,

relies upon the roboticsmiddleware Robot Operating System
(ROS) using C++ as client library. The modules introduced in
Sec. 3 are implemented as ROS nodes, and the data among
them are exchanged through ROS services and messages.

To perform experiments, we used a Franka Emika Panda
robotic arm equipped with its original two-finger gripper,
that was modified with longer fingers to allow bigger objects
grasping. The communication with the robot controller was
established through the Franka Control Interface (FCI), that
provides the current robot status and enables its direct con-

PLACEMOVE TO START POSEPICK FROM CONVEYOR

Figure 8: Experimental snapshots of the three Finite State
Machine primitives.
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1 2 3

5 6 74

PICK FROM 
CONVEYOR

MOVE TO 
START POSE

PLACE

GOAL POSE

START POSE

u⟶𝛴B x

y

𝛴B x
y

x

y

x

y

R
R

Figure 9: The robot and the human agent fill in the box in collaboration. The plots show the desired and measured position in
the robot reference frame �R, the sensed external forces, and the stiffness profiles, along the Cartesian axes. The experimental
snapshot, the camera view, and the occupancy grid are shown above the plots.

trol with an external workstation PC connected via Ethernet
in real-time at a communication rate of 1 kHz. The percep-
tion data were streamed at a frequency of 30 Hz through
an ASUS Xtion Pro Live RGB-D sensor, that was mounted
above the robot workspace facing downward, so as to have
a top view of the workspace, and calibrated with respect to
the robot base frame. As items, we used industrial actuator
shells.

5. Experiments
To validate the proposed method, we carried out exper-

iments replicating a pick and place industrial scenario, that

involves human-robot collaboration. To describe the differ-
ent task phases, we follow the FSM flow through its three
main states. The experimental snapshots of these states are
depicted in Fig. 8: “Pick from conveyor”, “Move to start
pose”, and “Place”. In the last paragraph of this section, we
show the results obtained with the Items reorganizing strat-
egy, where the “Pick from conveyor” state is substituted with
a similar motion primitive that picks the items directly from
the box, in order to reconfigure them. In all the proposed ex-
periments, the OG resolution was set to 1 cm, and f in (9)
to 0.005.

Fig. 9 shows the data associated to an experiment that
was carried out to fill in an entire box in collaboration with a
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human subject. The three subplots represent the desired and
measured position of the robot end-effector, the sensed ex-
ternal forces, and the stiffness profiles, along the three Carte-
sian axes. For every iteration of the three FSM states, above
each relative plot, we represent the state of theOG taken dur-
ing “Move to start pose” phase, and the snapshot of the robot
and the human placing the items related to the “Place” state.
The first one is composed by the raw image recorded by the
RGB-D camera placed above the robot, and theOG retrieved
by the Box and items detection module with that image. On
the grid we also represent the data computed by the Items
placing strategy following the nomenclature of Alg. 1: the
green square represents the goal pose, the red dashed square
identifies the start pose, and the black arrow constitutes the
unit vector û.

In this scenario, to completely fill in the box, the FSM
states were iterated 7 times, as numbered in the snapshots
associated to the plots. In every iteration we can distinguish
the three FSM states: “Pick from conveyor” is highlighted
in light red, “Move to start pose” in light green, and “Place”
in light blue. The first phase is similar for all the iterations,
the robot reaches the conveyor pose and moves down on the
z-axis until a contact with the conveyor is detected, i.e. when
||F ext(z)|| ≥ F ext,tℎ(z). The threshold F ext,tℎ(z) was set to
3 N , each time added to the different force bias sensed at the
beginning of the relative motion. On the other hand, the sec-
ond and the third phase change at every iteration, therefore
hereafter we provide a complete description of all of them:

Iteration 1: the computed goal pose lies on the bottom-
left corner, since the box is empty and the algorithm starts
taking into account theOG cells with row and column equals
to 0. There are 3 feasible candidateStartGrids, but the one
from the top and the one from the right are assigned with
a high weight since they are close to the grid border. On
the contrary, the selected start pose has weigℎt = 0 since
the cells on its outer border are all empty. The item, after
being moved to the start pose, is pushed against the borders
until a contact on x and y is detected (time = 20s). The
threshold F ext,tℎ(x, y) was set to 10 N , projected along the
motion vector direction. Therefore in this case F ext,tℎ(x) ≈
F ext,tℎ(y) ≈ 7N (also here added to the different force bias
sensed at the beginning of the relative motion). In the third
subplot, the stiffness profile adaptation is depicted, the robot
is stiffer along the motion vector and more compliant in the
other directions. In (8), kℎigℎ was set to 1400N∕m and klow
to 200N∕m.

Iteration 2: similar to the previous iteration. In addition,
a subject starts to add items in the box as well, as can be seen
from the picture. The 2 items added by the human are also
visible in the next iteration, where the detectedOG includes
4 items.

Iteration 3: the computed goal pose lies on the bottom-
right corner, and the only feasible candidateStartGrid is rep-
resented by the depicted start pose. The “Place” motion is
only along the robot x axis, as can be noticed also in the
impedance parameters regulation. Being compliant on the
other axes ensures the success of the motion, since the item

can be inserted in the empty spot regardless of any poten-
tial obstruction, given either by the other item or by the right
border. In parallel, the subject places other 2 items in the
top-left part of the grid.

Iteration 4: similarly as in iteration 3, only one feasible
candidateStartGrid is found by the Items placing strategy.
This time, the motion takes place only along the robot y axis.
At the end of this phase, the subject moves the position of
the box on the workbench. This has been done to show the
flexibility of the framework, robust to changing conditions.
In fact, the box pose is computed at the beginning of every
iteration, and it is part of the information associated to the
OG.

Iteration 5: the Items placing strategy outcome is similar
to the one computed in the previous iteration. In addition,
here we can see that the stiffness parameters are tuned also
along the robot x axis, since, despite the motion on the grid
looks identical, the box has been rotated. During the “Place”
state, the human puts other 2 items on the grid top-right.

Iteration 6: the computed unit vector û is similar to the
one of the first 2 iteration. However, due to the previously
mentioned box rotation, the direction of the motion in the
world frame is quite different. At the end of the “Place”
state (time ≈ 123s), we can see that the contact on y is de-
tected slightly before the one along the robot x axis, soK(x)
increases and K(y) decreases. Also F ext,tℎ(x) raises since,
once the contact along y is detected, the motion on that di-
rection is stopped and continues only along x. At the end of
the robot motion, the subject places other 2 items in the box.

Iteration 7: only one empty spot is left on the grid. In
the Items placing strategy, since no candidateStartGrid is
found, the start pose is set equal to the goal pose. The third
state, “Place”, involves only the item ungrasping, since, after
the contact detected on the z axis during the previous state,
there is no need to move it on the xy plane.

x

y
𝛴B

R

Figure 10: Starting from the same OG initial condition,
the same experiment repeated twice: on the left with the
impedance parameter adaptation, on the right without. Be-
ing stiffer along the motion vector, and more compliant in the
other directions, improves the complete filling of empty spaces.
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2 3 41

OGOG* DETECTED ITEM REORGANIZED ITEM u⟶START POSEGOAL POSE

Figure 11: The Items reorganizing strategy allows the robot to compact items already lying on the box layer. For every iteration,
the figure shows the raw camera image with the detected items, and with the subset of already reorganized ones (top-left),
the original occupancy grid OG (middle-left), the modified occupancy grid OG∗ computed through Alg. 2 (bottom-left), and
snapshot of the human-robot team carrying out the relative task phase (right).

Comparison to the stiff controller: to better show the ad-
vantages of the online impedance regulation along the mo-
tion vector, we performed an additional experiment starting
from the same condition, with and without the impedance
parameters adaptation. Fig. 10 shows on the left the exper-
iment carried out with the impedance regulation enabled,
as can be seen from the third subplot. The placing motion
does not stop where the goal pose was estimated, but it con-
tinues along the robot x axis until the border of the box is
found. Being compliant on the y axis makes the robot in-
sert the piece between the two items in the box bottom-right.
In the first subplot, we can notice that the desired motion
on y does not change while the measured one moves away,
thanks to the above-mentioned compliance. The two camera
snapshots, taken before and after the plotted data, are shown
above the plots.

On the other hand, when the online tuning of the impedance
profiles is not active, the situation explained above does not
hold anymore. When the estimated goal pose is reached,
the sensed external forces on the robot x axis go beyond the
threshold F ext,tℎ(x) (t = 4s), and the item is released from
the gripper.

Items reorganizing strategy: this experiment aims to show
the robustness of the framework in reorganizing items that
are already lying on the box layer. Fig. 11 illustrates four
iterations of this task. 1) Initially, three items are detected
by the Items detection vision unit, and since none of them
belongs to the itemsReorganized list (see Alg. 2), all the de-
tected items are removed from OG∗. The item is therefore
placed in the box bottom left corner. 2) Still, three items are
detected, but one of them is classified as already reorganized,
and thus is added to OG∗. While the item is placed on the
right of the former one, an operator adds a new item to the
box and moves an existing one to a different pose, so as to
show the framework’s robustness to changes. 3) Among the
four detected items, two are classified as reorganized (and
added to OG∗), and another item is stacked to the right of
the previous ones. 4) Only one detected item is still recog-
nized as not reorganized, so the robot picks it and places it
close to the box bottom right edge. The relative plots show-
ing the robot end-effector pose, sensed external forces, and
stiffness parameters are omitted since they are comparable
to the ones showed in Fig. 9.

6. Conclusion and Discussion
In this work, we proposed a novel manipulation frame-

work for a box-filling task. The flexibility is at the core of
the method: the items can be picked from a moving con-
veyor detected by the perceptionmodule, and placed in a box
following the presented sorting strategy, inspired by the hu-
man motor behavior. Additionally, it includes an adaptive
Cartesian impedance controller to regulate the impedance
profiles along the motion vector to guarantee the best out-
come in the items placing. We experimentally validated the
presented framework in placing a batch of motor shells, that
were brought by a moving conveyor, inside a box located on
the robot workbench.

Although the presented method can already handle het-
erogeneous objects thanks to the agile strategy provided by
the occupancy grid, multiple object shapes will be investi-
gated in our future works. Similarly, multiple layers have not
been take into account in this work, and they will be object of
future developments. Nevertheless, it is worth to notice that
once a layer has been entirely filled in, the robot stays in hold
because no empty space is detected in the occupancy grid;
as soon as another layer is placed in the box (by a human
or another robot), the occupancy grid is again free and the
robot automatically resumes the procedure. It is also worth
to notice that the Items placing strategy handles non-convex
items by considering as shape the smallest square that can
contain the original concave one. In such cases, thanks to
the Adaptive Cartesian impedance controller that makes the
item slide until a certain force threshold is sensed, an item
can be placed even in the concave side of another item that
has already been sorted in the box, thus leading to a more
compact packing. However, concave shapes will be objec-
tive of further investigations, so as to guarantee a more effi-
cient packing, for instance by rotating the items before sort-
ing them in the box.

In conclusion, the proposed human-robot collaboration
framework can lead to several improvements in the box-filling
task. Even if the performance of the task execution in terms
of cycle-time can be less that human-only settings (i.e., two
humans performing the task), the introduced strategy presents
several advantages compared to the human-only workforce.
In fact, the robotic system, which is also capable of working
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autonomously, can operate continuously during the working
off shifts (e.g., at nights and over the weekends). Further-
more, the advantage of relieving stress from human work-
ers cannot be undervalued. In fact, lifting and moving sev-
eral heavy objects for repeated periods can lead to severe
work-related musculoskeletal disorders and absenteeism of
the operators [2, 42, 43], which eventually can contribute to
a significant reduction of operational efficiency.
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