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Abstract—Forecasting and anomaly detection for energy time
series is emerging as an important application area for computa-
tional intelligence and learning algorithms. The training of robust
data-driven models relies on large measurement datasets sampled
at ever increasing rates and demand large computational and
storage resources for off-line power quality analysis and on-line
control in energy management schemes. We analyze the impact
of the reporting rate of energy measurements on deep learning
based forecasting models in a residential scenario. The work is
also motivated by the development of embedded energy gateways
for online inference and anomaly detection that avoids the
dependence on costly, high-latency, cloud systems for data storage
and algorithm evaluation. This in turn requires increased local
computation and memory requirements to generate predictions
within the control sampling period. We report quantitative
forecasting metrics (MSE, MAE, MAPE) to establish an empirical
trade-off between reporting rate and model accuracy. Additional
results consider the rate-variable feature extraction using a time
series data mining algorithm for multi-scale analytics.

Index Terms—energy forecasting, embedded inference, model
robustness, cyber-physical systems, smart buildings

I. INTRODUCTION

Using dense deployments of Internet of Things (IoT) de-
vices, multi-variate electrical measurements are being relia-
bility collected at ever increasing reporting rates, not only
in grid measurement, large commercial consumers but also
at the residential consumer level. Making use of this dense
data requires complex intelligent algorithms for prediction and
anomaly detection. Many methods are described in the litera-
ture using mostly deep neural networks (FCNN) and sequence
models (RNN, LSTM, CNN-LSTM) alongside conventional
machine learning methods as regression methods, trees, SVMs,
etc. that allow fine grained control over the input data through
expert guided feature engineering. For training such systems,
large amounts of quality input data are required to capture
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fine grained nonlinearities over various operating conditions.
In some conditions e.g. deploying models on resource con-
strained embedded hardware, there is a need to downsample
the measurement/sensor signal to achieve a bounded training
or inference time with limited decrease in accuracy.

We investigate the dependence of the energy prediction
model accuracy on the sampling rate of the input signal.
This allows to adapt and fine tune the algorithm for detecting
and anticipating both fast transient phenomena e.g. switching
behaviour or faults, and more persistent changes in the signal
behaviour e.g. through appliance usage and daily activities.
This approach applies to both uni-variate measurement time
series e.g. the power drawn at the electrical meter of an
apartment or house, and to multi-variate measurements that
can include multiple electrical parameters as well as fine
grained submetering traces for individual appliances or other
significant consumers. These types of insights become helpful
also when setting up an IT system for data acquisition, storage
and processing, of the electrical measurements in conjunction
with the latency and off-line/on-line of the results analysis.
As the performance and complexity of modern measurement
device has increased the resulting collected information can
be classified using most the typical characteristics of big data
in terms of volume, velocity, variety, and value, minus the ve-
racity which we assume not valid in a technical measurement
context. This requires specialized computing infrastructure and
efficient primitives for information extraction [1] leading to
improved labelling of relevant phenomena.

Main tasks that are carried out to derive the relevant
contributions of the paper are as follows:

• Training and accuracy evaluation of deep learning (DL)
energy forecasting models for high reporting rate data;

• Illustrate an empirical dependence between input re-
porting rate and model accuracy (MSE, MAE, MAPE)
along with comments regarding the generalisation of such
approach to different scenarios.



The rest of the paper is structured as follows. Section II
discusses related work mainly aimed at identifying suitable
time periods for training data-driven time series forecasting
models. We present out methodology, the algorithms and
benchmarking dataset in Section III. Section IV introduces
the results achieved for the target application, including repli-
cable implementation details, along with an exemplification of
energy time series feature extraction using the Matrix Profile
algorithm at various time scales. Section V discusses the fore-
seen context of leveraging the results to automatically adjust
the reporting rate based on application required performance
in multi-scale analytics for energy systems.

II. RELATED WORK

Modelling and forecasting time series sampled at different
frequencies in a general econometric context is discussed
in [2]. The authors present their findings in the key that
by lowering the sampling rate of the respective time series
the core dynamic components remain observable while fine
grained and seasonal elements become unobservable through
aggregation. Disaggregation and establishing a correspondence
between the lower and higher sampled data can be realised but
requires a highly nonlinear model leading to inexact matching
and reconstruction. This insight can be used in our technical
context as well when discarding dense measurements due to
lack of storage or computational limitations. On a energy
system relevant macroscopic scale, a similar work is presented
in [3] where the authors report the decrease in computational
requirements with various downsampling rates for renewable
energy generation. A nonlinear decrease in normalized CPU
time is reported when switching from 1h timesteps to 3,
6, 12 and finally 24h timesteps on 25 years of simulated
wind and PV generation data from the UK. The suitable
approach should be flexible to accomodate different input data
and constraints regarding the modelling technique. Our goal
through this contribution is to perform this approach at the
microscopic level for low voltage residential consumers with
different factors affecting the load shape, with second-level
reported measurements.

A statistical framework to select appropriate sampling rates
for time series analysis is introduced by [4]. The study
combines historical data sampled at a slow rate with cost
information for higher rate data collection and a small sub-
set of more frequently sampled data. The relation between
the two can be framed as a missing data problem for the
less often sampled dataset where specific methods such as
spectrum estimation and others can be applied to achieve a
correspondence between the two. For the particular context of
power system analysis for load flow calculations, the authors
of [5] leverage feature extraction to reconstruct synthetically
representative time series as a means for reduction of compu-
tational demands of the algorithms with bounded modelling
quality degradation. Computational intelligence methods such
as generative adversarial networks can be used to learn and
extrapolate measurement time series patterns as is the case
with the TimeGANs for generating quality datasets [6].

In [7] 1s load power profiles for residential consumers are
analysed with the goal of detecting power steps in a sampled
load power profile. A noninvasive error monitoring technique
is devised through comparison of the tested and reference
meters and synchronized statistical processing between the
two. Smart energy information systems design with IoT fea-
tures and reporting rate discussion are performed in [8], Main
contribution lays in establishing the requirements of an Energy
Information Management System (EIMS) for large scale en-
ergy consumption in buildings: hardware and software for data
collection, transmission and analysis. Embedded monitoring
and control for energy storage systems is presented in [9] using
distributed sensor and data acquisition nodes and hardware-in-
the-loop type evaluation of the performance.

III. METHODOLOGY

We briefly introduce the methods, the reference dataset and
associated metrics that we use for this work. Recently many
data-driven methods for energy time series forecasting rely
on sequence learning models. These algorithms operate on
subsequences of the input time series and can be used for both
single and multi-step forecasting or for classification tasks.
Standard implementation is in the form of recurrent neural
networks (RNN) which are neural network architectures with
built-in loops that allow the learning process to consider the
time dependencies between individual components as oposed
to independente training examples for conventional networks.
In order to mitigate negative effects that can appear during
training over long sequences, such as exploding or vanishing
gradients, more complex architectures have been devised such
as gated recurrent units (GRU) and long short-term memory
(LSTM) networks. A common characteristic of these structures
is the use of dedicated ”gates” that control the information
flow through the networks and include additional trainable
parameters for the gate weights. This allows the network to
propagate relevant information through multiple time steps
while selectively discarding irrelevant or redundant extracted
features. The basic LSTM cell [10] includes an input gate,
a layer input gate to update the cell state, a forget gate for
discarding information and an output gate. The state of the
LSTM cell memory at time step t is updated through the
Hadamard product as follows:

ct = ft ⊗ ct−1 ⊕ it ⊗ gt, (1)

The output state at time step t is given by the output gate
(o) which implements a read function combined with the cell
state (c) as in:

ht = ot ⊗ tanh(ct), (2)

where
ot = σ(Woxt +Roht−1 + bo). (3)

Based on a single layer LSTM networks several variants are
available and implemented through specific software packages.
Further layers can be stacked for increased complexity and
the ability to extract more fine grained features. Bidirectional



networks are able to parse through the input sequences in both
directions. An adaptation of the convolutional layers, typical
for bidimensional inputs as encountered in image processing,
can be applied for time series models by assembling the
input sequences into bidimensional formats and applying the
convolution operator for feature extraction.

The dataset used in this study stems from a long term data
collection of energy measurements from a typical residential
appartment from Bucharest, Romania. The dataset is available
for testing purposes from the authors. For illustration purposes,
a daily plot of active power in Watts from the month of
September 2020 is shown in Figure 1.

Fig. 1. Sample input data

For evaluation of the energy prediction performance at
various reporting rates we use the following metrics: Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). MSE , MAE balances
small and large prediction errors, while MAPE provides a
relative metric of accuracy that can be used across different
input magnitude scales. These are computed as follows:

MSE =

n∑
i=1

(yi − ŷi)2

n
;MAE =

∑n
i=1 |yi − ŷi|

n
;

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ 100; (4)

where yi is the actual value of sample i, ŷi is the predicted
value of the sample i, and n the number of samples. In
particular for MAPE we use the Python sci-kit learn package
implementation1 which as a small error term in the denomi-
nator to avoid division by zero and numerical inconsistencies.

MAPE =
1

n

n∑
i=1

|yi − ŷi|
max(ε, |yi|)

(5)

where ε is an arbitrary small constant, thereby shifting the
interval of the relative metric from [0, 100] to [0, 1/ε].

A basic prediction example for the test set associated with
one day of residential power measurements sampled at 1s and
using a single layer LSTM network is illustrated in Figure 2.

1https://scikit-learn.org/stable/modules/model evaluation.html#mean-
absolute-percentage-error

Fig. 2. Prediction results

IV. RESULTS

For the purpose of our study, we have trained and evaluated
the following deep learning models: single-layer LSTM net-
work (LSTM-1), two-layer stacked LSTM network (LSTM-
2), bidirectional LSTM network (BiLSTM), and a hybrid
convolutional and LSTM network (ConvLSTM). The number
of units per layer is fixed at 50. For each of the models
we report the MSE, MAE and MAPE testing metrics at the
baseline (1s) reporting rate as well as 2x/5x/10x decimated
reporting rate. The first goal is to derive an empirical relative
dependency between the reporting rate and the prediction
model accuracy for these variations of state-of-the-art deep
learning algorithms. From the available data we establish
a 70/30% split between the training and testing sets. The
random seed = 42 parameter is set for the implementation
to control for the randomness of the training and test datasets.
The training data is reshaped in a suitable manner as input
to the algorithms with the parameter n steps = 4 denoting
that each training example uses a sequence of four previous
values as input features. Each model is trained for 50 epochs.
Implementation is based on [11] using sci-kit learn v0.24,
numpy, pandas and keras packages on a server-class system
with Intel Xeon processor and 16GB RAM under the Linux
operating system.

Prediction test set accuracy results are summarised in Table
I-III for each of the available metrics. The hardware and
software dependant training time in Table IV is relevant for
relative comparisons between the trained model types at differ-
ent reporting rates. In general the convolutional variant of the
LSTM prediction model yields the best results albeit at very
large training times. The bidirectional LSTM model provides
the best trade-off between test set forecasting accuracy and
training time in our study.

TABLE I
TEST PREDICTION RESULTS - MSE

MSE [kW 2]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 6.53 8.72 6.6 7.25
2x 16.36 15.59 16.46 15.92
5x 37.8 40.62 37 36.2
10x 62.46 61.52 65.48 60.12



TABLE II
TEST SET PREDICTION RESULTS - MAE

MAE [W ]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 9.9 14 9.5 19
2x 25 24 26 19
5x 39 47 34 45

10x 55 58 92 59

TABLE III
TEST SET PREDICTION RESULTS - MAPE

MAPE [%]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 0.032 0.032 0.027 0.069
2x 0.066 0.05 0.056 0.078
5x 0.13 0.12 0.095 0.1

10x 0.12 0.18 0.17 0.18

Figure 3 shows the comparison between test MSE and
training time for the four models at various reporting rate
reduction factors. A light nonlinear relation between both
the error and decimation rate as well as training time and
decimation rate of the time series can be observed. We can
therefore reduce the input data reporting rate in accordance to
the dynamics of the observed measurement phenomena with
bounded decrease in MSE.

Fig. 3. MSE versus Training time Results

We attempt to further validate and generalized the study
results by running one of the models (BiLSTM) on a full
month of data as global model. The model is chosen based
on the previous results that show the best performance in
the trade-off between the decrease in MSE versus the in-
crease in training time for a more complex model, over the
various investigated reporting rates of the data. The same
parameters are kept, in particular the sequence length for
the n steps = 4 parameter. The global approach is tested
on the baseline reporting rate (1s) and the 10x decimated
reporting rate (10s). Figure 4 illustrates the validation loss
for the baseline model over the training epochs. The global
model - 10s achieves MSE = 10kW 2 and MAE = 24W
while the global model at the baseline reporting rate of 1s
achieves MSE = 0.910kW 2 and MAE = 2.49W . Training
time for the decimated model is t = 8400s while for the
baseline model we use an early stopping criterion to stop
the training once there is no significant decrease in the loss

TABLE IV
TRAINING TIME

Time [s]
LSTM-1 LSTM-2 BiLSTM ConvLSTM

Baseline 2282 3990 3276 4025
2x 1304 2268 1492 2517
5x 581 1038 878 868
10x 187 408 289 357

over multiple training epochs. This allows for multiple testing
iterations within the same computing time.

Fig. 4. Training loss for monthly global model (1s)

Individual models for a full month are also trained and
tested, composed of 30 daily subsequences corresponding
to the month of September 2020 at the baseline and 10x
decimated reporting rates. The aggregated results are presented
in the form of testing MSE metric histograms over the 30 indi-
vidual models in Figures 6 and 7. Top 15% of the outliers have
been eliminated from the error array. Further segmentation of
time of day and day of week models is possible for more
specific forecasting performance. Reducing the variability of
the MSE can be achieved for the residential energy use case
by including contextual variables and time series in the model
such as outdoor temperatures.

We also present a Matrix Profile (MP) exemplification
at the 1s reporting rate for multi-scale feature extraction
applied to energy measurements. This is an efficient time
series data mining method which allows feature extraction and
anomaly detection over large series. The algorithm outputs the
minimum sequence by sequence Euclidean distance based on
a single parameter, the subsequence size, which is used for
finding motifs, recurring patterns in the series, and discords,
the most dissimilar patterns. Figure 5 illustrates the computed
profile for the baseline rate while identifying the most dissim-
ilar sequence in the original daily data - corresponding to the
readings at noon from the daily series (Fig. 1).
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Fig. 5. Matrix profile for anomaly detection (1s)

Fig. 6. MSE distribution for daily models (1s)

Fig. 7. MSE distribution for daily models (10s)

V. CONCLUSION

We have investigated the performance of various types
of deep learning models on residential energy measurement
data at various reporting rates. The goal was to establish
an empirical relation useful for choosing the appropriate
amount of data required to train a good quality model while
considering the limitation of available computing resources.
Future work will consider extending the study to publicly
available benchmarking datasets such as Pecan Street Dataport

[12] and use the derived results to guide a energy time series
classification framework for steady-state evaluation on multi-
variate data.
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