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 3 
Figure S1: Performance and scalability evaluation on a subset of the Love et al. dataset. To allow for a 4 
performance and scalability evaluation of BANDITS, which does not scale to datasets with many transcripts, we 5 
here perform a DTU analysis for the 6 versus 6 samples dataset of Love et al. with only 1000 transcripts. Left 6 
panel: performance evaluation. The results are in line with those of Figure 1A. The performance of BANDITS is 7 
indicated in pink. Right panel: Scalability evaluation. BANDITS scales linearly with respect to the number of cells 8 
(or samples) in the dataset. The slope of the linear trend, however, is considerably larger than those of the other 9 
DTU methods that scale linearly. Note that the profiles of limma diffsplice, edgeR diffsplice and DoubleExpSeq 10 
overlap in this figure. 11 
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Figure S2: Performance evaluation of satuRn on different subsamples of the simulated bulk RNA-seq dataset 36 
by Love et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 37 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 38 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 39 
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empirical FDR is equal or below the imposed FDR threshold. We subsampled two-group comparisons according 40 
to three different samples sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted in the panel 41 
titles. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million 42 
(TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport1.  We additionally adopted two 43 
different filtering strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 44 
4). Overall, the performance of satuRn is on par with those of the best tools in the literature, DEXSeq and 45 
DoubleExpSeq. In addition, satuRn achieves a better control of the FDR on all datasets. For extremely small 46 
sample size, i.e. the 3 versus 3 comparison, the performance is slightly below that of DEXSeq, and inference does 47 
become slightly too conservative. Note that, as expected, the performances increase with increasing sample 48 
size, and a higher performance is achieved with the more stringent DRIMSeq filtering criterion (see Methods), 49 
which goes at the cost of retaining fewer transcripts for DTU analysis. Finally, we note that the performances 50 
and FDR control are consistently better for the scaled TPM data as compared to the raw counts. Note that this 51 
was only observed for this particular dataset. 52 
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 92 
Figure S3: Performance evaluation on different subsamples of the simulated bulk RNA-seq dataset by Love 93 
et al. with a reduced number of transcripts to allow for a comparison with BANDITS. FDR-TPR curves 94 
visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect to the 95 



5 
 

false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set 96 
at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below 97 
the imposed FDR threshold. We subsampled two-group comparisons according to three different samples 98 
sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted on top of the panels. The benchmark 99 
was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) (rows 3 and 100 
4) as imported with the Bioconductor R package tximport1.  We additionally adopted two different filtering 101 
strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and 4). Note that, in 102 
contrast to Figure S2, we additionally randomly subsampled 1000 genes (~3000-5000 transcripts) after 103 
filtering, in order to reduce the number of transcripts in the data and thereby allowing for a DTU analysis with 104 
BANDITS. In concordance with Figure S2, the performance of satuRn is on par with the best tools of the 105 
literature with a better control of the FDR in general. While the performance of BANDITS is good for the 106 
settings for which it was originally developed, (i.e., small datasets with a stringent filtering criterium), its 107 
performance is reduced in larger, more leniently filtered datasets and inference is also overly liberal in these 108 
settings. In addition, while all other methods perform much better on the scaledTPM data (rows 3 and 4) than 109 
on the raw count data (rows 1 and 2), BANDITS has a similar performance on both input data types. This can 110 
be explained by the fact that BANDITS inherently corrects for differences in transcript length, even when raw 111 
counts are used as an input.   112 
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 141 
Figure S4: Performance evaluation of DTU methods on the “Dmelanogaster” simulated bulk RNA-seq dataset 142 
by Van den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity 143 
of the method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent 144 
working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled 145 
if the empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the 146 
raw counts (row 1) and on scaled TPM (row 2) as obtained with the Bioconductor R package tximport1.  We 147 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 148 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 149 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 150 
and S2), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 151 
TPM), and DRIMSeq also performs well on these datasets. 152 
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 162 
Figure S5: Performance evaluation of DTU methods on the “Hsapiens” simulated bulk RNA-seq dataset by Van 163 
den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the 164 
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working 165 
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the 166 
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw 167 
counts (row 1) and on scaled TPM (row 2) as obtained with the Bioconductor R package tximport1.  We 168 
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeq-based 169 
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature, 170 
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A 171 
and S2), ), there is a limited difference in performances based on the data input type (i.e., counts versus scaled 172 
TPM), and DRIMSeq also performs well on these datasets. 173 
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Figure S6: Performance evaluation of DTU methods on the GTEx bulk RNA-seq dataset. FDR-TPR curves 183 
visualize the performance of each method by displaying the sensitivity (TPR) with respect to the false discovery 184 
rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels 185 
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR 186 
threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-187 
million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport1.  We additionally adopted 188 
two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 189 
and 4).  The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq. 190 
In addition, satuRn consistently provides a stringent control of the FDR, while DoubleExpSeq becomes more 191 
liberal with increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the largest 192 
comparison, as these methods do not scale to large datasets (Figure1). 193 
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Figure S7: Performance evaluation of DTU methods on the real scRNA-seq dataset by Chen et al. FDR-TPR 243 
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect 244 
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is 245 
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below 246 
the imposed FDR threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled 247 
transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport1.  We 248 
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-249 
based filtering (rows 2 and 4). The performance of satuRn is at least on par with the best tools from the 250 
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls 251 
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing 252 
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 50 cells each), 253 
as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does 254 
not converge on datasets with many zeros, such as scRNA-seq datasets. 255 
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Figure S8: Performance evaluation of DTU methods on the real scRNA-seq dataset by Tasic et al. FDR-TPR 300 
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect 301 
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is 302 
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below 303 
the imposed FDR threshold. We generated three two-group comparisons of 20, 75 and 200 cells each (left, 304 
middle and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or 305 
on scaled transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport1. 306 
We additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a 307 
DRIMSeq-based filtering (rows 2 and 4). Overall, satuRn slightly outperforms DoubleExpSeq, the best tools from 308 
the literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently 309 
controls the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with 310 
increasing sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 75 311 
cells and 200 cells each, respectively), as these methods do not scale to large datasets (Figure 1). NBSplice was 312 
omitted from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-seq datasets. 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
 330 
 331 
 332 
 333 
 334 
 335 
 336 
 337 
 338 
 339 
 340 
 341 
 342 
 343 
 344 
 345 
 346 
 347 
 348 
 349 
 350 
 351 



14 
 

 352 



15 
 

Figure S9: Performance evaluation of DTU methods on the real scRNA-seq dataset by Darmanis et al. FDR-TPR 353 
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect 354 
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is 355 
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below 356 
the imposed FDR threshold. We generated three two-group comparisons of 20, 50 and 100 cells each (left, 357 
middle and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or 358 
on scaled transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport1. 359 
We additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a 360 
DRIMSeq-based filtering (rows 2 and 4). Overall, the performance of satuRn is similar to DoubleExpSeq, the best 361 
tools from the literature. In addition, our method consistently controls the FDR close to its imposed nominal FDR 362 
threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. On the dataset with the 363 
smallest sample size, the FDR control of satuRn does become too strict. 364 
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 403 
Figure S10: The effect of filtering and abundance metrics on the performance of satuRn in the different bulk 404 
RNA-seq benchmark datasets. The effect of filtering and abundance metric differs between the different 405 
datasets. Top row: For the dataset by Love et al., filtering more stringently improves performance. In addition, 406 
both performance and FDR control are much better when using scaledTPM abundances, as compared to using 407 
counts. Middle row: For the simulated bulk datasets by Van den Berge et al.40, we also observe a positive effect 408 
of stringent filtering, however, the difference between scaledTPM and raw count abundances is negligible. 409 
Bottom row: For GTEx bulk dataset, the effect of filtering is limited. However, using counts performs 410 
considerably better than using scaledTPM abundances. 411 
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 413 
Figure S11: The effect of filtering and abundance metrics on the performance of DoubleExpSeq in the different 414 
bulk RNA-seq benchmark datasets. The effect of filtering and abundance metric differs between the different 415 
datasets. The observed effects correspond strongly with the effects of filtering and abundance metrics on satuRn 416 
(figure S10) and limma diffsplice (not shown). Top row: For the dataset by Love et al., filtering more stringently 417 
improves performance. In addition, both performance and FDR control are much better when using scaledTPM 418 
abundances, as compared to using counts. Middle row: For the simulated bulk datasets by Van den Berge et 419 
al.40, we also observe a positive effect of stringent filtering, however, the difference between scaledTPM and 420 
raw count abundances is negligible. Bottom row: For GTEx bulk dataset, the effect of filtering is limited. 421 
However, using counts performs considerably better than using scaledTPM abundances. 422 
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 423 
Figure S12: The effect of filtering and abundance metrics on the performance of satuRn in the different single-424 
cell RNA-seq benchmark datasets. For the Tasic (top row) and Chen (middle row) datasets, the effects of 425 
filtering are limited and using counts performs slightly better than using scaledTPM abundances. For the 426 
Darmanis dataset (bottom row), which is the sparsest dataset (see Figure S30 and table S1), a positive impact 427 
of the more stringent DRIMSeq filtering criterion is observed. 428 
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 436 
Figure S13: The effect of filtering and abundance metrics on the performance of DoubleExpSeq in the different 437 
single-cell RNA-seq benchmark datasets. The observed effects of filtering and abundance metric correspond 438 
strongly with the effects observed for on satuRn (figure S12) and limma diffsplice (not shown). For the Tasic (top 439 
row) and Chen (middle row) datasets, the effects of filtering are limited and using counts performs slightly better 440 
than using scaledTPM abundances. For the Darmanis dataset (bottom row), which is the sparsest dataset (see 441 
Figure S30 and table S1), a positive impact of the more stringent DRIMSeq filtering criterion is observed. 442 
 443 
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Figure S14: The effect of using an empirical null distribution on the false discovery control of satuRn. Panel A: 444 
Empirical distribution of the satuRn test statistics in one of the bulk transcriptomics benchmark datasets adapted 445 
from Love et al. The test statistics are z-scores, calculated from satuRn p-values as described in formula 5 (see 446 
Methods). This benchmark dataset is constructed to have 15% DTU transcripts and thus 85% non-DTU or null 447 
transcripts. The z-scores corresponding to the null transcripts are expected to follow a standard normal 448 
distribution (mean = 0, standard deviation = 1). This corresponds well with the maximum likelihood estimates 449 
(MLE) for the mean and variance of the empirical null distribution (mean = -0.002, standard deviation = 1.029) 450 
as obtained with the locfdr package2. In brief, these estimates are obtained by assuming that the z-scores of all 451 
transcripts follow a mixture distribution, where the z-scores of the null transcripts are expected to follow a 452 
normal distribution and the z-scores of the DTU transcripts follow some other distribution. Two models are fitted 453 
to the z-scores. The blue dashed curve is a normal distribution that is fitted to the mid 50% of the z-scores, which 454 
are assumed to originate from null genes, thus representing the estimated empirical null component densities. 455 
The MLE and central matching estimates (CME) for the mean and standard deviation of the estimated empirical 456 
null distribution are provided in the caption at the bottom of the plot. Finally, the green solid curve represents 457 
the estimated marginal density across all z-scores and is obtained by fitting a spline model to the histogram 458 
counts. Panel B: FDP-TPR curve for the bulk transcriptomics benchmark dataset. As the theoretical null 459 
distribution and the empirical null distribution are virtually identical, we observe a negligible difference between 460 
both strategies, both in terms of performance and FDR control. Panel C: Empirical distribution of the satuRn test 461 
statistics in one of the single-cell benchmark datasets adapted from Chen et al. Again, most of these z-scores are 462 
expected to follow a standard normal distribution as this benchmark dataset is also constructed to have 15% 463 
DTU transcripts. However, the empirical distribution is considerably wider than expected (standard deviation = 464 
1.236). We additionally observe a small shift of the distribution (mean = 0.072). Panel D: FDP-TPR curve for the 465 
single-cell benchmark dataset. While the inference for satuRn is overly liberal when working under the 466 
theoretical null, FDR control is restored by adopting the wider empirical null distribution. Note that the 467 
performance (the ranking of the transcripts according to their p-values) will only be affected when the empirical 468 
null distribution is shifted with respect to the theoretical null (i.e., when the MLE for the mean is clearly different 469 
from zero), which was not the case in this example nor in any other dataset from our analyses. 470 
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Figure S15: Adopting an empirical null distribution to improve FDR control is infeasible for DoubleExpSeq. 471 
Panel A: Distribution of the p-values from a DoubleExpSeq analysis in one of the single-cell benchmark datasets 472 
adapted from Chen et al. We immediately observe the large spike of p-values equal to 1, which distorts the p-473 
value distribution. In addition, the p-values in the mid-range (e.g., from 0.1 to 0.9), which are expected to be 474 
uniformly distributed, are skewed towards smaller values, which underlies the overly liberal results of 475 
DoubleExpSeq in our single-cell benchmarks. Panel B: The corresponding empirical distribution of the 476 
DoubleExpSeq test statistics. The test statistics are z-scores, calculated from the original DoubleExpSeq p-values 477 
as described in formula 5 (see Methods). As all our benchmark datasets are constructed to have 15% DTU 478 
transcripts and thus 85% non-DTU or null transcripts, most of these z-scores are expected to follow a standard 479 
normal distribution (mean = 0, standard deviation =1). However, given the pathological distribution of the p-480 
values it is not feasible to properly estimate the empirical null distribution, as also clearly shown by the widely 481 
different parameter estimates obtained using the two estimation frameworks implemented in the locfdr R 482 
package2; compare the estimates between MLE (maximum likelihood estimation) and CME (central matching 483 
estimation). For more details on the locfdr figures we refer to the caption of figure S10. 484 
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 487 
Figure S16: Performance evaluation on the real scRNA-seq dataset by Tasic et al., stratified by the magnitude 488 
of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage 489 
between the two groups of cells. The difference in the fraction of transcript usage between the two groups is 490 
indicated in the panel headers. Panel A: Dataset with 20 cells per group. The ability of all methods to detect 491 
DTU decreases when the strength of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are more 492 
successful in detecting small differences as compared to the other methods. Panel B: Dataset with 200 cells per 493 
group. Given the larger number of cells, the performance of all methods is increased compared to panel A. Again, 494 
satuRn and DoubleExpSeq are the most successful in detecting small differences in transcript usage. 495 
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 496 
Figure S17: Performance evaluation on the real scRNA-seq dataset by Chen et al., stratified by the magnitude 497 
of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage 498 
between the two groups of cells. The difference in the fraction of transcript usage between the two groups is 499 
indicated in the panel headers. The same patterns are observed as for the Tasic et al. dataset from Figure S16. 500 
Panel A: Dataset with 20 cells per group. The ability of all methods to detect DTU decreases when the strength 501 
of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are more successful in detecting small 502 
differences as compared to the other methods. Panel B: Dataset with 50 cells per group. Given the larger 503 
number of cells, the performance of all methods is increased compared to panel A. Again, satuRn and 504 
DoubleExpSeq are the most successful in detecting small differences in transcript usage. 505 
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Chen
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 506 
Figure S18: Performance evaluation on the real scRNA-seq dataset by Darmanis et al., stratified by the 507 
magnitude of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average 508 
transcript usage between the two groups of cells. The difference in the fraction of transcript usage between the 509 
two groups is indicated in the panel headers. The same patterns are observed as for the Tasic et al. and Chen et 510 
al. datasets from Figures S16 and S17. Panel A: Dataset with 20 cells per group. The ability of all methods to 511 
detect DTU decreases when the strength of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are 512 
more successful in detecting small differences as compared to the other methods. Panel B: Dataset with 100 513 
cells per group. Given the larger number of cells, the performance of all methods is increased compared to panel 514 
A. Again, satuRn and DoubleExpSeq are the most successful in detecting small differences in transcript usage. 515 

Darmanis

Darmanis



25 
 

 516 
Figure S19: Performance evaluation on the GTEx bulk RNA-seq dataset, stratified by the magnitude of the DTU 517 
signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage between 518 
the two groups of cells. The difference in the fraction of transcript usage between the two groups is indicated in 519 
the panel headers. The same patterns are observed as for the single-cell datasets from Figures S16-S18. Panel 520 
A: Dataset with 5 samples per group. The ability of all methods to detect DTU decreases when the strength of 521 
the DTU signal decreases. satuRn and DoubleExpSeq are more successful in detecting small differences as 522 
compared to the other methods. Panel B: Dataset with 50 samples per group. Given the larger number of cells, 523 
the performance of all methods is increased compared to panel A. Again, satuRn and DoubleExpSeq are the most 524 
successful in detecting small differences in transcript usage. Given the larger sequencing depth of bulk RNA-seq 525 
data, fewer observations per group are required to detect small differences in transcript usage as compared to 526 
single-cell datasets. 527 
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 528 
Figure S20: Scalability evaluation on bulk RNA-seq data. A: Runtime with respect to the number of samples in 529 
a bulk RNA-Seq dataset. Left panel: DRIMSeq and especially DEXSeq scale poorly with the number of cells in the 530 
dataset. Right panel: Detailed plot of the fastest methods. satuRn scales linearly with increasing numbers of 531 
samples, with a slope that is comparable to that of limma diffsplice. As such, satuRn can perform a DTU analysis 532 
on a dataset with two groups of 64 samples each and 30,000 transcripts in less than three minutes. For all sample 533 
sizes, the number of transcripts in the datasets were set at 30,000. Note that BANDITS was not included in this 534 
analysis as we did not obtain equivalence class counts for the GTEx bulk dataset. NBSplice, which was not 535 
included in the single-cell scalability benchmark of Figure 5 because it fails to converge on datasets with a large 536 
proportion of zero counts, is included here. B: Runtime with respect to the number of transcripts in a bulk RNA-537 
seq dataset. Left panel: DEXSeq and DRIMSeq scale poorly to the number of transcripts in the dataset. Right 538 
panel: Detailed plot of the remaining methods. satuRn scales linearly with increasing numbers of transcripts, 539 
but with a steeper slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. The number of samples in 540 
the dataset was set fixed to two groups of 16 samples. All scalability benchmarks were run on a single core.  541 
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 542 
Figure S21: Comparison of the scalability profiles between bulk RNA-seq and scRNA-seq data. A: Runtime with 543 
respect to the number of cells/samples in the dataset. Left panel: The scalability of the different DTU tools on 544 
bulk data is indicated with a full line, while the scalability on single-cell data is displayed with a dashed line. A 545 
large effect between both data types was only observed for DEXSeq, which scales considerably worse on single-546 
cell data, suggesting that the estimation of the GLM parameters is slower with sparse data. However, as the 547 
scalability profile of DEXSeq is quadratic with respect to the number of cells/samples in the data, it is still 548 
infeasible to adopt DEXSeq in datasets with many cells/samples, e.g., an analysis with 32 cells in each group 549 
takes approximately two hours. Right panel: detailed plot of the fastest methods. B: Runtime with respect to 550 
the number of transcripts in the dataset. The scalability of the different DTU tools on bulk data is indicated with 551 
a full line, while the scalability on single-cell data is displayed with a dashed line. Again, the largest difference in 552 
scalability between bulk and single-cell data was observed for DEXSeq. Right panel: detailed plot of the fastest 553 
methods.  554 

A 

B 



28 
 

 555 

Comparison Cell type 1 
(ALM) 

Cell type 2 
(VISp) 

DoubleExpSeq 
FDR 

Limma  
FDR 

Limma 
Empirical 

FDR 

1 Cpa6 Gpr88 Batf3 2142 3602 169 

2 Cbln4 Fezf2 Col27a1 644 468 297 

3 Cpa6 Gpr88 Col6a1 Fezf2 335 1029 77 

4 Gkn1 
Pcdh19 Col6a1 Fezf2 1878 2861 58 

5 Lypd1 
Gpr88 Hsd11b1 Endou 829 1411 249 

6 Tnc Hsd11b1 Endou 4580 4819 341 

7 Tmem163 
Dmrtb1 Hsd11b1 Endou 3388 5603 176 

8 Tmem163 
Arhgap25 Whrn Tox2 455 1387 166 

 556 
Figure S22: Number of differentially used transcripts as identified by DoubleExpSeq and limma diffsplice. The 557 
first three columns indicate the comparisons between ALM cell types (column 2) and VISp cell types (column 3), 558 
respectively. Column 4 indicates the number of differentially used transcripts as identified by DoubleExpSeq. 559 
Column 5 indicates the number of differentially used transcripts as identified by a limma diffsplice analysis with 560 
default settings. Column 6 displays the number of differentially used transcripts found by limma diffsplice after 561 
correcting for deviations between the theoretical and empirical null distributions. 562 
 563 
 564 
 565 
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 570 
 571 
 572 
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 574 
 575 
 576 
 577 
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 579 
 580 
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 583 

 584 
Figure S23: Histograms of the p-values from limma diffsplice. From these histograms, the huge number of DTU 585 
transcripts identified by limma diffsplice become apparent. Note that the general tendency of limma diffsplice 586 
for smaller p-values is better visible when converting the p-values into z-scores (see Figure S13). 587 
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Figure S24: Empirical distribution of the limma diffsplice test statistics. The test statistics are z-scores, 588 
calculated from limma diffsplice p-values as described in formula 5. Theoretically, these z-scores are expected 589 
to follow a standard normal distribution (mean = 0, standard deviation =1). Here, however, the empirical 590 
distributions are considerably wider (standard deviation > 1), as indicated underneath the plots. This indicates 591 
that the results returned by limma diffsplice in this case study are overly liberal. For more details on the locfdr 592 
figures we refer to the caption of figure S14. 593 
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 594 
Figure S25: Histograms of the p-values from DoubleExpSeq. From these histograms, the huge number of DTU 595 
transcripts identified by limma diffsplice become apparent. In addition, we observe a gradual decrease of p-596 
values over the interval [0.05 < p < 0.95], with a very large spike of p-values that are exactly 1 in all comparisons 597 
or contrasts of interest. 598 
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 599 
Figure S26: Empirical distribution of the test statistics in comparison #6 of the case study with DoubleExpSeq. 600 
The test statistics are z-scores, calculated from DoubleExpSeq p-values as described in formula 5 (see Methods). 601 
Theoretically, the bulk of these z-scores are expected to follow a standard normal distribution (mean = 0, 602 
standard deviation =1), i.e., assuming that most transcripts are not differentially used. However, the large spike 603 
of p-values equal to 1 (See Figure S14) results spike of z-scores equal to zero, which poses a problem when 604 
estimating the empirical null distribution (blue dashed curve). For more details on the locfdr figures we refer to 605 
the caption of figure S14.  606 
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Figure S27: Differential usage analysis at the EC level and the transcript level for gene P2rx4. Panel A: Link 608 
between equivalence classes and transcripts. Four equivalence classes (ECs) of gene P2rx4 passed feature-level 609 
filtering. EC1 is compatible only with transcript ENSMUST00000195963. Equivalence classes two three and four 610 
are compatible with multiple transcripts. Transcripts that passed feature-level filtering in the transcript-level 611 
DTU analysis are colored green. Note that none of equivalence classes in the filtered data are compatible with 612 
the bottom transcript ENSMUST00000132062. Panel B: Visualization of DU in the equivalence class analysis. 613 
Evidence for differential usage is found in EC1, EC2 and EC3. Panel C: Visualization of DTU in the transcript-level 614 
analysis. Evidence for differential usage is found in transcript ENSMUST00000195963 and transcript 615 
ENSMUST00000081554. The DTU signal ENSMUST00000195963 corresponds directly with the DU signal in EC1, 616 
since EC1 is only compatible with ENSMUST00000195963 and vice versa (panel A). For EC2 and EC3, we cannot 617 
directly make a link with the transcript-level profiles. Because here we performed both types of analyses, we 618 
can infer that while EC2, EC3 and EC4 are compatible with multiple transcripts, the EM algorithm assigned the 619 
majority of reads to transcripts ENSMUST00000081544. If we had to rely only on the EC-level analysis, it would 620 
not be possible to unambiguously assign the differential EC usage to transcript ENSMUST00000081544, as all 621 
equivalence classes are also compatible with transcript ENSMUST00000031429. 622 
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 623 
Figure S28: Comparison of the exons ranked according to p-values between the DEXSeq and satuRn 624 
differential exon usage analysis. Panel A: Top 20 exons for DEXSeq and corresponding rankings for satuRn. 625 
Panel B: Top 20 exons for satuRn and corresponding rankings for DEXSeq. For both panels, we observe a very 626 
strong concordance between the rankings obtained with the DEXSeq analysis and the satuRn analysis. 627 
 628 
 629 
  630 

A 
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 631 
Figure S29: Visualization of differential exon usage with satuRn. satuRn visualization of the three exons with 632 
an FDR below 5% in the demonstrational differential exon analysis.  633 
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 634 
Figure S30: Performance evaluation on the smallest subset of the three scRNA-seq datasets, stratified by the 635 
percentage of zero counts. Performances are shown for datasets filtered with edgeR and using raw counts data. 636 
The top panels display the performances on the different datasets for all transcripts, as previously displayed in 637 
figures 4, S8 and S9. The other panels display the performances on different subsets of transcripts. The three 638 
strata correspond to transcripts of genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage 639 
of zero counts in their corresponding transcript-level count matrices. The number of transcripts in each stratum 640 
is indicated in the header of each panel. The performances are relatively similar between the different datasets 641 
within the same stratum. However, given that the number of transcripts in the stratum with the highest 642 
percentage zero counts is proportionally much higher in for the Darmanis dataset, the overall performances (top 643 
panel) on this dataset are markedly lower than for the other datasets. 644 
 645 
 646 
 647 
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 648 
Figure S31: Performance evaluation on the largest subsets of the three scRNA-seq datasets stratified by the 649 
percentage of zero counts. Performances are shown for datasets filtered with edgeR and using raw counts data. 650 
The top panels display the performances on the different datasets for all transcripts, as previously displayed in 651 
figures 4, S8 and S9. The other panels display the performances on different subsets of transcripts. The three 652 
strata correspond to transcripts of genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage 653 
of zero counts in their corresponding transcript-level count matrices. The number of transcripts in each stratum 654 
is indicated in the header of each panel. The performances are relatively similar between the different datasets 655 
within the same stratum. However, given that the number of transcripts in the stratum with the highest 656 
percentage zero counts is proportionally much higher in for the Darmanis dataset, the overall performances (top 657 
panel) on this dataset are markedly lower than for the other datasets. 658 
 659 
 660 
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Figure S32: Properties of the three different scRNA-seq datasets. Datasets included are the largest subset of 661 
the Tasic dataset (400 cells), the Chen dataset (100 cells) and the Darmanis dataset (200 cells). The datasets 662 
were either filtered using edgeR (lenient) or DRIMSeq (stringent). Panel A: Density plot of the library sizes. The 663 
densities are obtained as the total sum of the counts per cell in each dataset. Library sizes are smallest for the 664 
Darmanis dataset. The mode of the densities for the Tasic dataset and the Chen dataset are similar, however, 665 
the spread is considerably larger for the Chen dataset. Panel B: Density plot of the fraction of zero counts per 666 
cell. The fraction of zero counts per cell is largest for the Darmanis dataset (modes of around 55% and 35%), 667 
followed by the Tasic dataset (modes of around 40% and 30%) and the Chen dataset (modes of around 35% and 668 
25%). Adopting the more stringent transcript-level filtering criterium of DRIMSeq naturally reduces the 669 
percentage of zero counts. As a comparison, the fraction of zero counts on the bulk RNA-seq GTEx dataset (100 670 
samples) was included as a reference (modes of around 5%). Panel C: Density plot of the fraction of zero counts 671 
per transcript. Similar to panel B, the percentage zero counts per transcript is highest for the Darmanis dataset, 672 
followed by the Tasic dataset, the Chen dataset and the GTEx dataset. Panel D: Fraction of binary genes per cell. 673 
A gene is called binary in a cell if only 1 isoform of that gene is expressed in that cell. Again, the highest fraction 674 
of fraction of binary genes is observed of cells from the Darmanis dataset, followed by the Tasic dataset, the 675 
Chen dataset and the GTEx dataset. 676 
 677 
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 681 
 682 

 683 
Table S1: Summary statistics for the GTEx bulk dataset and the three scRNA-seq datasets. Panel A: Dataset 684 
identifiers are indicated in the top-left cell. The column headers specify the number of samples/cells of each 685 
subset and the adopted filtering strategy (lenient for edgeR, stringent for DRIMSeq). The column “raw” indicates 686 
the unfiltered count matrix including all cells and all samples, i.e., the raw output of the quantification 687 
procedures. The row “N_transcripts” indicates the number of transcripts retained in the dataset. “Overall_zero” 688 
is the percentage of zero values in the count matrix. “Binary” is computed on the gene level. For each gene, the 689 
fraction of cells that have a binary transcript usage pattern where only a single transcript of the gene is expressed 690 
(as indicated in panel B) is computed. Next, the mean of these fractions (over the genes) is taken. Such binary 691 
count profiles are less informative than profiles with counts for multiple transcripts within the same gene3. The 692 
transcript usage fractions will be zero and infinity, respectively, regardless of the count value of the expressed 693 
transcript. The computation of “All_zero” is similar to that of “Binary”, however, here the fraction of cells that 694 
have only zero count values is computed for each gene and averaged over the genes, as indicated in panel B. 695 
 696 
 697 
 698 

Tasic 20 v 20 
lenient 

200 v 200 
lenient 

20 v 20 
stringent 

200 v 200 
stringent raw 

n_transcripts  19229 17591 9881 9074 99436 
overall_zero (%) 41,66 41,01 32,44 32,01 83,34 
binary (%) 32,1 32,41 31,19 31,33 24,86 
all_zero (%) 11,17 11,46 9,11 9,24 51,7 
 

     

Chen 20 v 20 
lenient 

50 v 50 
lenient 

20 v 20 
stringent 

50 v 50 
stringent raw 

n_transcripts 23409 23143 11277 11209 99280 
overall_zero (%) 38,29 37,58 26,46 26,07 78,26 
binary (%) 29,21 28,76 27,65 27,2 25,15 
all_zero (%) 8,94 8,75 5,86 5,83 42,82 
 

     

Darmanis 20 v 20 
lenient 

100 v 100 
lenient 

20 v 20 
stringent 

100 v 100 
stringent raw 

n_transcripts 3444 2961 844 769 175100 
overall_zero (%) 53,41 51,85 39,2 37,61 95,36 
binary (%) 39,62 39,34 33,88 32,79 15,69 
all_zero (%) 27,99 26,97 17,91 16,87 77,55 
 

     

GTEx 5 v 5 
lenient 

50 v 50 
lenient 

5 v 5 
stringent 

50 v 50 
stringent raw 

n_transcripts 54019 55435 26630 26945 162972 
overall_zero (%) 4,81 6,13 4,91 5,21 46,22 
binary (%) 2,49 3,15 4,71 4,98 14,62 

all_zero (%) 0,05 0,09 0,2 0,21 15,48 

  Cell 1 Cell 2 

Gene A Transcript 1 0 0 
Gene A Transcript 2 5 0 
Gene A Transcript 3 0 0 
Category  Binary All_zero 

A 
v 

B 
v 
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