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Figure S1: Performance and scalability evaluation on a subset of the Love et al. dataset. To allow for a
performance and scalability evaluation of BANDITS, which does not scale to datasets with many transcripts, we
here perform a DTU analysis for the 6 versus 6 samples dataset of Love et al. with only 1000 transcripts. Left
panel: performance evaluation. The results are in line with those of Figure 1A. The performance of BANDITS is
indicated in pink. Right panel: Scalability evaluation. BANDITS scales linearly with respect to the number of cells
(or samples) in the dataset. The slope of the linear trend, however, is considerably larger than those of the other
DTU methods that scale linearly. Note that the profiles of limma diffsplice, edgeR diffsplice and DoubleExpSeq
overlap in this figure.
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Figure S2: Performance evaluation of satuRn on different subsamples of the simulated bulk RNA-seq dataset
by Love et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the
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empirical FDR is equal or below the imposed FDR threshold. We subsampled two-group comparisons according
to three different samples sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted in the panel

titles. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million
(TPM) (rows 3 and 4) as imported with the Bioconductor R package tximport!. We additionally adopted two
different filtering strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-based filtering (rows 2 and
4). Overall, the performance of satuRn is on par with those of the best tools in the literature, DEXSeq and
DoubleExpSeq. In addition, satuRn achieves a better control of the FDR on all datasets. For extremely small
sample size, i.e. the 3 versus 3 comparison, the performance is slightly below that of DEXSeq, and inference does
become slightly too conservative. Note that, as expected, the performances increase with increasing sample
size, and a higher performance is achieved with the more stringent DRIMSeq filtering criterion (see Methods),
which goes at the cost of retaining fewer transcripts for DTU analysis. Finally, we note that the performances
and FDR control are consistently better for the scaled TPM data as compared to the raw counts. Note that this
was only observed for this particular dataset.
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false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is set
at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below
the imposed FDR threshold. We subsampled two-group comparisons according to three different samples

sizes; a 3 versus 3, 6 versus 6 and 10 versus 10 comparison, as denoted on top of the panels. The benchmark
was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-million (TPM) (rows 3 and
4) as imported with the Bioconductor R package tximport!. We additionally adopted two different filtering
strategies: an edgeR-based filtering (rows 1 and 3) and a DRIMSeqg-based filtering (rows 2 and 4). Note that, in
contrast to Figure S2, we additionally randomly subsampled 1000 genes (~3000-5000 transcripts) after
filtering, in order to reduce the number of transcripts in the data and thereby allowing for a DTU analysis with
BANDITS. In concordance with Figure S2, the performance of satuRn is on par with the best tools of the
literature with a better control of the FDR in general. While the performance of BANDITS is good for the
settings for which it was originally developed, (i.e., small datasets with a stringent filtering criterium), its
performance is reduced in larger, more leniently filtered datasets and inference is also overly liberal in these
settings. In addition, while all other methods perform much better on the scaledTPM data (rows 3 and 4) than
on the raw count data (rows 1 and 2), BANDITS has a similar performance on both input data types. This can
be explained by the fact that BANDITS inherently corrects for differences in transcript length, even when raw
counts are used as an input.
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Figure S4: Performance evaluation of DTU methods on the “Dmelanogaster” simulated bulk RNA-seq dataset
by Van den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity
of the method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent
working points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled

if the empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the
raw counts (row 1) and on scaled TPM (row 2) as obtained with the Bioconductor R package tximport®. We
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeg-based
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature,
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A
and S2), there is a limited difference in performances based on the data input type (i.e., counts versus scaled
TPM), and DRIMSeq also performs well on these datasets.
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Figure S5: Performance evaluation of DTU methods on the “Hsapiens” simulated bulk RNA-seq dataset by Van
den Berge et al. FDR-TPR curves visualize the performance of each method by displaying the sensitivity of the
method (TPR) with respect to the false discovery rate (FDR). The three circles on each curve represent working
points when the FDR level is set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the
empirical FDR is equal or below the imposed FDR threshold. The benchmark was performed both on the raw
counts (row 1) and on scaled TPM (row 2) as obtained with the Bioconductor R package tximportl. We
additionally adopted two different filtering strategies; an edgeR-based filtering (column 1) and a DRIMSeqg-based
filtering (column 2). Overall, the performance of satuRn is on par with those of the best tools in the literature,
DEXSeq and DoubleExpSeq. In contrast to the performance evaluation on the dataset by Love et al. (Figures 1A
and S2), ), there is a limited difference in performances based on the data input type (i.e., counts versus scaled
TPM), and DRIMSeq also performs well on these datasets.



50 versus 50 - edgeR filter - count

20 versus 20 - edgeR filter - count

5 versus 5 - edgeR filter - count

0 Lvo 0 [vo
= .
Leo teo €0 a €0
= o
-~ g 2
z
3 3 8
. g d
['q - ['4 . o o A
tzo & 8 tzo & i 06 2 zo
w & w 1 w o
o = 3
3 = (72}
] o =
= 3} 2
4 g =] Lo
10 o 10 @ 10 .
. L) o
o o )
. e . b . 2 +50°0
500 @ +50°0 ] $00 ?
2 2 g £100
Lioo 2 1100 2 100 2 r
8 8 2
o w o wn o
8 2 2 & 8 8 £ 3 & 8 8 2 2 & 8 2 S 3 3 3
ydL ydL ddL
83 88 33 g 23
g 5 g 35 g 55 2 2%
o E2 S EE e EL 58058
488 SEoo8 o8 o 22a'es
&858E28 &8538E2E 8858E2%8 cooe=24
e ese® oce oc0 oce eco 00 000
0 Lyo 0 rvo
= .
Leo Leo €0 & reo
= o
z S 3
3 3 g
S g .
[ ['4 'Y 5] Lz
tzo & 8 tzo & ? z0 6 2 co
o = o 5 e .
o = 3
& = 1]
2 9 =
o =
I 2 % Lo
10 o Ay ° 1o =
& & b L so0
lsoo g 1500 P 500 2
2 2 8 .
Lo ¢ 1100 g 100 2 pL00
o o N
~ N o w o wn o
8 [ 2 & 8 8 £ 3 & 8 2 S 3 3 3
ydL ydL
v0 Fpo 0 0
Leo Leo €0 : €0
- z 5
3 & 3
=2 bl o
« 8 © 2 x & ©
rzo o rzo o 3 [A =T z0 o
S & =
g £ F
= $ H
Lo & L10 k) oz 1o
o 153 o
rs00 ‘o +50'0 b s00 g S0°0
= =2 =2
. 2 . 2 ! 2 !
00 8 1100 8 o § 100
w w w
o e o el o o w o w o
S ~ o & S S ~ ] B S
- o o o o -~ o o o o
ydL ddL

FDR

FDR

182



Figure S6: Performance evaluation of DTU methods on the GTEx bulk RNA-seq dataset. FDR-TPR curves
visualize the performance of each method by displaying the sensitivity (TPR) with respect to the false discovery
rate (FDR). The three circles on each curve represent working points when the FDR level is set at nominal levels
of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below the imposed FDR
threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled transcripts-per-
million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport!. We additionally adopted
two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeqg-based filtering (rows 2
and 4). The performance of satuRn is on par with the best tools from the literature, DEXSeq and DoubleExpSeq.
In addition, satuRn consistently provides a stringent control of the FDR, while DoubleExpSeq becomes more
liberal with increasing sample sizes. Note that DEXSeq, DRIMSeq and NBSplice were omitted from the largest
comparison, as these methods do not scale to large datasets (Figurel).
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Figure S7: Performance evaluation of DTU methods on the real scRNA-seq dataset by Chen et al. FDR-TPR
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below
the imposed FDR threshold. The benchmark was performed both on the raw counts (rows 1 and 2) or on scaled
transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport!. We
additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a DRIMSeq-
based filtering (rows 2 and 4). The performance of satuRn is at least on par with the best tools from the
literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently controls
the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with increasing
sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 50 cells each),
as these methods do not scale to large datasets (Figure 1). NBSplice was omitted from all comparisons, as it does
not converge on datasets with many zeros, such as scRNA-seq datasets.
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Figure S8: Performance evaluation of DTU methods on the real scRNA-seq dataset by Tasic et al. FDR-TPR
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below
the imposed FDR threshold. We generated three two-group comparisons of 20, 75 and 200 cells each (left,
middle and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or
on scaled transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport®.
We additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a
DRIMSeq-based filtering (rows 2 and 4). Overall, satuRn slightly outperforms DoubleExpSeq, the best tools from
the literature. Note that the performance of DEXSeq is clearly lower. In addition, our method consistently
controls the FDR close to its imposed nominal FDR threshold, while DoubleExpSeq becomes more liberal with
increasing sample sizes. DEXSeq and DRIMSeq were omitted from the largest comparison (two groups with 75
cells and 200 cells each, respectively), as these methods do not scale to large datasets (Figure 1). NBSplice was
omitted from all comparisons, as it does not converge on datasets with many zeros, such as scRNA-seq datasets.
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Figure S9: Performance evaluation of DTU methods on the real scRNA-seq dataset by Darmanis et al. FDR-TPR
curves visualize the performance of each method by displaying the sensitivity of the method (TPR) with respect
to the false discovery rate (FDR). The three circles on each curve represent working points when the FDR level is
set at nominal levels of 1%, 5% and 10%, respectively. The circles are filled if the empirical FDR is equal or below
the imposed FDR threshold. We generated three two-group comparisons of 20, 50 and 100 cells each (left,
middle and right panel, respectively). The benchmark was performed both on the raw counts (rows 1 and 2) or
on scaled transcripts-per-million (TPM) (rows 3 and 4) as obtained with the Bioconductor R package tximport®.
We additionally adopted two different filtering strategies; an edgeR-based filtering (rows 1 and 3) and a
DRIMSeq-based filtering (rows 2 and 4). Overall, the performance of satuRn is similar to DoubleExpSeq, the best
tools from the literature. In addition, our method consistently controls the FDR close to its imposed nominal FDR
threshold, while DoubleExpSeq becomes more liberal with increasing sample sizes. On the dataset with the
smallest sample size, the FDR control of satuRn does become too strict.
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Figure S10: The effect of filtering and abundance metrics on the performance of satuRn in the different bulk
RNA-seq benchmark datasets. The effect of filtering and abundance metric differs between the different
datasets. Top row: For the dataset by Love et al,, filtering more stringently improves performance. In addition,
both performance and FDR control are much better when using scaledTPM abundances, as compared to using
counts. Middle row: For the simulated bulk datasets by Van den Berge et al.*’, we also observe a positive effect
of stringent filtering, however, the difference between scaledTPM and raw count abundances is negligible.
Bottom row: For GTEx bulk dataset, the effect of filtering is limited. However, using counts performs
considerably better than using scaledTPM abundances.
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Figure S11: The effect of filtering and abundance metrics on the performance of DoubleExpSeq in the different
bulk RNA-seq benchmark datasets. The effect of filtering and abundance metric differs between the different
datasets. The observed effects correspond strongly with the effects of filtering and abundance metrics on satuRn
(figure S10) and limma diffsplice (not shown). Top row: For the dataset by Love et al., filtering more stringently
improves performance. In addition, both performance and FDR control are much better when using scaledTPM
abundances, as compared to using counts. Middle row: For the simulated bulk datasets by Van den Berge et
al.%%, we also observe a positive effect of stringent filtering, however, the difference between scaledTPM and
raw count abundances is negligible. Bottom row: For GTEx bulk dataset, the effect of filtering is limited.
However, using counts performs considerably better than using scaledTPM abundances.
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Figure S12: The effect of filtering and abundance metrics on the performance of satuRn in the different single-
cell RNA-seq benchmark datasets. For the Tasic (top row) and Chen (middle row) datasets, the effects of
filtering are limited and using counts performs slightly better than using scaledTPM abundances. For the
Darmanis dataset (bottom row), which is the sparsest dataset (see Figure S30 and table S1), a positive impact
of the more stringent DRIMSeq filtering criterion is observed.
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Figure S13: The effect of filtering and abundance metrics on the performance of DoubleExpSeq in the different
single-cell RNA-seq benchmark datasets. The observed effects of filtering and abundance metric correspond
strongly with the effects observed for on satuRn (figure S12) and limma diffsplice (not shown). For the Tasic (top
row) and Chen (middle row) datasets, the effects of filtering are limited and using counts performs slightly better
than using scaledTPM abundances. For the Darmanis dataset (bottom row), which is the sparsest dataset (see
Figure S30 and table S1), a positive impact of the more stringent DRIMSeq filtering criterion is observed.
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444 Figure S14: The effect of using an empirical null distribution on the false discovery control of satuRn. Panel A:
445 Empirical distribution of the satuRn test statistics in one of the bulk transcriptomics benchmark datasets adapted
446 from Love et al. The test statistics are z-scores, calculated from satuRn p-values as described in formula 5 (see
447 Methods). This benchmark dataset is constructed to have 15% DTU transcripts and thus 85% non-DTU or null
448 transcripts. The z-scores corresponding to the null transcripts are expected to follow a standard normal
449 distribution (mean = 0, standard deviation = 1). This corresponds well with the maximum likelihood estimates
450 (MLE) for the mean and variance of the empirical null distribution (mean = -0.002, standard deviation = 1.029)
451 as obtained with the locfdr package?. In brief, these estimates are obtained by assuming that the z-scores of all
452 transcripts follow a mixture distribution, where the z-scores of the null transcripts are expected to follow a
453 normal distribution and the z-scores of the DTU transcripts follow some other distribution. Two models are fitted
454 to the z-scores. The blue dashed curve is a normal distribution that is fitted to the mid 50% of the z-scores, which
455 are assumed to originate from null genes, thus representing the estimated empirical null component densities.
456 The MLE and central matching estimates (CME) for the mean and standard deviation of the estimated empirical
457 null distribution are provided in the caption at the bottom of the plot. Finally, the green solid curve represents
458 the estimated marginal density across all z-scores and is obtained by fitting a spline model to the histogram
459 counts. Panel B: FDP-TPR curve for the bulk transcriptomics benchmark dataset. As the theoretical null
460 distribution and the empirical null distribution are virtually identical, we observe a negligible difference between
461 both strategies, both in terms of performance and FDR control. Panel C: Empirical distribution of the satuRn test
462 statistics in one of the single-cell benchmark datasets adapted from Chen et al. Again, most of these z-scores are
463 expected to follow a standard normal distribution as this benchmark dataset is also constructed to have 15%
464 DTU transcripts. However, the empirical distribution is considerably wider than expected (standard deviation =
465 1.236). We additionally observe a small shift of the distribution (mean = 0.072). Panel D: FDP-TPR curve for the
466 single-cell benchmark dataset. While the inference for satuRn is overly liberal when working under the
467 theoretical null, FDR control is restored by adopting the wider empirical null distribution. Note that the
468 performance (the ranking of the transcripts according to their p-values) will only be affected when the empirical
469 null distribution is shifted with respect to the theoretical null (i.e., when the MLE for the mean is clearly different
470 from zero), which was not the case in this example nor in any other dataset from our analyses.
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Figure S15: Adopting an empirical null distribution to improve FDR control is infeasible for DoubleExpSeq.
Panel A: Distribution of the p-values from a DoubleExpSeq analysis in one of the single-cell benchmark datasets
adapted from Chen et al. We immediately observe the large spike of p-values equal to 1, which distorts the p-
value distribution. In addition, the p-values in the mid-range (e.g., from 0.1 to 0.9), which are expected to be
uniformly distributed, are skewed towards smaller values, which underlies the overly liberal results of
DoubleExpSeq in our single-cell benchmarks. Panel B: The corresponding empirical distribution of the
DoubleExpSeq test statistics. The test statistics are z-scores, calculated from the original DoubleExpSeq p-values
as described in formula 5 (see Methods). As all our benchmark datasets are constructed to have 15% DTU
transcripts and thus 85% non-DTU or null transcripts, most of these z-scores are expected to follow a standard
normal distribution (mean = 0, standard deviation =1). However, given the pathological distribution of the p-
values it is not feasible to properly estimate the empirical null distribution, as also clearly shown by the widely
different parameter estimates obtained using the two estimation frameworks implemented in the locfdr R
package?; compare the estimates between MLE (maximum likelihood estimation) and CME (central matching
estimation). For more details on the locfdr figures we refer to the caption of figure S10.
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Figure S16: Performance evaluation on the real scRNA-seq dataset by Tasic et al., stratified by the magnitude
of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage
between the two groups of cells. The difference in the fraction of transcript usage between the two groups is
indicated in the panel headers. Panel A: Dataset with 20 cells per group. The ability of all methods to detect
DTU decreases when the strength of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are more
successful in detecting small differences as compared to the other methods. Panel B: Dataset with 200 cells per
group. Given the larger number of cells, the performance of all methods is increased compared to panel A. Again,
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satuRn and DoubleExpSeq are the most successful in detecting small differences in transcript usage.
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Figure S17: Performance evaluation on the real scRNA-seq dataset by Chen et al., stratified by the magnitude
of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage
between the two groups of cells. The difference in the fraction of transcript usage between the two groups is
indicated in the panel headers. The same patterns are observed as for the Tasic et al. dataset from Figure S16.
Panel A: Dataset with 20 cells per group. The ability of all methods to detect DTU decreases when the strength
of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are more successful in detecting small
differences as compared to the other methods. Panel B: Dataset with 50 cells per group. Given the larger
number of cells, the performance of all methods is increased compared to panel A. Again, satuRn and
DoubleExpSeq are the most successful in detecting small differences in transcript usage.
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Figure S18: Performance evaluation on the real scRNA-seq dataset by Darmanis et al., stratified by the
magnitude of the DTU signal. The FDR-TPR curves are stratified on the difference in the observed average
transcript usage between the two groups of cells. The difference in the fraction of transcript usage between the
two groups is indicated in the panel headers. The same patterns are observed as for the Tasic et al. and Chen et
al. datasets from Figures S16 and S17. Panel A: Dataset with 20 cells per group. The ability of all methods to
detect DTU decreases when the strength of the DTU signal decreases. Notably, satuRn and DoubleExpSeq are
more successful in detecting small differences as compared to the other methods. Panel B: Dataset with 100
cells per group. Given the larger number of cells, the performance of all methods is increased compared to panel
A. Again, satuRn and DoubleExpSeq are the most successful in detecting small differences in transcript usage.
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Figure S19: Performance evaluation on the GTEx bulk RNA-seq dataset, stratified by the magnitude of the DTU
signal. The FDR-TPR curves are stratified on the difference in the observed average transcript usage between
the two groups of cells. The difference in the fraction of transcript usage between the two groups is indicated in
the panel headers. The same patterns are observed as for the single-cell datasets from Figures $16-S18. Panel
A: Dataset with 5 samples per group. The ability of all methods to detect DTU decreases when the strength of
the DTU signal decreases. satuRn and DoubleExpSeq are more successful in detecting small differences as
compared to the other methods. Panel B: Dataset with 50 samples per group. Given the larger number of cells,
the performance of all methods is increased compared to panel A. Again, satuRn and DoubleExpSeq are the most
successful in detecting small differences in transcript usage. Given the larger sequencing depth of bulk RNA-seq
data, fewer observations per group are required to detect small differences in transcript usage as compared to
single-cell datasets.

25



528
529
530
531
532
533
534
535
536
537
538
539
540
541

1201
7.54
90 A
< <
S method I
2 DEXSeg o method
E 604 DoubleExpSeq €50 DoubleExpSeq
= ® DRIMSe: = edgeRDiffsplice
- edgeRDiffsplice -5 ® |immabDiffsplice
) ® |limmaDiffsplice Q ® NBSplice
2 ° NBSB“CE a ® satuRn
© ® satuRn @
) )
30 2.54
01 ¢ 0.04
20 40 60 20 40 60
number of cells per group number of cells per group
B 6
404
304 4
< <
£ method £
[0} DEXSeg 0] method
1S DoubleExpSeq £ DoubleExpSeq
= . DRIMSe?f = edgeRDiffsplice
- 204 edgeRDiffsplice - @ |limmaDiffsplice
o) ® |immabDiffsplice 0] © NBSplice
2 ® NBSplice 8 ® satuRn
© ® satuRn @
) © 24
104
04 i_,—//—’_/'/_w_v):_a//v—v 04 ‘\,—r——""—‘.—_‘-——.".
0 10000 20000 30000 0 10000 20000 30000
number of transcripts number of transcripts

Figure S20: Scalability evaluation on bulk RNA-seq data. A: Runtime with respect to the number of samples in
a bulk RNA-Seq dataset. Left panel: DRIMSeq and especially DEXSeq scale poorly with the number of cells in the
dataset. Right panel: Detailed plot of the fastest methods. satuRn scales linearly with increasing numbers of
samples, with a slope that is comparable to that of limma diffsplice. As such, satuRn can perform a DTU analysis
on a dataset with two groups of 64 samples each and 30,000 transcripts in less than three minutes. For all sample
sizes, the number of transcripts in the datasets were set at 30,000. Note that BANDITS was not included in this
analysis as we did not obtain equivalence class counts for the GTEx bulk dataset. NBSplice, which was not
included in the single-cell scalability benchmark of Figure 5 because it fails to converge on datasets with a large
proportion of zero counts, is included here. B: Runtime with respect to the number of transcripts in a bulk RNA-
seq dataset. Left panel: DEXSeq and DRIMSeq scale poorly to the number of transcripts in the dataset. Right
panel: Detailed plot of the remaining methods. satuRn scales linearly with increasing numbers of transcripts,
but with a steeper slope than edgeR diffsplice, DoubleExpSeq and limma diffsplice. The number of samples in
the dataset was set fixed to two groups of 16 samples. All scalability benchmarks were run on a single core.
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Figure S21: Comparison of the scalability profiles between bulk RNA-seq and scRNA-seq data. A: Runtime with
respect to the number of cells/samples in the dataset. Left panel: The scalability of the different DTU tools on
bulk data is indicated with a full line, while the scalability on single-cell data is displayed with a dashed line. A
large effect between both data types was only observed for DEXSeq, which scales considerably worse on single-
cell data, suggesting that the estimation of the GLM parameters is slower with sparse data. However, as the
scalability profile of DEXSeq is quadratic with respect to the number of cells/samples in the data, it is still
infeasible to adopt DEXSeq in datasets with many cells/samples, e.g., an analysis with 32 cells in each group
takes approximately two hours. Right panel: detailed plot of the fastest methods. B: Runtime with respect to
the number of transcripts in the dataset. The scalability of the different DTU tools on bulk data is indicated with
a full line, while the scalability on single-cell data is displayed with a dashed line. Again, the largest difference in
scalability between bulk and single-cell data was observed for DEXSeq. Right panel: detailed plot of the fastest
methods.
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Figure S22: Number of differentially used transcripts as identified by DoubleExpSeq and limma diffsplice. The
first three columns indicate the comparisons between ALM cell types (column 2) and VISp cell types (column 3),
respectively. Column 4 indicates the number of differentially used transcripts as identified by DoubleExpSeq.
Column 5 indicates the number of differentially used transcripts as identified by a limma diffsplice analysis with
default settings. Column 6 displays the number of differentially used transcripts found by limma diffsplice after
correcting for deviations between the theoretical and empirical null distributions.
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Figure S23: Histograms of the p-values from limma diffsplice. From these histograms, the huge number of DTU
transcripts identified by limma diffsplice become apparent. Note that the general tendency of limma diffsplice
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for smaller p-values is better visible when converting the p-values into z-scores (see Figure S13).
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Figure S24: Empirical distribution of the limma diffsplice test statistics. The test statistics are z-scores,
calculated from limma diffsplice p-values as described in formula 5. Theoretically, these z-scores are expected
to follow a standard normal distribution (mean = 0, standard deviation =1). Here, however, the empirical
distributions are considerably wider (standard deviation > 1), as indicated underneath the plots. This indicates
that the results returned by limma diffsplice in this case study are overly liberal. For more details on the locfdr
figures we refer to the caption of figure S14.
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Figure S25: Histograms of the p-values from DoubleExpSeq. From these histograms, the huge number of DTU
transcripts identified by limma diffsplice become apparent. In addition, we observe a gradual decrease of p-
values over the interval [0.05 < p < 0.95], with a very large spike of p-values that are exactly 1 in all comparisons
or contrasts of interest.
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Figure $26: Empirical distribution of the test statistics in comparison #6 of the case study with DoubleExpSeq.
The test statistics are z-scores, calculated from DoubleExpSeq p-values as described in formula 5 (see Methods).
Theoretically, the bulk of these z-scores are expected to follow a standard normal distribution (mean = 0,
standard deviation =1), i.e., assuming that most transcripts are not differentially used. However, the large spike
of p-values equal to 1 (See Figure S14) results spike of z-scores equal to zero, which poses a problem when
estimating the empirical null distribution (blue dashed curve). For more details on the locfdr figures we refer to
the caption of figure S14.
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Figure S27: Differential usage analysis at the EC level and the transcript level for gene P2rx4. Panel A: Link
between equivalence classes and transcripts. Four equivalence classes (ECs) of gene P2rx4 passed feature-level
filtering. EC1 is compatible only with transcript ENSMUST00000195963. Equivalence classes two three and four
are compatible with multiple transcripts. Transcripts that passed feature-level filtering in the transcript-level
DTU analysis are colored green. Note that none of equivalence classes in the filtered data are compatible with
the bottom transcript ENSMUST00000132062. Panel B: Visualization of DU in the equivalence class analysis.
Evidence for differential usage is found in EC1, EC2 and EC3. Panel C: Visualization of DTU in the transcript-level
analysis. Evidence for differential usage is found in transcript ENSMUST00000195963 and transcript
ENSMUST00000081554. The DTU signal ENSMUST00000195963 corresponds directly with the DU signal in EC1,
since EC1 is only compatible with ENSMUST00000195963 and vice versa (panel A). For EC2 and EC3, we cannot
directly make a link with the transcript-level profiles. Because here we performed both types of analyses, we
can infer that while EC2, EC3 and EC4 are compatible with multiple transcripts, the EM algorithm assigned the
majority of reads to transcripts ENSMUST00000081544. If we had to rely only on the EC-level analysis, it would
not be possible to unambiguously assign the differential EC usage to transcript ENSMUST00000081544, as all
equivalence classes are also compatible with transcript ENSMUST00000031429.
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623

A exon_id gene_id rank satuRn rank DEXSeq
114 FBgn0010909:E010 FBgn0010909 1 1
425 FBgn0085442:E009 FBgn0085442 2 2
426 FBgn0085442:E010 FBgn0085442 3 3
9  FBgn0000256:E009 FBgn0000256 4 4
454 FBgn0261573:E010 FBgn0261573 8 5
26 FBgn0000578:E009 FBgn0000578 5 6
177 FBgn0020309:E007 FBgn0020309 6 7
55 FBgn0002921:E015 FBgn0002921 13 8
203 FBgn0027579:E002 FBgn0027579 7 9
202 FBgn0027579:E001 FBgn0027579 9 10
420 FBgn0085442:E004 FBgn0085442 11 11
250 FBgn0032979:E004 FBgn0032979 12 12
52 FBgn0002921:E012 FBgn0002921 18 13
10 FBgn0000256:E010 FBgn0000256 10 14
455 FBgn0261573:E011 FBgn0261573 23 15
46 FBgn0002921:E006 FBgn0002921 15 16
406 FBgn0051352:E017 FBgn0051352 24 17
13 FBgn0000256:E013 FBgn0000256 34 18
388 FBgn0050460:E016 FBgn0050460 29 19
261 FBgn0034158:E006 FBgn0034158 14 20

B

exon_id gene_id rank_satuRn rank_DEXSeq
114 FBgn0010909:E010 FBgn0010909 1 1
425 FBgn0085442:E009 FBgn0085442 2 2
426 FBgn0085442:E010 FBgn0085442 3 3
9  FBgn0000256:E009 FBgn0000256 4 4
26 FBgn0000578:E009 FBgn0000578 5 6
177 FBgn0020309:E007 FBgn0020309 6 7
203 FBgn0027579:E002 FBgn0027579 7 9
454 FBgn0261573:E010 FBgn0261573 8 5
202 FBgn0027579:E001 FBgn0027579 9 10
10 FBgn0000256:E010 FBgn0000256 10 14
420 FBgn0085442:E004 FBgn0085442 11 11
250 FBgn0032979:E004 FBgn0032979 12 12
55 FBgn0002921:E015 FBgn0002921 13 8
261 FBgn0034158:E006 FBgn0034158 14 20
46 FBgn0002921:E006 FBgn0002921 15 16
458 FBgn0261573:E014 FBgn0261573 16 22
401 FBgn0051352:E009 FBgn0051352 17 32
52 FBgn0002921:E012 FBgn0002921 18 13
272 FBgn0034180:E007 FBgn0034180 19 30
31 FBgn0000578:E014 FBgn0000578 20 21

624 Figure S28: Comparison of the exons ranked according to p-values between the DEXSeq and satuRn
625 differential exon usage analysis. Panel A: Top 20 exons for DEXSeq and corresponding rankings for satuRn.
626 Panel B: Top 20 exons for satuRn and corresponding rankings for DEXSeq. For both panels, we observe a very
627 strong concordance between the rankings obtained with the DEXSeq analysis and the satuRn analysis.
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Figure S29: Visualization of differential exon usage with satuRn. satuRn visualization of the three exons with

an FDR below 5% in the demonstrational differential exon analysis.
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Figure S30: Performance evaluation on the smallest subset of the three scRNA-seq datasets, stratified by the
percentage of zero counts. Performances are shown for datasets filtered with edgeR and using raw counts data.
The top panels display the performances on the different datasets for all transcripts, as previously displayed in
figures 4, S8 and S9. The other panels display the performances on different subsets of transcripts. The three
strata correspond to transcripts of genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage
of zero counts in their corresponding transcript-level count matrices. The number of transcripts in each stratum
is indicated in the header of each panel. The performances are relatively similar between the different datasets
within the same stratum. However, given that the number of transcripts in the stratum with the highest
percentage zero counts is proportionally much higher in for the Darmanis dataset, the overall performances (top
panel) on this dataset are markedly lower than for the other datasets.
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648

649 Figure S31: Performance evaluation on the largest subsets of the three scRNA-seq datasets stratified by the
650 percentage of zero counts. Performances are shown for datasets filtered with edgeR and using raw counts data.
651 The top panels display the performances on the different datasets for all transcripts, as previously displayed in
652 figures 4, S8 and S9. The other panels display the performances on different subsets of transcripts. The three
653 strata correspond to transcripts of genes that have a low (< 25%), middle (25-50%) or high (> 50%) percentage
654 of zero counts in their corresponding transcript-level count matrices. The number of transcripts in each stratum
655 is indicated in the header of each panel. The performances are relatively similar between the different datasets
656 within the same stratum. However, given that the number of transcripts in the stratum with the highest
657 percentage zero counts is proportionally much higher in for the Darmanis dataset, the overall performances (top
658  panel) on this dataset are markedly lower than for the other datasets.
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Figure S32: Properties of the three different scRNA-seq datasets. Datasets included are the largest subset of
the Tasic dataset (400 cells), the Chen dataset (100 cells) and the Darmanis dataset (200 cells). The datasets
were either filtered using edgeR (lenient) or DRIMSeq (stringent). Panel A: Density plot of the library sizes. The
densities are obtained as the total sum of the counts per cell in each dataset. Library sizes are smallest for the
Darmanis dataset. The mode of the densities for the Tasic dataset and the Chen dataset are similar, however,
the spread is considerably larger for the Chen dataset. Panel B: Density plot of the fraction of zero counts per
cell. The fraction of zero counts per cell is largest for the Darmanis dataset (modes of around 55% and 35%),
followed by the Tasic dataset (modes of around 40% and 30%) and the Chen dataset (modes of around 35% and
25%). Adopting the more stringent transcript-level filtering criterium of DRIMSeq naturally reduces the
percentage of zero counts. As a comparison, the fraction of zero counts on the bulk RNA-seq GTEx dataset (100
samples) was included as a reference (modes of around 5%). Panel C: Density plot of the fraction of zero counts
per transcript. Similar to panel B, the percentage zero counts per transcript is highest for the Darmanis dataset,
followed by the Tasic dataset, the Chen dataset and the GTEx dataset. Panel D: Fraction of binary genes per cell.
A gene is called binary in a cell if only 1 isoform of that gene is expressed in that cell. Again, the highest fraction
of fraction of binary genes is observed of cells from the Darmanis dataset, followed by the Tasic dataset, the
Chen dataset and the GTEx dataset.
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698

Tasic 20 v 20 200. v 200 20 .v 20 20(:) v 200 raw
lenient lenient stringent stringent
n_transcripts 19229 17591 9881 9074 99436
overall_zero (%) | 41,66 41,01 32,44 32,01 83,34
binary (%) 32,1 32,41 31,19 31,33 24,86
all_zero (%) 11,17 11,46 9,11 9,24 51,7
Chen 20 v 20 50 v 50 20 .v 20 50.v 50 raw
lenient lenient stringent stringent
n_transcripts 23409 23143 11277 11209 99280
overall_zero (%) | 38,29 37,58 26,46 26,07 78,26
binary (%) 29,21 28,76 27,65 27,2 25,15
all_zero (%) 8,94 8,75 5,86 5,83 42,82
Darmanis 20 v 20 100_ v 100 20 .v 20 10(:) v 100 raw
lenient lenient stringent stringent
n_transcripts 3444 2961 844 769 175100
overall_zero (%) | 53,41 51,85 39,2 37,61 95,36
binary (%) 39,62 39,34 33,88 32,79 15,69
all_zero (%) 27,99 26,97 17,91 16,87 77,55
GTEx 5 v.5 50 v 50 5 v.5 50.v 50 raw
lenient lenient stringent stringent
n_transcripts 54019 55435 26630 26945 162972
overall_zero (%) | 4,81 6,13 491 5,21 46,22
binary (%) 2,49 3,15 4,71 4,98 14,62
all_zero (%) 0,05 0,09 0,2 0,21 15,48
B
Cell 1 Cell 2
Gene A Transcript 1 0 0
Gene A Transcript 2 5 0
Gene A Transcript 3 0 0
Category Binary All_zero

Table S1: Summary statistics for the GTEx bulk dataset and the three scRNA-seq datasets. Panel A: Dataset
identifiers are indicated in the top-left cell. The column headers specify the number of samples/cells of each
subset and the adopted filtering strategy (lenient for edgeR, stringent for DRIMSeq). The column “raw” indicates
the unfiltered count matrix including all cells and all samples, i.e., the raw output of the quantification
procedures. The row “N_transcripts” indicates the number of transcripts retained in the dataset. “Overall_zero”
is the percentage of zero values in the count matrix. “Binary” is computed on the gene level. For each gene, the
fraction of cells that have a binary transcript usage pattern where only a single transcript of the gene is expressed
(as indicated in panel B) is computed. Next, the mean of these fractions (over the genes) is taken. Such binary
count profiles are less informative than profiles with counts for multiple transcripts within the same gene®. The
transcript usage fractions will be zero and infinity, respectively, regardless of the count value of the expressed
transcript. The computation of “All_zero” is similar to that of “Binary”, however, here the fraction of cells that
have only zero count values is computed for each gene and averaged over the genes, as indicated in panel B.
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