
A Blockchain Implementation for Configurable
Multi-Factor Challenge-Set Self-Sovereign Identity

Authentication
Alex Norta

Tallinn University, Tallinn, Estonia
Johannes Kepler University, Linz, Austria

Dymaxion OÜ, Tallinn, Estonia
alex.norta.phd@ieee.org

Alexandr Kormiltsyn
Dymaxion OÜ, Tallinn, Estonia
alexandrkormiltsyn@gmail.com

Chibuzor Udokwu
University of Applied Sciences Upper Austria,

Steyr, Austria
Dymaxion OÜ, Tallinn, Estonia

chibuzor.udokwu@gmail.com

Vimal Dwivedi
University of Tartu, Tartu, Estonia
Dymaxion OÜ, Tallinn, Estonia)

vimal.bncet@gmail.com

Sunday Aroh
Dymaxion OÜ, Tallinn, Estonia

asmelitus@gmail.com

Ignas Nikolajev
Dymaxion OÜ, Tallinn, Estonia

ignas.nikolajev@gmail.com

Abstract—Multi-factor challenge-set self-sovereign identity au-
thentication (MFSSIA) is an important part for establishing
trust between systems, devices, organizations and humans for the
emerging machine-to-everything (M2X) economy. Most systems
for identity authentication (IA) are single sign-on (SSO), or have
fixed challenge sets of limited degree. Additionally, IA systems
are controlled by governments, or corporations that are closely
affiliated with government entities. The available systems for self-
sovereign IA do not offer the necessary flexible configurability
of challenge sets. Based on research publications about a formal
MFSSIA protocol, this paper presents a blockchain employing
implementation for a running case assuming different smart-
contract blockchain systems must be connected for sensitive data
exchange. The prototype offers a marketplace for challenge-
set creation and the challenge/response-lifecycle management
employs decentralized knowledge graphs (DKG) together with
oracles for response evaluations.

Index Terms—Blockchain, multi-factor, identity, authentica-
tion, self-sovereign

I. INTRODUCTION

Over the last two years, governments have eliminated many
fundamental liberties and freedoms of citizens to diffuse
identity-authentication (IA) apps for exerting societal control1.
Once such apps are in place, governments are quickly driven
to assign to such IA also social credit-score systems2 that add
further restrictions to members of the public. Furthermore,
we observe too the emergence of the so-called machine-
to-everything (M2X) economy [13] that is defined as ”the
result of interactions, transactions, collaborations and busi-
ness enactments among humans, autonomous and cooperative
smart devices, software agents, and physical systems. The
corresponding ecosystem is formed by automated, globally-
available, heterogeneous socio-technical e-governance systems

1https://terviseamet.ee/en/digital-covid-certificate
2https://tinyurl.com/scs-italy

with loosely coupled, peer-to-peer (P2P)-resembling network
structures and is characterized by its dynamic, continuously
changing, interoperable, open and distributed nature. Thereby,
the M2X Economy employs concepts such as cyber-physical
systems, the Internet of Things, and wireless sensor networks.”
Single sign-on IA is, consequently, not adequate for the
complex trust-establishment needs in collaborations between
diverse systems, devices, organizations and humans.

The foundation for the blockchain-based implementation
of the multi-factor challenge-set self-sovereign identity au-
thentication (MFSSIA) application is first a publication [12]
in which the requirements are defined and subsequently, a
deduced Colored Petri Net (CPN) [10] model formalizes the
corresponding MFSSIA lifecycle. This first MFSSIA protocol
version we further validate for security flaws [14] to update the
requirement sets and deduce again the fortified and formalized
MFSSIA protocol. We next explain in [13] why MFSSIA is
essential for trust resolution to enable collaborations in a M2X
economy, e.g., smart cities, Industry 4.0, e-healthcare, and so
on.

The state of the art shows theoretical MFSSIA protocol
results exist for which the ideal deployment technology is
blockchains [2]. Informally and briefly, blockchains are dis-
tributed ledgers of linked blocks that store consensually events
in an immutably traceable way. The extension of blockchains
with programming languages yield smart-contract systems [9].
For enabling data exchange between smart contracts and the
blockchain-external system context, oracles [1] are employed.
Given the vast blockchain-technology spectrum, this paper
answers the research questions how to implement and deploy
MFSSIA with novel blockchain technologies?

This paper answers the question by first giving a hypo-
thetical running case in Section II together with background
literature. In Section III, the MFSSIA architecture is described,



followed by Section III-A where we give the blockchain-
technology implementation. Next, Section IV provides a pro-
totype evaluation and discussion. Finally, Section V ends this
paper with conclusions and future work.

II. PRESUPPOSITIONS

We first present the running case about evaluating cross-
blockchain connection in Section II-A. Next, Section II-B
gives further literature with concepts that are relevant to follow
the subsequent sections.

A. Running case

We assume for the running case in Figure 1, the simple
process-aware B2B trade of apples from a farmer coop to
a grocery-store chain where individual end customers may
purchase the apples for their respective households. As is
depicted in the hypothetical running case of Figure 1, apples
are one of the trade items for a specific selling price that must
be agreed on.

Fig. 1. Conceptual running case for permitting, or denying a connection
between different blockchains for sensitive data exchange.

The farmer coop and the grocery-store chain have a high
degree of automation including blockchain systems of diverse
types for exchanging sensitive business-transaction data. With
respect to identification-authentication needs in this business
transaction, there are several aspects to be taken into account
for establishing trust in such a cross-organizational setting.

For simplicity, we assume that the farmer coop uses a
CRM-system that is supported with Ethereum [5] technology,
while the ERP-system of the grocery-store chain operates with
Polygon3blockchain technology in support. For both organiza-
tions, it is important to establish trust in the counterparty via
responding to issued challeng sets that must be evaluated. In

3https://polygon.technology/lightpaper-polygon.pdf

the running case of Figure 1, direct identity authentication of
humans and organizations in the marketplace is out of focus,
although a possible extension option of the existing dApp.
Instead, we assume that the semantics of a marketplace agree-
ment is captures in an instance of a so-called decentralized
knowledge graph (DKG) [16] that is explained in the sequel.
The price in the marketplace agreement is compared to the
values delivered by dedicated oracles [8] that collect such data
from the farmer coop and the grocery store respectively. If the
three price values match for the apples, we assume a consensus
exists about the business agreement and the next challenges
must be examined.

The bottom level of Figure 1 focuses on the challenge ex-
ploring if a valid security-licence audit exists for the business
transaction. Similar to the price-challenge response evaluation,
a DKG instance captures the semantic facts about the security-
licence audit validity for which an oracle delivers from an
off-chain registry the validity period for the specific security
audit. If the values match, the final challenge is to check
the availability of gateways4 with the correct configuration to
allow for the connection between the different blockchains for
sensitive data exchange. This paper reports about the proof-
of-concept prototype for automating MFSSIA to resolve the
Figure 1 running case.

B. Presuppositions

To expand on the aspect of MFSSIA in trust establishment,
Figure 2 shows a very simplified lifecycle between persons.
Note that the challenge/response-lifecycle evaluation for iden-
tity authentication is further applicable to devices, systems and
organizations that may be part of a M2X economy.

Fig. 2. General validation and authentication procedure for MFSSIA [11].

Thus, either the corresponding entity fails to respond cor-
rectly, or is able to successfully complete the challenge by
creating a corresponding respective response. The chosen
challenge set depends on the use-case, the required strictness
level of security and the expected threat level of and for the
involved entities. In the hypothetical running case of Figure 1,
the configured challenge set culminates in either permitting, or
rejecting the cross-blockchain connection between Ethereum
and Polygon via a correctly configured gateway.

DKG [15] is an acknowledgement that data is distributed in
silos and problematic to combine for knowledge- and business-
value extraction. The goal is to build a graph of entities

4https://ontochain.ngi.eu/content/perun-x



and relationships that are relevant to a specific domain, or
organization. Thus an ontology results from gathered and
combined data sets for the purpose of knowledge extraction by
a reasoner. This created unified view overcomes the problem
of distributed data silos to also enable machine-to-machine
(M2M) interoperability. In MFSSIA, the distributed data for a
complex case, e.g., the business agreement of the marketplace
in Figure 1, are combined into a unified view as a DKG
instance. Likewise, the challenges combined into a set for
response processing are represented as DKG instances to
facilitate a semantic processing complementarity.

Since smart-contract blockchain systems are disconnected
from the external off-chain information context, oracles [3] are
means to manage the data logistics between both domains. The
specific differentiation with integrating decentralized oracles
is that their users have enhanced trust assurance in that
involved workers, i.e., computing entities that provide comput-
ing resources, must satisfy a proof-of-contribution (PoCo) [6]
consensus protocol for their respective contributions. For ex-
ample, if the apple trade price the farmer coop and grocery-
store chain are prepared to pay respectively is wrongfully
delivered, a deposit is lost together with reputation. This
situation corresponds to the so-called oracle problem [4] that
PoCo5 tackles.

Expanding on the gateways6 of the running case of Figure 1
that are out of focus for this paper, the blockchain-scalability
problem does not allow for a high degree of transaction
processing. Thus, in the running case, we consider so-called
state channels [7] that allow for the enactment of complex
smart contracts, e.g., elaborate payment transactions.

III. SYSTEM ARCHITECTURE

The following discussion addresses the main modules of
the MFSSIA system in Figure 3, including the technolo-
gies used by third party dependencies. As per the running
case in Figure 1, we assumption two external systems must
establish a connection. For example, the first system uses
Ethereum as an internal blockchain and the second uses Tezos
blockchain. We propose iExec as a blockchain for MFSSIA
to support smart contracts with decentralised oracles for
challenge/response-evaluations. In the current context, there
exists a multifactor-authentication module that receives the
request from the external systems for authenticating the cross-
chain connection. As MFSSIA uses the concept of challenge
sets described in further details below, the authentication
module has connections with different decentralised oracles
that provide information stemming from outside the iExec
blockchain for challenge/response evaluation. In our context,
the number of oracles is limited according to the running
case and includes oracles for checking the business contract-,
security licence- and getaway information.

For the knowledge repository, we propose using DKG
provided by OriginTrail7. We use an Amazon Web Services

5https://tinyurl.com/trustandagents
6https://perun.network/
7https://origintrail.io/

(AWS) ec2 Linux instance for the DKG test-node setup.
Amazon Elastic Compute Cloud (Amazon EC2) provides
scalable computing capacity in the Amazon Web Services
(AWS) Cloud. The communication between iExec8 oracles
and the DKG test node is performed by the MFSSIA DKG
REST client that is deployed to the AWS cloud in another
ec2 Linux instance. Furthermore, a SpringBoot with Docker
supports the DKG REST client implementation. SpringBoot is
a Java framework that simplifies the creation of applications.
Docker is an open platform for developing, shipping, and
running applications to remain separate from the infrastructure
for faster software delivery.

In Figure 3, we provide the component overview for MF-
SSIA architecture. There are two decentralised applications
(dApps) to establish a connection with each other. In the
iExec cloud, we have 4 components: smart contracts for multi-
factor authentication and three iExec oracles for retrieving
the data for business contract-, security licence- and gateway
verification. The smart contract for multi-factor authentication
uses an RPC interface that is exposed to the external systems.
The usage of RPC is a standard way of communication with
smart contracts by off-chain applications. Oracles use REST
API to retrieve the required information from a DKG node.
This communication occurs with the support of a DKG rest
client that encapsulates the logic for building and sending
the HTTP requests to DKG for receiving and parsing the
response in JSON format. The DKG node contains the domain
knowledge that includes business contract-, security licence-,
gateway- and challenge sets. This domain knowledge is based
on the MFSSIA ontology that is mapped to a JSON structure
supported by the DKG. The challenge-set marketplace is
a separate front-end application deployed outside the AWS
infrastructure.

A. Technology Stack of Implementation

The smart contracts for MFSSIA are implemented in Solid-
ity as part of Ethereum. Polygon is designed to render trans-
actions on the Ethereum blockchain much faster and cheaper
than on the main network. Specifically, the Polygon network
offers a second layer (Layer 2) solution to more flexibly pre-
process transactions ahead of the Ethereum network. Two
different types of chains can be built in the Polygon ecosystem:
offline chains and secure chains. Autonomous chains can have
their own consensus models and are therefore less secure
than networks using the Ethereum consensus model. We use
the iExec Oracle Factory to enable interoperability between
Ethereum and Polygon networks as well as the Decentralised
Knowledge Graph (DKG) components. iExec integrates cloud-
resource sellers and -providers.

As an asynchronous event-driven JavaScript runtime,
Node.js9 is designed to build scalable network applications.
Node.js is an open-source, cross-platform, back-end JavaScript
runtime environment that runs on the V8 engine and executes

8https://iex.ec/
9https://nodejs.org/en/



Fig. 3. Architecture of the blockchain-based MFSSIA implementation.

JavaScript code outside a web browser. Node.js lets developers
use JavaScript to write command-line tools and for server-side
scripting, running scripts server-side to produce dynamic web-
page content before a page is sent to the user’s web browser.
In MFSSIA, we use Node.js for both front- and back-end off-
chain components.

Angular10 is a TypeScript-based free and open-source web
application framework led by the Angular Team at Google
by a community of individuals and corporations. The Angular
framework introduces the single-page application architecture
that enables a simple and clear separation of a front- and
back-end business logic implementation. The front-end im-
plementation with the Angular framework communicates with
the back-end with the HTTP REST protocol. Thus, the back-
end component (REST API) can be implemented in MFSSIA
in any technology that supports the REST endpoints with the
implementation.

The Java Spring Framework11 (Spring Framework) is a
popular, open-source, enterprise-level framework for creating
stand-alone, production-grade applications that run on the Java
Virtual Machine (JVM). The Spring Framework allows one to
set up a Spring-based application with minimal configuration.
In MFSSIA, we use Spring Boot for the simplicity of Java
code in the implementation of DKG REST API component.
Spring Boot renders developing web application and micro-
services with the Spring Framework faster and easier due to
three core capabilities, i.e., auto-configuration, an opinionated
approach to configuration, and the ability to create standalone
applications.

For an extensive technology-stack overview, we refer inter-
ested readers to the extended technical report12 for details that

10https://angular.io/
11https://spring.io/
12https://tinyurl.com/MFSSIAtechstack

also comprises a complete installation guide. There are several
publicly available bitbucket repositories available for down-
loading the MFSSIA source code in MFSSIA-Authcoin13,
the related challenge-set marketplace14 and the DKG-related
code15.

B. Behavioural MFSSIA system description
There are two types of operations that can be performed

in the MFSSIA system. The first one is the deployment of
a business contract that contains the challenge sets for a
connection and the second operation is the authentication
of the connection. We outline the sequential activities and
interactions between the users and components in the MFSSIA
system that result in these two operations. Figure 4(a) shows
the sequence of activities that results in the deployment of
a business contract in the MFSSIA system and Figure 4(b)
shows the sequence of activities that results in the authentica-
tion of a connection with the MFSSIA system.

1) Deployment of business contracts: To create and deploy
a new business contract, any of the system users (service
provider, or -consumer) accesses the challenge-set marketplace
user interface (UI) to create a new business contract. Figure 5
shows the data model of the business contract. First, the user
provides information about the actors and their roles in the
contract, followed by specifying the duration of the contract.
The type of contract is then specified along with the set of
contractual obligations. For the evaluation performed in the
latter part of this paper, the sample contract deployed contains
two roles, service producer and service consumer. The contract
type is product purchase with obligations on product name,
quantity and price. The duration for the delivery of the product
is specified in months.

13https://bitbucket.org/alexnorta/mfssia-authcoin/src/main/
14https://tinyurl.com/bitbucketmaster
15https://bitbucket.org/alexnorta/mfssia-dkg-authcoin/src/main/



Fig. 4. MFSSIA challenge-set deployment and authentication operations.

Fig. 5. MFSSIA business-contract data model.



Once the information about the contract is provided, the
contract is then deployed as an instance on the DKG network.
The contract ID number is returned to the user that deploys
the contract.

2) Authentication of connection: To authenticate a con-
nection in the MFSSIA system, a connection request is first
initiated by either user of the system (service provider, or
-consumer) with providing the business contract ID. The
connection interface transmits the contract ID to the iExec
oracle component. The oracle component initiates a request
to acquire information about the status of the security license
and gateway information between the two parties that wish to
establish a connection. The statuses of the security license and
gateways respectively for the two systems are then returned
back to the connection interface.

The oracle component initiates a request to acquire re-
sponses from the DKG component and the separate sys-
tems for service providers and service consumers about the
properties specified in the business contract. The oracle then
evaluates the responses from the three components to check
if the returned business-contract properties are the same. The
status of the check is returned to the connection interface.

The connection interface performs a final check to verify if
the boolean information on the status of the security license,
gateway and business are true, or false. If the final check
returns true, the connection interface displays a green noti-
fication approving a business-contract authentication between
the two systems. Otherwise, the connection interface displays
red to disapprove business-contract authentication between the
two systems.

IV. EVALUATION AND DISCUSSION

The running-case demonstration of Figure 1 with the proof-
of-concept prototype is available in a video recording16. The
initial part focuses on evaluating function-test cases. Not
included here due to space limitations, the extended technical
report contains a table with detailed test-case results. Briefly,
the test setup assumes a smart contract ID issuance and the
specific price for a type of apples in a set quantity must arrive
after a given time interval.

The extended technical report describes both valid- and
invalid test cases. Valid test cases ensure that users can perform
appropriate actions when using valid data. Invalid test cases
are performed to try “breaking” the software by performing
invalid (or unacceptable) actions, or by using invalid data. We
consider three inputs 1) DKG Input 2) System 1 input, and 3)
System 2 input as per Figure 3 . Since we have three variables
and each can have valid and invalid test cases, the total number
of test cases are eight. The extended technical report describes
the output and how many lines of code (LOC) are covered
through specific test IDs. Since we test the complete system
and not specific modules, therefore the coverage is 100%.

Besides the functional testing, also the entire MFSSIA
prototype is evaluated. The purpose of this evaluation is to

16https://tinyurl.com/2ap46em8

understand the scalability factor of the MFSSIA authenti-
cation, therefore, determining the practical use-cases of the
system. The MFSSIA system comprises three components
that return data to the authentication interface, i.e., DKG,
System 1 and System 2. Each of the systems have their
individual time delays. Thus, the scalability factor determines
the minimal amount of time required for providing valid
inputs (responses) for the authentication. The key performance
indicator (KPI) for the evaluation is the time lag required for
each component (DKG, System 1 and System 2). The time
lag is counted from a negative number (-2 mins) to positive
number (+2 mins). The negative time implies that challenge-
set responses are provided before the connection is initiated.
The positive time implies that challenge-set responses are
provided after the connection request has been initiated from
the MFSSIA connection interface. The expected results are
either a successful connection, or an unsuccessful connection.
A given case of time lag is benchmarked successfully if the
connection interface returns the expected connection results
for given inputs.

To reproduce the evaluation, the following input data are
considered as expected input: Contract ID = 1234, Price =
10000, QUANTITY = 2, DELIVERY INTERVAL = 3, and
PRODUCT NAME = apple. If the System 1, System 2 and
DKG from the marketplace provide the same expected input
data then the expected output is green, otherwise the expected
output is red. If the output produced by the connection
interface, for a given time lag, matches the expected result,
then the test result is marked positively for the measured time
interval. Otherwise, the test result is marked negatively (-) in
the extended technical report.

The test results show that MFSSIA has a latency that does
not suggest a use for systems with fast processing time, e.g.,
for an identity-authentication application in high-frequency
financial-trading applications. Instead, a very suitable usecase
would be for situations such as B2B-commerce where the
identity authentication of the individuals, organizations and
systems employed takes a long time due to bureaucracy. For
example, if a container of clothes is ordered by a European
retailer on Alibaba from a factory in China, for both parties
a trusted identity authentication is time consuming, if not
impossible. Instead, with MFSSIA where both parties commit
to an automated means of identity authentication, the trade
risk, invested time and expenses can be reduced considerably.

V. CONCLUSIONS AND FUTURE WORK

The MFSSIA project has its roots in several research publi-
cations and a position paper about the M2X economy where it
is evident that trust management is important to establish and
maintain collaboration between humans, machines, systems,
organisations, devices, and so on. In this prior research, we
denoted the protocol for the MFSSIA with so-called goal
models, Colored Petri Nets and studied the security of the
formally defined protocol for further fortification. Conse-
quently, a rather diagnostic understanding has been established



this way for the MFSSIA system prior to the proof-of-
concept implementation this paper reports about. Decentralised
knowledge graphs and oracles using proof-of-contribution are
important to integrate into MFSSIA. We use the former to
define challenges, responses, and context-definition files for
automated processing; for the response evaluation we require
the latter as oracles to fetch relevant information from the
application context.

For MFSSIA, we have created the foundation for a
challenge-set library that we consider to be a marketplace
allegorically similar to an app store for trading apps. The
vision is to have security experts create challenges under
DKG consideration that absorb many other existing systems
for identity authentication and verification, e.g., various ID
solutions that are either national, or self-sovereign, document
verification systems, etc. The evaluation of MFSSIA shows
that the latency in identity authentication renders the system
applicable for cases where high speed is not required. Instead,
less time-critical application scenarios are appropriate such
as onboarding devices into existing IoT-systems, or for B2B-
commerce situations where an identity authentication may oth-
erwise require several days with costly bureaucratic processes.

There are several limitations of the currently existing first
prototype implementation and a lot of future work is required.
First, future work should aim to establish a token economy
related to MFSSIA system use. In principle, utility tokens
have many uses such as for challenges, issuing responses,
evaluating these responses with oracles, and so on. All of
these points justify the use of utility tokens. Furthermore,
aiming for a challenge-set marketplace suggests that NFTs
lend themselves for managing the ownership of challenges that
can be assembled into sets in a context-dependent way. An
NFT expresses ownership of a challenge as a digital twin that
facilitates ownership trading and allows for royalty collection.

Second, we aim to develop and grow the challenge-set
marketplace with standards that integrate seamlessly with
the identity authentication of systems and devices. Further
MFSSIA use cases in the Web3 domain are planned to re-
establish a viable business- and revenue model for creative-
media content production in our age of centrally controlled
platforms such as NetFlix. We also aim for further use
cases with various ONTOCHAIN projects such as for IoT17,
the management of non-fungible tokens (NFT)18, reputation-
automation integration19, and so on.

ACKNOWLEDGMENT

The research and development reported in this paper about
MFSSIA20 is funded by the European Union’s Horizon 2020
Research and Innovation Programme under grant agreement
no. 957338 (ONTOCHAIN: Trusted, traceable and transparent
ontological knowledge on blockchain). This project is also
partially funded by the Estonian ”Personal research funding:

17https://ontochain.ngi.eu/content/ados
18https://ontochain.ngi.eu/content/piswap
19https://tinyurl.com/ontochainreputation
20https://bit.ly/360Bbj0

Team grant (PRG)” project PRG1641. Finally, partial funding
is also acknowledged from the NGI Explorers Program, a
European initiative funded under the Horizon Research and
Innovation Framework (H2020), Grant agreement number:
825183, Call-identifier: H2020-ICT-31.

REFERENCES

[1] Hamda Al-Breiki, Muhammad Habib Ur Rehman, Khaled Salah, and
Davor Svetinovic. Trustworthy blockchain oracles: review, comparison,
and open research challenges. IEEE Access, 8:85675–85685, 2020.

[2] Omar Ali, Ashraf Jaradat, Atik Kulakli, and Ahmed Abuhalimeh. A
comparative study: Blockchain technology utilization benefits, chal-
lenges and functionalities. IEEE Access, 9:12730–12749, 2021.

[3] Giulio Caldarelli. Real-world blockchain applications under the lens
of the oracle problem. a systematic literature review. In 2020 IEEE
International Conference on Technology Management, Operations and
Decisions (ICTMOD), pages 1–6. IEEE, 2020.

[4] Giulio Caldarelli. Understanding the blockchain oracle problem: A call
for action. Information, 11(11):509, 2020.

[5] Chris Dannen. Solidity programming. In Introducing Ethereum and
Solidity, pages 69–88. Springer, 2017.

[6] Shifeng Ding, Gangxiang Shen, Kevin X Pan, Sanjay K Bose, Qiong
Zhang, and Biswanath Mukherjee. Blockchain-assisted spectrum trading
between elastic virtual optical networks. IEEE Network, 34(6):205–211,
2020.

[7] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. General
state channel networks. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 949–966,
2018.

[8] Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. From oracles to
trustworthy data on-chaining systems. In 2019 IEEE International
Conference on Blockchain (Blockchain), pages 496–503. IEEE, 2019.

[9] Tharaka Hewa, Mika Ylianttila, and Madhusanka Liyanage. Survey
on blockchain based smart contracts: Applications, opportunities and
challenges. Journal of Network and Computer Applications, 177:102857,
2021.

[10] Kurt Jensen and Lars M Kristensen. Colored petri nets: a graphical
language for formal modeling and validation of concurrent systems.
Communications of the ACM, 58(6):61–70, 2015.

[11] Benjamin Leiding, Clemens H Cap, Thomas Mundt, and Samaneh
Rashidibajgan. Authcoin: validation and authentication in decentralized
networks. arXiv preprint arXiv:1609.04955, 2016.

[12] Benjamin Leiding and Alex Norta. Mapping requirements specifications
into a formalized blockchain-enabled authentication protocol for secured
personal identity assurance. In International Conference on Future Data
and Security Engineering, pages 181–196. Springer, 2017.

[13] Benjamin Leiding, Priyanka Sharma, and Alexander Norta. The
machine-to-everything (m2x) economy: Business enactments, collabo-
rations, and e-governance. Future Internet, 13(12):319, 2021.

[14] Alex Norta, Raimundas Matulevičius, and Benjamin Leiding. Safeguard-
ing a formalized blockchain-enabled identity-authentication protocol by
applying security risk-oriented patterns. Computers & Security, 86:253–
269, 2019.

[15] Bastien Vidé, Joan Marty, Franck Ravat, and Max Chevalier. Designing
a business view of enterprise data: An approach based on a decentralised
enterprise knowledge graph. In 25th International Database Engineering
& Applications Symposium, pages 184–193, 2021.

[16] Shuai Wang, Chenchen Huang, Juanjuan Li, Yong Yuan, and Fei-
Yue Wang. Decentralized construction of knowledge graphs for deep
recommender systems based on blockchain-powered smart contracts.
IEEE Access, 7:136951–136961, 2019.


