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Abstract

Streets are often named after landmarks, famous individuals, professions,
and other concepts, which are often related to the region’s cultural, histor-
ical, and political background (Bancilhon et al., 2021; Chen et al., 2021;
Rusu, 2019). For example, Chen et al. (2021) classified 31 street names with
semantic information and analyzed the distribution of categorized semantic
types based on historical events to explain urban development. However,
the existing approaches have dealt with a limited number of semantic types,
which is difficult to generalize to wide-ranging geographic areas. Thus, we
propose an automatic pipeline that can capture the semantic meanings of
street names in the United States and analyze their evolution in geographic
space and time.

To investigate how street names and their semantic meanings change over
space and time, we use names, geographic locations, and age estimates of
streets in 2,651 counties of the U.S. This dataset has been created based
on Zillow’s Transaction and Assessment Dataset (ZTRAX), an industry-
assembled property and real-estate database, holding rich attributes for over
150,000,000 cadastral built-up properties in the U.S. Attributes include the
construction year of buildings within a property, their address, geolocation,
function, size, and other physical and ownership-related attributes. Based on
the property addresses in ZTRAX, we group the property records by street
name, separately for each place (i.e., city, town, or village) and derive several
street-level statistics, such as the earliest construction year per street, as a
rough age estimate of a given street. We assume high levels of coherence
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between the evolution of buildings and roads to infer street age based on
nearby building age. This is a common assumption in historical road net-
work modeling (Barrington-Leigh and Millard-Ball, 2015; Burghardt et al.,
2022), and has been employed to estimate the age of built-up areas over 200
years (Leyk and Uhl, 2018). This method is robust to bias introduced by
building replacements, as a single original building per street is sufficient to
obtain a realistic age estimate. This way, we create a unique, spatio-temporal
street dataset covering large parts of the U.S. Importantly, this dataset does
not take into account street renaming activities and instead reflects the cur-
rent naming. Figure 1 shows a subset of this dataset for a part of Boulder
(Colorado).

We preprocess the street names by converting them into title cases and
removing the street suffix abbreviations and numbers. We then use the pre-
processed street names to find their corresponding entities in existing knowl-
edge graphs, such as Wikidata (Vrandečić and Krötzsch, 2014). We use
both partial and exact matches between the entity name and preprocessed
street name to find the entity that could represent the semantic meaning of
a street name. The matched cases are one-to-one or one-to-many, in which
one street name is matched to either a single entity or to multiple entities.
For example, in the one-to-one match case ‘Daylight Drive’, there can be one
matched case (e.g., the light of day). In contrast, given a street name such as
‘Adams Boulevard’, there are multiple entities in the knowledge graph that
contain the name ‘Adams’ (e.g., ‘Arthur Adams’, ‘John Adams’, and ‘Adams
County’). To retrieve the fixed-size representation of matched entities, we
employ pretrained embeddings that capture the semantic meaning of entities
and their relations in the knowledge graph, such as TransE (Bordes et al.,
2013).

To select a single semantic meaning from the one-to-many matched cases,
we are inspired by Tobler’s First Law of Geography (Tobler, 1970) and as-
sume that nearby street names are semantically similar (i.e., share similar
naming concepts). This would seem to occur in both planned neighborhoods
and organically grown roads. We first map the matched entities and their re-
lations to other entities (e.g., ‘John Adams’ is an instance of human, and his
occupation is a politician) into embeddings in a new representation space us-
ing graph representation learning algorithms (Bordes et al., 2013; Hamilton,
2020). This way, each street name receives a list of embedding candidates,
each representing the semantic meaning of a matched entity in the knowledge
graph. We then compare the embedding candidates of nearby streets. If a
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Figure 1: Spatial representation of ZTRAX-based street level aggregate statistics (i.e.,
earliest construction year and total number of buildings per street) shown for a part of
Boulder, Colorado. Each street is represented by the centroid coordinates of all properties
along the street (based on the street name retrieved from the property addresses), and the
dot size represents the number of these properties per street. The top panel shows streets
where the earliest construction year of the properties per street is < 1965, and the bottom
panel shows streets with a minimum construction year > 1965. Basemap: 2019 National
Transportation Dataset road network data.

3



group of similar embeddings (i.e., semantically similar) frequently appears on
the candidate list of multiple streets in a local neighborhood, we use them as
the final embedding to represent the semantic meaning of a street name in
that neighborhood. For example, a street named ‘Washington’ near ‘Adams’
street in Los Angeles is more likely to be an ‘instance of ’ human whose
‘occupation’ is politician than an ‘instance of ’ capital.

After identifying the semantic meanings of each street name, we explore
patterns of semantically similar street names over time and space. We first
group the streets by specific time intervals using the street age estimate and
compare the spatially clustered semantic meanings of new street names with
the clusterings of older street names. By identifying the semantic contexts
of street names and their evolution over time, across space, and along the
rural-urban continuum, the proposed approach has the potential to improve
our understanding of the socio-historical processes surrounding infrastructure
changes, (sub)-urbanization and land development processes in the recent
past in the U.S. and elsewhere where comparable data are available.
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