

Deliverable D2.1

PIACERE DevSecOps Framework Requirements
specification, architecture and integration strategy - v1

Editor(s): Emanuele Morganti

Responsible Partner: Hewlett Packard Enterprise - HPE

Status-Version: 1.0

Date: 30.11.2021

Distribution level (CO, PU): PU

DRAFT

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 2 of 70

www.piacere-project.eu

Project Number: 101000162

Project Title: PIACERE

Title of Deliverable:
PIACERE DevSecOps Framework Requirements
specification, architecture and integration strategy - v1

Due Date of Delivery to the EC 30.11.2021

Workpackage responsible for the
Deliverable:

WP2 - PIACERE Requirements, Architecture and
DevSecOps

Editor(s): Hewlett Packard Enterprise - HPE

Contributor(s):

Aleš Černivec – XLAB
Alfonso De La Fuente Ruiz – Prodevelop
Annelisa Motta – HPE
Carlo Nava – HPE
Chiara Bonferini – HPE
Elisabetta Di Nitto – POLIMI
Emanuele Morganti – HPE
Eneko Osaba Icedo – Tecnalia
Jesús López Lobo - Tecnalia
Galia Novakova Nedeltcheva – POLIMI
Gorka Benguria Elguezabal – Tecnalia
Ismael Torres Boigues – Prodevelop
Lorenzo Blasi – HPE
Matija Cankar – XLAB
Paweł Skrzypek – 7BULLS
Radosław Piliszek – 7BULLS

Reviewer(s):
Anže Luzar - XLAB
Matija Cankar - XLAB

Approved by: All Partners

Recommended/mandatory
readers:

WP2, WP3, WP4, WP5, WP6, WP7

Abstract: This document will contain 1) all the functional,

non-functional and technical requirements of the
PIACERE DevSecOps Framework and of all the
components to be developed in the context of the
technical WPs (WP3, WP4, WP5 and WP6). This
deliverable is tightly related to the corresponding use
cases requirements deliverable in WP7 (D7.1). 2) the
architecture of the DevSecOps framework [KR13] and the
workflow, 3) the requirements of the DevOps
infrastructure to be used in the development of PIACERE
as well as the definition of the strategy and steps to be
followed for the continuous integration of the PIACERE
solution. This deliverable is the result of Task 2.1 and Task
2.3.

Keyword List: Architecture, Integration Strategy

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 3 of 70

www.piacere-project.eu

Licensing information: This work is licensed under Creative Commons
Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
http://creativecommons.org/licenses/by-sa/3.0/

Disclaimer This document reflects only the author’s views and
neither Agency nor the Commission are responsible for
any use that may be made of the information contained
therein

DRAFT

http://www.medina-project.eu/
http://creativecommons.org/licenses/by-sa/3.0/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 4 of 70

www.piacere-project.eu

Document Description

Version Date
Modifications Introduced

Modification Reason Modified by

v0.1 23.03.2021 TOC HPE

v0.2 20.05.2021 Comments and suggestions received
by consortium partners

ALL

V0.3 03.06.2021 TOC revied. Add comments and
suggestion from partners.

HPE

V0.4 21.09.2021 Document fully reviewed; all
comments have been closed

HPE

V0.5 09.11.2021 Document fully reviewed, ready for
internal review and candidate to the
final version v1.0

HPE

V0.9 25.11.2021 Revision of content after quality
review

HPE

V1.0 29.11.2021 Ready for submission TECNALIA

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 5 of 70

www.piacere-project.eu

Table of contents

Terms and abbreviations ... 8

Executive Summary ... 9

1 Introduction .. 10

1.1 About this deliverable ... 10

1.2 Document structure .. 10

1.3 Key Results (KRs) relationship ... 10

2 Requirements Specification .. 11

2.1 Requirements Collection ... 12

2.1.1 Functional Requirements .. 13

2.1.2 Non-Functional Requirements .. 16

2.1.3 Business Requirements ... 16

2.1.4 Key Results mapped on requirements .. 16

2.1.5 Use Cases mapped on requirements .. 18

2.2 Requirements Summary Dashboard ... 22

3 PIACERE Architecture .. 24

3.1 General description ... 24

3.2 Logical/Functional View .. 24

3.3 Architecture components ... 29

3.3.1 Integrated Development Environment - IDE (KR2) ... 29

3.3.2 DevOps Modelling Language – DOML/DOML-E (KR1-KR4) 31

3.3.3 Infrastructural Code Generator - ICG (KR3) .. 32

3.3.4 Verification Tool - VT (KR5) ... 34

3.3.5 IaC Execution Platform – IEP (KR10) .. 36

3.3.6 Runtime Controller - PRC .. 38

3.3.7 Canary Sandbox Environment – CSE (KR8) .. 38

3.3.8 Infrastructure Advisor ... 40

3.3.9 Infrastructural Elements Catalogue .. 47

4 Integration Strategy (KR13) ... 49

4.1 Integration strategy – definitions .. 49

4.2 Framework description DevOps Pipeline .. 49

4.3 Framework components ... 50

4.3.1 Integration Repository .. 50

4.3.2 CI/CD Flow ... 50

4.4 Selection of integration strategy ... 50

5 Conclusions ... 52

6 References ... 53

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 6 of 70

www.piacere-project.eu

APPENDIX: PIACERE Glossary .. 54

Glossary structure ... 54

Basic Terms.. 54

The application .. 54

Technical Requirements (TR) .. 54

Non-Functional Requirements (NFR) .. 55

Configuration Management .. 55

Infrastructure Provisioning.. 55

Orchestration .. 55

Infrastructure as Code (IaC) .. 55

Infrastructure as a Service (IaaS) ... 56

Target IaC Language (TIaCL) .. 56

Configuration Drift .. 56

DevOps Modelling Language (DOML) ... 56

Infrastructure Element (IE) .. 57

PIACERE design time ... 57

PIACERE runtime ... 57

Resource Provider (RP) .. 58

Execution Environment (EE) .. 58

Production Execution Environment (PEE) ... 58

Canary Execution Environment (CEE) .. 59

Components .. 59

Integrated Development Environment (IDE) .. 59

Infrastructural Code Generator (ICG) .. 59

Canary Sandbox Environment (CSE) .. 60

DOML & IaC Repository ... 61

Infrastructural Elements Catalogue (IEC) .. 61

Verification Tool (VT)... 62

PIACERE Runtime Controller (PRC) .. 64

IaC Executor Manager (IEM) ... 64

Infrastructure Advisor (IA) ... 65

Addenda .. 69

IaaS and Cloud Computing Models ... 69

 List of tables

TABLE 1. FUNCTIONAL REQUIREMENTS .. 13
TABLE 2. NON-FUNCTIONAL REQUIREMENTS .. 16
TABLE 3. BUSINESS REQUIREMENTS .. 16
TABLE 4. REQUIREMENTS/KRS ... 16

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 7 of 70

www.piacere-project.eu

TABLE 5. USE CASE AND REQUIREMENTS MAPPING.. 18
TABLE 6. PIACERE REQUIREMENTS SUMMARY TABLE ... 22
TABLE 7. PIACERE DESIGN WORKFLOW ... 25
TABLE 8. PIACERE RUNTIME WORKFLOW .. 27
TABLE 9. TERMS AND ACRONYMS FOR INTEGRATION STRATEGY .. 49
TABLE 10. INTEGRATION STRATEGY EVALUATION CRITERIA ... 51

List of figures

FIGURE 1. PIACERE KEY RESULTS .. 11
FIGURE 2. KEY RESULTS RELATIONSHIP .. 11
FIGURE 3. REQUIREMENT’S COLLECTION WORKFLOW ... 13
FIGURE 4. PIACERE REQUIREMENTS SUMMARY DASHBOARD .. 23
FIGURE 5. PIACERE DESIGN TIME ... 25
FIGURE 6. PIACERE RUNTIME ... 27
FIGURE 7. IDE SEQUENCE DIAGRAM.. 30
FIGURE 8. INTERACTION OF THE PIACERE USER WITH DOML AND THE IDE ... 32
FIGURE 9. INTERNAL ICG ARCHITECTURE ... 33
FIGURE 10. ICG INTERNAL AND EXTERNAL BEHAVIOUR ... 33
FIGURE 11. INTERNAL ARCHITECTURE OF THE MODEL CHECKER. .. 34
FIGURE 12. MODEL CHECKER INTERNAL AND EXTERNAL BEHAVIOUR. ... 35
FIGURE 13. IAC SECURITY AND COMPONENT SECURITY INSPECTOR .. 36
FIGURE 14. START OF DEPLOYMENT .. 37
FIGURE 15. REQUEST OF THE STATUS OF A DEPLOYMENT .. 38
FIGURE 16. CANARY SANDBOX ENVIRONMENT PROVISIONER (CSEP) .. 39
FIGURE 17. IOP .. 41
FIGURE 18. MONITORING ... 43
FIGURE 19. MONITORING SYSTEM ... 44
FIGURE 20. SELF-LEARNING (PERFORMANCE) .. 45
FIGURE 21. SECURITYSELF-LEARNING ... 46
FIGURE 22- SELF-HEALING .. 47
FIGURE 23. INFRASTRUCTURE ELEMENTS CATALOGUE ... 48
FIGURE 24. STATUS OF CLOUD COMPUTING MODELS (SOURCE: H-CLOUD) .. 70
 DRAFT

http://www.medina-project.eu/
file:///C:/Users/106797/Desktop/M12/D2.1%20PIACERE%20DevSecOps%20Framework%20Requirements%20specification,%20architecture%20and%20integration%20strategy%20-%20v1_V1.0.docx%23_Toc89091399

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 8 of 70

www.piacere-project.eu

Terms and abbreviations

Amazon EC2 Amazon Elastic Compute Cloud

API Application Programming Interface

AWS Amazon Web Services

CEE Canary Production Execution Environment

CRP Canary Resource Provider

CSE Canary Sandbox Environment

CSEM Canary Sandbox Environment Mocklord

CSPE Canary Sandbox Environment Provisioner

CSI Component Security Inspector

CSP Cloud Service Provider

DevOps Development and Operations

DoA Description of Action

DOML DevOps Modelling Language

DOML-E DevOps Modelling Language -Extensions

EC European Commission

EE Execution Environment

FR Functional Requirement

GA Grant Agreement to the project

IA Infrastructure Advisor

IaC Infrastructure as Code

ICG Infrastructure Code Generator

IDE Integrated Development Environment

IEC Infrastructural Elements Catalogue

IEM IaC Execution Manager

IEP IaC Execution Platform

IOP IaC Optimizer Platform

KPI Key Performance Indicator

KR Key Result

MC Model Checker

MDE Model-Driven Engineering

PEE Production Execution Environment

PRC Piacere Runtime Controller

PRP Production Resource Provider

REQ Requirement

RP Resource Provider

SW Software

TR Technical Requirement

UC Use Case

VT Verification Tool

WP Work Package

Y1 Year 1

Y2 Year 2

Y3 Year 3

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 9 of 70

www.piacere-project.eu

Executive Summary

This deliverable is the version 1 release of following WP2 tasks outcome:

• Task 2.1-Requirement’s specification, with the aim to define the PIACERE functional and
non-functional requirements as well to identify requirements for the use cases
identified in WP7 (Use Case Validation).
The output of this task provides the requirement specifications for PIACERE components
to be developed according to KR1-KR13.

• Task 2.2-PIACERE Architecture definition with the aim to describe how PIACERE
components interact with each other.
The output of this task is therefore a specific analysis of the main PIACERE components
to be developed according to KR1-KR13 and includes the workflow with internal and
external communication mechanisms.

• Task 2.3-PIACERE DevSecOps delivery strategy and continuous integration with the aim
to integrate all PIACERE components (KR1-KR12).
The output of this task is the realization of the DevSecOps framework (KR13) and
includes the definition of the strategy to follow for the continuous integration of the
PIACERE solution.

According to this introduction, the first part of the document is dedicated to Requirements
Specification, describing the process to analyse and define the PIACERE requirements and
providing the list of the requirements, grouped by typology, to be used for the development of
PIACERE components (KR1-KR13).

In order to enable the relationship between KRs and corresponding Use cases (UC)
requirements, the document reports the mapping between requirements, KRs and UCs.

The second part of the document is dedicated to PIACERE Architecture definition, describing
assumptions, approaches and highlighting the PIACERE framework workflow with internal and
external communication mechanisms details.

The third part of the document is dedicated to PIACERE DevSecOps delivery strategy and
Continuous Integration, describing the framework for the preparation of interfaces
specification and the strategy to follow for the continuous integration of the PIACERE solution.

Finally, this document presents the PIACERE Glossary, which includes the most common terms
used in PIACERE along with a high-level description of all PIACERE components, following the
same structure: Functional Description, Input, Output, Programming languages/tools
Dependencies, and Critical factors.

This document D2.1 is the initial version (M12). In the month M23 the document will be updated
to reflect the final PIACERE solution framework.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 10 of 70

www.piacere-project.eu

1 Introduction

This deliverable provides an analysis on the different architectural aspects that describe how
PIACERE framework works and what are the main building blocks of the solution.

1.1 About this deliverable

The deliverable will serve as a “architectural document” for the other work packages of PIACERE
project that are involved in developing blocks of the PIACERE solution.

It contains all functional and non-functional requirements selected to develop each component
and to integrate each other generating the DevSecOps PIACERE Framework, explaining also the
approach used to propose and select the requirements.

It describes the outcome of architectural analysis work of PIACERE framework, showing the

workflow and interaction between components.

Finally, it presents the strategy and steps to be followed for the continuous integration of the

PIACERE solution.

1.2 Document structure

The rest of this document is structured as follows:

• Section 1 presents an overall description of the deliverable and its main goal is provided.

• Section 2 focuses on the outcome, at M12, of analysis of requirements related to the
development of PIACERE platform and the process used to select them.

• Section 3 presents the actual description of PIACERE architectural design choices,
observed from different perspectives, highlighting the workflow with internal and
external communication mechanisms details.

• Section 4 presents the strategy to follow for the continuous integration of the PIACERE
solution.

• Section 5 presents a summary of discernments achieved through this deliverable and
draws the conclusions.

• Section 6 presents any relevant additional documentation as citations.

• APPENDIX: PIACERE Glossary provides a glossary of the terms used within PIACERE to
effectively unify the vocabularies and describes the main components that involve the
PIACERE architecture.

1.3 Key Results (KRs) relationship

The main objective of this deliverable is to provide requirements specification for the different
Key Results (KRs) to be developed in PIACERE and to describe what are the main building blocks
of the PIACERE framework. The following two figures Figure 1 and Figure 2 represent the
different KRs that are going to be developed in the PIACERE Project and the relationship
between KRs.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 11 of 70

www.piacere-project.eu

Figure 1. PIACERE Key Results

Figure 2. Key Results relationship

2 Requirements Specification

The purpose of this chapter is to list the requirements collected for implementing the PIACERE
solution, grouped by typology [1]:

• Functional requirements are presented as lists of features or services that the system
has to provide according the assigned priority. They also describe the behaviour of the
system in the face of particular inputs and how it should react in certain situations.

• Non-Functional requirements represent system-related constraints and properties,
such as time constraints, constraints on the development process and on the standards
to be adopted. Non-functional requirements are not just about the software system
being developed; some may constrain the process used to develop the system (e.g.,
performance, usability).

• Business requirements provide the scope, business needs or issues that need to be
addressed through specific activities. These requirements provide the information to
ensure that the PIACERE project achieves the identified objectives.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 12 of 70

www.piacere-project.eu

Regarding requirements there are two different perspectives: in the Requirement Specification
section we specify the requirements to implement the PIACERE solution. On the other hand,
the PIACERE solution has to offer to end-users the ability to express requirements that are
related to the system they want to run through the PIACERE solution. This topic is more detailed
in the APPENDIX PIACERE Glossary sections Technical Requirements (TR), Non-Functional
Requirements (NFR).

2.1 Requirements Collection

To achieve the purpose of analysis and definition of the PIACERE requirements, a process has
been set up that involves all partners according to the following workflow:

• Each new requirement is proposed with adding a new row in a shared spreadsheet
specifying the following fields:

o Description - short description of requirement
o Type - possible values: functional, non-functional, business
o Complexity - possible values: low, medium, high, N.A.
o Involved KR and Involved WP(s)/task(s) - list of KRs and involved task
o Source - possible values: DoA, Use Case, Literature, Other
o Status - proposed
o Priority [2] - possible values: must have, should have, could have, won’t have
o Timeline - possible values according to priority: Y1, Y2, Y3

• Each requirement is analysed and discussed according to the workflow described in
Figure 3.

• When the workflow has been completed the status of each requirement can be
‘duplicate’ or ‘accepted’. The status under ‘discussion’ or ‘proposed’ means that the
workflow is still on-going for that requirement.

• To identify the relationship between the requirements and the supported UCs, the
mapping between requirements, KRs and UCs is achieved by adding the following
values for each requirement in the columns UC1, UC2 and UC3:

o UC Priority - possible values MUST, DESIRABLE
o Impact - possible values: FULL, PARTIAL
o Version - possible values: V1, V2 (versions are tested after a 1-year offset)

Column UC1, UC2 and UC3 refer respectively to Slovenian Ministry of Public
Administration, Critical Maritime Infrastructures and Public Safety on IoT in 5G use
cases.
 DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 13 of 70

www.piacere-project.eu

Figure 3. Requirement’s collection workflow

In this document only requirements without the ‘discarded’ or ‘duplicate’ status are presented.
The list of the requirements is not closed yet. A final version of the requirements will be included
in the second version of this deliverable.

At the time of writing, some of these requirements are either under ‘discussion’ or ‘proposed’
for a timeline after Y1. This status has been color-coded in the, Table 1, Table 2, Table 3 and
Table 4:

• Green [No asterisks]: Accepted requirement

• Orange [‘*’]: requirement currently under discussion or just proposed for a timeline after
Y1

2.1.1 Functional Requirements

In Table 1 it is presented the list of functional requirements without the ‘discarded’ and
‘duplicate’ status to be considered for the development of the involved KRs. The status of
requirements has been color-coded.

Table 1. Functional requirements

REQ ID Description Priority Timeline Involved KRs

REQ01 The DOML must be able to model infrastructural elements.
MUST
HAVE

Y1 KR1

REQ03

IOP will include a catalogue of infrastructural elements - e.g., node
computation, networks, cloud services like IaaS, PaaS, SaaS - classifiable
by a set of constraints - e.g., memory, disk. This catalogue of
infrastructural elements should be clearly defined, including possible
restrictions and dynamic variations. These infrastructural elements will be
transformed as optimization variables, and they will be intelligently
treated by the optimization algorithm seeking to find the best
configuration deployment.

MUST
HAVE

Y1 KR9, KR10

REQ04

Provide the means for the IOP to properly consume all the data related
with the catalogue of infrastructural elements status, as well as their
characteristics and possible variations. Special mention shall be done here
to the values monitored by the self-learning algorithm / monitoring
component. This module shall provide real measures regarding the
infrastructural elements in order to update their characteristics.

MUST
HAVE

Y2 KR9

REQ12
The IEM shall allow redeployment and reconfiguration, both full and
partial, as allowed by the used IaC technology.

MUST
HAVE

Y2 KR9, KR10

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 14 of 70

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ14
Runtime security monitoring must provide monitoring data from the
infrastructure's hosts with regard to security metrics.

MUST
HAVE

Y1 KR12

REQ15
Runtime security monitoring could provide monitoring data from the
application layer (infrastructure's guest) with regard to security metrics.

COULD
HAVE

Y2 KR12

REQ16
Runtime security monitoring should contribute to mitigation actions taken
when considering plans and strategies for runtime self-healing actions.

SHOULD
HAVE

Y2 KR11, KR12

REQ18
Runtime security monitoring must be able to detect different types of
metrics in run-time: integrity of IaC configuration, potential attacks to the
infrastructure, IaC security issues (known CVEs of the environment).

SHOULD
HAVE

Y1 KR12

REQ19
Runtime security monitoring and alarm system (self-learning) integration
must be implemented.

MUST
HAVE

Y2 KR6, KR12

REQ21
Runtime security monitoring and Runtime monitoring infrastructure
should be integrated with minimal extensions.

SHOULD
HAVE

Y2 KR12

REQ23
IaC Code Security Inspector must analyse IaC code with regard to security
issues of the modules used in the IaC.

MUST
HAVE

Y1 KR6

REQ24
Security Components Inspector must analyse and rank components and
their dependencies used in the IaC.

MUST
HAVE

Y1 KR7

REQ25
DOML should support the modelling of security rules (e.g., by type
TCP/UDP, and ingress/egress port definition).

MUST
HAVE

Y1 KR1, KR5, KR7

REQ26
DOML should support the modelling of security groups (containers for
security rules).

MUST
HAVE

Y1 KR1, KR5, KR7

REQ27
DOML should support the modelling, provisioning, configuration and
usage container engine execution technologies (e.g., docker-host).

SHOULD
HAVE

Y1 KR1

REQ28
DOML should support the modelling of containerized application
deployment (e.g., pull/run/restart/stop docker containers).

MUST
HAVE

Y1 KR1, KR2

REQ29
DOML should support the modelling of VM provisioning for different
platforms such as (OpenStack, AWS) for canary and production
environments.

MUST
HAVE

Y1 KR1, KR3, KR8

REQ31
ICG should provide verifiable and executable IaC generated from DOML
for selected IaC languages (e.g., TOSCA/Ansible/Terraform).

MUST
HAVE

Y2 KR1, KR3

REQ33
CSE to provide a viable alternative target for IaC executors to run against,
i.e., usable by the IaC Executor Manager (IEM).

MUST
HAVE

Y1 KR8

REQ34
CSE to keep track of and allow querying of the deployment state to allow
comparison against the expected one.

MUST
HAVE

Y1 KR8

REQ36 DOML to enable writing infrastructure tests.
MUST
HAVE

Y2 KR1, KR4

REQ38
CSE to have a "real" mode where resources are really provided and can be
used for configuration and other further steps.

MUST
HAVE

Y1 KR8

REQ39
CSE to enable extensibility (documented way): adding new mocked
services, adding new "real" deployments.

SHOULD
HAVE

Y2 KR8

REQ40
The IDE should provide a visual diagram functionality to visualise the
different assets defined through the DOML and DOML Extensions.

MUST
HAVE

Y1 KR1, KR2

REQ41
The IDE should be extensible through the plugin mechanism. Not only to
support PIACERE assets (ICG, VT) but also for third party collaborators.

MUST
HAVE

Y2 KR2, KR5, KR3

REQ43 The IDE should be easily updatable to newer software versions.
MUST
HAVE

Y1 KR2

REQ44
The IDE could provide an import mechanism to automatically fulfil partial
DOML.

COULD
HAVE

Y2 KR2

REQ46

The monitoring component shall gather metrics from the instances of the
infrastructural elements at run time. These metrics need to be related to
the TR and accessible for the IOP (through the dynamic part of the
infrastructural catalogue).

MUST
HAVE

Y1 KR11, KR9

REQ47
The monitoring component shall include the needed elements in the stack
to monitor the infrastructural elements.

MUST
HAVE

Y1 KR11

REQ48
The monitoring component shall transform the real time values into the
correct format/type/nature for the self-learning component.

MUST
HAVE

Y2 KR11

REQ50
The monitoring component shall monitor the metrics associated with the
defined measurable NFRs (e.g., performance, availability, and security
through the runtime security monitoring).

MUST
HAVE

Y1 KR11

REQ51

The self-learning component shall ensure that the conditions are met
(compliance with respect to SLO) and that a failure or a non-compliance
of a NFRs is not likely to occur. This implies the compliance of a
predefined set of non-functional requirements (e.g., performance).

MUST
HAVE

Y1 KR11

REQ52

Self-learning shall consume the data monitored and store it in a time-
series database to create discriminative complex statistical variables and
train a predictor which will learn potential failure patterns in order to
prevent the system from falling into an NFR violation situation.

MUST
HAVE

Y1 KR11

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 15 of 70

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ55
The IEM will log the whole IaC execution run, making metadata and
metrics (time it took to run) about the creation of resources available to
the rest of the PIACERE components.

MUST
HAVE

Y2 KR10

REQ57
It is desirable to enable both forward and backward translations from
DOML to IaC and vice versa.

SHOULD
HAVE

Y2 KR1, KR10

REQ58
DOML should offer the modelling abstractions to define the outcomes of
the IoP.

MUST
HAVE

Y2 KR1

REQ59
The DOML should allow users to define rules and constraints for
redeployment, reconfiguration and other mitigation actions.

MUST
HAVE

Y2 KR1

REQ60
DOML should support the modelling of security metrics both at the level
of infrastructure and application.

MUST
HAVE

Y1 KR1, KR5, KR7

REQ61 DOML must support the modelling of TRs and of SLOs.
MUST
HAVE

Y1 KR1

REQ62 DOML must support different views.
SHOULD

HAVE
Y1 KR1, KR2

REQ63 DOML must be unambiguous.
MUST
HAVE

Y1 KR1

REQ65
IaC Security Inspector and Component Security Inspector should hide
specificities and technicalities of the current solutions in an integrated
IDE.

MUST
HAVE

Y1 KR6, KR7

REQ66
IaC Code security inspector must provide an interface (CLI or REST API) to
integrate with other tools or CI/CD workflows.

MUST
HAVE

Y1 KR6, KR7

REQ67
IaC Component security inspector must provide an interface (CLI or REST
API) to integrate with other tools or CI/CD workflows.

MUST
HAVE

Y1 KR6, KR7

REQ68
Verification Tool must verify the structural consistency of the IaC
generated by ICG.

MUST
HAVE

Y1 KR4, KR5

REQ69
Verification Tool must verify the correctness of the IaC generated by ICG,
with respect to some correctness properties provided in DOML.

MUST
HAVE

Y1 KR4, KR5

REQ70
The DOML should allow users to state correctness properties in a suitable
sub-language (possibly Formal Logic).

MUST
HAVE

Y1 KR1

REQ71
Verification Tool must verify the completeness of the IaC generated by
ICG.

MUST
HAVE

Y1 KR4, KR5

REQ72
The runtime monitoring component should provide an UI for the end
users to see the monitored resources and the corresponding metrics/TRs
in real time.

SHOULD
HAVE

Y2 KR11

REQ76
DOML should allow the user to model each of the four considered DevOps
activities (Provisioning, Configuration, Deployment, Orchestration).

SHOULD
HAVE

Y1 KR1, KR2

REQ77
ICG may generate IAC code for different supported/target tools according
to the required DevOps activity (as listed in REQ76).

SHOULD
HAVE

Y1 KR3

REQ78 (*)
Canary environment shall include one or more TPOT VMs to simulate an
IoT network in the target environment of the IVRE framework to recon.

MUST
HAVE

Y2
Under

evaluation

REQ79 (*)
Crawlers in the OSINT application when deployed in the Canary would
need internet connection in order to collect data.

MUST
HAVE

Y2
Under

evaluation

REQ80 (*)
SAST tools to check Docker configurations shall be included in the Canary
environment.

MUST
HAVE

Y2
Under

evaluation

REQ81
IEM should be able to execute IaC generated by ICG for selected IaC
languages (e.g., TOSCA/Ansible/Terraform)

MUST
HAVE

Y1 KR10

REQ82
IEM shall register the status of past and present executions and enable an
appropriate way to query it.

MUST
HAVE

Y2 KR10

REQ83
IEM should be able to communicate with the relevant actors
(orchestrators, infrastructural elements) in a secure way.

MUST
HAVE

Y2 KR10

REQ84 IEM should be able to utilize the required credentials in a secure way.
MUST
HAVE

Y2 KR10

REQ85 IEM should be able to clean up the resources being allocated.
MUST
HAVE

Y2 KR10

REQ87
IEM shall work against the production environment and the canary
environment.

MUST
HAVE

Y1 KR10

REQ89 (*)
PIACERE tools should be usable in a CI/CD pipeline to automate build,
verification, test and possibly deployment (DevOps-style).

COULD
HAVE

Y2 KR13

REQ92 Self-healing component shall receive notifications from the self-learning.
MUST
HAVE

Y1 KR11

REQ93
Self-healing component shall classify the events received from the self-
learning and derive corrective actions.

MUST
HAVE

Y1 KR11

REQ94 (*)
Self-healing component shall inform the run-time controller about the
different components to orchestrate (the workflow to be executed).

MUST
HAVE

Y2 KR11

REQ95 VT tools (model checker) must be able read DOML language.
MUST
HAVE

Y1 KR5

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 16 of 70

www.piacere-project.eu

REQ ID Description Priority Timeline Involved KRs

REQ96 ICG must be able read DOML language.
MUST
HAVE

Y1 KR3

REQ97 (*)
The Self-healing components provide feedback on the DOML code,
without doing automatic writes. The end user can choose to accept or not
the feedback received.

MUST
HAVE

Y2 KR11

REQ98 (*)
The IOP components provide feedback on the DOML code, without doing
automatic writes. The end user can choose to accept or not the feedback
received.

MUST
HAVE

Y2 KR9

REQ99 IDE to integrate with both local and remote Git repositories.
MUST
HAVE

Y1 KR2

2.1.2 Non-Functional Requirements

In Table 2 it is presented the list of non-functional requirements without the ‘discarded’ and
‘duplicate’ status to be considered for the development of the involved KRs. The status of
requirements has been color-coded.

Table 2. Non-Functional requirements

REQ ID Description Priority Timeline Involved KRs

REQ10 (*)
The communication within the different components of the architecture
should be done in a secure way (e.g., https, Keycloak).

MUST
HAVE

Y2 KR13

REQ11
The learning algorithm (anomaly and drift) should be executed as fast as
possible as it should provide an outcome before more data arrives.

MUST
HAVE

Y1 KR11

REQ17
Deployment of runtime security monitoring should happen seamlessly or
with minimal effort and configuration required by the user.

MUST
HAVE

Y1 KR11, KR12

REQ30
DOML should enable support for policy definition constraints for QoS/TR
requirements.

MUST
HAVE

Y2 KR1, KR4

REQ37 CSE to have a simulated mode limited to provisioning.
MUST
HAVE

Y2 KR8, KR9

REQ42 The IDE should be implemented using open-source software.
SHOULD

HAVE
Y1 KR2

REQ88
PIACERE framework should be usable by a team of people collaborating in
the development of the same IaC.

MUST
HAVE

Y2 KR13

2.1.3 Business Requirements

In Table 3 is presented the list of business requirements without the ‘discarded’ and ‘duplicate’
status to be considered for the development of the involved KRs. The status of requirements
has been color-coded.

Table 3. Business requirements

REQ ID Description Priority Timeline Involved KRs

REQ64
The IDE should provide a text-based representation of DOML to ease
version control.

SHOULD
HAVE

Y2 KR1, KR2

2.1.4 Key Results mapped on requirements

In Table 4 it is presented the mapping between requirements (REQ) and PIACERE’s Key Results
(KR1/KR13) with the planned Timeline scheduled to realize each requirement.

For each row, the ‘x’ in a cell specifies the key result (one or more than one) to which that
requirement refers. In the last row, a grand total count is added to gain visibility of distribution
of REQs towards KRs.

Table 4. Requirements/KRs

REQ ID KR1 KR2 KR3 KR4 KR5 KR6 KR7 KR8 KR9 KR10 KR11 KR12 KR13 Timeline

REQ01 x Y1

REQ03 x x Y1

REQ04 x Y2

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 17 of 70

www.piacere-project.eu

REQ ID KR1 KR2 KR3 KR4 KR5 KR6 KR7 KR8 KR9 KR10 KR11 KR12 KR13 Timeline

REQ10 (*) x Y2

REQ11 x Y1

REQ12 x x Y2

REQ14 x Y1

REQ15 x Y2

REQ16 x x Y2

REQ17 x x Y1

REQ18 x Y1

REQ19 x x Y2

REQ21 x Y2

REQ23 x Y1

REQ24 x Y1

REQ25 x x x Y1

REQ26 x x x Y1

REQ27 x Y1

REQ28 x x Y1

REQ29 x x x Y1

REQ30 x x Y2

REQ31 x x Y2

REQ33 x Y1

REQ34 x Y1

REQ36 x x Y2

REQ37 x x Y2

REQ38 x Y1

REQ39 x Y2

REQ40 x x Y1

REQ41 x x x Y2

REQ42 x Y1

REQ43 x Y1

REQ44 x Y2

REQ46 x x Y1

REQ47 x Y1

REQ48 x Y2

REQ50 x Y1

REQ51 x Y1

REQ52 x Y1

REQ55 x Y2

REQ57 x x Y2

REQ58 x Y2

REQ59 x Y2

REQ60 x x x Y1

REQ61 x Y1

REQ62 x x Y1

REQ63 x Y1

REQ64 x x Y2

REQ65 x x Y1

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 18 of 70

www.piacere-project.eu

REQ ID KR1 KR2 KR3 KR4 KR5 KR6 KR7 KR8 KR9 KR10 KR11 KR12 KR13 Timeline

REQ66 x x Y1

REQ67 x x Y1

REQ68 x x Y1

REQ69 x x Y1

REQ70 x Y1

REQ71 x x Y1

REQ72 x Y2

REQ76 x x Y1

REQ77 x Y1

REQ78 (*) Y2

REQ79 (*) Y2

REQ80 (*) Y2

REQ81 x Y1

REQ82 x Y2

REQ83 x Y2

REQ84 x Y2

REQ85 x Y2

REQ87 x Y1

REQ88 x Y2

REQ89 (*) x Y2

REQ92 x Y1

REQ93 x Y1

REQ94 (*) x Y2

REQ95 x Y1

REQ96 x Y1

REQ97 (*) x Y2

REQ98 (*) x Y2

REQ99 x Y1

Grand total 20 10 5 5 8 5 7 6 6 10 14 7 3

2.1.5 Use Cases mapped on requirements

In Table 5 the requirements are mapped on the following three Use Cases:

• UC1: Slovenian Ministry of Public Administration

• UC2: Critical Maritime Infrastructures

• UC3: Public Safety on IoT in 5G

For each row in the columns UC1, UC2 and UC3 are reported the UC Priority, Impact and Version
information according requirement collection process described in 2.1 section.

Table 5. Use Case and requirements mapping

REQ ID Description UC1 UC2 UC3

REQ01
The DOML must be able to model
infrastructural elements.

Must have; Full; V1-
Y1.

Must have; Full; V1-
Y2.

Must have; Full;
V1-Y2.

REQ03

IOP will include a catalogue of infrastructural
elements - e.g., node computation, networks,
cloud services like IaaS, PaaS, SaaS - classifiable
by a set of constraints - e.g., memory, disk. This

Must have; Full; V1-
Y1.

Must have; Full; V1-Y2
(Lightweight testing).

Partially validated
(not optimization)
V1-Y2.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 19 of 70

www.piacere-project.eu

REQ ID Description UC1 UC2 UC3

catalogue of infrastructural elements should be
clearly defined, including possible restrictions
and dynamic variations. These infrastructural
elements will be transformed as optimization
variables, and they will be intelligently treated
by the optimization algorithm seeking to find
the best configuration deployment.

REQ04

Provide the means for the IOP to properly
consume all the data related with the
catalogue of infrastructural elements status, as
well as their characteristics and possible
variations. Special mention shall be done here
to the values monitored by the self-learning
algorithm / monitoring component. This
module shall provide real measures regarding
the infrastructural elements in order to update
their characteristics.

Must have; Full; V1-
Y2.

Desirable; Partial; V2-
Y3.

Desirable; Partially
validated
V2-Y3.

REQ10 (*)
The communication within the different
components of the architecture should be
done in a secure way (e.g., https, Keycloak).

Must have; Full; V1-
Y2.

Affects (EDI, ENS -
critical
infrastructures).

Must have; Full;
V1-Y2.

REQ11

The learning algorithm (anomaly and drift)
should be executed as fast as possible as it
should provide an outcome before more data
arrives.

Not validated in the
UC.

Affects (probabilistic
algorithms can be set
to execute up to a pre-
set time limit or with
multiple restarts).

Not validated in
the UC.

REQ12
The IEM shall allow redeployment and
reconfiguration, both full and partial, as
allowed by the used IaC technology.

Must have; Full; V1-
Y2.

Desirable (CI/CD
pipeline).

Must have; Full;
V1-Y2.

REQ14
Runtime security monitoring must provide
monitoring data from the infrastructure's hosts
with regard to security metrics.

Must have; Full; V1-
Y1.

Affects (vendor-
supplied - critical
infrastructures).

Not validated in
the UC.

REQ15

Runtime security monitoring could provide
monitoring data from the application layer
(infrastructure's guest) with regard to security
metrics.

Could have; Full; V1-
Y2.

Affects (Desirable for
full integration with
vendor´s toolset).

Not validated in
the UC.

REQ16

Runtime security monitoring should contribute
to mitigation actions taken when considering
plans and strategies for runtime self-healing
actions.

Should have; Full;
V1-Y2.

Affects (vendor-
supplied).

Not validated in
the UC.

REQ17
Deployment of runtime security monitoring
should happen seamlessly or with minimal
effort and configuration required by the user.

Must have; Full; V1-
Y1

Affects (Desirable:
vendor-supplied).

Not validated in
the UC.

REQ18

Runtime security monitoring must be able to
detect different types of metrics in run-time:
integrity of IaC configuration, potential attacks
to the infrastructure, IaC security issues
(known CVEs of the environment).

Should have; Full;
V1-Y1.

Affects (Desirable:
vendor-supplied).

Not validated in
the UC.

REQ19
Runtime security monitoring and alarm system
(self-learning) integration must be
implemented.

Must have; Full; V1-
Y2.

Affects (vendor-
supplied or ad-hoc
solution).

Not validated in
the UC.

REQ21
Runtime security monitoring and Runtime
monitoring infrastructure should be integrated
with minimal extensions.

Should have; Full;
V1-Y2.

Affects.
Not validated in
the UC.

REQ23
IaC Code Security Inspector must analyse IaC
code with regard to security issues of the
modules used in the IaC.

Must have; Full; V1-
Y1.

Desirable.
Must have; Full;
V1-Y2.

REQ24
Security Components Inspector must analyse
and rank components and their dependencies
used in the IaC.

Must have; Full; V1-
Y1.

Desirable.
Must have; Full;
V1-Y2.

REQ25
DOML should support the modelling of security
rules (e.g., by type TCP/UDP, and
ingress/egress port definition).

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ26
DOML should support the modelling of security
groups (containers for security rules).

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ27

DOML should support the modelling,
provisioning, configuration and usage
container engine execution technologies (e.g.,
docker-host).

Should have; Full;
V1-Y1.

Desirable.
Must have; Full;
V1-Y1.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 20 of 70

www.piacere-project.eu

REQ ID Description UC1 UC2 UC3

REQ28
DOML should support the modelling of
containerized application deployment (e.g.,
pull/run/restart/stop docker containers).

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y1.

REQ29

DOML should support the modelling of VM
provisioning for different platforms such as
(OpenStack, AWS) for canary and production
environments.

Must have; Full; V1-
Y1.

Affects (vendor-
supplied).

Must have; Full;
V1-Y1.

REQ30
DOML should enable support for policy
definition constraints for QoS/TR.

Must have; Full; V1-
Y2.

Affects.
Must have; Full;
V1-Y2.

REQ31
ICG should provide verifiable and executable
IaC generated from DOML for selected IaC
languages (e.g., TOSCA/Ansible/Terraform).

Must have; Full; V1-
Y2 (at least Ansible).

Affects (vendor-
supplied or ad-hoc
solution).

Must have; Full;
V1-Y1.

REQ33
CSE to provide a viable alternative target for
IaC executors to run against, i.e., usable by the
IaC Executor Manager (IEM).

Must have; Full; V1-
Y1.

Affects (redundancy
desirable for resiliency
and fault-prevention).

Not validated in
the UC.

REQ34
CSE to keep track of and allow querying of the
deployment state to allow comparison against
the expected one.

Must have; Full; V1-
Y1.

Affects (necessary).
Not validated in
the UC.

REQ36 DOML to enable writing infrastructure tests.
Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ37
CSE to have a simulated mode limited to
provisioning.

Must have; Full; V1-
Y2.

Affects (vendor-
supplied).

Not validated in
the UC.

REQ38
CSE to have a "real" mode where resources are
really provided and can be used for
configuration and other further steps.

Must have; Full; V1-
Y1.

Affects (vendor-
supplied).

Not validated in
the UC.

REQ39
CSE to enable extensibility (documented way):
adding new mocked services, adding new
"real" deployments.

Should have; Full;
V1-Y2.

Affects.
Not validated in
the UC.

REQ40

The IDE should provide a visual diagram
functionality to visualise the different assets
defined through the DOML and DOML
Extensions.

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y1.

REQ41

The IDE should be extensible through plugin
mechanism. Not only to support PIACERE
assets (ICG, VT) but also for third party
collaborators.

Must have; Full; V1-
Y2.

Affects (vendor-
supplied or ad-hoc
solution).

Must have; Full;
V1-Y2.

REQ42
The IDE should be implemented using open-
source software.

Should have; Full;
V1-Y1.

Affects (Desirable -
vendor-supplied).

Could have; Full;
V1-Y1.

REQ43
The IDE should be easily updatable to newer
software versions.

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y1.

REQ44
The IDE could provide an import mechanism to
automatically fulfil partial DOML.

Could have; Full; V1-
Y2.

Affects (Desirable for
efficiency).

Could have; Full;
V1-Y1.

REQ46

The monitoring component shall gather
metrics from the instances of the
infrastructural elements at run time. These
metrics need to be related to the TR and
accessible to the IOP (through the dynamic
part of the infrastructural catalogue).

Must have; Full; V1-
Y1.

Affects.
Not validated in
the UC.

REQ47
The monitoring component shall include the
needed elements in the stack to monitor the
infrastructural elements.

Must have; Full; V1-
Y1.

Affects (Necessary).
Not validated in
the UC.

REQ48

The monitoring component shall transform the
real time values into the correct
format/type/nature for the self-learning
component.

Must have; Full; V1-
Y2.

Affects (Necessary).
Not validated in
the UC.

REQ50

The monitoring component shall monitor the
metrics associated with the defined
measurable TRs (e.g., performance, availability,
and security through the runtime security
monitoring).

Must have; Full; V1-
Y1.

Affects.
Not validated in
the UC.

REQ51

The self-learning component shall ensure that
the conditions are met (compliance with
respect to SLO) and that a failure or a non-
compliance of a TRs is not likely to occur. This
implies the compliance of a predefined set of
non-functional requirements (e.g.,
performance).

Must have; Full; V1-
Y1.

Affects (Desirable for
performance, service
availability, elasticity,
other operational
metrics).

Not validated in
the UC.

REQ52
Self-learning shall consume the data monitored
and store it in a time-series database to create

Must have; Full; V1-
Y1.

Affects.
Not validated in
the UC.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 21 of 70

www.piacere-project.eu

REQ ID Description UC1 UC2 UC3

discriminative complex statistical variables and
train a predictor which will learn potential
failure patterns in order to prevent the system
from falling into a TR violation situation.

REQ55

The IEM will log the whole IaC execution run,
making metadata and metrics (time it took to
run) about the creation of resources available
to the rest of the PIACERE components.

Must have; Full; V1-
Y2.

Desirable.
Must have; Full;
V2-Y3.

REQ57
It is desirable to enable both forward and
backward translations from DOML to IaC and
vice versa.

Should have; Full;
V1-Y1.

Desirable.
Should have; Full;
V2-Y3.

REQ58
DOML should offer the modelling abstractions
to define the outcomes of the IoP.

Must have; Full; V1-
Y1.

Affects (Required).
Not validated in
the UC

REQ59
The DOML should allow users to define rules
and constraints for redeployment,
reconfiguration and other mitigation actions

Must have; Full; V1-
Y2

Affects (Required).
Must have; Full;
V1-Y2.

REQ60
DOML should support the modelling of security
metrics both at the level of infrastructure and
application.

Must have; Full; V1-
Y1.

May affect (Desirable
for full application-
level integration).

Must have; Full;
V1-Y2.

REQ61
DOML must support the modelling of NFRs and
of SLOs.

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ62 DOML must support different views.
Should have; Full;
V1-Y1.

Affects (Abstraction
levels).

Should have; Full;
V1-Y2.

REQ63 DOML must be unambiguous.
Must have; Full; V1-
Y1.

Affects (Required and
enforced).

Must have; Full;
V1-Y1.

REQ64
The IDE should provide a text-based
representation of DOML to ease version
control.

Should have; Full;
V1-Y2.

Affects (Desirable).
Should have; Full;
V1-Y2.

REQ65

IaC Security Inspector and Component Security
Inspector should hide specificities and
technicalities of the current solutions in an
integrated IDE.

Must have; Full; V1-
Y1.

Desirable (built-in
account privilege-
based security by a
need-to-know
principle).

Must have; Full;
V1-Y1.

REQ66
IaC Code security inspector must provide an
interface (CLI or REST API) to integrate with
other tools or CI/CD workflows.

Must have; Full; V1-
Y1.

Desirable.
Must have; Full;
V1-Y1.

REQ67
IaC Component security inspector must
provide an interface (CLI or REST API) to
integrate with other tools or CI/CD workflows.

Must have; Full; V1-
Y1.

Desirable.
Must have; Full;
V1-Y1.

REQ68
Verification Tool must verify the structural
consistency of the IaC generated by ICG.

Must have; Full; V1-
Y1.

Affects (inconsistent
IaC definitions are not
to be allowed).

Must have; Full;
V1-Y2.

REQ69
Verification Tool must verify the correctness of
the IaC generated by ICG, with respect to some
correctness properties provided in DOML.

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ70
The DOML should allow users to state
correctness properties in a suitable sub-
language (possibly Formal Logic).

Must have; Full; V1-
Y1.

Affects (Vendor-
supplied or ad-hoc
solution).

Must have; Full;
V1-Y1.

REQ71
Verification Tool must verify the completeness
of the IaC generated by ICG.

Must have; Full; V1-
Y1.

Affects (incomplete
IaC definitions are not
to be allowed).

Must have; Full;
V1-Y2.

REQ72

The runtime monitoring component should
provide an UI for the end users to see the
monitored resources and the corresponding
metrics/TRs in real time.

Should have; Full;
V1-Y2.

Affects (Desirable -
vendor-supplied).

Not validated in
the UC.

REQ76

DOML should allow the user to model each of
the four considered DevOps activities
(Provisioning, Configuration, Deployment,
Orchestration).

Should have; Full;
V1-Y1.

Affects (required for
DevSecOps).

Should have; Full;
V1-Y1.

REQ77
ICG may generate IAC code for different
supported/target tools according to the
required DevOps activity (as listed in REQ76).

Should have; Full;
V1-Y1

Affects (required for
DevSecOps).

Should have; Full;
V1-Y1

REQ78 (*)

Canary environment shall include one or more
TPOT VMs to simulate an IoT network in the
target environment of the IVRE framework to
recon.

Should have; Full;
V1-Y2.

Affects (UC2 is not
IoT- intensive).

 Under evaluation.

REQ79 (*)
Crawlers in the OSINT application when
deployed in the Canary would need internet
connection in order to collect data.

Should have; Full;
V1-Y2.

Affects (potential
security risk).

 Under evaluation.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 22 of 70

www.piacere-project.eu

REQ ID Description UC1 UC2 UC3

REQ80 (*)
SAST tools to check Docker configurations shall
be included in the Canary environment.

Must have; Full; V1-
Y2.

Affects. Under evaluation.

REQ81
IEM should be able to execute IaC generated
by ICG for selected IaC languages (e.g.,
TOSCA/Ansible/Terraform).

Must have; Full; V1-
Y1 (at least Ansible).

Desirable (Vendor-
supplied or ad-hoc
solution).

Must have; Full;
V1-Y1.

REQ82
IEM shall register the status of past and
present executions and enable an appropriate
way to query it.

Must have; Full; V1-
Y2.

Desirable.
Must have; Full;
V1-Y2.

REQ83
IEM should be able to communicate with the
relevant actors (orchestrators, infrastructural
elements) in a secure way.

Must have; Full; V1-
Y2.

Desirable (DevSecOps,
ENS).

Must have; Full;
V1-Y2.

REQ84
IEM should be able to utilize the required
credentials in a secure way.

Must have; Full; V2-
Y3.

Desirable.
Must have; Full;
V2-Y3.

REQ85
IEM should be able to clean up the resources
being allocated.

Must have; Full; V1-
Y2.

Desirable (required for
efficiency-related
garbage-collection).

Must have; Full;
V1-Y2.

REQ87
IEM shall work against the production
environment and the canary environment.

Must have; Full; V1-
Y1.

Desirable.
Desirable; Full: V1-
Y2.

REQ88
PIACERE framework should be usable by a
team of people collaborating in the
development of the same IaC.

Must have; Full; V1-
Y2.

Affects (required).
Must have; Full V1-
Y2.

REQ89 (*)
PIACERE tools should be usable in a CI/CD
pipeline to automate build, verification, test
and possibly deployment (DevOps-style).

Could have; Full; V1-
Y2.

Affects.
Could have; Full;
V2-Y3.

REQ92
Self-healing component shall receive
notifications from the self-learning.

Must have; Full; V1-
Y1.

Affects (Required -
useless otherwise).

Not validated in
the UC.

REQ93
Self-healing component shall classify the
events received from the self-learning and
derive corrective actions.

Must have; Full; V1-
Y1.

Affects (Required -
useless otherwise).

Not validated in
the UC.

REQ94(*)

SelfHealing component shall inform the run
time controller about the different
components to orchestrate (the workflow to
be executed).

Must have; Full; V1-
Y2.

Affects (Required -
useless otherwise).

Not validated in
the UC.

REQ95
VT tools (model checker) must be able read
DOML language.

Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ96 ICG must be able read DOML language.
Must have; Full; V1-
Y1.

Affects.
Must have; Full;
V1-Y2.

REQ97 (*)

The SelfHealing components provide feedback
on the DOML code, without doing automatic
writes. The end user can choose to accept or
not the feedback received.

Must have; Full; V1-
Y1.

Affects.
Not validated in
the UC.

REQ98 (*)

The IOP components provide feedback on the
DOML code, without doing automatic writes.
The end user can choose to accept or not the
feedback received.

Must have; Full; V1-
Y1.

Desirable.
Not validated in
the UC.

REQ99
IDE to integrate with both local and remote Git
repositories.

Must have; Full; V1-
Y1.

Desirable.
Under evaluation.

2.2 Requirements Summary Dashboard

The following Table 6 summarizes how the requirements are distributed among work packages.
At the moment of writing this document not all requirements have been accepted, and some of
them are still under discussion or in a proposed state.

Table 6. PIACERE Requirements Summary Table

WP# Total requirements Accepted Under Discussion/ Proposed

WP2 11 7 4

WP3 37 37 -

WP4 11 10 1

WP5 20 19 1

WP6 20 18 2

WP7 2 - 2

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 23 of 70

www.piacere-project.eu

In Figure 4 it is shown in a more intuitive way the requirements distribution among the work
packages and the number of accepted and under discussion requirements versus the total
number for each WP.

Figure 4. PIACERE Requirements Summary Dashboard

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 24 of 70

www.piacere-project.eu

3 PIACERE Architecture

The PIACERE Architecture, whose purpose is to support the modelling and creation of the
infrastructure an application is running upon, is structured in blocks that correspond to the
PIACERE Key results from KR1 to KR12 (see Figure 1), composing the final KR13, that is the
PIACERE DevSecOps Framework.

3.1 General description

The PIACERE DevSecOps framework (KR13) is the integration point for all PIACERE Key Results.
It provides three main functionalities:

1. It serves as entry point to PIACERE. A user wishing to utilize the tools will do so through
the DevOps framework.

2. It integrates the different tools and KRs.
3. It orchestrates the workflow, supporting the integrated continuous development and

operation approach. The DevSecOps framework will launch the appropriate tool for
each phase of the application’s lifecycle.

The main entry point of the framework is the GUI provided by IDE (KR2) that drives the design
phase and runtime phase.

3.2 Logical/Functional View

The PIACERE architecture can be divided into two macro areas called "Design" and "Runtime".
In Figure 5 and Figure 6 the interaction among the components of the PIACERE framework in a
typical workflow for both areas is shown.

In these figures, we have the components represented by symbol and two different
kinds of flows:

• Workflow, represented by the solid line, to indicate a call from a component to the next
one

• Dataflow, represented by the dashed line, to indicate a data exchange between
components.

Each flow could be then one-directional, when the flow is only from the component that starts

the interaction to next one or bi-directional, when the flow can be also in the opposite direction.

The PIACERE Design architectural area describes the components that carry out the design and
planning phase of the automation code providing the user with the development, verification
and DevOps Modelling Language (DOML) code repository tools.

The PIACERE Design time, as shown in Figure 5 is composed by the following components:

• Integrated Development Environment (IDE, KR2)

• Verification Tool (VT) which includes IAC Security Inspector (KR6), Component Security
Inspector (KR7) and Model Checker (KR5)

• Infrastructural Code Generator (ICG, KR3)

PIACERE uses a proprietary modelling language, called DOML (KR1), represented in the Figure 5

by the green box.

PIACERE Data Repository consists of:

• “DOML and IaC repository”

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 25 of 70

www.piacere-project.eu

• “Infrastructural Elements Catalogue”

“DOML and IaC repository” stores DOML models and IaC code while the “Infrastructural
Elements Catalogue” is a repository for storing the description of the infrastructure elements
together with their historical and statistical data.

Figure 5. PIACERE Design Time

Table 7 describes the design steps allowing a user to create and save new DOML model(s) and
correlated infrastructural elements in the PIACERE Data Repository.

The Step column describe the number of the design step in the logical sequential way, the Arrow
column corresponds to the arrows of Figure 5, the From and To are respectively the starting
and ending point of the flow, the Direction indicate if the flow is one or bi-directional,
Interaction could be of type Dataflow meaning that there is data exchange or Workflow to
indicate a call to a PIACERE component, finally Description describes the step.

Rows in Table 7 have been color-coded in grey where Interaction is of type Dataflow and yellow
for Workflow.

Table 7. PIACERE Design Workflow

Step Arrow # From To Direction Interaction Description

1 1 User GUI IDE Double User
User interacts with GUI IDE and
vice versa.

2 2
DOML &
IaC Repository

GUI IDE One Dataflow
IDE gets models from the
repository.

3 3 GUI IDE DOML One Workflow IDE uses DOML language.

4 4 GUI IDE Model Checker One Workflow

Model Checker checks for the
consistency and completeness
of the DOML and associated
topology.

5 5 Model Checker GUI IDE One Dataflow

Model Checker return an
answer to IDE. In case of
positive answer go to step #6
otherwise the process restart
from step #3.

6 6 GUI IDE
DOML &
IaC Repository

One Dataflow
Complete and consistent DOML
code is saved in the DOML
Repository.

7 7 GUI IDE
Infrastructural
Code
Generator (ICG)

One Workflow
IDE calls ICG "compiler". ICG
may generate IaC for different
tools/languages, according to

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 26 of 70

www.piacere-project.eu

Step Arrow # From To Direction Interaction Description

the DevOps activity to be
automated.

8 8
Infrastructural
Code
Generator (ICG)

GUI IDE One Workflow

ICG generates code on the
underlying file system;
ICG Command Line Interface
(CLI) returns compilation results
to IDE and continue with step
#9, in case of error(s) the DOML
description must be reviewed so
the process restart from step
#3.

9 9 GUI IDE

IaC Security
Inspector/
Component
Security
Inspector

One Workflow

IAC Security Inspector and
Component Security Inspector
checks the code, the
cryptographic libraries and the
configuration files provided.

10 10

IaC Security
Inspector/Com
ponent Security
Inspector

GUI IDE One Dataflow

IaC Security Inspector and
Component Security Inspector
return a set of warnings, errors
and recommendations to GUI.

11 11 GUI IDE
DOML & IaC
Repository

One Dataflow
IaC code is saved into IaC
Repository.

12 12 GUI IDE
Infrastructural
elements
catalogue

Double Dataflow

Targeted environment
information to be considered in
the optimization process by the
IOP.

The PIACERE Runtime architectural area describes the components necessary for automated
deployment and the dynamic environment that is created during the deployment phase itself.

The PIACERE Run time, as shown in Figure 6, is composed by the following components:

• Runtime Controller (PRC)

• IaC Execution Manager (IEM, KR10)

• Resource Provider

• Infrastructure Advisor
o IDE Plug-in/Dashboard
o IaC Optimizer Platform (IOP, KR9)
o Monitoring Controller
o Monitoring

▪ Performance Monitoring (KR12)
▪ Security Monitoring (KR12)

o Self-Learning
▪ Performance Self-Learning (KR11)
▪ Security Self-Learning (KR11)

o Self-Healing (KR11)

The IDE and the PIACERE data repository have been already described above for the Design
phase, IDE also support users during the Runtime phase.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 27 of 70

www.piacere-project.eu

Figure 6. PIACERE Runtime

Table 8 describes the run time steps allowing a user to implement and manage the execution
environment.

The Step column corresponds to the logical sequential flow, the Arrow column corresponds to
the arrow # of Figure 6, the From and To are respectively the starting and ending point of the
flow, the Direction indicate if the flow is one or bi-directional, Interaction could be of type
Dataflow meaning that there is data exchange or Workflow to indicate a call to a PIACERE
component, finally Description describes the step. When interactions (each row of the table)
are simultaneous then the step and the arrow number are the same.

There are cases where arrow number are identical, this means simultaneous actions and are
represented as unique step.

Rows in Table 8 have been color-coded in grey where Interaction is of type Dataflow and yellow
for Workflow.

Table 8. PIACERE Runtime Workflow

Step Arrow # From To Direction Interaction Description

1 13 GUI IDE
Dashboard/IDE
Plug-in

Double User
User interacts with
Infrastructure Advisor and vice
versa via Plug-in.

2 16 GUI IDE
Runtime
Controller (PRC)

One Workflow PRC is triggered.

3 17
Infrastructural
elements
catalogue

Runtime
Controller (PRC)

Double Dataflow
PRC gets (and saves) info
from/to the catalogue.

4 18
DOML & IaC
Repository

Runtime
Controller (PRC)

One Dataflow
PRC gets info from the
repository.

5 19
Runtime
Controller (PRC)

IaC Execution
Manager (IEM)

One Workflow PRC calls IEM.

6 20
DOML & IaC
Repository

IaC Execution
Manager (IEM)

One Dataflow
IEM gets info from the
repository.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 28 of 70

www.piacere-project.eu

Step Arrow # From To Direction Interaction Description

7 21
IaC Execution
Manager (IEM)

GUI IDE One Dataflow IEM returns feedback to IDE.

8 22
Runtime
Controller (PRC)

Monitoring
Controller

One Workflow

Start and stop monitoring for a
given application (e.g., monitor
application infrastructure,
initiate or end monitoring in
case of deploy and un-deploy).

9

23
Monitoring
Controller

Performance
SelfLearning

One Workflow

23
Monitoring
Controller

Performance
Monitoring

One Workflow

23 Monitoring
Controller

Security
SelfLearning

One Workflow

23
Monitoring
Controller

Security
Monitoring

One Workflow

23
Monitoring
Controller

SelfHealing One Workflow

10 24
IaC Execution
Manager (IEM)

Resource
Provider (RP)

One Workflow IEM calls RP

11 25
Performance
Monitoring

Performance
SelfLearning

One Dataflow
Timeseries of different
performance metrics: memory,
disk usage, etc.

12

26a
Performance
Monitoring

SelfHealing One Workflow
Events related with
performance thresholds
rupture.

26b
Security
Monitoring

SelfHealing One Workflow
Events related with security
thresholds rupture.

13 27
Security
Monitoring

Security
SelfLearning

One Dataflow

Logs with security related
events at system level to be
processed by Security Self-
learning.

14

28a
Performance
SelfLearning

SelfHealing One Workflow
Monitoring events related with
performance self-learning
derived forecasts.

28b
Security
SelfLearning

SelfHealing One Workflow
Monitoring events related with
security self-learning derived
forecasts.

15 29
Runtime
Controller (PRC)

IaC Optimizer
Platform (IOP)

One Dataflow
PRC orchestrates IOP to run
optimisation.

16 30
IaC Optimizer
Platform (IOP)

Runtime
Controller (PRC)

One Dataflow
IOP notifies PRC about new
optimisation.

17 31
Security
Monitoring

Infrastructural
elements
catalogue

One Workflow

Adds security related
information to the
infrastructure elements to
support IOP algorithms.

18 32
Performance
Monitoring

Infrastructural
elements
catalogue

One Workflow

Adds performance related
information to the
infrastructure elements to
support IOP algorithms.

19 33
IaC Optimizer
Platform (IOP)

DOML & IaC
Repository

Double Dataflow
IOP gets/saves info from/to
catalogue.

20 34
IaC Optimizer
Platform (IOP)

Infrastructural
elements
catalogue

Double Dataflow IOP gets info from catalogue.

21 35 SelfHealing
Runtime
Controller (PRC)

One Workflow

SelfHealing asks PRC to perform
different actions based on the
strategy assigned to process a
given event e.g., reboot an
infrastructure element, scale an
infrastructure element.

22 36
Runtime
Controller (PRC)

Infrastructural
elements
catalogue

One Dataflow PRC saves info to the catalogue.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 29 of 70

www.piacere-project.eu

3.3 Architecture components

The purpose of this chapter is to describe in detail all the functional and non-functional
components of the PIACERE architecture.

For each of the following sections, Component description has the aim to describe the
component, its functions, any subdivisions of the same and everything necessary to correctly
indicate it; Component behavioural description aims to describe the behaviour of the component
with the other components, internal and external.

3.3.1 Integrated Development Environment - IDE (KR2)

Component Description

The PIACERE IDE (Integrated Development Environment) is a tool for modelling and verifying IaC
solutions following the Model-Driven Engineering (MDE) approach. The IDE will enable to define
IaC at an abstract level independently of the target environment and at concrete level, based on
the PIACERE DOML (DevOps Modelling Language) and DOML-E (DOML Extensions).

At the technological level, the IDE has been developed using the Eclipse Modelling Framework,
a technology developed to create own tools or IDEs and to describe metamodels. The IDE is the
main tool for interaction with PIACERE users and acts as a vertebral element of the project. It
has a user interface that allows interaction with other PIACERE tools/components. The IDE is set
to be extensible by design, so to allow the new IaC tools and the new abstractions of
infrastructural components that will be incorporated into DOML as Extensions.

Component behavioural description

The IDE, as the main interface for user’s interaction, is connected with other PIACERE
tools/components. The design time components are more tightly integrated with the IDE as they
all belong to the design phase of the solution and make intensive use of the DOML. The other
components belong to the run time phase and are less coupled with the IDE, but nevertheless
the IDE is still the summoning point for these components, and the communication between
them is done through different communication interfaces such as REST APIs.

Through the IDE, users can describe their models according to the underlying metamodel, which
in the case of PIACERE is the DOML. The model will contain the abstract and the concrete
specification of the problem/project.

The IDE will integrate the Verification Tool (VT) and the Infrastructural Code Generator (ICG).
Thanks to the VT, it will be possible to validate the defined models and to make suggestions,
possible substitutions, and improvements. The ICG tool, when triggered from the IDE, will
automatically obtain the corresponding IaC in a specific target environment (e.g., Terraform,
Ansible, TOSCA, …) from DOML.

All the information produced at design time will be stored into the PIACERE data repository, and
after finalising the design time phase, a DOML specification will be complete, and an IaC of the
problem will be generated.

The runtime components of the PIACERE will be also linked with the IDE. The runtime controller
(PRC) will be invoked through the IDE. This component will be in charge of doing the
deployments and link them with the Infrastructure Advisor components.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 30 of 70

www.piacere-project.eu

Figure 7. IDE sequence diagram

Figure 7 shows the interaction with DOML & IaC Repository described in the Appendix (DOML

& IaC Repository section) where the generated DOML and IaC will be stored. DOML & IaC

Repository is a versioning management system such as git, so it is not a component to be

developed within PIACERE.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 31 of 70

www.piacere-project.eu

3.3.2 DevOps Modelling Language – DOML/DOML-E (KR1-KR4)

Component Description

The DOML is the modelling language that is being defined to help PIACERE users in defining the
deployment-relevant information concerning their software system.

The usage of the language is supported by a subcomponent in the IDE which includes those data
structures representing the main elements that are part of the language. This subcomponent
offers to the user a suggestion-based editing approach. More specifically, through the IDE, the
user creates a DOML file and starts editing it. Based on what he/she is typing, the DOML
component suggests how to complete the specification fragment and creates in memory the
instances of the corresponding linguistic elements. These can be queried and serialized in a
textual, XML or JSON file. For now, the textual and XML serializations are implemented.

The DOML extension mechanisms concern the ability of PIACERE users to extend the DOML in
the following directions:

• Creation of new DOML elements: The types of computational nodes that can be
adopted for hosting an application component, as well as the resources used to
interconnect computational nodes and to control their execution can vary depending
on the new technological advantages. To enable the PIACERE expert users to represent
these new resources in the DOML, it should be possible to extend the language. Such
extension should be similar to the type creation mechanism offered by typical
programming languages. While the mechanism has been foreseen in the current version
of the DOML, in the second year of the project we will investigate how the suggestion-
based editing capabilities could be extended by the users to support the new introduced
types.

• Extend current DOML elements: This feature allows the user to add new attributes and
properties to currently existing DOML elements. This aspect has been partially
implemented during the first year of the project and will be tested against the use cases
to validate it during the second year of the project.

• Support to new IaC languages: This feature pertains only in a limited manner to the
DOML as it is mostly related to the ICG components and to their extensibility
mechanisms. This aspect will be investigated in the second or third project year.

Component behavioural description

Figure 8 below shows the interaction between the user and the DOML, mediated by the IDE.
More specifically, the figure highlights two logical subcomponents of DOML, the DOML Manager
and the DOML Model. The first one is in charge of managing the interaction with the user, while
the second one represents the set of data structures defining the DOML. When the user creates
a DOML model through the IDE, it activates the DOML Manager which, in turn, instantiates a
new DOML Model. The DOML Manager is the engine that from the knowledge of the DOML
structure (the entities to be modelled and the needed relationships among them) ensures that
a DOML Model is created properly. The DOML Manager includes editing features. Moreover, it
helps the PIACERE user in his/her work by providing proper suggestions. Whenever the user
adds a new DOML element, the corresponding object is created in the DOML Model. The
interaction with the user can continue alternating suggestions, insertions of new DOML
elements as well as modifications of existing elements. From time to time, the user will save the
model, this operation will result in a serialization of the model into an XML, JSON or pure textual
format. Finally, through the IDE, the user will push the model into a proper repository.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 32 of 70

www.piacere-project.eu

Figure 8. Interaction of the PIACERE User with DOML and the IDE

3.3.3 Infrastructural Code Generator - ICG (KR3)

Component Description

The Infrastructural Code Generator (ICG) is the PIACERE component that allows generating
executable infrastructural code (IaC) from models written in DOML. ICG execution will be like
the execution of a normal compiler for a programming language: it will be a command line tool,
taking the source DOML file in input and producing IaC code files in output. This will simplify the
integration of ICG into the IDE component, as it will be the same kind of integration already
supported for usual source code compilers.

ICG will be able to produce, from a given DOML model, IaC code in multiple different target
languages. The first version will support both Terraform and Ansible, but future versions may
support further languages, possibly integrating new code generators as plugins.

In the first version, the generated code will support both provisioning and configuration. It will
allow provisioning Virtual Machines (VM) for the selected Cloud provider and configuring those
VMs with the installation of software components.

The internal components of ICG are shown in Figure 9 below.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 33 of 70

www.piacere-project.eu

Figure 9. Internal ICG architecture

Component behavioural description

The sequence diagram shown in Figure 10 below exemplifies the behaviour of the ICG
component from a high-level point of view. Internal interactions are shown in a summarized
way; detailed interactions between the internal components will be documented in the D3.4
deliverable.

As shown in the diagram in Figure 10, ICG is invoked as a command line executable, expected to
be integrated in the IDE. The ICG executable starts reading any input parameters and command
line options, then reads its main input, which is the DOML source. From the DOML source, ICG
generates the needed IaC code and writes it on the filesystem, creating a specific directory
structure, if needed. Any errors and summary information are written on the console.

Figure 10. ICG internal and external behaviour

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 34 of 70

www.piacere-project.eu

3.3.4 Verification Tool - VT (KR5)

3.3.4.1 Model Checker

Component Description

The Model Checker (MC) is the verification tool component which is devoted to check the main
properties of the DOML model. In particular, the MC is going to check the consistency,
completeness and some general issues of the model, including, if available, some special user-
defined properties. The MC is called by the IDE, which sends to it a representation of the model,
and returns either a positive result if the properties hold and no issues are found, or a negative
result with some comprehensive counter-examples in case issues are indeed found.

Internally, the Model Checker consists of a component which translates the DOML model
received from the IDE into an internal, logic-based format, that is called Target Logic Model
Representation (or TLMR). The MC then calls the Logic Engine (LE) which is an external tool for
the checking, that is presently assumed to be an SMT-solver (Satisfiability Modulo Theory). The
output of the LE is then interpreted by the MC, in particular by the component that is called
Logic to DOML Mapper, to translate the problems found by the LE (i.e., the counter-example)
into a form compatible with DOML.

The internal architecture of the Model Checker is depicted in Figure 11.

Figure 11. Internal architecture of the Model Checker.

Component behavioural description

Figure 12 below represents the typical behaviour of the MC. As depicted, the IDE sends a
representation of the DOML model to the MC; then, the MC perform some abstractions or
filtering, depending on the size, capabilities or other aspects of the model which could make the
verification too expensive, for verification time or space needed.

The next step is the translation into the internal TLMR format and the verification of the
standard consistency and completeness properties, by calling the external logic tool for the
verification. In case more complex properties are present, these are translated into the TLMR
format as well, and then the verification is performed.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 35 of 70

www.piacere-project.eu

The result of the verification is then returned to the IDE. In case of a negative verification result,
the result also contains a counter-example evidencing the issues found by the MC.

Figure 12. Model Checker internal and external behaviour.

3.3.4.2 IaC Security Inspector (KR6)

Component Description

IaC security inspector is the second verification tool providing statical analysis of the PIACERE
designed application. In the contrast to the Model Checker, IaC security inspector performs
security checks on the generated IaC instead of checking the DOML representation. The Security
Inspector consists of a configuration part, where the set of security checks is selected and
defined, and the runtime part, which performs checks on the IaC and builds the report.

The security inspector takes the IaC code generated by ICG from the DOML for an input and
generates errors and recommendations. The first version of the IaC Security Inspector will focus
on the framework, API and initial checks.

Component behavioural description

The IaC security inspector is an isolated service accessible to the other services through a REST
API. The interface commands are very straightforward, facilitating the code inspection and
configuration of the checks and are available through OpenAPI specification.

We defined performing the set of checks as a one scan of the IaC code. While designing the
interfaces we realised that IaC Security Inspector and Component security inspector require the
same interface performing different checks performed over the IaC. This led to the decision to
create a single scan runner component that will be able to run checks for both Inspectors. The
detailed inspection of the checks showed us that some checks could be listed in both Inspectors
types (Figure 13).

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 36 of 70

www.piacere-project.eu

Figure 13. IaC security and Component Security Inspector

3.3.4.3 Component Security Inspector (KR7)

Component Description

The component security inspector is a tool that makes static analysis of the IaC code, searching
for components and searching for known vulnerabilities of the components. In other words, the
component security inspector will find dependencies used in the IaC and provide user a list of
the vulnerabilities that are published by internet security authorities or are the result of
misconfiguration of the component in IaC.

Component behavioural description

From the user's perspective, the behaviour of the Component Security Inspector will be identical
to the behaviour of the IaC Security Inspector. The only difference is only in the performed
checks.

3.3.5 IaC Execution Platform – IEP (KR10)

3.3.5.1 IaC Executor Manager - IEM

Component Description

The PIACERE project aspires to provide a common manner to utilize different IaC technologies
in a unified way. The IaC component is of paramount importance to reach this overarching goal,
since it oversees the utilization of the IaC code being generated in previous stages of the PIACERE
infrastructure and execute the different technologies provided to obtain the desired
infrastructural architecture. In addition, the IEM is able to leverage different IaC paradigms to

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 37 of 70

www.piacere-project.eu

reach its goal, such as: the provisioning of the heterogeneous infrastructural devices required
that may span different public and private cloud providers; the configuration of each and every
infrastructural device that will support the PIACERE ecosystem, including the required
dependencies for the elements that will support the PIACERE use cases; and the
operationalization of the applications of the use cases that will utilize the PIACERE framework.

Additionally, the IEM will offer a unified approach to query the information regarding the
deployments being made. This query method includes metrics about past and present
executions of the IEM component, such as the duration of a given deployment or the status of
the deployment (e.g., success, failure, pending). Furthermore, it provides a method to obtain
information about the different IaC technologies supported by the IEM.

Finally, the IEM will expose its services through a REST API described in the OpenAPI specification
format. This way, components willing to utilize the IEM, should implement its specification. The
methods offered by the IEM must be used securely through token-based authentication
technologies.

Component behavioural description

Figure 14. Start of deployment

The diagram above, Figure 14, exemplifies the sequence diagram regarding the start of a
deployment. In this scenario, the Runtime Controller communicates with the IEM to initiate a
deployment. This call is asynchronous given that an entire deployment may take a long time to
finish, hence an immediate response is sent back to the Runtime Controller. Alongside the
request, it provides the location of a deployment with the appropriate authentication and
credentials. The IEM incorporates a persistence layer which will track the status of the recently
started deployment. Then, the IEM retrieves the IaC files related with the initiated deployment
and hands over the request to the executors, which will trigger the deployment in the
Infrastructure Provider Resources. Finally, the status of the deployment is updated in the
Persistence layer so it can be queried appropriately.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 38 of 70

www.piacere-project.eu

Figure 15. Request of the status of a deployment

The diagram above, Figure 15, shows the sequence diagram regarding the request of the status
of a deployment by the user. This is a synchronous call; hence the user obtains real time
feedback on the request. The IEM stores this information in the persistence layer and keeps
track of all the present and past deployments that have been initiated by this component.

3.3.6 Runtime Controller - PRC

Component Description

PIACERE Runtime Controller (PRC) is the main control component of PIACERE runtime. It is a
workflow engine that guides the overall workflow within the PIACERE runtime. Actions of PRC
are targeted against a specified set of resource providers (including Canary and Production) via
the integrated components such as the IEM (IaC Executor Manager) and the IA (Infrastructure
Advisor), particularly its own controller component.

The PRC is involved in the PIACERE framework integration. This is described in more detail in a
later section of this document.

Component behavioural description

PRC does not have any sequence diagrams as there is no native sequence diagram to be shown.
PRC integrates the flows of other components into a single, coherent flow spanning the whole
PIACERE runtime. The IDE queries and controls the PIACERE runtime via the PRC.

3.3.7 Canary Sandbox Environment – CSE (KR8)

3.3.7.1 Canary Sandbox Environment Provisioner - CSEP

Component Description

The role of the Canary Sandbox Environment Provisioner (CSEP) is to create the desired Canary
Resource Provider (CRP). This may entail provisioning and configuring new systems to provide
the desired platform. There are two approaches to the CSE: to provide a real (non-simulated)
CRP and a simulated one. Depending on the variant, the scope and characteristics of testing
differs. Real providers require resources and allow to complete all steps of deployment as long
as the supporting infrastructure (beneath the created CRP) is sufficient. The assumption is that
the user is able to provide the hardware (e.g., because they have bare metal or virtual machines,
either on premise or elsewhere – the CSE is agnostic to that). On the other hand, the simulated
variant does not consume resources but does not allow further steps other than provisioning of

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 39 of 70

www.piacere-project.eu

the infrastructure elements. The initial set of planned supported platforms is OpenStack (for real
[non-simulated] actions) and the Canary Sandbox Environment Mocklord (for simulation).

Component behavioural description

Figure 16. Canary Sandbox Environment Provisioner (CSEP)

As shown in Figure 16 In the initialisation stage, both the API and worker components connect
to the internal database to watch for deployment status changes.

The primary sequence of actions regarding the Canary Sandbox Environment Provisioner (CSEP)
involves provisioning of the chosen Canary Resource Provider (CRP) that can be used as a
Resource Provider (RP) with other PIACERE tools, notably IEM. The user, possibly indirectly via
the IDE, invokes the command to provision a new CRP (create new deployment). The CSEP API
component handles this request and creates an appropriate record in the internal database. This
record is then detected by the worker component and acted upon (and updated in the internal
database along the way). Finally, when the worker finishes its job, i.e., deploys the CRP or fails
to do so, the worker saves the final state in the internal database. This information can then be
read by the user, possibly indirectly with IDE.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 40 of 70

www.piacere-project.eu

The alternative and complementary flows involve the following actions:

• destroying the deployment (when the flow of actions is analogous to creation)

• listing deployments

• getting details about a particular deployment.

3.3.7.2 Canary Sandbox Environment Mocklord - CSEM

Component Description

Canary Sandbox Environment Mocklord (CSEM) is to be provisioned on demand by the CSEP.
The role of CSEM is to simulate an existing resource provider so that the user can easily test
interactions against it. The plan is to research the usefulness of such approach to dynamic IaC
testing. The prototype will target a subset of AWS [3] APIs. CSEM is assumed to have a much
lower cost compared to real (non-simulated) resource providers. Due to simulation, this variant
of Canary Resource Provider will allow only the provisioning step to happen.

Component behavioural description

CSEM does not have any sequence diagrams as there is no native sequence diagram to be
shown. CSEM will offer a simulation of the possible upstream API flows, e.g., actions possible
against the EC2 API of AWS.

3.3.8 Infrastructure Advisor

3.3.8.1 IaC Optimized Platform -IOP (KR9)

Component Description

The optimization problem formulated in PIACERE and solved by the IOP consists of having a
service to be deployed and a catalogue of infrastructural elements, with the main challenge of
finding an optimized deployment configuration of the IaC on the appropriate infrastructural
elements that best meet the predefined constraints (e.g., types of infrastructural elements,
Technical Requirements, and so on). In this context, it is the IOP component which is the
responsible for finding the best possible infrastructure given the input data received. This input
data is provided in DOML format and will include the optimization objectives (such as the cost,
performance, or availability), optimization requirements, and previous deployments (in case it
is necessary). Then, the IOP performs the matchmaking for the infrastructure via the execution
of optimization intelligent techniques by using the information taken as input against the
available infrastructure and historical data, available from the catalogue of Infrastructural
elements.

In other words, the optimizer will use artificial intelligence optimization algorithms, seeking for
an optimized deployment configuration of the IaC on the appropriate infrastructural elements
that best meet the predefined constraints. Thus, the IOP will success if it is able to propose the
most optimized deployment configuration of the infrastructural code taking into consideration
the constraints predefined. To this end, several deployment configurations will be shown and
ranked.

Finally, two considerations should be considered. The first one is that the problem to be
optimized will be a multi-objective one, which means that it will be composed by several
conflicting objectives (such as cost and performance). The second aspect to consider is that two
different optimizations will be conducted in the context of PIACERE: the initial deployment of
the service, and the redeployment of an already running service (if the Self-Healing detects it is
necessary).

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 41 of 70

www.piacere-project.eu

Component behavioural description

Figure 17. IOP

We depict in the above Figure 17 the sequence diagram of the IOP. Here, it should be taken into
account that, regardless the kind of optimization to be conducted, the IOP is always called by
the Runtime Controller (PRC) component. Once the IOP is called and all the input information
introduced from the DOML Repository, this component obtains the required data from the
Infrastructural Elements Catalogue. After that, and already having the available elements and
optimization objectives and requirements, the optimization is conducted through the
application of evolutionary computation multi-objective techniques. Once this process is
finished, the IOP provides the results to the DOML Repository.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 42 of 70

www.piacere-project.eu

3.3.8.2 Run-time Monitoring System (KR12)

Component Description

The monitoring mechanisms present in PIACERE allow gathering non-functional measures over
the infrastructure resources that run the components that build up the application. Currently
PIACERE supports the monitoring of two non-functional measures categories: performance and
security.

• The Performance Monitoring component focuses on gathering performance related
measures from the infrastructure resources. The measures are gathered by agents
running in the infrastructure resources: this allow us to gather data about some
individual metrics that may be useful to get idea about the overall health of those
resources. Examples of metrics are memory use, disk use, processes, CPU usage, etc.

• The Security Monitoring component focuses on gathering performance related
measures from the infrastructure resources. The measures are gathered by agents
running in the infrastructure resources.

Component behavioural description

There are two main aspects in the lifecycle of the Monitoring components: the new applications
configuration and the monitoring loop.

The new application configuration has two main parts: the deployment of monitoring agents
and the configuration of the monitoring components to follow the deployed application. The
deployment of the monitoring agents is expected to be done during the application deployment
as part of the activities requested to by the PRC to the IEM. The configuration of monitoring
components to follow the deployed application is centralized by the monitoring Controller. This
is a utility component in charge of notifying the inner monitoring components to start and stop
gathering information for a given application. This is shown in the Figure 18 under the group
“start”.

On the other hand, the application decommissioning has also two main parts: the un-
deployment of the agents and the configuration of the monitoring components to stop following
the deployed application. As with the new application configuration, the un-deployment of the
monitoring agents is expected to be done during the application decommissioning as part of the
activities requested by the PRC to the IEM. The configuration of the monitoring components to
stop following the deployed application is centralized by the monitoring Controller. This is shown
in the Figure 18 under the group “stop”.

The Performance Monitoring component focuses on continuously gather the data coming from
the multiple monitoring agents, evaluate the configured threshold and if necessary, send alerts
to the SelfHealing component. This is shown in the Figure 18 under the group “loop”. DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 43 of 70

www.piacere-project.eu

Figure 18. Monitoring

NOTE: The above figure does not cover the security monitoring activities as these are covered in
the security monitoring diagram (Figure 19).

The Security Monitoring component’s role is two-fold: to gather data from the security
monitoring agents and notify the Self-Healing component on the potential issues to be acted
upon, and to gather data for the Security Self-Learning component for detecting anomalies with
regard to security events. The monitoring system is depicted in Figure 19. As soon the
application has been configured (the first step in T6.1 diagram) and deployed with the rest of
monitoring infrastructure, the data is started to be gathered and analysed. Events are being
continuously evaluated and in case an event related to a specific PIACERE-relevant metric and
with the PIACERE rule being triggered, the Self-Healing component is being notified on this
event.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 44 of 70

www.piacere-project.eu

Figure 19. Monitoring System

Note: Security Monitoring component is depicted above the Security Self-Learning part.

3.3.8.3 Self-Learning (KR11)

Component Description

The self-learning mechanism present in PIACERE allows analysing the deployed elements using
a set of monitored parameters. The Self-Learning component will be responsible for checking
that the different elements present on the platform are in good condition and do not show any
degraded or anomalous behaviour. Currently, PIACERE supports the self-learning of two non-
functional categories: performance and security.

• The PerformanceSelfLearning component focuses on incrementally online learning and
predicting the performance of the elements to guarantee their constant high-level
performance. To do that, the component receives monitoring data from the
PerformanceMonitoring component.

• The SecuritySelfLearning component makes use of state-of-the-art Natural Language
Processing (NLP) architectures to model log streams as a language and capture their
normal operating conditions. These models can then be used to detect deviations from
the normal behaviour.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 45 of 70

www.piacere-project.eu

Component behavioural description

The PerformanceMonitoring provides the PerformanceSelfLearning component with the

monitoring data of each element hosted in the system, after being requested by the

PerformanceSelfLearning. The CPU usage idle, as part of this monitoring data, is requested,

learnt, and predicted in an online fashion manner by the PerformanceSelfLearning, through an

online learning algorithm that can deal with drifts and anomalies. When the prediction of the

next CPU usage idle data point is below a threshold (i.e., 70%), the PerformanceSelfLearning

component sends a warning to the Self-Healing component. Then, this latter component will

have to decide what to do or how to consider such warning. This is shown in the Figure 20.

Figure 20. Self-Learning (Performance)

NOTE: The above figure does not cover the security monitoring activities as these are covered in
the security monitoring diagram (Figure 19).

The SecuritySelfLearning component (activity diagram depicted in Figure 21) receives data from

the SecurityMonitoring component. As a first necessary step, a specified subset of the data has

to be used to train a behavioural model. This subset of data, along with the necessary

configuration files, is provided to the ModelTraining component, which eventually stores every

trained model in the ModelRepository. Once a model is trained, this step is repeated only if

requested to do so. A trained model is loaded from the ModelRepository to carry out anomaly

detection of the data received from the SecurityMonitoring component. Under previously

specified conditions e.g., high number of anomalies in a short period, the SecuritySelfLearning

component will notify the Self-Healing component.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 46 of 70

www.piacere-project.eu

Figure 21. SecuritySelf-Learning

3.3.8.4 Self-Healing (KR11)

Component Description

The Self-Healing mechanism present in PIACERE allows to receive incidence or forecast
notification from monitoring components. Based on the typology of the notification the Self-
Healing component identifies the mitigation strategy to be applied and proceeds with its
execution.

Component behavioural description

The SelfHealing component waits for alerts from the monitoring components. This includes:
Performance monitoring, PerformanceSelfLearning, security monitoring and
SecuritySelfLearning. There will be different types of alerts for example monitoring components
will inform that some threshold has been exceeded or that something has happen, while Self-
Learning components will inform that something may happen based on the evolution of the
metrics analysed.

Once a notification has been received, the Self-Healing component classifies the event and
based on that classification it applies a strategy. The strategy will be realized by sending a Self-
Healing workflow to the PRC. Different strategies are envisioned, such as reboot, migrate, scale.
This is shown in Figure 22.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 47 of 70

www.piacere-project.eu

Figure 22. Self-Healing

3.3.9 Infrastructural Elements Catalogue

Component Description

The Infrastructural Elements Catalogue present in PIACERE stores information about the services
available at service providers as well as the instances of each of these services being used by the
different application being deployed by the PIACERE infrastructure.

Component behavioural description

The Infrastructural Elements Catalogue component is a persistence component that stores
information required by different PIACERE components. As a persistence component there are
two critical aspects to be covered: how the information is added and how the information is
retrieved.

Regarding the feed of information there are three main interactions: the GUI/IDE (Eclipse), the
PRC and the monitoring components. The GUI/IDE will add information about the available
services. The PRC will add information about the instances used from those available services.
Finally, the monitoring components (both performance and security) will add average
information that will be latter used by the IOP. This is shown in Figure 23.

Regarding the usage of information, there is one main interaction: the IOP. The IOP requires to
use information about the services in other to identify the optimal combination of services to
support the application non-functional requirements. This is shown in Figure 23.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 48 of 70

www.piacere-project.eu

Figure 23. Infrastructure Elements Catalogue

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 49 of 70

www.piacere-project.eu

4 Integration Strategy (KR13)

4.1 Integration strategy – definitions

The following terms and acronyms are used in this section.

Table 9. Terms and Acronyms for Integration Strategy

Terms used in

section
Explanation of the term

High Availability (HA)
High level of availability of an IT system or application. This usually means that the system
is installed in more than one instance.

Business Process
Management (BPM)

A standard process for the management of business processes that is enabled through the
use of Workflow / Process Engines.

Strategy
A general plan to achieve one or more long-term or overall goals under conditions
of uncertainty.

Method Detailed approach or solution to achieve a goal.

Integration strategy
Set of guidelines, assumptions and general directives related to the integration of
components within a given IT system.

Integration
Alternative: process of linking together different components or systems in order to act as
a coherent, coordinated whole.

Application
Programming
Interface (API)

The definition of the interfaces of a system or application made available to be invoked by
external parties.

Enterprise Service
Bus (ESB)

A method for integration of IT systems or components.

Enterprise
Application
Integration (EAI)

All tasks, activities, methods and tools used for integrating applications within an enterprise.

Representational
State Transfer (REST)

A nowadays most common protocol for the integration of IT systems.

Message-oriented
middleware (MOM)
communication

Communication between IT systems based on a queue of messages, usually asynchronous.

Synchronous
communication

Direct method of communication between IT systems, where the invoker is blocked until it
receives a corresponding response.

Asynchronous
communication

Indirect (usually through a queue message broker) method of communication between IT
systems, where the invoker is not blocked until it receives the respective response.

Repository A dedicated storage place where code and/or artifacts are versioned.

Branch
A movable reference to a commit that is interpreted as a sequence of such with the
referenced commit being at the tip of the branch.

Tag
An unmovable reference to a commit, highlighting a certain commit for identification
purposes, often meant to mean a certain state of the repository, e.g., a particular
version/revision of the software that was made available to the public.

Pipeline A sequence of modules that facilitate a certain flow.

Flow A sequence of actions that happens in a defined way.

Continuous
Integration (CI)

The continuous process of integrating multiple software components to ensure they
provide a coherent service.

Continuous Delivery
(CD)

The continuous process of ensuring the latest integrated solution is available for installation
(or already deployed).

4.2 Framework description DevOps Pipeline

The PIACERE framework components are version-controlled inside Tecnalia’s GitLab using git [4]
repositories branches and tags. Each component resides in a dedicated git repository as tracked
by an internal spreadsheet. We plan to use GitLab’s CI/CD functionalities to deliver the
integration and testing pipeline. The interfaces offered by different components are described
using OpenAPI and tracked in another internal spreadsheet as part of task 2.3 efforts.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 50 of 70

www.piacere-project.eu

GitLab was chosen as the already-available solution and its CI/CD were evaluated as matching
the needs of the PIACERE project, and hence other solutions were not further evaluated. The
features of CI/CD that were evaluated include:

• The ability to trigger on Pull/Merge requests.

• The ability to work across multiple projects/repositories.

• The ability to understand packaging and artifact distribution systems.

• The ability to integrate with code quality tools.

4.3 Framework components

4.3.1 Integration Repository

The GitLab’s CI/CD will be used for integration and testing. It needs certain configuration that
will be provided by a central, integration, repository. The same repository will also host the
descriptions of flows that are tested in that integration.

4.3.2 CI/CD Flow

The CI/CD flow will involve packaging the non-graphical components in containers and running
example scenarios against the components as they run on Docker [5]. The flow will be largely
based on the integration tooling as delivered in PIACERE Runtime Controller with the motivation
described further below in the strategy section. The CI/CD flow will trigger on Pull/Merge
requests to ensure that the code-to-be-integrated passes the defined tests.

4.4 Selection of integration strategy

One main factor for the successful design and implementation of PIACERE is to provide a proper
integration strategy that integrates the components on which PIACERE is built and thus
mandates proper orchestration of the flow.

From the viewpoint of integration models, we investigate four popular integration strategies,
including point-to-point integration, Message Oriented Middleware (MOM) integration,
Enterprise Application Integration (EAI) or Enterprise Service Bus (ESB) based integration, and
EAI/ESB integration with Business Process Management (BPM) orchestration.

The purpose of this section is to evaluate the different strategies for integration, and to select
the most efficient according to the objectives of the PIACERE project. The selected strategy will
also be analysed in order to highlight its main benefits and advantages.

The PIACERE framework integrates several underlying components into one platform. The
proper selection of the integration architecture with PIACERE is a crucial point for the success of
this project. An additional element to consider was the level of effort needed to implement the
chosen integration method. A Business Process Management (BPM) orchestration was chosen
as the most flexible and easy method of integration. BPMN (BPM Notation) [6] is a standard for
the description and execution of business processes.

The key benefits of this approach are:

• Flexible logic implementation in the BPM flow with no hard coding.

• Support for both synchronous and asynchronous communication.

• Support for most of the integration protocols.

• Reliability, configuration easiness, and high availability.

For the BPM engine implementation, there are four possible solutions that have been evaluated:

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 51 of 70

www.piacere-project.eu

1. Activiti [7] – one of the oldest and most mature open-source BPM implementations.
2. jBPM [8] – also, a mature and stable BPM implementation, developed by JBoss, with

integration support for the business rule server Drools.
3. Camunda [9] – a mature and robust implementation of BPM, which does not require the

whole JBoss stack to work.
4. Flowable [10] – the newest solution, developed by a team of former Activiti developers.

Based on our research and experience in other projects, Camunda has been chosen as the BPM
implementation for the PIACERE project as it matches our requirements. The jBPM from JBoss
requires the whole stack of the JBoss technology, which complicates the implementation of the
project and increases the resource footprint of the platform. Key advantages of choosing
Camunda are as follows:

• Lightweight implementation which is easy to deploy and maintain.

• Full support for the REST communication protocol.

• Easily available docker images, which allow for fast deployment.

• Low level of dependencies to other projects, which allows for easier upgrades and
maintainability in the future.

Table 10. Integration Strategy Evaluation Criteria

Criteria Activiti jBPM Camunda Flowable

Easy maintenance and deployment Yes No Yes Yes

REST support Yes Yes Yes Yes

Docker images availability Yes Yes Yes Yes

Easy upgrade and maintainability No No Yes No

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 52 of 70

www.piacere-project.eu

5 Conclusions

This document provides a detailed description of the entire PIACERE architecture, providing a
conceptual, functional, and interoperable representation based on the requirements that have
been collected and the identified use cases.

The document also provides the description of the workflow related to the main building blocks
(KR1-KR12) of the solution, the functional behaviour of each PIACERE component, the
interactions among internal and external components, identifying if message exchange
dependencies are needed. The combination of PIACERE Key Results and related components
supports the extended DevSecOps approach. The document also provides a proper integration
strategy that integrates the components on which PIACERE is built and thus mandates proper
orchestration.

The architecture, deployment possibilities and interoperability requirements and mechanisms
presented in this document cover the ideas, discussions and initial technical decisions taken by
the PIACERE partners during the first year of the project. This document will be updated in a
subsequent version in M23, along with the advances in the implementation of the PIACERE Key
Results, tools and components.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 53 of 70

www.piacere-project.eu

6 References

[1] ISO/IEC/IEEE International, «Systems and software engineering—Vocabulary,» 2017.

[2] International Institute of Business Analysis, MoSCoW Analysis (6.1.5.2)". A Guide to the
Business Analysis Body of Knowledge (2 ed.), 2009.

[3] «Amazon Web Services,» [Online]. Available: https://aws.amazon.com/.

[4] «GIT,» [Online]. Available: https://git-scm.com/.

[5] «Docker,» [Online]. Available: https://www.docker.com/.

[6] «Business Process Model and Notation,» [Online]. Available: https://www.bpmn.org/.

[7] «Activiti,» [Online]. Available: https://www.activiti.org/.

[8] «JBPM,» [Online]. Available: https://www.jbpm.org/.

[9] «Camunda,» [Online]. Available: https://camunda.com/.

[10] «Flowable,» [Online]. Available: https://www.flowable.com/.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 54 of 70

www.piacere-project.eu

APPENDIX: PIACERE Glossary

Glossary structure

The Glossary is structured in two main sections. The first called Basic Terms defines the terms
used for the PIACERE project. The second section indicates the components expected for the
project and their descriptions. Below there is a logical diagram of how the second section is
composed. The items indicated are indicative and not mandatory.

Functional Description: [Description of the components functions and features, what part of the
PIACERE workflow is covered. This includes the standard workflow.]

Input: [What this component takes as input (models, JSON payload, blueprint or similar)]

Output: [What this component returns as output (file, entry or log in system, response)]

Programming languages/tools: [Python/Java/.NET/ …]

Dependencies: [On other internal or external components with specific interaction description]

Critical factors: [Any critical factors that may include errors in the received inputs, configuration
and mitigation.]

Basic Terms

The application

As PIACERE is considering the application components to be a black box, we must define the line
between the application itself and the IaC. The aim is to have as clear division and understanding
of what the application and IaC actually can be. The main actor is the user, which decides the
granularity of the application and the corresponding IaC to be modelled in the PIACERE. We
model IaC required to run the application and not modify the application components
themselves. The configuration files, FRs, TRs should be provided in DOML to successfully model,
deploy and manage the application. The aforementioned configuration files, FRs, TRs are part of
the DOML.

NOTE: please see the DOML definition.

Technical Requirements (TR)

The explicit requirements concerning the infrastructural elements to be used for a certain
application. These are provided by the end-user in charge of modelling the application
deployment.

Under Technical Requirements we deem explicit requirements for:

• The characteristics of computational environments and networks – e.g., CPU, memory,
cores

• The type of computational environments and networks – e.g., AWS S3 services,
Kubernetes, Google Cloud, etc.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 55 of 70

www.piacere-project.eu

Non-Functional Requirements (NFR)

The explicit requirements, provided by the end-user modelling the application deployment,
concerning the non-functional properties of the application that will be running on top of the
infrastructure.

Under Non-Functional Requirements we deem explicit requirements for the response times,
availability of the infrastructure, cost, etc.

Note that in PIACERE we do not focus on the functional requirements offered by a certain
application and, in fact, the PIACERE platform is completely agnostic with respect to this aspect.

Configuration Management

Configuration Management: by infrastructure configuration we mean the process that enables

to create and update a software environment on existing servers according to a given set of

requirements. This means for example installing software packages, then configuring and

starting them, but also configuring networks.

e.g., Chef, Puppet, SaltStack, xOpera, Ansible, CFEngine.

Infrastructure Provisioning

Infrastructure Provisioning: help in automating the basic lifecycle steps of infrastructure

resources: create, update, and delete. These provisioning steps usually target virtual resources,

either on premises or in the cloud, such as Virtual Machines (VMs), but can also target physical

resources by using suitably flexible hardware platforms such as HPE Synergy.

e.g., Terraform, AWS CloudFormation, xOpera, OpenStack Heat.

Orchestration

Orchestration: it is a process composed of a set of workflows of low-level operations like

provisioning of resources, configuring and installing components, connecting components to

apply dependencies, or tear down individual components. Orchestrators can work with any of

the resource types – compute, networking, storage, services and more.

e.g., Apache Brooklyn, Alien4Cloud, xOpera, Cloudify, ARIA TOSCA, OpenTOSCA, Kubernetes,

OpenStack Tacker.

Container Orchestration

Container Orchestration: It is the set of processes to automate the deployment, runtime

management, scaling, and networking of containers. Examples of tools that support these

processes are Kubernetes, Docker Swarm.

Infrastructure as Code (IaC)

Infrastructure as Code (IaC) is the code needed to automate provisioning of resources, their
configuration, the deployment of software components on top of them, their configuration and
execution. The initial set of IaC languages, as described in DoA, is Terraform, TOSCA and Ansible.

This automation eliminates the need for developers to manually provision and manage servers,
operating systems, database connections, storage, and other infrastructure elements and
application components.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 56 of 70

www.piacere-project.eu

It promotes managing knowledge and experience of plethora of subsystems as a single
commonly available source of truth instead of traditionally reserving it for system
administrators.

Infrastructure as a Service (IaaS)

A platform is described as a collection of hardware and software components that are needed
for a software tool used for computer-aided software engineering (CASE) to operate. As cloud
computing has grown in popularity, several different models and deployment strategies have
emerged to help meet specific needs of different users. Each type of cloud service and
deployment method provides with different levels of control, flexibility, and management.

Among Cloud Computing Models, Infrastructure as a Service (IaaS) contains the basic building
blocks for Cloud Information Technology, and typically provides access to networking features,
data storage space, and computing nodes (either virtualized or running on dedicated hardware).

Typically, in IT industry, the fewer the abstraction layers, the more control one has over
resources, and the lower the payments to mediating service providers. This works both ways, as
a lower abstraction level involves higher complexity, but lower costs if one is capable to control
efficiently and effectively all related intricacies.

More details in IaaS and other Cloud Computing Models can be found in the addenda.

Target IaC Language (TIaCL)

DOML models define the organization of software applications in terms of components and
connectors and their mapping into middleware level and infrastructural components. Such
models must be translated into executable Infrastructure as Code formats that can be used to
automate the phases concerning provisioning and configuration of the infrastructure and the
deployment, configuration and operation of middleware and application-level components.

A target IaC language is one of the executable IaC formats into which PIACERE can translate
DOML models. PIACERE will offer translators for at least Terraform for provisioning of
infrastructural elements and Ansible for the other configuration and deployment steps. Other
IaC target languages could be plugged into the platform by exploiting the PIACERE extension
mechanism.

Configuration Drift

In this project we can consider two levels of configuration drift:

• configuration drift happens when, usually due to manual intervention, the hardware
and software infrastructure configurations “drift” or become different in some way from
the IaC that generated the configuration.

It is possible to call Configuration Drift also the modification of IaC with respect to DOML that
generated it:

• any changes to the IaC, deployed application or the runtime infrastructure not stemming
from PIACERE (i.e., DOML or any PIACERE component) is considered a configuration drift
and as such, undesired state. Please see the definition of DOML.

DevOps Modelling Language (DOML)

The DevOps Modelling Language (DOML) is the language PIACERE offers to its end-users
(DevOps team members) to allow them to describe the external structure of their application

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 57 of 70

www.piacere-project.eu

(seen in terms of black-box components to be deployed) together with any technical and non-
functional requirement concerning the infrastructure to be provisioned and configured to run
such an application.

The DOML allows PIACERE end-users to work at different levels of abstraction and, thus, to
incrementally specify a set of sub-models that include the following elements:

• The application structure using the modelling abstractions that are made available at
the Application Layer.

• The underlying abstract resources to be used and their association to the application´s
components. In this step the abstractions made available at the Abstract Infrastructure
Layer are used.

• Finally, the concretization of the previous model in terms of concrete resources offered
by concrete providers. This is done by relying on the abstractions made available at the
Concrete Infrastructure Layer.

We separate the Abstract Infrastructure Layer from the Concrete Infrastructure Layer to allow
users to produce models that can have multiple realizations. This allows, on the one side, to
have people with different roles and competences intervening at the different layers. On the
other side, it offers a tool to easily change concrete resources, while keeping models at the
higher levels unaltered.

The information inserted in the models at the various levels will allow provisioning,
configuration, deployment and runtime orchestration activities to be executed. More
specifically, the Concrete Infrastructure Layer will be used to generate IaC for provisioning
purposes. The other layers will provide information relevant to the generation of the IaC
relevant for the other purposes.

Infrastructure Element (IE)

A single entity that is both modelled in DOML and later managed in PIACERE runtime.

PIACERE design time

PIACERE design time is the (time) scope of the PIACERE project that involves the initial tasks to
design the desired infrastructure using the PIACERE tooling as well as any further user-driven
process involving modifications in the initial design.
PIACERE design time involves such components as: IDE, DOML, ICG, VT.

PIACERE runtime

PIACERE runtime is the (time) scope of the PIACERE project that involves managing the

running infrastructure that was previously designed at design time.

PIACERE runtime involves some shared components from the design time as helpers (ICG, VT)

and means of communication (DOML).

PIACERE runtime operates using one or more Target Environments

PIACERE runtime is responsible for implementing and managing the Execution Environment.

PIACERE runtime is mainly comprised of the following components: PIACERE Runtime Controller

(PRC), IaC Executor Manager (IEM), Infrastructure Advisor (IA).

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 58 of 70

www.piacere-project.eu

Resource Provider (RP)

PIACERE is creating/using resources through the selected Target IaC Language and tooling on
Resource Providers, to create the Execution Environment for the application.

Examples of: AWS and friends, OpenStack, bare-metal, IoT

NOTE: This (as well as TIaCL) was mentioned as Target Environment in the DoA.

Cloud Service Provider (CSP)

One kind of cloud resources provider, e.g., Amazon’s AWS, Google’s GCP, Microsoft’s Azure,

Alibaba Cloud, some OpenStack.

Production Resource Provider (PRP)

The production (non-canary) variant of the Resource Provider (RP).

Canary Resource Provider (CRP)

The canary (non-production) variant of the Resource Provider (RP).

RPs of this kind are provided by the Canary Sandbox Environment (CSE) task.

They come in two variants: real and simulated, i.e., with mock-ups.

Mock-up

A functionality, which has the same API as an existing infrastructure provider (e.g., AWS) and
returns the success/failure along with the expected data that would be returned from the real
API call.

It is used in the simulated variants of the Canary Resource Provider.

For more details see the Canary Sandbox Environment in Components.

Execution Environment (EE)

The Execution Environment is essentially what we model in DOML and then realise through IaC,
up to the point when we deploy the application and run it. The Execution Environment is thus
an environment in which the application is running. It can span over different CSPs, different
technologies (i.e., may be heterogeneous). Any non-user changes of the Execution Environment
are realised through the Optimizer (IOP), either in the initial phase or when invoked by the
SelfHealing component. All non-user changes are reflected in the updated DOML. User changes
are considered a Configuration Drift.

PIACERE runtime creates the EE using the DOML converted to IaC and run using appropriate
tooling.

Production Execution Environment (PEE)

Production Execution Environment (PEE), in the strict sense, is an EE that is hosting the
application on an infrastructure, built using DOML and implemented by IaC, for production
purposes.

In the weaker sense, it is any EE that is not a Canary EE.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 59 of 70

www.piacere-project.eu

Canary Execution Environment (CEE)

Canary Execution Environment (CEE) is an EE that is created using one or more Canary Resource
Providers. It might or might not allow to run any steps beyond the infrastructure deployment,
e.g., it might be entirely mocked up and not use any resources it claims to have.

Components

Integrated Development Environment (IDE)

Functional Description: The PIACERE IDE (Integrated Development Environment) will be a tool
for modelling and verifying IaC solutions following the Model-Driven Engineering (MDE)
approach. The IDE will enable to define IaC at an abstract level independently of the target
environment based on the PIACERE DOML (DevOps Modelling Language).

Input: No inputs

Output: A DOML instance of the solution to be deployed.

Programming languages/tools: Eclipse Theia + EMF Cloud

Dependencies: The IDE will integrate the Verification Tool (VT) and Infrastructural Code
Generator (ICG). Thanks to the VT, it will be possible to validate the defined models and to make
suggestions, possible substitutions and improvements. Through the ICG tool, the corresponding
IaC in a specific target environment (e.g., Terraform, Ansible, TOSCA…) will be automatically
obtained.

Critical factors: The IDE will be designed to be extensible, so to allow the new IaC tools and the
new abstractions of infrastructural components that will be incorporated into DOML (DOML-
Extensions).

Infrastructural Code Generator (ICG)

Functional Description: This component generates the required IaC from DOML and possibly,
the configuration files. The proposed DoA IaC languages are Terraform and Ansible with possible
extensions to Chef, Puppet, SaltStack. The conversion from DOML into IaC is a pure function1
that is, deterministic. ICG may generate IaC for different tools/languages, according to the
DevOps activity to be automated (Provisioning, Configuration, Deployment, Orchestration). ICG
will be a command-line tool, reading input from and writing output to the underlying file system,
like common compilers do.

 Input: File from DOML (the files could be more than one).

 Output: File containing code in the chosen target IaC language (the files could be more than
one, possibly organized in a directory structure as defined by the respective target tool).

 Programming languages/tools: Python

 Dependencies: ICG has dependencies on the DOML source and the target service provider.

1 In computer programming, a pure function is a function that has the following properties:

1. The function return values are identical for identical arguments
2. The function application has no side effects

https://en.wikipedia.org/wiki/Pure_function

DRAFT

http://www.medina-project.eu/
https://en.wikipedia.org/wiki/Pure_function

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 60 of 70

www.piacere-project.eu

Critical factors: ICG needs to know the target provider because the infrastructure component
definitions (in Terraform) are provider-specific.

Canary Sandbox Environment (CSE)

CSE is one of key results within PIACERE. The goal is to provide tools that would allow to
dynamically test the IaC in a fast and cheap manner. The tools are described in the following
subsections: CSEP and CSEM. There are two approaches to the CSE: to provide a real (non-
simulated) Canary Resource Provider and a simulated one. Depending on the variant, the scope
and characteristics of testing differs. Real providers require resources and allow to complete all
steps of deployment as long as the supporting infrastructure (beneath the created provider) is
sufficient. The assumption is that the user is able to provide the hardware (e.g., because they
have bare metal or virtual machines, either on premise or elsewhere – the CSE is agnostic to
that). On the other hand, the simulated variant does not consume resources but does not allow
further steps other than provisioning of the infrastructure elements.

Note: CSE can be used to test other relevant PIACERE components, e.g., IEM.

Properties possible to be studied using a Canary Resource Provider are:

• Technical Requirements (TR)
o Are the right resources really provided?

• Security (security testing) – e.g., if connections are allowed or not
o Limited to infrastructure elements in the simulated case
o Allows DAST in the real case

• Robustness (stress testing) – e.g., if the VM creation fails, how to react.
o Limited in the simulated case – it might be too permissive due to no real

constraints

• Integration test or “Completeness”, that is check if everything is deployed correctly,
every connection is properly opened, every component is properly connected, etc.:

o Are all network segments defined?
o Do we have connectivity from VMs (internal/external)?

▪ Only a declaration-based check in the case of simulation

• In the real case also configuration tests via tools like Serverspec

Examples of properties NOT possible to be studied within the CSE AT ALL are:

• Non-Functional Requirements (NFRs)
o The performance

▪ It will either differ from the production (in the case of a real provider)
so not useful or not be measurable at all (in the case of a fake one).

o All others are not applicable at all as there is no notion of cost, availability,
region, policies etc.

Canary Sandbox Environment Provisioner (CSEP)

Functional Description: The role of this component is to create the desired Canary Resource
Provider(s). This may entail provisioning and configuring new systems to provide the desired
platform. The initial set of supported providers is OpenStack (for real [non-simulated] actions)
and CSEM (for simulation, see below). The discussion continues on whether we consider Docker
Swarm and/or Kubernetes at this level. Note: they might be deployed further on top of
OpenStack for flexibility.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 61 of 70

www.piacere-project.eu

Note: An interesting case would be to actually use PIACERE toolset to be the basis for CSEP but
it is a chicken and egg problem at the moment.

Input: The input to this component constitutes the configuration with respect to what Canary
Resource Provider(s) should be provided and what their config values are.

Output: This component returns information on the provisioned Canary Resource Providers
including but not limited to: API endpoints, credentials.

Programming languages/tools: Python

Dependencies: ICG must be able to generate code compatible with deployable Canary Resource
Providers. Weak dependency on CSEM (CSEP needs to know how to deploy it). Other PIACERE
components may depend on it to provide a testing environment for PIACERE itself.

Canary Sandbox Environment Mocklord (CSEM)

Functional Description: The role of this component is to simulate an existing resource provider
so that the user can easily test interactions against it. The plan is to research the usefulness of
such approach to dynamic IaC testing. The prototype will target a subset of AWS APIs. CSEM is
deployed and configured by CSEP and is assumed to have much lower cost compared to real
(non-simulated) resource providers. Due to simulation, this variant of Canary Resource Provider
will allow only the provisioning step to happen.

Note: it is unlikely to be able to guarantee 100% compatibility with the mocked provider (e.g.,
AWS) due to them being effectively black boxes.

Input: It should allow API calls allowed by the provider being mocked.

Output: This component records the state of the mocked-up environment and allows to retrieve
information on it, e.g., created VMs, opened ports.

Programming languages/tools: Python + e.g., moto library for mocking AWS

Dependencies: ICG must be able to output IaC compatible with the simulation (i.e., the
provisioning step must be separate from further ones). Infrastructural Services Catalogue might
be used to decide on offered resources dynamically (e.g., types of VMs) - note: this should be
the same functionality as the one required by IOP already – to know “the offer” but it can also
be configured via a side channel. Other PIACERE components may depend on it to provide a
testing environment for PIACERE itself.

DOML & IaC Repository

The DOML models, as well as the generated IaC, will be stored in the user’s file system or, upon
a proper configuration of the IDE, in a version management system such as git. This will give the
possibility to all PIACERE component to share the DOML model files by using the corresponding
links. This will also allow multiple versions of a DOML model to be available and used by different
tools if this will be necessary.

Infrastructural Elements Catalogue (IEC)

The Infrastructural Elements Catalogue is a required service for the optimizer (IOP) and it
contains the description (NFR, TR and dynamic runtime metrics) of the available IEs to be
considered in the optimization process by the IOP

Each item within the Infrastructural Elements Catalogue is associated with the historical data on
the important properties of the infrastructure, emanating from the monitoring data:

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 62 of 70

www.piacere-project.eu

• Real availability
• Real response times,
• Etc.

This information (dynamic monitored data) along with the static characteristics of the
infrastructural elements will serve for the IOP to select the best combination of infrastructural
elements given a set of TRs.

Initially the catalogue will include basic infrastructural elements (VMs + storage + IoT gateways)
and then it will be enlarged with other types of elements such as Kubernetes.

Verification Tool (VT)

The VT focuses on static analysis of the IaC (IaC Static Verification).

The VT consists of the following components:

• Model Checker: Given a DOML description checks for the consistency and completeness
of the DOML and associated topology. It would be possible to provide some correctness
properties given in a suitable DOML sub-language. The VT provides the outputs:

o Yes, the provided DOML is consistent and complete.
o No, the DOML should be changed – provides suggestions on what are the

problems and (possibly) ways to fix them.
o (Correctness): Yes, the provided DOML satisfies the correctness properties.
o (Correctness): No, the provided DOML is not correct and at least one counter-

example is provided.

• IaC Static and Security Verification
o BASIC: Yes: correct & complete; No: provides suggestions on what is to be

changed.
o ADVANCED: to evaluate the IaC code for quality, maintainability – check

SonarCloud (currently does not support IaC).

• Security Components Inspector: provides checks of the cryptographic libraries to be
used within the application deployment using the DOML, IaC and configuration files
provided.

Model Checker

Functional Description: The Model Checker performs the following checks, based on DOML:

• Checking whether the model is consistent and complete (e.g., there are no dangling
connections, all components have defined a corresponding infrastructure…).

• Checking whether data flow from a component to the other according to the defined
constraints (e.g., for privacy reason, certain pieces of data cannot reach some
component A).

• Checking whether the model complies with the properties provided by the user, if
present.

Input: DOML model
Output: Yes/No and a counterexample in case of a negative result
Programming languages/tools: Python, Z3 SMT solver
Dependencies: IDE – the IDE will provide the input and consume the output.
Critical factors: DOML syntax compatibility

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 63 of 70

www.piacere-project.eu

IaC Security Inspector

Functional Description: The IaC Code Security Inspection provides the IaC static tests - SAST
tests, using the tools from the open-source communities. The IaC is tested against predefined
policies (TR, NFR), enabling regulation of the IaC code based on the overall company policies and
against the potentially harmful IaC code patterns.

 The component will follow these steps:

• Traverse through IaC, find a set of dependent/used libraries in IaC

• Check versions (detection of vulnerable ones)

• Check configuration (i.e., ports, credentials)

• Check whether inputs are valid

• Find hardcoded usernames/passwords, etc. and typos

• License check

• Prepare output (warn, recommend).

Input: API or CLI call takes as input the IaC code, generated by the ICG.

Output: A set of warnings and recommendations as a response to the API call.

Programming languages/tools: Python

Dependencies:

• ICG – the Infrastructural Code Generator will provide the input.

• IDE – the IDE will consume output from the component.
Critical factors: Any critical factors that may include errors in the received inputs, configuration
and mitigation.

Component Security Inspector

Functional Description: An analyser and ranker of components (libraries, middleware) from a
security point of view. Code Security Inspector will extract dependency information from the
IaC, detect included programs and libraries with known vulnerabilities by querying public
vulnerability databases in order to produce a report to the PIACERE user (IDE), informing the
user about the appropriateness of the components included in their solution.

Main functionalities:

• Cryptographic software libraries will be analysed

• Most appropriate frequently used (based on used modules within IaC) cryptographic
libraries will be selected

• The tool will include tests for attacks against them

• This tool will verify vulnerabilities by using carefully designed test cases to execute
libraries' functions and observe their behaviour and output to detect the possibility of
attacks.

• Tests will be made periodically.
Process and steps of the tool: prepare knowledge base of crypto libraries, check if libraries are
used (subset of SAST libraries), check versions/configuration, prepare output (warn,
recommend).

Input: IaC code, generated by the ICG

Output: A set of warnings and recommendations

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 64 of 70

www.piacere-project.eu

Programming languages/tools: Python, Java

Dependencies:

• ICG – the Infrastructural Code Generator provides the input.

• IDE – the IDE consumes output from the component.
Critical factors: Any critical factors that may include errors in the received inputs, configuration
and mitigation.

PIACERE Runtime Controller (PRC)

Functional Description: This component is the main control component of PIACERE runtime. It
is a state machine that guides the overall workflow within PIACERE runtime. Actions of PRC are
targeted against a specified set of resource providers (including Canary and Production).

Input: This component receives messages of two types: events (notifications) and commands
(RPCs) from other components via a queue interface.

Output: This component produces further messages which are placed in the queue system and
handled by other components.

Programming languages/tools: Java + Camunda BPM + ActiveMQ

Dependencies: This component does not strictly depend on other PIACERE components, but it
interacts with other PIACERE components, mostly runtime: including IaC Executor Manager
(IEM), which it controls, and Infrastructure Advisor (IA) which it sets up and communicates with
(note: IA is made of several distinct components). Absence of these means there is no real work
being done by PRC. Similarly, IDE interacts with PRC.

Critical factors: The received messages may be mis-formatted and hence un-handable. Sent
messages may have no receivers or receivers are unable to handle them. The queue system
might fail.

Comments/open questions/issues: Who/what sets up PRC? Also, I see some components have
already declared to be offering REST APIs – are we coupling the services using API endpoints
then? Would not a queue be a better fit here? At least for the runtime components.

IaC Executor Manager (IEM)

Functional Description: its purpose is to plan, prepare, and provision the infrastructure and the
corresponding software elements needed in the deployment. This work entails the following
activities: i) creation of the underlying infrastructure, ii) sort out the software dependencies and
configuration, iii) deployment of the applications, iiii) un-deploying applications/cleaning.

Input: API or CLI call takes as input the IaC code, generated by the ICG.

Output: a code stating the deployment status.

Programming Languages/Tools: Python, IaC Tools.

Dependencies:

• ICG – the Infrastructural Code Generator will provide the input through the PIACERE

Runtime Controller

Critical Factors:

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 65 of 70

www.piacere-project.eu

• The received IaC scripts may contain errors.

• Connectivity issues with the different components (e.g., Cloud providers, devices,
Container Orchestrators).

• Security concerns during the communication.

• Authentication and authorization issues during the deployment.

Infrastructure Advisor (IA)

Infrastructure Advisor holds four main sub-components:

IaC Optimizer Platform (IOP)

Functional Description: The optimization problem formulated in PIACERE and solved by the IOP
consists on having a service to be deployed and a catalogue of infrastructural elements, with the
principal challenge of finding an optimized deployment configuration of the IaC on the
appropriate infrastructural elements that best meet the predefined constraints (e.g., types of
infrastructural elements, NFRs, and so on). In this context, it is the IOP component which is the
responsible for finding the best possible infrastructure given the input data received. This input
data is provided in DOML format and will include the optimization objectives (such as the cost,
performance, or availability), optimization requirements and previous deployments (in case it is
necessary). Then, the IOP performs the matchmaking for the infrastructure by the execution of
optimization intelligent techniques using the information taken as input against the available
infrastructure and historical data, available from the catalogue of Infrastructural elements

Input: The input of the IOP can be divided into two aspects:

o DOML (which consists of the FR, TR, The infrastructure model (i.e., VMs, K8S, etc), the
configuration (e.g., application specific YAML, Docker, etc. definitions))

o Information (static + dynamic) from the Infrastructural elements catalogue.

Output: IOP will provide its result (the selected optimized infrastructural elements) in DOML
(PSM level).

Programming Languages/Tools: Java.

Dependencies: Run time monitoring system. This component has access to DOML.

Critical factors:

• The IOP must be “fast” – the IOP will search through a potentially large solution space –
the complexity of the NFR/TR influences the choice of optimisation algorithm.

• The IOP should work on two different scenarios: first deployment, and as result of an
action raised by the SelfHealing. In the first of the cases, the IOP should return several
solutions optimizing all the objectives considered. In the second case, the IOP should
return a working solution in a fast time, which amends the problem detected.

• The optimization problem to solve is a multi-objective one.

Monitoring Controller

Functional Description: This component concentrates the infrastructure resource monitoring
activation and deactivation activities throughout all the monitoring components: performance
monitoring, security monitoring, PerformanceSelfLearning and SecuritySelfLearning.

Input: Data provided by the PIACERE Runtime Controller, specifically the id of the application

from which we must monitor their resources.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 66 of 70

www.piacere-project.eu

Output: An acknowledge that the request has been received and it is being processed towards
the monitoring and SelfLearning components.

Programming languages/tools: Python

Dependencies: PIACERE Runtime Controller.

Critical factors:

• We require that the monitoring agents label their metrics with the application id.

• The usage of the application id label may constrain the usage of the same infrastructure
resource to provide or support components from different applications.

Open questions:

• How to manage the situation of several applications running in the same infrastructure
resource.

Monitoring

Under monitoring we currently cover two non-functional aspects: performance and security.

Performance Monitoring
Functional Description: This component concentrates the infrastructure resource monitoring
activation and deactivation activities throughout all the monitoring components: performance
monitoring, security monitoring, PerformanceSelfLearning and SecuritySelfLearning.

Input: Data provided by the PIACERE Runtime Controller, specifically the id of the application

from which we must monitor their resources.

Output: An acknowledge that the request has been received and it is being processed towards
the monitoring and SelfLearning components.

Programming languages/tools: Python

Dependencies: PIACERE Runtime Controller.

Critical factors:

• We require that the monitoring agents label their metrics with the application id.

• The usage of the application id label may constrain the usage of the same infrastructure
resource to provide or support components from different applications.

Open questions:

• How to manage the situation of several applications running in the same infrastructure
resource.

Security monitoring
Functional Description: The Security monitoring system consists of subsystems (Wazuh
deployment – manager and agents - with specific components for data transformation)
collecting data in order to provide values for security metrics. As an additional option it can
provide the deployment of Vulnerability Assessment Tool (VAT) that is capable of monitoring
API end-points of the specific Web Application.

Input: Metrics defined by the NFRs and TRs from the DOML. Additional to the NFR and TR
monitoring, we are monitoring security metrics: e.g., Security of the configuration – metrics are
not defined right now – but could be the check of the component versions; mapping between

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 67 of 70

www.piacere-project.eu

CVEs and components; configuration changes, not prescribed by the IaC – potential action to
enforce redeployment.

 Output:

• The classified events are sent to SelfHealing component to be further inspected.

• The data collected is used by SecuritySelfLearning component to analyse/classify events
(detect anomalies)

Programming languages/tools:

• Wazuh, VAT: Python, C++, JavaScript

Dependencies:

• Wazuh deployment, Ansible

• Vulnerability Assessment Tool deployment (VAT)

Critical factors:

• “The price” for running complete monitoring stack might be of high impact

• Configuration of the deployment of Wazuh and the Vulnerability Assessment Tool

Open questions:

• Dynamic configuration step of the monitoring components.

Self-Learning

Under monitoring we currently cover two non-functional aspects: performance and security.

PerformanceSelfLearning
Functional Description: This component predicts malfunctioning (TRs degradation) and detects
the concept drift phenomenon and/or anomalies in data provided by the Runtime monitoring
system, and then it warns the SelfHealing component to be triggered. Any event threatening the
QoS of an IaC deployment should be detected. Therefore, this component might have two
different modules: one module to detect the concept drift phenomenon and another one to
detect anomalies.

Input: Data provided by the Runtime monitoring system, which may suffer from concept drift

and/or anomalies.

Output: A response for the SelfHealing component, which may be an alert of the potential
failure in one/several considered variables, e.g., infrastructural element, potential failure (which
TR, even the metric), etc.

Programming languages/tools: Python

Dependencies: Run time monitoring system. This component has access to DOML.

Critical factors:

• Is this component trained in a real-time mode or with historical data every concrete
period of time? Or even is it trained only once with historical data at the beginning of
the IaC life? According to DoA: “... The self-learning mechanisms will manage their own
training phase based on historical information from the runtime infrastructure (i.e., past

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 68 of 70

www.piacere-project.eu

failures) ...”, but in other sentences DoA uses the terms ”real-time”, “incremental
learning” and “run time”. We must deal with this issue at this stage of the project. From
my perspective, a real-time learning makes more sense.

• Data provided by the Run time monitoring system has to show evidences of concept
drift or anomalies, otherwise this component wouldn’t make sense, and therefore the
SelfHealing component wouldn’t be triggered.
We are currently unsure on the type of data but can assume it is time-series (TS) data,
that indicates the status of the platform. In case of being TS, the streaming and the
concept drift approach should address the temporal dependence issue.

Open questions:

• Not sure how the data will look like (time-series/ status/ version number), even the
characteristics of attributes (how many, types, meaning of each attribute, will they be
enough for our detection purposes?)

• Expected state of the infrastructural elements compared to the actual state (GT is
DOML)

SecuritySelfLearning
Functional Description: The SecuritySelfLearning component receives data from the
SecurityMonitoring component. As a first necessary step, a specified subset of the data has to
be used to train a behavioural model. This subset of data, along with the necessary configuration
files, is provided to the ModelTraining component, which eventually stores every trained model
in the ModelRepository. Once a model is trained, this step is repeated only if requested to do
so. A trained model is loaded from the ModelRepository to carry out anomaly detection of the
data received from the SecurityMonitoring component. Under previously specified conditions,
e.g., high number of anomalies in a short time period, the SecuritySelfLearning component will
notify the SelfHealing component.

Input:

Data stemming from the Security Monitoring component.

Programming languages/tools:

Python

Dependencies:

• Grafana dashboard (deployment).

Critical factors:

• Building the model for the anomaly detection.

Open questions:

• The process of building the model is still open – it needs to be run either in parallel on a
different deployment of the application or needs to be already built beforehand if it is
used for the anomaly detection.

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 69 of 70

www.piacere-project.eu

Self-Healing

Functional Description: The Self-Healing component gets input from the Monitoring and
SelfLearning components both performance and security and will assess what should be
changed within the infrastructural elements (if needed), to correct the (potential or actual) error
or failure. It receives the input, classifies the event and launches the corresponding mitigation
actions.

Based on the type of alert received from the monitoring components SelfHealing strategies will
be sent to the PIACERE runtime controller that will perform some actions that will have to be
identified as part of the strategy. Examples are:

• Launch the IOP

• Reboot machines

• Scale up the infrastructure

• Trigger the orchestration execution through the runtime orchestrator

Input: It will be launched by the SelfLearning or the runtime/security monitoring and as input it

will receive information about the event originating the failure.

Output: As output it will generate a set of actions to be performed (call the IOP, etc) by the
orchestrator.

Programming languages/tools: Java

Dependencies: Monitoring components: PerformanceMonitoring, SecurityMonitoring,
PerformanceSelfHealing and SecuritySelfHealing.

Open Questions:

• We need to understand what we can request the PIACERE runtime controller (PRC), as
the strategies in principle are going to be workflows that we intend for the PRC to run.
However, there are some aspects such as the required information that we should check
per each strategy.

Addenda

This section includes expanded information on some of the topics

IaaS and Cloud Computing Models

IaaS provides the highest level of flexibility and management control over IT resources, in
contrast with the Platform as a Service Cloud Computing Model (PaaS), which removes the need
for an organization to manages the underlying infrastructure. Therefore, IaaS is a Managed
Infrastructure C. C. model, which provides surgical configuration control over infrastructural
resources, while removing an abstraction layer.

Some examples of tools used in PaaS models are Terraform (an open-source infrastructure as
code software tool that provides a consistent CLI workflow to manage hundreds of cloud
services, by codifying cloud APIs into declarative configuration files), and Docker (which uses
Operating System-level virtualization to deliver software in packages called containers),
although both of these tools also include IaaS features.

The third Cloud Computing model: Software as a Service (SaaS) is designed with the highest
level of abstraction as seen by the end user, since the Platforms management tasks are also

DRAFT

http://www.medina-project.eu/

D2.1 – PIACERE DevSecOps Framework requirements
Specification, architecture and integration strategy Version 1.0 – Final. Date: 30.11.2021

© PIACERE Consortium Contract No. GA 101000162 Page 70 of 70

www.piacere-project.eu

abstracted and supplied by a SaaS vendor. A common example of a SaaS application is web-
based email.

Schematically, as ordered by decreasing abstraction level, and increasing control over resources:

𝐒𝐚𝐚𝐒 >> 𝐏𝐚𝐚𝐒 >> 𝐈𝐚𝐚𝐒

Consequently, IaaS models interact intensively with Infrastructure as Code (IaC), commonly
described within templates. These templates do detail all aspects of the underlying
infrastructural elements that are to be managed, an activity which may involve tasks such as
deployment, configuration, and release/deallocation of resources.

Since Infrastructure as Code (IaC) is the practice of managing infrastructure in a file or files,
rather than manually configuring it via a user interface, infrastructure resource types managed
with IaC can include virtual machines, security groups, network interfaces, and many others.

According to H-Cloud’s
presentation of the consultations
held for the Strategic Report on
Cloud Adoption (https://www.h-
cloud.eu/), SaaS is by far the
most popularly adopted Cloud
Computing model among
respondents from the EU, the UK,
and the USA (v. chart), though in
the EU, and in the UK, IaaS
models are significantly larger
than they are in the USA (which is
by far the largest market in
volume as a percentage of GDP).

Consequently, there seems to exist an opportunity for Europe to leverage their proportionally
higher IaaS Cloud Computing Models adoption rate, on international markets. But also, to
increase their proportional adoption rates across all of the cloud servicing spectrum.

Figure 24. Status of cloud computing models (source: H-cloud)

DRAFT

http://www.medina-project.eu/
https://www.h-cloud.eu/
https://www.h-cloud.eu/

	Terms and abbreviations
	Executive Summary
	1 Introduction
	1.1 About this deliverable
	1.2 Document structure
	1.3 Key Results (KRs) relationship

	2 Requirements Specification
	2.1 Requirements Collection
	2.1.1 Functional Requirements
	2.1.2 Non-Functional Requirements
	2.1.3 Business Requirements
	2.1.4 Key Results mapped on requirements
	2.1.5 Use Cases mapped on requirements

	2.2 Requirements Summary Dashboard

	3 PIACERE Architecture
	3.1 General description
	3.2 Logical/Functional View
	3.3 Architecture components
	3.3.1 Integrated Development Environment - IDE (KR2)
	3.3.2 DevOps Modelling Language – DOML/DOML-E (KR1-KR4)
	3.3.3 Infrastructural Code Generator - ICG (KR3)
	3.3.4 Verification Tool - VT (KR5)
	3.3.4.1 Model Checker
	3.3.4.2 IaC Security Inspector (KR6)
	3.3.4.3 Component Security Inspector (KR7)

	3.3.5 IaC Execution Platform – IEP (KR10)
	3.3.5.1 IaC Executor Manager - IEM

	3.3.6 Runtime Controller - PRC
	3.3.7 Canary Sandbox Environment – CSE (KR8)
	3.3.7.1 Canary Sandbox Environment Provisioner - CSEP
	3.3.7.2 Canary Sandbox Environment Mocklord - CSEM

	3.3.8 Infrastructure Advisor
	3.3.8.1 IaC Optimized Platform -IOP (KR9)
	3.3.8.2 Run-time Monitoring System (KR12)
	3.3.8.3 Self-Learning (KR11)
	3.3.8.4 Self-Healing (KR11)

	3.3.9 Infrastructural Elements Catalogue

	4 Integration Strategy (KR13)
	4.1 Integration strategy – definitions
	4.2 Framework description DevOps Pipeline
	4.3 Framework components
	4.3.1 Integration Repository
	4.3.2 CI/CD Flow

	4.4 Selection of integration strategy

	5 Conclusions
	6 References
	APPENDIX: PIACERE Glossary
	Glossary structure
	Basic Terms
	The application
	Technical Requirements (TR)
	Non-Functional Requirements (NFR)
	Configuration Management
	Infrastructure Provisioning
	Orchestration
	Container Orchestration

	Infrastructure as Code (IaC)
	Infrastructure as a Service (IaaS)
	Target IaC Language (TIaCL)
	Configuration Drift
	DevOps Modelling Language (DOML)
	Infrastructure Element (IE)
	PIACERE design time
	PIACERE runtime
	Resource Provider (RP)
	Cloud Service Provider (CSP)
	Production Resource Provider (PRP)
	Canary Resource Provider (CRP)
	Mock-up

	Execution Environment (EE)
	Production Execution Environment (PEE)
	Canary Execution Environment (CEE)

	Components
	Integrated Development Environment (IDE)
	Infrastructural Code Generator (ICG)
	Canary Sandbox Environment (CSE)
	Canary Sandbox Environment Provisioner (CSEP)
	Canary Sandbox Environment Mocklord (CSEM)

	DOML & IaC Repository
	Infrastructural Elements Catalogue (IEC)
	Verification Tool (VT)
	Model Checker
	IaC Security Inspector
	Component Security Inspector

	PIACERE Runtime Controller (PRC)
	IaC Executor Manager (IEM)
	Infrastructure Advisor (IA)
	IaC Optimizer Platform (IOP)
	Monitoring Controller
	Monitoring
	Performance Monitoring
	Security monitoring

	Self-Learning
	PerformanceSelfLearning
	SecuritySelfLearning

	Self-Healing

	Addenda
	IaaS and Cloud Computing Models

