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Abstract:  

Lung cancer is a critical illness that kills millions of people worldwide. As a result, early diagnosis and 

categorization of lung tumors has the potential to save millions of lives. However, traditional approaches failed 

to provide superior categorization results. Thus, this article is focused artificial intelligence approach with 

optimized lung disease classification network (OLDC-Net) for multi class classification. Initially, hybrid 

recursive box filtering (HRBF) is used to perform the preprocessing of the Computed Tomography (CT) based 

lung images. Then, segmentation of lung cancer is performed using Unified-K-Means clustering (UKMC) 

operation, which locates the cancer effected region. Further, features are extracted using multi-level discrete 

wavelet transform (ML-DWT), which contains the disease specific information. Finally, natural inspired moth-

swarm optimization algorithm (MSOA) is used for feature selection operation, which select the best features 

from available features. Finally, recurrent convolutional neural network (RCNN) is used to perform the 

classification of lung cancers with benign, malignant lung types. The simulation results shows that the proposed 

OLDC-Net resulted in superior segmentation, classification performance as compared to conventional methods.  

Keywords: Computed tomography lung images, lung disease detection and classification, hybrid recursive box 

filtering, K-Means clustering, K-Means clustering, recurrent convolutional neural network. 

 

1. INTRODUCTION 

Lung cancer is a critical form of cancer that affects millions of individuals throughout the 

globe. The recent COVID-19 epidemic has also resulted in an extraordinary increase in lung 

ailments. Furthermore, there is a direct association between COVID-19 and lung cancer [1], 

since people with lung cancer are more likely to be affected by COVID-19. Lung cancer 

segmentation and categorization is an important topic of research, and several studies have 

been conducted [2]. As a result, early diagnosis and categorization of lung malignancies may 

save the lives of millions of individuals. However, hospitals are still employing older 

approaches such as clinical trials to diagnose advanced stage lung cancer [3]. However, 

conventional techniques use more time with nominal accuracy. As a result, there is a 

significant need to adopt computer-aided design (CAD) systems in hospitals and labs. 

Traditional CAD systems [4] use simple image processing algorithms with little intelligence, 

resulting in inferior segmentation and classification results. CAD systems are now being 

created using artificial intelligence technologies such as machine learning and deep learning 

algorithms.  
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However, traditional machine learning models suffer from excessive computational 

complexity and poor classification performance. As a result, deep learning models must be 

used in CAD systems rather than machine learning methodologies. In order to create a dataset 

for segmentation, we used the RCNN [5] for lung image classification and the morphological 

graph cut approach for label creation on the obtained images. There was no need to do any 

manual labelling operations in order to create the dataset for pretraining. Computer vision and 

medical imaging technologies are utilized in combination to build CADs [6] for lung 

segmentation and classification. Lung parenchyma segmentation is utilized as a pre-

processing phase in lung CT image processing, which is highly important in the area of lung 

disease. 

Pre-processing [7] procedures have a direct impact on the final CT scan preparation. As a 

result, faster and more accurate segmentation processes for lung CT images are an intriguing 

subject worth investigating, with urgent actual requirement and therapeutic relevance. Several 

lung division processes have been studied, and a portion of the standard ways use threshold 

region-development techniques [8]. Regardless, the outcomes are unimpressive, and the 

method is time-consuming and labor-intensive. As a result, it is still regarded an unknown 

territory. 

The division is finished fast, but the quality is poor since the predicted dimensions of the lung 

boundaries are the same as those of the windpipe and bronchus region. Deep learning [9] is a 

basic image-segmentation method that is dependent on the region of the CT scan. It has the 

capacity to separate the interstitial lung boundaries swiftly and effectively. While this method 

is successful, it takes time and the evolving model is sensitive to boundary circumstances. 

The majority of lung segmentation frameworks in use today are hybrid systems that combine 

an edge-respecting method with unexpected development and other extraction techniques. In 

the presence of a lung infection, a number of tests are done based on the division of the lung 

parenchyma. As a result, the following are the main contributions of this article: 

• Initially, HRBF is used to reduce various sorts of noise from lung CT scans while 

simultaneously enhancing the cancer area. 

• The region of interest of cancer is then localized using UKMC based segmentation. 

• Further, MLDWT-is used for feature extraction and MSOA based meta hysteresis is 

used for best feature selection.  

• Finally, RCNN is a model that performs training and testing operations on extracted 

features and classifies benign and malignant lung tumors. 

The following people contributed to the rest of the article: Section 2 is concerned with the 

associated work with their issue description. Section 3 is devoted to a thorough examination 

of the planned OLDC-Net. Section 4 deals with results and discussion and comparison with 

conventional approaches. Section 5 concludes the article with the possible future 

enhancements.   
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2. LITERATURE SURVEY 

There are several medical imaging modalities, each with its own set of distinct properties. 

This also aids in the evolution of processing techniques. The multi-scale CT scan 

categorization technique is frequently used in the scientific community. Several research 

surveys focused [10] on CT scan-based lung cancer diagnosis and categorization are being 

done. According to the report, machine learning models diminish classification accuracy and 

result in incorrect categorization. 

The authors of [11] presented a variety of evolutionary approaches for lung segmentation 

using a mean filtering-based preprocessing procedure. Four high-quality algorithms were 

used to pre-processed CT images to increase their overall quality. MATLAB was used to 

evaluate the results to verify realistic findings for 20 sample lung scans. This approach's 

computational complexity [12] still needs to be decreased. Furthermore, the authors of [13] 

focused on lung cancer diagnostics using enhanced techniques. In this study, median filter-

based denoising with threshold segmentation improved the accuracy of the preprocessing by 

Gaussian filter [14] of these photographs, leading to the invention of an algorithm. This 

technique is far more sensitive, specific, precise, and accurate than prior approaches, with a 

lower number of false positives. 

The authors of [15] concentrated on the implementation of bilateral filter-based preprocessing 

with random forest classification. Image categorization is the process of combining pertinent 

data from several input CT scans into a single, clearly segmented image that is then shown. 

As a consequence, trilateral filter [16] based preprocessing is used in CT scan preprocessing 

to generate noise-free images. Based on available characteristics, lung cancer classification 

strategies may be divided into two categories: spatial-domain image classification methods 

and transform-domain image preprocessing methods such as non-local means (NLM) [17]. 

Multi-scale image segmentation and classification approaches [18] such as pyramid-based 

classification, as well as a variety of other multi-scale image classification algorithms, are 

currently in use. Changing parameters provide essential information for each of the tactics 

mentioned in [19]. When the derived details are segmented together as a consequence of 

measuring the parameters, detailed relevant information is acquired together with the 

segmented CT scan. The authors of [20] employed fundamental morphological 

methodologies for CT image segmentation, which resulted in good performance for benign 

illnesses but not for malignant disorders. Image segmentation applications such as adaptive 

thresholding [21], comprising super-resolution processing, denoising, and segmentation, are 

becoming more common. 

With good cause, the SR theory has sparked a lot of attention in the field of image processing 

in recent years, notably in the context of image categorization [22]. For lung image 

segmentation, we all know that Fuzzy c-means clustering (FCM) [23] and Modified OTSU 

(MOTSU) [24] may be used to create dictionaries for traditional SR techniques. Traditional 

SR methods that employ a set vocabulary, on the other hand, have a lot of restrictions when it 

comes to CT scan categorization. [25] Suggested an SVM model for image classification and 
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denoising that can produce an adaptive compressed lexicon for CT scan categorization by 

merging images from multiple sources. According to the researchers [26], this technique may 

bring the modified spatial frequency with k-means clustering (UKMC) utilized for lung 

image segmentation, as well as the core idea of an adaptive selection dictionary, to SR. 

Based on artificial intelligence models, two redundant wavelet transformations were used for 

lung cancer classification with multi-view medical imaging: Redundant Wavelet Transform 

(RWT) based support vector machine (SVM) [27] and Redundant Discrete Wavelet 

Transform (R-DWT) based convolutional neural network (CNN) [28]. They observed that the 

shift-invariance of the R-DWT approach may be utilized to quickly build high-quality CT 

scan classifications using their proposed strategy. A technique called as pyramid 

transformation may be used to accomplish the categorization of numerous images of a CT 

scan [29]. This method was soon adopted and became extensively used in a number of 

applications, including computer vision, image compression, and CT scan segmentation [30]. 

The pyramid transform is becoming increasingly popular for combining multiple-view 

clinical CT images. 

The authors of [31] described the union ResNet51 technique for multiclass lung cancer 

classification, which enabled them to extract a significant number of critical properties [32] 

from segmented CT images. The authors of suggested Region Mosaicking on Laplacian 

Pyramids for feature extraction using Google Net as a technique for fusing CT images taken 

by a microscope in [33], however it was proved to be noisy. The Laplacian pyramid approach 

with joint averaging was then devised, which resulted in a significant improvement in the 

output by showing the image's rich background details. 

The authors of [34] reported their results on a groundbreaking multi-modal medical CT scan 

categorization approach. On contrast CT images, a serial canonical correlation-based 

categorization of various textural, point, and geometric characteristics is performed. The 

authors of [35] combined basic mean filter-based preprocessing with U-Net-based 

segmentation. Furthermore, machine learning-based SVM is employed to differentiate 

between the benign and malignant lung classifications. However, this strategy requires more 

time for training. 

According to the study, traditional approaches failed to correctly segregate the cancer-

affected area, resulting in lower categorization. Machine learning methods are unable to 

distinguish between benign and malignant illness characteristics. 
 

3. PROPOSED METHOD 

This section provides a full study of the proposed OLDC-Net, which conducts four primary 

operations: HRBF-based preprocessing, UKMC segmentation, ML-DWT-based feature 

extraction, MSOA-based feature selection, and RCNN classification. Figure 1 depicts the 

proposed OLDC-Net structure, and Table 1 depicts the proposed OLDC-Net method. 
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3.1 HRBF Preprocessing 

A high contrast image and mail-in trilateral filter has been presented as a nonlinearly single-

pass filter to retain the edge of smoothing and visible detail for N-dimensional signaling in 

computer graphics, image processing, and computer vision applications. The trilateral filter is 

used to incorporate the local image statistics into the HRBF in order to locate noisy pixels in 

random images impacted by impulse noise.  

Figure 1. Proposed OLDC-Net model. 

 

Table 1. Proposed OLDC-Net model. 

Input: LIDC-IDRI dataset, test CT image 

Output: Segmented image, classified lung cancer class. 

Performance measures: Preprocessing, segmentation, classification metrics. 

Step 1: Take the LIDC-IDRI training dataset and apply it to HRBF preprocessing for 

noise reduction and CT image improvement. 

Step 2: Use UKMC segmentation to pinpoint the affected area of lung cancer. 

Step 3: Run ML-DWT on the UKMC segmented results to extract precise disease-

specific characteristics. 

Step 4: Select optimum features using an MSOA-based bio-optimization technique. 

Step 5: Run RCNN-based training, extract learned features, and assess segmentation and 

classification results. 

Step 6: Take a look at the test CT image and repeat steps 1–5 to extract the test features. 

Step 7: Run the RCNN model for testing, which predicts lung cancer classes. 

Step 8: Compare the preprocessing, segmentation, and classification metrics to state-of- 

Step 9: the-art techniques. 

The comprehensive preprocessing technique of CT images using HRBF is shown in Figure 2. 

Initially, noisy asthma CT images are sent into the quick box filter, which divides the CT 
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images into spectral and angular coefficients. In this case, spectral coefficients include 

amplitude, phase, and pitch intensities, while angular coefficients provide phase aware 

information. These characteristics are created by translating time to frequency conversions. 

The "A posteriori SNR estimate" is then applied to the original noise removed signal and 

noise levels. The procedure is repeated until the signal levels are enhanced in comparison to 

the noise levels, which may be determined using the signal to noise ratio (SNR). Finally, an 

increase in SNR values shows that the noise level is decreasing. The posteriori result is 

applied to the priori data, and the noise in the phase and pitch intensities is found using multi 

spectral analysis. 

In this case, "A priori SNR estimate" is employed to calculate the spectrum gain while 

simultaneously reducing the jitters in the different gain data. The lower and higher frequency 

levels are identified and adjusted to increase spectral gain. The procedure is repeated many 

times, resulting in an enhanced gain factor. The original amplitude of the CT image is then 

multiplied by the gain levels, and this multiplication is employed to enhance the spectral 

characteristics. Finally, the obtained amplitude levels are fed into the recursive filter with the 

original phase angles, which produces the clean CT image. 

 

Figure 2. HRBF preprocessing 

3.2 UKMC segmentation 

When lung parenchyma segmentation is conducted, it is highly advantageous in finding and 

analyzing surrounding lesions, but it is only successful if certain methodologies and 

frameworks are employed. Lung parenchyma segmentation is an important pre-processing 

step in the CAD system's design of lung nodules from CT image sequences. An efficient 

thresholding method was used while constructing the OLDC-Net to minimize the complexity 

of lung segmentation in order to save processing time while enhancing accuracy. With the use 

of experimentation and data analysis, the approach was evaluated on a number of CT scans 

collected from the LIDC-IDRI. 

In this case, the UKMC technique is used to identify brain cancer during transformation in 

order to partition the lung cancer area using thresholding. The initial phase in the UKMC 

approach is segmentation, and at the cluster centers, cost junction must be reduced, which 
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varies based on the memberships of user inputs. Image segmentation is the process of 

separating a brain cancer into several clusters depending on the area of interest exhibited in 

order to diagnose lung cancer. Radiologists use areas of interest, which are segments of lung 

images, to find anomalies such micro classifications (malignant and benign). K indicates that 

clustering is used to some degree in the recommended segmentation procedure. The active 

counter clustering approach is chosen because of its speed of operation while maintaining the 

highest accuracy. The UKMC strategy, as shown in Figure 3, combines the advantages of 

jointly possible and K means clustering techniques. The membership functions are built using 

a probability-based technique to enhance detection. Among those detected malignancies, the 

most precise cancer spots are considered as ROI. It is difficult to calculate ROI automatically. 

As a consequence, ROIs are generated utilizing potential cropping, which is dependent on the 

position of the abnormality in the original test brain tumors. The membership functions are 

built using a probability-based technique to enhance detection. Among the found Tumor 

regions, the most accurate Tumor region is considered ROI. 

 

Figure 3: UKMC segmentation 

3.3. Feature extraction 

The wavelet indicates the decomposed frequency band of image, which refers the grouping of 

frequency dependent pixels of varying sizes. Further, this decomposition operation is carried 
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out by using complex or real-valued data with square-integrable properties. The ML-DWT is 

the advanced wavelet transform, which extracts more accurate features in frequency domain 

compared to FFT and DFT. The conventional transforms are suffering with data reduction or 

compression problems due to improper samplings, which are overcome in ML-DWT by 

introducing the edge aware frequency dependent filters. Ideally, the calculation of the ML-

DWT of a signal x is accomplished by passing it through filters sequence. The deconstruction 

and reconstruction processes of DWT are shown in Figure 4. As a first stage, the input 

samples are routed via the LF channel and into the impulse response channel (𝑔), which 

results in a convolution of two signals: 

𝑦[𝑛] = (𝑥 ∗ 𝑔)[𝑛] = ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]∞
𝑘=−∞     (1) 

The output coefficients acquired from the LF are referred to as approximations. At the same 

time, the same signal is decomposed by employing the HF, which is indicated as ℎ, and the 

resulting detail coefficients are referred to as details. It is critical that both the LF and HF 

frequencies be connected together, which is referred as quadrature mirror filter.  

 

Figure 4. ML-DWT feature extraction. 

Further, ML-DWT maintains the energy of the image pixels, which helped to hold the 

brightness and luminance properties. The color properties of original image remains 

unchanged by using ML-DWT. Thus, the feature extraction schemes can be effectively 

implemented by adopting ML-DWT for LL band-based feature extraction.  

3.4 Feature selection 

Moths and butterflies account for 53 percent of all species worldwide. They never want to be 

seen by predators during the day. They usually try to exploit food sources at night by 

employing the celestial triangulation method. For such an orientation, the across direction of 

motion is always a concern. The light source is represented by MSOA in Figure 5, and the 

fitness value of the objective function is taken into account as the luminous intensity of the 

light source. These assumptions underpin the proposed algorithm. The following strategy is 

based on the following features of three distinct moth species: - Pathfinders: Some moths (t) 

will constantly attempt to locate a new site in the optimization area using the first in, last out 

rule. They are continually looking for the best source of light to assist them identify the 

optimum route for the main swarm. Prospectors: Pathfinders always help a group of moths 

identify nearby light sources by following an arbitrary spiral route. Onlookers: This swarm is 

attempting to advance towards the best global answer (moonlight).  
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3.4.1 Mathematical derivation of the suggested algorithm  

To adjust the control parameters of an objective function, MSOA suggests four primary steps, 

which are as follows: In the first stage, known as the start phase, an s-number of n-

dimensional search agents are randomly assigned positions as follows: 

𝑥𝑝𝑞 = 𝑟𝑎𝑛𝑑[0,1]. (𝑥𝑞
𝑚𝑎𝑥 − 𝑥𝑞

𝑚𝑖𝑛) + 𝑥𝑞
𝑚𝑖𝑛              (2) 

∀𝑝 ∈ {1,2,3, … … 𝑠}, 𝑞 ∈ {1,2,3 … . . 𝑛}              (3) 

The lower and upper boundaries of the "x pq" control parameter in this example are "𝑥𝑞
𝑚𝑎𝑥" 

and "𝑥𝑞
𝑚𝑖𝑛," respectively. At first, the best moth from the swarm is selected based on its 

fitness value. Furthermore, the best group of moths, selected as the light's mainstream and 

acting as pathfinders, are ahead of prospectors and watchers. At first, the best moth from the 

swarm is selected based on its fitness value. Furthermore, the finest moths, selected as the 

majority of light and functioning as pathfinders, outnumber prospectors and onlookers. The 

pathfinders' positions are updated in the following step, termed reconnaissance, which lasts 

five stages. In the diversity index-based crossover strategy, a distinct concept is used to 

identify the crossover location. A normalized dispersion degree parameter is used in this 

crossover approach. For the first I number of iterations, the standardized dispersion degree of 

the "𝜁𝑞
𝑖 " people in the "𝑥𝑞

𝑖  " dimension is as follows: 

𝜁𝑞
𝑖 =

√
1

𝑟𝑡
∑ (𝑥𝑝𝑞

𝑖 −𝑥𝑞
𝑖 )

2𝜂𝑡
𝑝=1

𝑥𝑞
𝑖                   (4) 

Where  𝑥𝑞
𝑖 =

1

𝛾𝑡
 ∑ 𝑥𝑝=1

𝑖𝜂𝑡
𝑝=1  and ‘𝛾𝑡’ is the number of pathfinders and may be written as a 

variation coefficient helpful for determining relative dispersion. 

𝛾𝑡 =
1

𝑛
∑ 𝜁𝑞

𝑖𝑑
𝑞=1              (5) 

Pathfinder grieves from low degree of dispersion moth to traverse via sites 'bp 'as follows for 

a certain region: 

𝑞𝜖𝑏𝑝𝑖𝑓𝜌𝑞
𝑖 ≤ 𝜉1            (6) 

The recommended technique animatedly modified the set of transverse points. The second 

phase employs levy flight based on a stable distribution. Step 2 also employs the heavy-tailed 

probability density function (PDF) and anomalous diffusion. Sub trail-vectors [v i1,v i2,v 

i3,........v in] are created in the third phase utilizing host vectors [x i1,x i2,x i3,........x in] and 

donor vectors. To get a full trail solution, the host vector changes its location using a 

crossover operation on the pathfinder solution, which occurs in the 'fourth step' and is 

represented by: 

𝑈𝑞𝑖
𝑡 = {

𝑣𝑞𝑖 
𝑡 𝑖𝑓 𝑖𝜖𝑐𝑖

𝑢𝑞𝑖 
𝑡 𝑖𝑓 𝑖 ∉ 𝑐𝑖

               (7) 
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Finally, in the fifth stage, known as the 'transverse orientation phase,' the number of 

prospectors reduces as follows: 

𝜂𝑓 = 𝑟𝑜𝑢𝑛𝑑((𝜂 − 𝜂𝑝) × (1 − 𝑟))                (8) 

Here (r = t /T);'t' is the current iteration and 'T' is the number of iterations; and “𝜂𝑓” is the 

total number of prospectors and pathfinders. The lowest luminous sources are found in the 

onlooker. As a result, in the last stage (Celestial navigation), the moths in this group attempt 

to travel towards the shiniest solution. Onlooker moths use Gaussian walks and associative 

learning techniques to update their location. The new location of the onlooker moth is 

updated via the Gaussian walks technique as follows: 

𝑢𝐽
𝑡+1 = 𝑢𝐽

𝑡 + 𝜎1 + [𝜎2 × 𝑓𝑖𝑡ℎ
𝑡 − 𝜎3 × 𝑢𝑗

𝑡]; ∀𝑗 ∈ {1,2,3, … 𝛾𝐺}        (9) 

The changed location of the onlooker moth is obtained by using the associative learning 

mechanism: 

𝑞𝑗
𝑡+1 = 𝑞𝑗

𝑡 + 0.001. 𝐻[𝑞𝑗
𝑡 − 𝑞𝑗

𝑚𝑖𝑛. 𝑢𝑗
𝑚𝑎𝑥 − 𝑢𝑗

𝑡] + (1 −
ℎ

𝐻
) . 𝑠1. (𝑓 𝑖𝑡 𝑡𝑞

𝑡 − 𝑢𝑗
𝑡) +

2ℎ

𝐻
. 𝑠2(𝑓 𝑖𝑡 𝑡ℎ

𝑡 − 𝑞𝑗
𝑡                    (10) 

Here 2h/H is considered a social factor and (1-h/H) is considered a cognitive element; s1, s2 

are the two variables that fluctuate within the range of (0, 1).  

Despite the fact that MSOA is a recently designed nature-inspired met heuristics method, it 

has several limitations such as sluggish convergence and local optimality. To accelerate the 

convergence rate, chaos is injected into MSA to increase its variety. Six distinct feature 

selection maps were used in this study to determine the ideal location of prospectors for 

increasing exploration and exploitation capacity. 
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Figure 5. Flowchart of MSOA. 

3.4.3 MSOA feature selection maps 

The feature selection behavior of many nonlinear systems has recently been a prominent topic 

in several areas such as chaos management, pattern recognition, and artificial intelligence 

optimization theory. The primary objective for including a feature selection map into the 

MSOA algorithm is to achieve excellent equality between exploitation and exploration 

throughout iteration. In MSA, feature selection mapping gives I quasi stochasticity, (ii) 

sensitivity to the starting condition, and (iii) periodicity. The number of prospectors “𝜂𝑓” 

'represented in (11) is heavily influenced by in the transverse orientation stage of the moth 

swarm method, which decreases linearly with the number of iterations. However, in order to 

achieve a fair balance between exploitation and exploration throughout iteration, the value of 

'r' in the proposed CMSA technique affects feature selection, allowing for exploration in the 

last phases. After evaluating the performance of several feature selection maps, the authors 
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discovered that include the 'singer' feature selection map increases the convergence rate faster 

than all other feature selection functions, and so equation (11) may be rewritten as: 

𝜂𝑓 = 𝑟𝑜𝑢𝑛𝑑 ((𝜂 − 𝜂𝑝) × (1 − 𝑟)) 𝑤ℎ𝑒𝑟𝑒𝑣𝑒𝑟 =
𝑡

𝑇
+ 𝑐𝑖

𝑛𝑜𝑟𝑚             (11) 

3.5 Classification 

The following are the stages involved in training an RCNN: 

 The network is given a single time step of the input. The current state is then 

calculated by combining the current input with the prior state. For the following time 

step, this present state becomes ht-1, and so on. 

 Once all of the time steps have been completed, the output is calculated using the final 

current state. 

 The created output is then compared to the actual output (the target output), and an 

error is generated. 

 The mistake is subsequently back-propagated to the network, which updates the 

weights and therefore trains the network (RCNN). As a result, the mistake amount is 

distributed across the connections. 

The RCNN models are widely used in many medical image processing applications including 

multi class lung cancer classification. It is a kind of efficient identification approach that has 

lately gotten a lot of attention because of its effectiveness. The advantage of RCNNs is that 

they are simpler to train and have a much smaller number of parameters than fully linked 

networks. 

Figure 6 presents the detailed layer wise architecture of proposed RCNN model and Table 6 

presents the properties of each layer of RCNN model. Here, convolution layer is used to 

extract the deep features using weighted kernel. There are two primary sources of error in 

feature extraction: the neighborhood size constraint produced and the estimated error in the 

convolution layer parameter estimation generated by the mean deviation. When using mean 

pooling, the first mistake may be reduced while still keeping more CT scan background 

information. With maximum pooling, it is possible to lower the second error while 

maintaining more texture information. 
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Figure 6. RCNN classification 

Then, max pooling layer is used to reduce the number features by selecting the best value in 

each kernel. The convolution and max-pooling layers are repeated multiple times to generate 

the best features with low computational complexity. Further, fully connected layer is used to 

map the input to output features by maintaining all the neuron interconnections. Finally. 

SoftMax classifier is used to classify the benign and malignant classes from test features. 
 

4. RESULTS AND DISCUSSIONS 

This section provides a thorough examination of simulation findings, including comparisons 

to state-of-the-art methodologies. For implementation, both the suggested OLDC-Net and 

traditional approaches used the same dataset. Furthermore, an ablation study of the proposed 

OLDC-Net was carried out to assess the superiority of each approach. 

4.1 Datasets 

The Lung Image Database Consortium's (LIDC-IDRI) image collection includes diagnostic 

and screening thoracic CT images with marked-up annotated lesions. It is a web-based global 

resource for the development, training, and evaluation of CAD techniques for lung cancer 

detection and diagnosis. This public-private partnership, initiated by the National Cancer 

Institute (NCI), advanced by the Foundation for the National Institutes of Health (FNIH), and 

supported by the Food and Drug Administration (FDA) through active participation, 

demonstrates the success of a consortium built on consensus. This data set, which contains 

1018 cases, was generated in partnership with seven academic institutions and eight medical 

imaging companies. Each subject includes images from a clinical thoracic CT scan as well as 
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an XML file with the results of a two-phase image annotation method performed by four 

qualified thoracic radiologists. Each radiologist individually reviewed each CT image during 

the first blinded-read phase and labelled lesions as "nodule > or =3 mm," "nodule 3 mm," or 

"non-nodule > or =3 mm." Each radiologist independently reviewed their own markings, as 

well as the anonymized marks of the three other radiologists, during the subsequent 

unblinded-read phase to establish a final verdict. The goal of this technique was to find as 

many lung nodules as possible on each CT image without resorting to forced consensus. 

4.2 Subjective analysis 

This section depicts the visual subjective analysis based on preprocessing and segmentation. 

Figure 7 depicts the HRBF preprocessing output images, which successfully removed various 

forms of background noises and improved the cancer-presented region. HRBF additionally 

enhances the spatial and texture qualities of pixels.  

 

(a) Input CT images 

 

(b) HRBF preprocessed images 

Figure 7. Preprocessing using HRBF 

Figure 8 depicts the segmented output images produced by the UKMC technique. 

Furthermore, the first and third columns are the input images, while the second and fourth 

columns are the segmented images. The UKMC approach described here correctly segments 

the tumor zone. Figure 9 compares the visual performance of lung CT image segmentation 

with standard techniques. When compared to standard image processing techniques such as 

UKMC, FCM, and MOTSU, the suggested UKMC segmentation approach resulted in 

improved localization of the cancer-affected area. Traditional approaches led in inferior 

localization of cancer regions, resulting in worse classification performance. 
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(a)                           (b)                            (c)                               (d) 

Figure 8. UKMC based segmented output images. 

 

           (a)                      (b)                         (c)                    (d)                       (e)      

Figure 9. CT image segmented images using various approaches, (a) input, (b) UKMC 

[26] (c) FCM [23], (d) MOTSU [24], and (e) proposed HMF. 
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4.3 Objective performance 

This section gives the detailed analysis of subjective analysis of proposed OLDC-Net with 

conventional models using various metrics such as peak signal to noise ratio (PSNR), 

structural similarity index metric (SSIM), mean square error (MSE), entropy, standard 

deviation (STD), and mutual information (MI).  

Table 2. Preprocessing methods performance comparison 

Method PSNR SSIM MSE Entropy STD MI 

Mean filter [11] 48.42 0.236 0.0748 5.33 0.966 3.91 

Median filter [13] 51.80 0.259 0.0646 5.70 0.955 4.40 

Gaussian filter [14] 52.93 0.358 0.0374 5.74 0.720 4.64 

Bilateral filter [15] 53.67 0.412 0.0137 6.70 0.539 6.75 

Trilateral filter [16] 54.41 0.604 0.0098 7.26 0.473 6.90 

NLM [17] 54.45 0.873 0.0076 8.11 0.351 7.47 

Proposed HRBF 57.64 0.913 0.0012 11.23 0.054 10.27 
 

Table 2 compares the proposed HRBF strategy to traditional approaches such as the Mean 

filter [11], Median filter [13], Gaussian filter [14], Bilateral filter [15], Trilateral filter [16], 

and NLM [17]. Furthermore, when compared against all current approaches, the suggested 

HRBF outperformed them all. Figure 10 depicts a graphical depiction of the performance 

comparison of preprocessing techniques. 

 

Figure 10. Graphical representation of preprocessing methods performance 

comparison. 

Table 3 compares the proposed UKMC segmentation method's performance to those of 

existing approaches like Morphological [20], Adaptive Thresholding [21], FCM [23], and 

MOTSU [24]. Furthermore, the proposed UKMC exceeds all performance measures such as 

segmentation accuracy (SACC), segmentation sensitivity (SSEN), segmentation specificity 
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(SSPE), segmentation F1-measure (SF1M), segmentation recall (SRE), and segmentation 

precision (SRE) (SPR). Figure 11 shows a graphical representation of the performance of 

segmentation methods. 

Table 3. Segmentation methods performance comparison. 

Method SACC SSEN SSPE SF1M SRE SPR 

Morphological [20] 92.41 90.31 90.13 90.10 92.49 90.21 

Adaptive Thresholding [21] 92.62 93.22 91.66 92.19 93.13 90.27 

FCM [23] 93.25 93.64 92.72 93.18 93.66 94.48 

MOTSU [24] 94.44 94.81 94.16 93.36 93.83 96.89 

Proposed UKMC 98.35 98.86 98.90 98.38 98.91 98.96 

 

Figure 11. Graphical representation of segmentation methods performance comparison. 

 

Table 4. Classification methods performance comparison. 

Method CACC CSEN CSPE CF1M CRE CPR CAUC 

SVM [27] 88.30 89.21 88.02 88.06 89.78 88.35 88.49 

CNN [28] 88.33 91.53 92.90 90.91 89.87 89.54 88.83 

AlexaNet [30] 90.35 92.44 93.41 91.32 91.13 89.70 91.84 

ResNet51 [31] 93.83 93.08 94.58 91.59 92.93 92.12 93.28 

GoogleNet [33] 94.79 95.68 94.80 92.97 94.84 95.12 93.30 

U-Net with SVM [35] 96.00 95.81 94.88 93.83 96.00 96.03 96.18 

Proposed OLDC-Net 98.31 98.12 97.48 98.38 98.27 98.29 98.98 

 

Table 4 contrasts the proposed OLDC-Net performance with traditional techniques such as 

SVM [27], CNN [28], AlexaNet [30], ResNet51 [31], GoogleNet [33], and U-Net with SVM 

[35]. Furthermore, the proposed OLDC-Net outperforms other networks in terms of 

classification accuracy (CACC), classification sensitivity (CSEN), classification specificity 
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(CSPE), classification F1-measure (CF1M), classification recall (CRE), classification 

precision (CPR), and classification area under curve (CAUC). Figure 12 depicts a graphical 

depiction of the performance comparison of categorization algorithms. 

 

Figure 12. Graphical representation of classification methods performance comparison. 
 

5. CONCLUSION 

This study proposes a deep learning and bio-optimization-based OLDC-Net model for lung 

cancer segmentation and multiclass classification. Initially, HRBF was utilized to minimize 

various forms of noise from CT source images while simultaneously improving the disease-

affected area. The disease-affected area was then localized using UKMC segmentation. 

Those, ML-DWT was also utilized to extract deep seismic features from segmented images. 

Furthermore, an MSOA-based bio-optimization strategy was employed to choose deep 

interdependence characteristics with disease-specific probability dependent features. Finally, 

utilizing optimum features, the RCNN model was applied to categories CT lung images into 

benign and malignant groups. The simulation results reveal that the suggested OLDC-Net 

outperformed standard techniques in terms of preprocessing, segmentation, and classification. 

This research may be expanded with more optimization approaches and transfer learning 

models for segmentation and classification. 
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