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Abstract: Photovoltaic systems (PVs) are promising low-carbon technologies playing a major role 9 

in the electricity business. In terms of voltage variation and feeder usage capacity, high PV penetra- 10 

tion levels have significant technical implications for grid stability, particularly in Low Voltage (LV) 11 

networks.  This paper presents a comprehensive PV integration analysis on real-life residential LV 12 

networks in Malta using recorded smart metering data. The methodology framework and tools de- 13 

veloped are highlighted through step by step results on their usefulness. First, at the substation 14 

level, an LV network with seven LV feeders is analyzed using Monte Carlo simulations and 15 

OpenDSS.  Then, Cumulative Distribution Functions (CDFs) are extracted to establish the likeli- 16 

hood of LV network challenges. Afterwards, 95 multi-feeder analysis assesses impact assessment 17 

on the first occurrence of LV network challenges and predominant issues. Finally, a Regression 18 

Analysis Tool, considering the regression's standard error, is built for seven feeder characteristics to 19 

predict impacts. The stochastic processes reveal strong relationships with feeder characteristics that 20 

are helpful for network planning and operations. However, the Maltese grid currently has less than 21 

20% PV penetration at any LV feeder. Hence significant technological hurdles are absent. 22 

Keywords: Photovoltaic systems (PVs), Low Voltage (LV) networks, Stochastic processes, Monte 23 

Carlo methods, Optimal Power Flow 24 

 25 

1. Introduction 26 

FUTURE-PROOF electrical energy and power networks become more sustainable 27 

with well-integrated Distributed Generation (DG) units [1]. Decarbonization, digitaliza- 28 

tion, decentralization and disintermediation are key drivers of disruption for energy util- 29 

ities. Voltage variation and feeder utilization level in Low Voltage (LV) electric networks 30 

(<1kV) are the first major challenges addressed by the utilities. These challenges are espe- 31 

cially exhibited during peak DG generation, and low consumption causes reverse power 32 

flows which may degrade the network stability [2], raise voltages [3]–[13] and cause over- 33 

loading [7], [9], [10]. 34 

Photovoltaic systems (PVs) are extremely promising low-carbon technologies play- 35 

ing a major role in the electricity industry. The PV market has the fastest annual growth 36 

rate of around +30% [14]. The EU's PV capacity increased to 166GW in 2021 around 17% 37 

of global installed PVs [15]. Therefore, unique impact studies based on large electric net- 38 

works considering real-case scenarios and smart meter data enrich our insights on PV 39 

integration in LV distribution networks. These studies are especially important in Malta, 40 

a solar country that has set its PV support programme as the most proven to expand the 41 

PV market. The Maltese PV support programme guarantees tariffs to all potential devel- 42 

opers and attractive financial security that cover developers' costs with long-term cer- 43 

tainty [16]. 44 
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Located centrally in the Mediterranean Sea, Malta is the southmost EU country and 45 

receives the highest EU solar irradiance. As an island state, Malta presents a unique sce- 46 

nario over its just above 316 km2 surface area, dense population of 1,300pp/km2 and over 47 

300,000 utility customers that enjoyed the first nation roll out of smart meters worldwide. 48 

PV installations have reached 184.6MWp of the total PV capacity, mostly from residential 49 

units that are usually less than 3.1kWp systems connected to LV networks [17]. 50 

While a variety of definitions of high penetration are suggested, throughout this 51 

work, the term 'high penetration' will be used to refer to the level at which an electric 52 

distribution network has a high probability of experiencing thermal and voltage viola- 53 

tions. The penetration level in this paper is defined as the number of consumers with PV 54 

connected to the total number of consumers. No PV case means 0% penetration, whereas 55 

if all houses were to integrate PV, the penetration level would be 100%. 56 

Many studies have investigated the potential impacts of PV integration on distribu- 57 

tion networks. A summary of some of the studies is in Table 1. For instance, the impacts  58 

 59 

Table 1. Summary of PV impact studies 60 

Ref Network Simulation/ analysis 

technique 

Conclusions 

 

[3] 

 

Test LV Net-

work  

Unbalanced three-

phase load flow 

A penetration level of 50% does not in-

crease the voltage significantly on a 

typical UK Network; peak loadings are 

unaffected 

[4] 

 

Real LV net-

works in Swe-

den 

Power flow, stochas-

tic approach 

No violations in voltage limits for any 

network; larger variation in a rural 

network 

[6] 

 

Representative 

LV feeder 

Time series power 

flow 

(MATLAB/Simulink) 

Voltage violation occurs in the time be-

tween 11 a.m. and 2 p.m.  

[7] 128 real UK 

LV feeders 

Time-series unbal-

anced power flow 

(OpenDSS) 

PV integration produced problems in 

47% of the feeders.  

[8] One repre-

sentative LV 

network 

Unbalanced Proba-

bilistic load flow 

(time-series)  

The reactive power consumed by the 

PV inverter can decrease the overvolt-

age probabilities during critical situa-

tions and increase the power losses.  

[18] 

 

Representative 

LV network 

Balanced three-phase 

load flow 

Distribution networks can host large 

amounts of embedded generation with 

some changes in the setting of the no-

load voltage 

[9] 

 

Real UK LV 

network 

Unbalanced three-

phase power flow 

(OpenDSS) 

Longer feeders present more prob-

lems. No impacts up to 20% PV pene-

tration 

[10] 

 

2 real UK LV 

networks 

Unbalanced three-

phase power flow 

(OpenDSS) 

Voltage problems occur at 40% pene-

tration. No issues for short feeders 

[12] Modified IEEE 

130-bus test 

system 

Balanced three-phase 

load flow 

(MATLAB/Simulink) 

Voltage problems and reverse power 

flows were investigated for distributed 

generators – mitigations using STAT-

COM 

[13] LV CIGRE 

Residential 

Network 

PSCAD compares six techniques to increase 

the PV penetration limit in the LV resi-

dential network 
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of PV integration on voltage profile and feeder utilization were assessed, respectively.  61 

However, most studies were carried out on representative networks [3], [6], [8], [11- 62 

12], [18]. Representative network studies provide a basic understanding of the problems 63 

that may occur but cannot be applied to other networks. In addition, it does not provide 64 

information on the proportion of LV networks experiencing technical problems.  65 

Furthermore, studies [3], [4], [6]–[10] were based on solar irradiance measurements, 66 

which are not always available for utilities and do not consider the efficiency of cells.  67 

Based on this review, the following considerations are outlined to investigate the im- 68 

pacts of PV integration on LV networks adequately: 69 

i. realistic and adequate LV networks based on the geographical region of in- 70 

terest 71 

ii. time-series analysis to cater for the time-varying nature of residential loads 72 

and PVs, and 73 

iii. multiple LV feeders' analysis to cater for their diversity; this will allow ana- 74 

lyzing of the parameters of the feeders that can explain the occurrence of 75 

technical problem 76 

Using Monte Carlo methods, this work embeds the uncertainties of residential loads 77 

and PVs related to size and behaviour. The real Maltese LV networks analysis considers 78 

smart meter residential load and PV profiles in 15-minute resolution. 79 

The aim is to deliver the first thorough case study based on smart metered home 80 

loads and PV generating profiles in Malta. The methodology uses a stochastic scenario- 81 

based Monte Carlo framework. Each scenario is evaluated for EN50160 voltage difficulties 82 

(or voltage boundaries) and feeder capacity. 83 

The paper is structured as follows. Section II describes the methodology base frame- 84 

work of the study. Then Section III presents the application of the methodology base 85 

framework through an impact analysis on one real-life Maltese LV network from one 86 

11/0.4kV substation with seven LV feeders. The likelihood of LV Network challenges is 87 

discussed through the extracted Cumulative Distribution Function (CDF) within the 88 

Monte Carlo methods in Section IV. Afterwards, the comprehensive real-life Maltese 95 89 

LV multi-feeder impact analysis results are presented and discussed in Section V. Then, 90 

in Section VI, a regression analysis tool and its results are highlighted. Finally, Section VII 91 

presents the main conclusions and a key finding distinctive from previous studies on the 92 

inadequate metric for non-linear regression. 93 

2. The Methodology-Based Framework 94 

OpenDSS performs three-phase unbalanced time-series power flow [19]. Figure 1 de- 95 

picts the framework for studying PV penetration on LV networks based on size and be- 96 

haviour uncertainties. First, LV feeder computer models are created, and then smart meter 97 

load and PV profiles are loaded. A Monte Carlo simulation is run for a specified feeder. 98 

Multiple power flows for each PV penetration (from 0% to 100% in 10% steps) are evalu- 99 

ated. Each power flow study uses a random load and PV profile from the pool of profiles. 100 

Each simulation's effect analysis measure (utilization factor, proportion of users with volt- 101 

age issues) is saved. On finalizes by correlating many feeders to find feeder attributes that 102 

may explain technical concerns. 103 

2.1. Smart meter profiles 104 

The widespread use of PV systems necessitates a clear need for long-term knowledge 105 

of LV networks. In the world's first deployment of a nationwide smart-meter infrastruc- 106 

ture, Malta's energy company Enemalta plc reached 90% of its customers by 2014. Ene- 107 

malta plc is the owner and manager of the LV networks. 108 

Based on data provided by smart meters, a probabilistic methodology is used in this 109 

study. [11], [20] and no more on solar irradiance measurements as in [3], [4], [6]–[10]. The  110 

 111 
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Figure. 1. Methodology Base Framework 113 

 114 

profiles comprise 2000 PV profiles and 5000 residential, domestic, and commercial loads. 115 

Figure 2 presents the average profile for residential consumers and PV generation. 116 

Weekdays often have low noon demand, which falls during the peak time for PV 117 

generation. These circumstances present the grid with its most significant challenge re- 118 

garding voltage stability since they could result in reverse power flows that go up toward 119 

the transformer. After reviewing the data profiles, a day in April was selected since April 120 

is a month with high PV generation due to favourable weather. It is sufficient to depict 121 

the worst-case scenario of PV generation. Hence only one day was used in the simulation. 122 

2.2. Impact Assessment 123 

The methodology outlined in this work employs Monte Carlo simulations to account 124 

for PVs' size and behaviour uncertainties. For the following two PV allocation scenarios, 125 

100 simulations are conducted with 11 penetration levels ranging from 0% to 100% in 10% 126 

increments: 127 

 128 

Figure. 2. Average profile for residential consumers and PV generation 129 
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i. Downstream: PVs are allocated from the substation down to the furthest con- 130 

sumer 131 

ii. Upstream: PVs are assigned from the last consumer to the transformer 132 

These allocation scenarios are employed to cater for worst-case scenarios to identify 133 

the boundaries of LV networks. 134 

It is crucial to realize that because PV generation and electricity consumption vary over 135 

time, technical consequences change during the day. Therefore, when quantifying, tech- 136 

nological concerns, this needs to be taken into account. Two in-dice are shown in the im- 137 

pact evaluation for this reason. 138 

i. Voltage issues: This index uses the voltage calculated for each customer to de- 139 

termine whether it complies with European Standard EN50160 (the voltage 140 

magnitude should be within 230V +/- 10%). [21], that is, the violation is 141 

flagged when the voltage is below 207V or above 253V. Throughout this 142 

work, the term 'voltage issues/problems' or 'voltage challenges' refers to volt- 143 

age violation in terms of voltage magnitude, typically overvoltage due to re- 144 

verse power flows caused by high penetration of PV integration. A consumer 145 

is said to have a problem if they are not compliant. The percentage that cor- 146 

responds to the total number of consumers experiencing voltage problems is 147 

determined. Since the profiles have a resolution of fifteen minutes, violating 148 

the restriction by even one value would be against the EN50160 standard. 149 

ii. Feeder utilization: calculated by dividing the maximum current by the head of 150 

the feeder's ampacity. This index illustrates how the LV feeder is used at var- 151 

ious levels of penetration. 152 

3. Application of the Methodology Framework 153 

3.1. Real-life Maltese LV Network 154 

The impact analysis is highlighted with the application of the methodology frame- 155 

work for one real-life Maltese LV network from one 11/0.4kV substation with seven three- 156 

phase LV feeders, as illustrated in Figure 3. The LV network's main characteristics are 157 

listed in Table 2 based on Geographic Information System (GIS) modelling considering 158 

conductor characteristics, location of consumers, phase connectivity and network topol- 159 

ogy. LV Feeder 4 was chosen to highlight the per feeder results as it is regarded as the 160 

most loaded feeder in this case. 161 

 162 

Figure. 3. The real-life Maltese LV network with seven feeders 163 
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3.2. Summary of Results for Real-life Maltese LV Network 164 

Table 3 summarises the results for all seven (7) feeders. The results depict the first 165 

occurrences of technical challenges due to PV penetration. For utilization capacity, 70% 166 

threshold was selected to indicate potential limitations in headroom capacity for opera- 167 

tional tasks. 168 

3.3. Voltage Issues 169 

The number and corresponding percentage of consumers with voltage issues are an- 170 

alyzed, and the mean value and its standard deviation are depicted using Monte Carlo 171 

simulations. Figure 4 (a) presents the consumers with voltage problems with different PV 172 

penetrations. The range of impacts can be clearly observed between downstream and up- 173 

stream allocation scenarios. For instance, the percentage of consumers with voltage prob- 174 

lems is below 10% and around 40% at 50% PV penetration for downstream and upstream 175 

scenarios, respectively. As can be seen, the voltage issues start on average at 20% and 50% 176 

PV penetration for upstream and downstream allocation scenarios, respectively. 177 

3.4. Utilization 178 

Figure 4 (b) presents the average utilization factor and its corresponding standard 179 

deviation at the head of the feeder for both allocation scenarios. As expected, there is a 180 

slight variation between downstream and upstream scenarios. The initial loading level is 181 

at 70% on average. It decreases as more PV units are connected. This decrease means that 182 

the household demand is partly supplied by the local generation, and reverse power flows 183 

are lower than the base case, 0% PV penetration. However, this decrease is negligible be- 184 

cause the peaks of consumption and generation do not coincide, as presented in Figure 2. 185 

The utilization factor starts to increase after 50% PV penetration. At 60% of penetra- 186 

tion, the utilization exceeded the base case meaning that reverse power flows are more 187 

significant than with no PV case. The feeder capacity is surpassed on average at 90% of 188 

penetration. 189 

 190 

Table 2. Main characteristics of LV Networks 191 

Feeder Total Length 

(m) 

No of loads Phase connectivity 

Phase 'blue' Phase' red Phase 'yellow' 

1 1706.3 121 0.31 0.39 0.3 

2 461.9 30 0.33 0.33 0.33 

3 1558.1 128 0.294 0.319 0.387 

4 1391.4 146 0.28 0.372 0.348 

5 1015.6 83 0.351 0.378 0.271 

6 778.1 71 0.354 0.384 0.262 

7 565.2 50 0.25 0.375 0.375 

Table 3. Summary of penetration levels, technical challenges thresholds 192 

Feeder Technical challenges due to PV penetration 

Voltage 

issues 

Downstream 

Voltage 

issues 

Upstream 

Utilization factor 

>70% 

Downstream 

Utilization factor 

>70% 

Upstream 

1 30% 20% 80% 80% 

2 - - - - 

3 50% 30% 70% 70% 

4 50% 30% 70% 70% 

5 60% 40% 100% 100% 

6 80% 40% - - 

7 - - - - 
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 196 

 197 

 198 

 199 
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 203 
 (a) (b) 204 

Figure. 4. Feeder 4 results: (a) consumers with voltage issues and (b) feeder utilization capacity 205 

3.5. Conclusion on Single LV network Analysis 206 

Although the findings are limited to only one LV network, it can be observed that 207 

relatively short feeders with few loads do not present any technical problems. On the 208 

other hand, more loaded and longer feeders are more likely to present technical challenges 209 

at some penetration level. Finally, it is important to note that until 10% of penetration, no 210 

voltage and utilization problems were observed. However, to truly investigate these tech- 211 

nical problems on different LV feeders, a multi-feeder assessment is performed in Section 212 

4. 213 

4. Likelihood of LV Network Challenges 214 

The impact analysis presented in previous sections can be extended given its stochas- 215 

tic nature by extracting the Cumulative Distribution Function (CDF) to demonstrate the 216 

probability of experiencing voltage or utilization capacity issues. This tool is used to con- 217 

clude whether a given PV penetration level causing technical problems is acceptable. 218 

Quantifying this probability can help utility companies to determine whether it is feasible 219 

to accept penetration levels representing low probabilities of technical challenges instead 220 

of investing in infrastructure. 221 

Given empirical data, i.e. results for 100 simulations, an empirical CDF is chosen. It 222 

is similar to CDF. That is, they are both probability models for data. However, empirical 223 

CDF models observed data, whereas CDF is a hypothetical distribution model. 224 

Empirical CDF assigns a probability of 1/n and calculates the sum of these probabil- 225 

ities up to and including each datum. The result is a step function increased by 1/n with 226 

at each step. 227 

Let X be the percentage of consumers with voltage violations. Figure 5 illustrates the 228 

CDFs representing the probability of having at least x% of consumers with voltage issues 229 

for downstream and upstream allocation scenarios. For downstream allocation, it sug- 230 

gests that the likelihood of having more than 20% (0.2) of consumers with voltage issues 231 

is about 0.2, 0.85 and 0.95 at 50%, 60% and 70% of penetration levels. In contrast, the like- 232 

lihood of no consumers with voltage issues is 0.4 and 0.75 probability for 50% and 20% 233 

penetration levels for downstream and upstream PV allocation scenarios. 234 

Figure 6 presents the mean percentage of consumers with voltage violations +/- one 235 

standard deviation on Feeder 4 and the probability of having more than 1% of consumers 236 

with voltage problems for each penetration level. For a downstream scenario, the likeli- 237 

hood of having more than 1% of consumers with voltage problems is around 0.1 at 50% 238 

of the penetration level. In comparison, at least 1% of consumers with voltage issues above 239 

70% PV penetration. For upstream PV allocation scenario, it is a more conservative case 240 

where above 40% of penetration level there are always at least 1% of consumers with volt- 241 

age issues. 242 

 243 
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Figure. 5. Feeder 4 CDFs results: voltage issues 261 
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 278 

 279 

Figure. 6. Feeder 4 Probability of voltage issues 280 

 281 

Let Y be the utilization factor at the head of the feeder. For example, Figure 7 suggests 282 

that the probability of surpassing loading capacity (utilization factor > 1.0) is 0.55 at 90% 283 

PV penetration and 0.95 at 100% of penetration level. Meanwhile, the likelihood of sur- 284 

passing loading capacity is close to zero for 80% and 70% penetration levels for down- 285 

stream and upstream PV allocation scenarios. 286 

Figure 8 presents the probability of a utilization factor higher than 1.0 (>100%) and 287 

the average percentage +/- one standard deviation. For 95% PV penetration, the probabil- 288 

ity of exceeding cable ratings is about 0.5 and negligible probability of occurrence before 289 

80% penetration. 290 

5. Multi-feeder Impact Analysis 291 

The first-ever comprehensive real-life Maltese LV multi-feeder stochastic impact 292 

analysis results are summarised and discussed in this section.  293 

A voltage violation is flagged if the feeder's probability of having more than 1% of 294 

consumers with voltage issues (+X) is higher than a certain threshold α, that is P(X≥1)≥α. 295 
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Figure. 7. Feeder 4 CDFs results: utilization capacity level 313 
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 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

Figure. 8. Feeder 4: the probability of utilization factor higher than 1.0 (>100%) 333 

 334 

The utility company sets this threshold according to its acceptance of potential tech- 335 

nical problems. Meanwhile, a feeder is considered overloaded if the probability of having 336 

a utilization factor above 100% of the rated feeder capacity is higher than α, that is, 337 

P(Y>100)≥α. 338 

Hence, if the utility set α to zero, technical issues are recorded immediately after one 339 

of the simulations presents a flagged case. On the other hand, if α is set to 0.05, the tech- 340 

nical issues are recorded if at least 5% of the simulations present flagged issues. 341 

Table 4 summarises this multi-feeder analysis for the percentage of feeders with volt- 342 

age and utilization capacity issues for two thresholds: conservative α = 0 and α = 0.05. The 343 

latter threshold is commonly acceptable by utilities. For the conservative scenario, about 344 

80% and 36% of the feeders recorded at any simulation and penetration level voltage and 345 

utilization capacity technical issues, respectively. The predominant technical issues 346 

emerged as voltage issues rather than utilization capacity issues. The latter technical issue 347 

is seen at close to very high penetration levels. 348 
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Table 4. Percentage of feeders with technical problems 349 

 350 

5.1. First Occurrence of LV network challenges 351 

The first occurrence of LV network challenges provides a deeper investigation of PV 352 

penetration impact assessment. This section demonstrates the histograms of the penetra- 353 

tion level at which feeders start experiencing technical problems. The penetration level is 354 

calculated in (1) and (2). 355 

  𝑝1 ≡ {min(𝑝𝑖) ∈ 𝑄 | 𝑃(𝑋(𝑝𝑖) ≥ 1) ≥ 𝛼} (1) 356 

   𝑝2 = {min(𝑝𝑖) ∈ 𝑄 | 𝑃(𝑌(𝑝𝑖) > 100) ≥ 𝛼} (2) 357 

where Q is the set of penetration levels (0% to 100%), and pi is the penetration level i. 358 

Therefore, p1 and p2 represent the first penetration level where voltage or overloading 359 

issues are experienced. 360 

Figure 9 illustrates the result of the first occurrence of LV network challenges consid- 361 

ering the most conservation threshold recorded, α = 0.05, that is, recording at any simula- 362 

tion and penetration level voltage and utilization capacity technical issues. 363 

6. Regression Tool for Impact Predictions 364 

Regression analysis is an extremely powerful tool in network planning and opera- 365 

tion. The regression results can benefit utilities about the hosting capacity insights of Mal- 366 

tese LV networks. As a result, the utility may assess and even predict the technical chal- 367 

lenges of future high PV penetration levels and identify the boundaries of PV hosting ca- 368 

pacity on specific LV network characteristics without running power flow analysis. The 369 

parameters with the best fit are plotted. The standard error of the regression, also known 370 

as the standard error of the estimate, is a preferred measure of the goodness-of-fit in this 371 

study over the coefficient of determination, R2, as 𝑆 can be used both for linear and non- 372 

linear models, unlike R2, which is not valid for non-linear models [15]. 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 (a) (b) 390 

Figure. 9. First occurrence of voltage (a) and utilization (b) capacity issues in downstream (fixed) and 391 

upstream (dashed) scenarios (α = 0.05) 392 

Allocation 

scenario 

α = 0 α = 0.05 

Voltage 

problems 

Overloading Voltage 

problems 

Overloading 

Downstream 78.3 37.4 75.7 31.3 

Upstream 80.9 34.8 78.3 29.6 
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5.1. Defining Characteristics of LV Feeders 393 

The seven investigated feeder characteristics are defined as follows: 394 

i. Feeder Length: Total length of the feeder, including both underground and 395 

overhead cables, 396 

ii. Number of consumers: Total number of consumers supplied per feeder, 397 

iii. Total path resistance (TPR): Sum of all resistances between the busbar and 398 

each consumer. TPR is calculated as shown in (3) 399 

   𝑇𝑃𝑅 =  ∑ 𝑝𝑎𝑡ℎ 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
𝑁
𝑖=1  (3) 400 

  where TPR is the Total Path Resistance, N is the total number of con- 401 

sumers and path resistance is the resistance between the busbar and con- 402 

sumer i, 403 

iv. Initial utilization factor: The mean value of the utilization factor is the maxi- 404 

mum current divided by its corresponding ampacity at the head of the feeder 405 

from 100 simulations without any PVs integrated, 406 

v. Main path: Distance between busbar and furthest consumer, 407 

vi. Main path resistance (MPR): Sum of all resistance in the main path, that is, 408 

between the substation and the last consumer, and 409 

vii. Total resistance: Sum of all feeder resistances, including underground and 410 

overhead cables. 411 

It is important to note that complex impedance is not calculated, and only resistance 412 

is considered as calculating resistance is a more straightforward and less expensive ap- 413 

proach for the utility to implement. 414 

5.2. Regression Analysis Tool Methodology 415 

The regression analysis is performed for PV integration by considering seven inves- 416 

tigated feeder characteristics and plotting them against the penetration at which problems 417 

occur, considering thresholds for potential technical issues α=0 and α=0.05. Hence, (4) cal- 418 

culates the minimum penetration at which feeders experience technical challenges. 419 

   𝑝𝑚𝑖𝑛 = min {𝑝1 , 𝑝2} (4) 420 

where p1 and p2 refer to voltage and utilization capacity issues, respectively. Afterwards, 421 

a regression analysis is carried out to identify the best fit using the standard error of the 422 

regression (S) as a metric. 423 

Since more than 20% of the feeders did not present any issues for any of the simula- 424 

tions for any of the penetration levels up to 100%, additional penetration levels are inves- 425 

tigated. Therefore, 31 penetration levels are studied from 0% to 300% in steps of 10%. This 426 

means that a house can integrate multiple PV units at the same time. 427 

The Assessment of penetration levels beyond 100% will give valuable information 428 

that can be included in regression analysis because it allows identifying penetration level 429 

that triggers a technical challenge in the feeder. Hence, this will result in more accurate 430 

estimates. 431 

5.3. Regression Tool Analysis 432 

The regression analysis is scattered data points representing the results of each stud- 433 

ied LV feeder plotted. The scattered data points are plotted on the PV penetration levels 434 

at which the impact assessment records the first occurrence of LV network challenge 435 

against the characteristics of LV Feeders. 436 

For example, in Figures 10 and 11, feeders with more consumers present earlier tech- 437 

nical challenges at lower PV penetration levels than those having fewer customers. The S 438 

is used to test the strength of this conclusion. In this case, S is 39.1 and 45.1 for downstream 439 

and upstream allocation scenarios, respectively. This means that the average distance of 440 

the data points from the fitted line is about 39% and 45% of the penetration level for down- 441 

stream and upstream allocation scenarios, respectively. 442 

 443 
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Figure. 10. Regression analysis – Penetration vs Number of consumers 458 

(Downstream allocation scenario) 459 
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 475 

Figure. 11. Regression analysis – Penetration vs Number of consumers 476 

(Upstream allocation scenario) 477 

 478 

This means there is an error of a maximum of 3 steps in 31 steps PV simulated pene- 479 

tration levels. The smaller S, the stronger the relationship. 480 

Table 5 summarises the regression analysis results standard error of regression for 481 

each parameter for both downstream and upstream allocation scenarios. Since the results 482 

for both thresholds are similar, only the corresponding S is shown for α=0, the most con- 483 

servative threshold. This table suggests that the parameters with the strongest relation- 484 

ships are the Feeder Length, Total Path Resistance and Total Resistance. The former em- 485 

beds the overall resistance of the feeders. Hence there is a good relationship with the pos- 486 

sible voltage rises in the case of PV integration. 487 

7. Conclusion 488 

This article introduces the first of its type in Malta, a real-world LV network multi- 489 

feeder effect analysis and regression analysis tool for PV integration. In the upcoming ten 490 

years, photovoltaics (PVs), a very promising developing technology, are anticipated to 491 

have a big impact on the electrical sector. Malta will most definitely not be left out as a 492 

solar priority nation. 493 

 494 
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  539 

Parameter Downstream Upstream 

Feeder Length 25.5 31.9 

No of Consumers 39.1 45.1 

Total Path Resistance 25.0 33.1 

Initial loading 38.1 44.8 

Main Path 43.5 45.7 

Main Path Resistance 44.0 45.7 

Total Resistance 29.4 35.6 
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