
AIM-package : a modular standard for structuring patches in Max

Vincent Goudard
vincent@vincentgoudard.com

ABSTRACT

Designing a complete in-car audio experience requires so-
lutions for rapid prototyping in a complex audio configu-
ration, bringing together different areas of expertise rang-
ing from sound-design and composition, down to hard-
ware protection, with every conceivable layer of audio-
engineering in-between, up to A-B comparisons setups
for end-users perception evaluation in real demonstration
vehicules. The AIM-package started as a request from
the ºActive Sound Experienceº team at Volvo Cars Com-
pany 1 to meet such goals.

To this end, it was decided to develop a framework on
top of Max 2 so that dedicated audio processing modules
could be easily created, with the ability to store presets
for various configurations, and to take advantage of Max’s
modular design to distribute the complexity of audio
engineering among the various expert teams involved in
the project.

The AIM-package was much designed after two older
Max packages, namely Jamoma Modular Ð a part of the
Jamoma project [1] started in 2006, and its current contin-
uation in libossia, a part of the OSSIA project [2] 3 . Their
main goal is well described in [1] : ºto address concerns
of sharing and exchanging Max patches in a modular sys-
tem. This means creating a structured framework that does
enforce consistency, readability, and standards for interop-
erability while not placing daunting restrictions on users.º
Beyond this goal, these two projects have a lot in com-
mon, with libossia being actively developed by a number
of people previously involved in Jamoma. They both adopt
a MVC design 4 , along with a number of conventions that
contribute to their integration in the Max eco-system.

While the AIM-package is following a lot of these con-
ventions, it was however decided to develop an alternative
package Ðrather than just using libossia, for a number of
reasons, that will be discussed here below and during the
demo. Since the features of Jamoma have been described
in [1], I will only stress a few differences and let the reader
refer to the mentioned reference for the similarities.

1 https://www.volvocars.com
2 https://cycling74.com
3 http://www.jamoma.org and https://ossia.io
4 Model View Controler

Copyright: © 2022 Vincent Goudard et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Explicit model nesting
Contrary to Jamoma and libossia, models in AIM are
explicitly bound to a parent model. This allows for a more
flexible patcher organization, more consistent with the
MVC design, and the possibility to dynamically rebind a
model to another parent.

Typed modules
AIM modules are typed. This allows to share presets
between all instances of modules of the same type.
Namely, any preset created in a given model instance will
readily be available to any other instance of that model,
even if nested in another component.

Multichannel, multiplicity
The AIM-package is oriented towards multichannel
processing 5 . To this end, it adopts a number of existing
conventions to address MC objects in Max, and also
supports wildcard and brace-expansion notation 6 to easily
create or address multiplicities of nodes in the namespace
tree.

Vanilla Max only
The AIM-package only relies on vanilla-Max objects.
This generally proves to be more sustainable, as there is
not C-coded external object, which compilation might
break after a system update. The main drawback of course,
is a worse performance and loading time, but these were
acceptable enough for making this choice.

Acknowledgments

The development of the AIM-package was fully supported
by Volvo Cars Company, which consider to release it
as a free and open-source package for the community.
For more information on the ASX project, please contact
Jonatan Ewald 7 at Volvo Cars.

1. REFERENCES

[1] T. Place and T. Lossius, ªJamoma: A modular standard
for structuring patches in max,º in ICMC, 2006.

[2] J.-M. Celerier, ªAuthoring interactive media: a logical
& temporal approach,º Ph.D. dissertation, Bordeaux,
2018.

5 ...as enabled with the introduction of MC.* objects in Max.
6 https://www.gnu.org/software/bash/manual/

html_node/Brace-Expansion.html
7 jonatan.ewald@volvocars.com

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

674


