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Abstract: Adaptive hill-climbing MPPT algorithms have superior performance as opposed to their 1 

conventional counterparts under medium-high irradiance. However, the performance of these hill-climbing 2 

algorithms remains mostly unknown under low irradiance condition. The low irradiance conditions are 3 

prominent in tropical countries during rainy seasons and niche PV applications. Additionally, several thin-4 

film photovoltaic (PV) technologies have better efficiency under low irradiance conditions. Hence, the 5 

optimum operation of MPPT algorithms under low irradiance conditions is vital. In the real-time 6 

implementation, MPPT algorithms can fail to detect the incremental changes in voltage and current under 7 

low irradiance conditions. Hence, analog to digital converter (ADC) resolution becomes a critical constraint 8 

that governs the performance of hill-climbing (HC) MPPT algorithms. This work entails a detailed 9 

calculation to determine the perturbation step-sizes of the MPPT algorithms under a wide range of 10 

irradiance. Two distinct perturbation step-sizes are determined corresponding to the minimum and optimum 11 

change in voltage and current due to perturbation, that is sensed by the ADC. The authors also defined a 12 

general expression to determine the optimum digitized step-size for duty-based perturb and observe 13 

algorithm under low irradiance condition. This expression is formulated by considering the resolution of the 14 

ADC and the desirability of keeping the power oscillations at an acceptable level. Finally, the performance 15 

of eight hill-climbing algorithms for two distinct step-sizes is analyzed on a small-scale experimental 16 

prototype under both uniform and sudden changes in low values of irradiance. The statistical analysis 17 

validates that the adaptive HC drift-free MPPT algorithm outperforms other HC algorithms when 18 

implemented with the optimum perturbation step-size under low irradiance conditions. 19 

Keywords: Hill-climbing, MPPT, Perturb and Observe, perturbation step-size, ADC, Incremental 20 

conductance 21 

List of Abbreviations 22 

ADC Analog to Digital Converter GAF-VPF Gaussian–Arctangent Function Variable 

Perturbation Frequency  

AHC Adaptive Hill-Climbing I&T Irradiance & Temperature 

AI Artificial Intelligence MPP Maximum power point 

ANN Artificial Neural Network MPPT Maximum power point tracking 

ASF Adaptive Scaling Factor OSS Optimum step-size 

BST Bisection Search Theorem OC Open circuit 

C/A-P&O Conventional/Adaptive Perturb and 
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PI Proportional Integral 

C/A-INC Conventional/Adaptive Incremental 

Conductance 

PSO Particle swarm optimization 
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C-INR Conventional Incremental Resistance SA Simulated Annealing 
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CHC Conventional Hill-Climbing SM-ESC Sliding-mode extremum seeking control 
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23 

Nomenclature 24 

IPV PV current G Irradiance 

VPV PV voltage T Temperature 

PPV PV power 𝐷(k)  duty at kth iteration 

VMPP Voltage at MPP 𝐷(k-1)  duty at (k-1)th iteration 

IMPP Current at MPP ΔD duty step-size 

ΔI Current step-size ΔV Voltage step-size 

PMPP Power at MPP P(k-1)/P(k-2) PV power at (k-1)th/(k-2)th iteration 

VOC Open-circuit voltage ∆Dmax maximum step-size in duty 

ISC Short-circuit current dVmax change in voltage corresponding to 

∆Dmax 

Vref(k) Reference voltage at kth
 iteration dPmax change in power corresponding to 

∆Dmax 

V(k − 1) PV voltage at (k-1)th
 iteration ∆Vmax maximum step-size in voltage 

Iref(k) Reference current at kth
 iteration ΔImax maximum step-size in current 

I(k − 1) PV current at (k-1)th
 iteration NC Number of solar cells 

L Inductance βOC Open-circuit temperature coefficient 

C Capacitance αSC Short-circuit temperature coefficient 

R Load resistance dVmin Minimum voltage sensing ability of the 

microcontroller due to perturbation  

D Duty dImin Minimum current sensing ability of the 

microcontroller due to perturbation 

dVopt Optimum change in voltage 

sensed by the microcontroller 

due to perturbation 

dIopt Optimum change in current sensed by 

the microcontroller due to perturbation 

Dmpp(G) Duty cycle at MPP at G Vmpp(G) Voltage at MPP at G 

Impp(G) Current at MPP at G ∆Dopt Optimum duty cycle 

𝑉̃PV Small perturbations in PV 

voltage 
d̃ Small perturbations in duty 

tss Steady-state response time IPṼ Small perturbations in PV current 

1. Introduction 25 

Annual Energy Outlook (AEO2019) has reported that at the present rate of consumption, all the non-26 

renewable sources of energy like coal, oil, and uranium would deplete within a few decades [1]. Besides 27 

being exhaustible, these forms of energy are adding to the already beleaguered state of environmental 28 

pollution. This situation has prompted various government agencies and industries to come up with new 29 

policies and to look for new cleaner forms of energy resources that are renewable. Among these sources, 30 

solar energy is becoming the most reliable one, as it is profusely available [2]. 31 

Nowadays, PV systems are built and used with output power ranging from a few milli-watts in 32 

scientific calculators to MWs in solar farms for residential/industrial applications [3]. Medium-large scale 33 

CSAM Current sensor-less method with 

auto-modulation 

SS Steady-state 

CV Constant voltage SSS Suboptimal step-sizes 

DCPA Duty-cycle perturbations adaptation STC Standard Test Condition 

ESC Extremum seeking control TG Temperature gradient 

FLC Fuzzy logic control VCL Voltage Control Loop 
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PV systems require power converters (inverter, chopper) depending upon the nature of the load. These units 34 

not only help in achieving the desired voltage and frequency of operation but also extract maximum power 35 

from PV modules [4]. The power converter, along with an MPPT algorithm, is a MPPT controller, which 36 

is a crucial component in most PV systems. This controller tries to find MPP, which lies in the curved 37 

region of the current-voltage (I-V) characteristics of a photovoltaic module, shown in Fig. 1. MPP tracking 38 

is the continuous process of finding this MPP in the non-linear region of the I-V curve. This tracking 39 

becomes complex in nature when the MPP needs to be located on a changing I-V characteristic under 40 

variation in irradiance (G), temperature (T), and load [5]. Several MPPT algorithms have been published 41 

that work well under uniform and rapidly changing meteorological conditions [6 – 17].  42 

Among the existing MPPT techniques, hill-climbing algorithms are extensively used in both research 43 

and industrial applications because they are array independent, efficient and easily implemented in an 44 

inexpensive controller. A brief classification of the most commonly used hill-climbing algorithms is shown 45 

in Fig. 2. 46 

Both C-P&O and C-INC algorithms utilize knowledge of the power-voltage (P-V) curve, whereas C-47 

INR uses knowledge of the power-current (P-I) curve to speculate the sign of the next perturbation. 48 

Although these classical algorithms are efficient, these suffer from a quid pro quo between their dynamic 49 

and steady-state (SS) response. A large perturbation step-size improves the dynamic response but results in 50 

inadequate SS response, whereas a small perturbation step does refine the SS response but slows down the 51 

tracking process. 52 

The adaptive versions of these HC algorithms, i.e., Adaptive P&O (A-P&O), Adaptive INC (A-INC), 53 

and Adaptive INR (A-INR) are more popular as they try to create a balance between this trade-off. These 54 

algorithms adaptively increase or decrease the perturbation step-size based on the region of the operating 55 

point on the power curve [18 – 20]. 56 

 57 
Fig. 1. I-V and P-V plot of PV module 58 

 59 
Fig. 2. Classification of commonly used Hill-Climbing MPPT Algorithms  60 
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Moreover, these conventional and adaptive algorithms also lose their MPP tracking capability which 61 

results in power losses under rapidly changing irradiance. This loss in MPP tracking is because these 62 

algorithms do not have the inherent capability to differentiate between the change in power due to 63 

intentional perturbation or due to change in irradiance. Several authors have investigated this ‘drift’ 64 

phenomena and suggested modifications in HC algorithms to improve their tracking capability [5]. 65 

In [21], the authors proposed a voltage reference-based drift-free P&O algorithm, which tracks the 66 

MPP under rapidly changing irradiance. The algorithm uses an objective function evaluated by taking the 67 

slope of power vs duty curve to determine a change in irradiance. However, the algorithm has poor transient 68 

response under a sudden change in irradiance. The authors in [22] proposed a modified incremental 69 

resistance-based algorithm. Although, the algorithm uses a self-tuning IPID controller, the constant factor 70 

assumed depends on the PV power rating. In [23], the authors proposed a drift-free P&O boost converter 71 

based MPPT controller. The algorithm compares the sign of change in power, current and voltage to detect 72 

a change in irradiance. However, the algorithm loses its tracking capability if the point of operation shifts 73 

to the same side of the new curve. In [24], the algorithm compares the difference in power between two 74 

samples and compares the voltage of the last two samples to accurately detect a change in irradiance. 75 

However, the proposed algorithm offers a slow tracking speed. In [25], an adaptive incremental resistance 76 

method has been proposed that shifts the operating point to RHS of the I-V curve under sudden variations 77 

in irradiance and load resistance. Although, the algorithm promises a high tracking speed it can deviate 78 

from the MPP tracking path under continuously changing irradiance. In [26], the authors proposed a 79 

weighted set point similarity method in which four consecutive duty cycles are stored to determine the 80 

direction of tracking. The algorithm uses an upper and lower power boundary limits which are iteratively 81 

reduced to converge towards the MPP. If a sudden change in irradiance is observed, these limits are 82 

expanded and the whole process starts again. The performance of the algorithm is highly dependent on the 83 

constants used to determine the boundary limits. In [27], the authors proposed an improved incremental 84 

conductance in which the algorithm tracks the MPP by taking two step-sizes based on the region of 85 

operation. A small step-size is used under steady-state condition whereas a large step-size is taken under a 86 

change in irradiance or when the operating point is far away. The algorithms’ performance is highly 87 

dependent on the chosen step-sizes and the constant value chosen for the steady-state region. 88 

Apart from these, several authors have proposed MPPT algorithms based on evolutionary algorithms. 89 

In [28], recent developments have been reported in the ANN based tracking algorithms. Several other 90 

sophisticated MPPT techniques like genetic algorithm, particle swarm optimization, gravitational search 91 

algorithm, and other metaheuristic approaches have been proposed [29 – 33]. Although these techniques 92 

are efficient but require large memory and the use of an expensive hardware controller. Hence, hill-climbing 93 

algorithms remain the natural choice of selection for tracking the MPP. 94 

In recent years, several researchers have compared and analyzed the performance of the conventional 95 

and adaptive hill-climbing (AHC) algorithms [34 – 39]. In [34], the authors have simulated and analyzed 96 

the performance of the CHC and AHC algorithms. Among them, adaptive algorithms performed well as 97 

compared to their conventional counterparts under medium-high irradiance levels. However, the 98 

performance of these algorithms remains relatively obscure as it does not take into account the ADC 99 

resolution, which remains a crucial aspect in real-time implementation of the MPPT algorithms [35]. In 100 

[36], a comparison among P&O, INC, and derivative dP/dt use the EN50530 test procedure to state that 101 

derivative dP/dt has the highest efficiency under high regulating frequency. In [37], the authors compared 102 

beta, temperature, ripple correlation, conventional and modified P&O and INC algorithms under medium-103 

high insolation levels. Among the tested algorithms, the beta method exhibits good transient response and 104 

low steady-state oscillations. In [38], a comparison between improved HC MPPT algorithms is carried out. 105 

The analysis shows that fuzzy based P&O algorithm outperforms the conventional ones when subjected to 106 

severe changes in irradiance. In [39], the researchers have investigated the performance of fractional open-107 

circuit voltage, INC, P&O and temperature based MPPT algorithms in MATLAB/Simulink environment. 108 

The results indicate that fractional open-circuit voltage has a higher efficiency but requires a large number 109 

of sensors. A literature survey is conducted showing previous similar works as in Table 1.  110 

Several articles have discussed the performance of CHC and AHC algorithms under medium-high 111 

irradiance levels. However, very few studies have examined the efficacy of these algorithms under low 112 
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insolation levels. A typical day in Kuala Lumpur has low insolation levels, below 400 W/m2 and sudden 113 

changes for nearly 40% of the useful 10-hour day [40]. Similar conditions exist during the big-rain season 114 

(June-September) in Ethiopian highlands and may also exist in other tropical regions of the world [41]. 115 

Moreover, the niche applications of emerging PV technologies also signify that optimizing the yield from 116 

PV arrays under low irradiance is essential [42]. Hence, a detailed analysis of the HC MPPT algorithms 117 

becomes essential by evaluating and optimizing their performance under low irradiance levels.  118 

The key novelty features of the proposed work are: 119 

i) An in-depth study is carried by evaluating two distinct duty, current and voltage perturbation 120 

step-sizes for the MPPT algorithms corresponding to minimum and optimum change in 121 

voltage and current due to perturbation that is sensed by the ADC for a wide range of 122 

irradiance values. 123 

ii) A generalized expression is derived for calculating the optimum step-size for the duty-based 124 

hill-climbing algorithms by considering the worst condition to ensure the correct operation of 125 

the MPPT algorithm. 126 

iii) The current and voltage control loops are meticulously designed with the help of small-signal 127 

analysis to ensure the stability and robustness of the controller. 128 

iv) The performance evaluation of eight HC MPPT algorithms is carried out for suboptimal and 129 

optimum perturbation step-sizes using a small-scale experimental prototype and further 130 

statistical analysis is carried out on the obtained results. 131 

Table 1 Literature Review of previous similar works 132 

Ref Year Algorithms Type of Review Irradiance 

Level 

Results 

[34] 2014 P&O, CV, A-P&O, 

INC, fractional SC 

current 

Simulation High Quantitative 

[35] 2016 CV, P&O, INC, 

FLC, ANN, 

Modified P&O, PI-

FLC 

Simulation Medium 

High 

Quantitative 

[36] 2011 P&O, INC, dP/dt Experimental Low 

Medium 

High 

Quantitative 

[37] 2013 Beta, P&O, 

temperature, 

Modified INC, 

Correlation 

Experimental Medium Quantitative 

[38] 2019 P&O, INC, Fuzzy-

P&O, Fuzzy-INC 

Simulation Low 

Medium 

High 

Quantitative 

[39] 2016 Fractional OC 

voltage, P&O, INC, 

temperature, FLC, 

ANN 

Simulation Medium 

High 

Quantitative 

[40] 2013 OC voltage, 

fractional SC, P&O, 

ESC, INC, AI 

Simulation Medium 

High 

Qualitative 

[41] 2014 CV, P&O, A-P&O Experimental High Quantitative 

[42] 2015 P&O, ANN, FLC, 

PSO, A-P&O, BST, 

DCPA 

Simulation High Qualitative 

[43] 2015 P&O, PSO, SA Simulation High Quantitative 

[44] 2016  P&O, INC Simulation High Qualitative 
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[45] 2017 HC, Soft computing Theoretical - Qualitative 

[46] 2018 P&O, INC, model-

based 

Experimental Medium 

High 

Quantitative 

[47] 2019 ESC, SM-ESC, 

modified-ESC 

Experimental Medium 

High 

Quantitative 

[48] 2019 P&O, A-P&O, DF-

P&O, INC 

Experimental Medium 

High 

Quantitative 

[49] 2020 I&T, CV, TG, 

fractional OC 

voltage, fractional 

SC current, P&O 

Experimental Medium 

High 

Quantitative 

[50] 2021 P&O, A-P&O, A-

INC, CSAM, ASF-

beta, GAF-VPF 

Simulation Medium 

High 

Quantitative 

[51] 2021 Fixed zone P&O, A-

INC, P&O 

Experimental Low 

Medium 

High 

Quantitative 

The article is structured as follows. Section 2 gives a brief overview of the commonly used Hill 133 

Climbing MPPT Techniques. Section 3 describes the methodology to evaluate the perturbation step-sizes 134 

based on the resolution of the ADC and the stability aspects in designing the MPPT controller. In section 135 

4, the small-scale experimental setup used to test various MPPT algorithms, is explained. Section 5 covers 136 

the experimental results and statistical analysis of the implemented algorithms under both sudden changes 137 

in irradiance and uniform irradiance. In section 6, a detailed discussion on the performance of the various 138 

MPPT algorithms is carried out. Finally, section 7 concludes the study and gives the salient findings of the 139 

proposed work. 140 

2. Hill-Climbing MPPT Algorithms  141 

Hill-Climbing MPPT algorithms are primarily used in medium-high power AC/DC PV applications. 142 

This section briefly discusses the most common conventional and adaptive hill-climbing algorithms.  143 

2.1. Perturb and Observe Algorithm 144 

In this algorithm, the duty of the converter is purposefully disturbed to observe the change in power. 145 

This disturbance decides the tracking direction. 146 

The duty-based P&O algorithm is governed by (1). 147 

  𝐷(k)= D(k − 1) ± Step                    (1) 148 

where, 𝐷(k) is the duty at Kth iteration,  𝐷(k − 1) is the duty at (K − 1)th iteration and Step is the duty 149 

perturbation step-size. 150 

Careful selection of perturbation step-size, ΔD governs the efficacy of the C-P&O algorithm. A high 151 

tracking speed may be achieved by increasing the step-size but with a penalty of increased power 152 

fluctuations around MPP, which can result in instability. A small perturbation step-size does improve the 153 

steady-state response, but slows down the tracking speed, as shown in Fig. 3. A-P&O algorithm improves 154 

this trade-off between steady-state power oscillations and tracking speed. 155 

The perturbation step of A-P&O in (2) uses a scaling parameter, M, and also gathers knowledge on 156 

the slope of the power curve. The scaling parameter helps in quickly reaching the MPP with low power 157 

oscillations around MPP. Maximum duty step-size and the corresponding difference in voltage and power 158 

determine the scaling factor, M as in (3) [18]. 159 

Step = M
|P(k−1)−P(k−2)|

|V(k−1)−V(k−2)|
              160 

(2) 161 

     M = 
|dVmax|×ΔDmax

|dPmax|
               162 

(3) 163 
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where, ∆Dmax = maximum step-size in duty, dVmax = change in voltage corresponding to ∆Dmax and  164 

dPmax = change in power corresponding to ∆Dmax. The combined flowchart of C-P&O and A-P&O 165 

algorithms is shown in Fig. 4. 166 

 167 
Fig. 3. Power oscillations around MPP under different step-sizes 168 

 169 
Fig. 4. Compiled Flowchart of Classical and Adaptive P&O MPPT algorithm 170 

2.2.Incremental Conductance Algorithm 171 

This algorithm is similar to the P&O algorithm [52]. It also uses the knowledge of the slope of the 172 

power curve, which decides the tracking direction. If the ratio of the increment in conductance is higher 173 

than the negative conductance, the reference voltage is increased to track MPP. If the ratio of the increment 174 

in conductance is less than the negative conductance, the reference voltage is decreased to track MPP.  175 

The combined flowchart of C-INC and A-INC algorithms is shown in Fig. 5. 176 

The voltage-based INC algorithm is governed by (4): 177 

Vref(k) =  V(k − 1) ± Step                178 

(4) 179 

The voltage step-size ‘ΔV’ governs the performance of the C-INC algorithm. A-INC algorithm uses 180 

a scaling parameter, N, and the knowledge of the power curve, which ensures a balance between 181 
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maintaining low power oscillations and a high tracking process. The step-size of A-INC algorithm and the 182 

scaling parameter N is governed by (5) and (6), respectively [19]. 183 

  Step = N
|P(k−1)−P(k−2)|

|V(k−1)−V(k−2)|
              184 

(5) 185 

        N = 
|dVmax|×ΔVmax

|dPmax|
               186 

(6) 187 

 188 

Fig. 5. Compiled Flowchart of C-INC and A-INC MPPT algorithm 189 

where, ∆Vmax = maximum step-size in voltage, dVmax = (∆Vmax) maximum change in voltage corresponding 190 

to ∆Vmax and dPmax = maximum change in power corresponding to ∆Vmax. 191 

2.3.Incremental Resistance Algorithm 192 

The INR algorithm also belongs to the family of the hill-climbing technique as it uses the information of 193 

the slope of the P-I power curve to track in the correct direction. The algorithm uses current as a perturbation 194 

parameter to track the MPP. If the ratio of change in output resistance is higher than the negative output 195 

resistance, the reference current is increased to track MPP. On the other hand, when the ratio of change in 196 

output resistance is less than the negative output resistance, the current reference is decreased to track MPP. 197 

The combined flowchart algorithm of C-INR and A-INR is in Fig. 6. 198 

The INR algorithm is depicted by (7) as given below. 199 

Iref(k) = I(k − 1)  ± Step    (7) 200 

The perturbation step-size determines the performance of the classical INR algorithm in current, i.e., 201 

‘ΔI’. A significant value of ΔI improves the dynamic response on account of large steady-state oscillations, 202 

whereas a small value slows down the tracking process. The perturbation step-size of the adaptive INR 203 

algorithm in (8) tries to balance this trade-off with the help of a scaling parameter, C, and the knowledge 204 

of the P-I power curve [20]. 205 
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    Step = C
|P(k−1)−P(k−2)|

|I(k−1)−I(k−2)|
    (8) 206 

The maximum step-size in current and the corresponding change in maximum power calculates the 207 

scaling factor, C, as in (9). 208 

         C = 
|dImax|×ΔImax

|dPmax|
     (9) 209 

 210 

Fig. 6. Combined Flowchart of C-INR and A-INR algorithm 211 

where, ΔImax = maximum step-size in current, dImax = maximum change in current corresponding to ΔImax, 212 

and dPmax = maximum change in power corresponding to ΔImax. 213 

It may not be out of place to mention here that direct-duty MPPT algorithms are not affected by the 214 

changes in the parameters of PV arrays due to aging [53]. Hence, the values of ∆Vmax in (6) and ΔImax in 215 

(9) may require periodic tuning to compensate for the aging effect. 216 

2.4.Drift-Free Algorithm 217 

In recent years, hill-climbing based drift-free MPPT algorithms have gained popularity due to their 218 

high accuracy in tracking the MPP under rapidly changing irradiance [34]. It is widely known that the 219 

conventional and adaptive hill-climbing MPPT algorithms suffer from drift-phenomena under rapidly 220 

changing irradiance. To elaborate on this concept, consider that the current operating point is at 1 in the 221 

low irradiance curve as shown in Fig. 7. Under constant irradiance, the conventional and adaptive HC 222 

MPPT algorithms operate normally and ensure that the point of operation will shift from 1 to 2 to extract 223 

more power. On the other hand, if there is a sudden change in irradiance while going from 1 to 2, the point 224 

of operation shifts from 1 to 3. This is due to the sudden increase in irradiance under constant load 225 

resistance. Now, the operating point 3 lies on the RHS of the high irradiance curve. The conventional and 226 

adaptive hill-climbing algorithms cannot determine the reason behind the increase in power, i.e. whether it 227 

is due to perturbation or due to an increase in irradiance. Hence, these algorithms allow perturbation in the 228 

same direction causing the point of operation to shift from 3 to 4, which results in power loss. This drift is 229 
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severe in adaptive HC MPPT algorithms as these algorithms use large step-size corresponding to a large 230 

change in irradiance. 231 

To overcome this, authors in [5], proposed a drift-free P&O MPPT algorithm that monitors an 232 

additional parameter, i.e. a change in current to determine whether the change in power is due to intentional 233 

perturbation or change in irradiance, as shown in Fig. 8. It can be easily observed that the sign of change in 234 

power, current and voltage between two perturbations is same only when there is a change in irradiance. 235 

This is due to the unique I-V characteristic of the PV module. 236 

 237 

Fig. 7. Drift phenomena in hill-climbing MPPT algorithms 238 

 239 

Fig. 8. Flowchart of conventional drift-free P&O algorithm 240 
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An adaptive drift-free MPPT algorithm is proposed in [54], which can overcome the drift under 241 

simultaneous changes in irradiance and load resistance. The algorithm detects the change in irradiance by 242 

comparing the sign of the slope of P-V and P-I curve between two perturbations, as shown in Fig. 9. The 243 

sign of the slope of the two power curves are same only when there is a change in irradiance. The algorithm 244 

uses two perturbation parameters, namely, voltage and current to ensure high speed of tracking and limits 245 

the oscillations around MPP by iteratively reducing the perturbation step-size. 246 

This section has briefly overviewed the MPPT algorithms chosen for investigation under low irradiance 247 

condition. The next section will cover the design aspects to implement these algorithms in real-time to 248 

ensure overall stability of the system. 249 

3. Perturbation Step-Size under Low Irradiance Levels 250 

The perturbation parameter can be in the form of duty, voltage or current to implement MPPT 251 

algorithms. It is already proven that the mathematical comparison of the P&O and INC algorithm is similar 252 

in continuous time as well as in their discrete implementation [52]. Therefore, the implementation of the 253 

C-P&O and A-P&O algorithm uses duty as a perturbation parameter, whereas C-INC and A-INC 254 

algorithms use voltage as a perturbation parameter. The different perturbation parameters help to determine 255 

the efficacy of conventional and adaptive P&O and INC algorithms.  256 

The classical and adaptive INR algorithms use current as a perturbation parameter as both these 257 

algorithms require the knowledge of the P-I curve to reach MPP. Detailed analysis of the perturbation step-258 

sizes for P&O, INC and INR algorithms is in the subsequent section. 259 
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 260 

Fig. 9. Flowchart of adaptive drift-free MPPT algorithm 261 

3.1.Calculation of Step-Size of C-P&O and A-P&O Algorithms 262 

As mentioned previously, the P&O algorithm uses duty as the control variable. To accurately 263 

determine the perturbation step-sizes under low irradiance, the ADC resolution is a vital constraint variable. 264 

The experimental setup has an ADC of 10-bit resolution, with a maximum input voltage of 5V. Therefore, 265 

the minimum voltage that can be sensed by the ADC is 4.88mV. The current sensor has a sensitivity of 266 

1mV/mA, the minimum sensing ability in voltage and current due to perturbation of the microcontroller is 267 

dVmin = 0.00488V and dImin = 0.0488A, respectively. The perturbation step-sizes for different irradiance 268 

levels, for the minimum set values of dVmin and dImin, are given in Table 2. 269 

From Table 2, one can easily observe that the perturbation step-size in duty is increasing as the 270 

irradiance decreases which is due to the set constraints on dVmin and dImin values. A step-size of  271 

ΔD = 0.3922 is obtained under a low irradiance level of 250W/m2 to detect a minimum change in voltage, 272 

dVmin = 0.00488V and current dImin = 0.0488A. In C-P&O technique, step-size governs the yield of the 273 

algorithm. If a big step-size of 0.3922 is selected, then the performance of the algorithm may worsen under 274 
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medium-high insolation level. On the other hand, a small step-size of 0.0087 under low irradiance 275 

conditions may give a false reading of ADC as the variation in voltage and current due to perturbation may 276 

fall below their minimum set values. This false reading of ADC will affect the operation of the MPPT 277 

algorithm. To determine an optimum perturbation step-size, the authors have changed the minimum 278 

difference in voltage and current value due to perturbation to be dVopt = 0.1V and dIopt = 0.01A, 279 

respectively. By doing this, the perturbation step-size is low, by marginally increasing the steady-state 280 

oscillations around MPP under high irradiance condition, as given in Table 3. 281 

The designer should consider the resolution of the ADC for obtaining the optimum allowable change 282 

in voltage and current due to perturbation. Hence, the authors have determined generalized expressions for 283 

the optimum change in voltage and current as given in (10) and (11), respectively. 284 

                                           dVopt = 2×n×dVmin                                           (10) 285 

                                            dIopt = 
2×n×dImin

10
                                 (11) 286 

where, n is the resolution of ADC and dVmin(dImin) is the minimum value of voltage (current) that can be 287 

read by ADC. 288 

Fig. 1 shows that the perturbation step change in voltage should be more than the perturbation step 289 

change in current to reach the MPP quickly [55]. The minimum perturbation step-size of ΔD = 0.0166 of 290 

250W/m2 is selected to ensure accurate tracking of both conventional and adaptive P&O algorithms. 291 

The expression for optimum duty cycle at the lowest irradiance is derived an in (12), where, Dmpp(G), 292 

Vmpp(G) and Impp(G) is the duty cycle, voltage and current, respectively, at MPP at irradiance, G. Two values 293 

of ∆Dopt can be obtained from (12) corresponding to a minimum and maximum duty cycle. The maximum 294 

value of ∆Dopt should be selected for the worst condition and this value will ensure the correct operation of 295 

the P&O algorithm. 296 

                                     ∆Dopt=|Dmpp(G)-D(max/min)|=√
1

R
(√

Vmpp(G)±dVopt

Impp(G)∓dIopt
− √

Vmpp(G)

Impp(G)
)                               (12) 297 

The value of scaling factor, M = 0.166 is obtained for dVmax = 0.3729V, Dmax = 0.0166 and  298 

dPmax = 0.0371W by substituting these values in (3). These values are for the minimum irradiance level of 299 

250W/m2. The selection of these values ensures that the change in current and voltage due to perturbation 300 

never falls below the preset limit, under low irradiance (250W/m2). 301 

Table 2 Suboptimal duty perturbation step-sizes for dVmin = 0.00488V and dImin = 0.0488A 302 

G (W/m2) 1000 900 800 700 600 500 400 370 300 250 

ΔD 0.0087 0.0110 0.0124 0.0157 0.0203 0.0296 0.0480 0.0643 0.1795 0.3922 

 303 

3.2.Calculation of Step-Size of C-INC and A-INC Algorithms 304 

As previously mentioned, the conventional and adaptive INC algorithms use voltage as a perturbation 305 

variable. Table 3 shows the step-sizes in voltage for different irradiance levels, with the same constraint on 306 

dVopt and dIopt values. 307 

In this case, a minimum voltage step of ΔV = 0.3729V ensures accurate operation of the INC 308 

algorithms under all irradiance levels, as in Table 3. The direct increment/decrement in voltage is not 309 

possible as the control variable is duty cycle. The authors carefully designed a PI controller to implement 310 

the voltage based C-INC and A-INC algorithms. 311 

3.2.1. Design of Voltage Control Loop 312 

The MPPT controller circuit diagram for implementing P&O, INC, INR and DF MPPT algorithms is shown 313 

in Fig 10. The instantaneous value of voltage (VPV) and duty (d) are perturbed to deduce the small-signal 314 

expression as given in (13) [56]: 315 
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                                                                        Gvd(s)=
VPṼ

d̃
=

VoLs

R

LCs2+
L

R
s+(1-d)2

                                                  (13) 316 

where, 𝑉̃PVand d̃ are small perturbations in PV voltage and duty, respectively. 317 

The transfer function of the PI controller for the VCL is depicted by (14). 318 

                                                                              Gv(s)=Kpv+
Kiv

s
                                                              (14) 319 

The open-loop transfer function of the control loop is depicted by (15). 320 

                                                                 Golv(s)=Gvd(s)Gv(s)                                                        (15) 321 

 322 
 Fig. 10. Circuit diagram of the MPPT controller 323 

Table 3 Optimum perturbation step-sizes for dVopt = 0.1V and dIopt = 0.01A 324 

G (W/m2) 1000 900 800 700 600 500 400 370 300 250 

ΔD 0.0024 0.0034 0.0034 0.0047 0.0068 0.0072 0.0084 0.0086 0.0149 0.0166 

ΔV (V) 0.1000 0.1031 0.1034 0.1208 0.1410 0.1737 0.2190 0.2461 0.3100 0.3729 

ΔI (A) 0.0200 0.0113 0.0112 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

The bode graph of the control loop without and with compensation is shown in Fig. 11(a). The open-325 

loop transfer function without compensator has a phase margin of -91.4o
 at 33.1 rad/s as shown in  326 

Fig. 11(a). The designed controller gives an overshoot of 5.8% for a unit step response having a phase 327 

margin (PM) of 60o at 8.95 krad/s. The coefficients calculated are Kpv = 0.348 and Kiv = 2059.8. 328 

The root locus of the open-loop transfer function Golv(s) is shown in Fig. 11(b). The root locus shows 329 

that the closed-loop poles for 60o PM occur at p1,2 = -266±j797 (ζ = 0.317, ωn = 840 rad/s) which ensures 330 

the stability of the system. 331 

The scaling factor, N = 3.661 obtained for dVmax = 0.3729V and dPmax = 0.03797W for adaptive INC 332 

algorithm using (6). These values are chosen for the minimum irradiance level of 250W/m2 and will ensure 333 

the correct operation of the A-INC algorithm. 334 

3.3.Calculation of Step-Size of C-INR and A-INR Algorithms 335 
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As the conventional and adaptive INR algorithms use the knowledge of the P-I curve, they use current 336 

as a perturbation variable. Table 3 shows the current perturbation step-sizes for different irradiance levels 337 

for dVopt = 0.1V and dIopt = 0.01A. 338 

The current based INR algorithm uses a minimum current step-size of ΔI = 0.02A, such that both 339 

conventional and adaptive INR algorithms work accurately under a wide range of irradiance conditions. As 340 

direct perturbation in current is not possible, careful designing of PI controller is essential to implement the 341 

current based INR algorithm. 342 

3.3.1. Design of Current Control Loop 343 

The current controller determines the reference current (Iref) using INR algorithm, as shown in  344 

Fig. 10. The instantaneous value of current (IPV) and duty (d) are perturbed to deduce the small-signal 345 

expression as given in (16) [18]: 346 

                                                                 Gid(s)=
IPṼ

d̃
=

VoCs+2
Vo

R

LCs2+
L

R
s+(1-d)2

                                             347 

(16) 348 

where, IPṼ and d̃ are small perturbations in PV current and duty, respectively. 349 

The transfer function of the PI controller for the CCL is depicted by (17). 350 

                                                                       Gc(s)=Kpc+
Kic

s
                                             (17) 351 

The open-loop transfer function of CCL is depicted by (18). 352 

                                                      Golc(s)=Gid(s)Gc(s)                                          (18) 353 

The bode plot of the CCL without and with compensation is shown in Fig. 12(a). The open-loop 354 

transfer function without compensation has a phase margin of 85.70 at 6.83 krad/s, as shown in Fig. 12(a). 355 

The step input response of the current control loop without compensation results in an overshoot of above 356 

10%. 357 

The designed PI controller achieves a maximum overshoot of 7.8% for a PM of 600 at 1.88 krad/s. 358 

The coefficients of this PI controller are Kpc = 0.195 and Kic = 133.8. 359 

The root locus of the open-loop transfer function Golc(s) is shown in Fig. 12(b). Root locus shows 360 

that the closed-loop poles for 60o PM occur at p1 = 0 and p2,3 = -266±j797 (ζ = 0.317, ωn = 840 rad/s) 361 

thereby ensuring the stability of the system. 362 

 

 
(a) 

 

 
 (b) 

Fig. 11. (a) Bode graph and (b) Root locus of VCL 363 

   
 (a) 

 
(b) 

Fig. 12. (a) Bode graph and (b) Root locus of CCL 364 
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The scaling factor, C = 2.9×10-3 is obtained for dImax = 0.02A and dPmax = 0.1338W for adaptive INR 365 

algorithm using (9). The chosen value corresponding to the maximum irradiance level of 1000W/m2 will 366 

ensure the reliable working of the adaptive INR algorithm under a wide range of irradiance. 367 

4. Experimental Setup  368 

A small-scale experimental setup developed to evaluate the performance of HC algorithms is shown in  369 

Fig. 13. For testing these algorithms, irradiance is varied over the Vikram Solar 40W (ELDORA 40P) 370 

multi-crystalline PV module by 150W halogen lamps whereas the module temperature is controlled through 371 

fans installed at the bottom of the PV module. The parameters of the 40W PV module are given in Table 372 

4. MPPT algorithms are programmed in an inexpensive ATMEGA-32 microcontroller development board 373 

having ADC of 10-bit resolution. The voltage is sensed with the help of a potential divider circuit with R1 374 

= 10kΩ and R2 = 1kΩ, whereas the current is sensed with the help of a current sensor (WSC2702) to reduce 375 

the maximum voltage given to ADC which should be less than 5V. Table 5 gives the specifications of the 376 

DC-DC boost converter which is designed for the MPP voltage and current values of the PV module at 377 

STC to ensure its stable operation under low and high irradiance levels. The boost converter control switch 378 

is a MOSFET (IRFP350) of 350V, 15A with low switching loss. A dedicated driver IC (IR2112) is used to 379 

drive the control switch. A constant load resistance, R = 60Ω is used to test the performance of the MPPT 380 

algorithms as shown in the circuit diagram of the MPPT controller in Fig. 10. Fluke 287 multi-meters and 381 

TDS2000C digital storage oscilloscope are used to store the experimental data. 382 

5. Experimental Results 383 

In this section, the authors analyzed the performance of the classical and adaptive algorithms for two 384 

distinct step-sizes under (i) sudden change in low values of irradiance and (ii) low values of uniform 385 

irradiance. The comparison between algorithms is carried out based on two key performance parameters as 386 

given below. 387 

i) Steady-state response time to reach MPP (tss): The MPPT algorithms tracking speed is determined 388 

by the time taken by the algorithm to reach steady-state (tss) when there is a sudden change in the 389 

irradiance. In this study, the steady-state response time is evaluated by measuring the time taken by 390 

the algorithm to reach 90% of the target value. 391 

ii) Power oscillation around MPP: The power oscillation is another key parameter to determine the 392 

performance of MPPT algorithms. It is calculated by taking the mean of samples of the difference 393 

between the target and the measured values. The power oscillations around MPP indicates the power 394 

loss, which is determined after the algorithm has reached steady-state. 395 

Table 4 Specifications of 40W PV module at STC 396 

Nc VOC ISC VMPP IMPP βOC αSC 

36 21.95V   2.44A  17.84V  2.25A  -0.31V/0C 0.058A/0C 

 397 

 398 
Fig. 13. Small-scale prototype to test the MPPT algorithms 399 

     Table 5 Parameters of the boost converter 400 
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Vin Iin Vout D R L C fsw 

17.84V 2.25A 40V 0.554 40Ω 6mH 47µF 16kHz 

5.1.Conventional vs adaptive P&O, INC, INR and DF algorithms for two distinct step-sizes under 401 

sudden variation in irradiance 402 

In this case, the algorithms are tested on a 40W PV module under relatively constant temperature 403 

measured between T = 25oC – 25.5 oC. At t1 = 0s, the MPPT algorithms are activated in succession with a 404 

starting irradiance of G = 250 W/m2. At t2 = 20s, the irradiance is instantly incremented to 370 W/m2 and 405 

then instantly dropped to 250 W/m2 at t3 = 40s, as depicted by Fig. 14. The experimental waveforms of the 406 

MPPT algorithms for the suboptimal step-sizes corresponding to minimum ADC resolution are shown in 407 

Fig. 15. 408 

Considering the ADC resolution, the minimum allowable change in voltage and current due to perturbation 409 

is dVmin = 0.00488V and dImin = 0.0488A, respectively. The perturbation step of P&O, INC and INR 410 

algorithms corresponding to this condition are ΔD = 0.3922, ΔV = 0.8V and ΔI = 0.07A. As DF algorithm 411 

is implemented using duty as the perturbation parameter, ΔD = 0.3922 is used as the step-size. The Adaptive 412 

DF algorithm uses ΔV = 0.8V and ΔI = 0.07A as perturbation step-sizes for voltage and current, 413 

respectively. The zoomed P-t curves during start-up at t1 = 0s, sudden increment in irradiance at  414 

t2 = 20s and sudden decrement in irradiance at t3 = 40s are shown in Fig. 15. 415 

The observed response times of the MPPT algorithms with suboptimal step-size to reach steady-state 416 

around MPP are depicted in Table 6. Both conventional and adaptive P&OSSS and conventional DFSSS take 417 

more time to settle, as they fail to converge quickly due to the use of large step-size of ΔD = 0.3922. As the 418 

INCSSS algorithm uses voltage as a perturbation variable, the step-size of ΔV = 0.8V helps in quick 419 

convergence to MPP and hence, reaches steady-state at a faster rate. INRSSS algorithm comes out a close 420 

second with a low perturbation step-size of ΔI = 0.07A. The adaptive DFSSS is the fastest due to the two 421 

perturbation parameters used within the algorithm. 422 

 423 
Fig. 14. Waveform indicating the change in irradiance 424 

Although, a high step-size guarantees a rapid convergence, however, the use of a very large step-size 425 

of ΔD = 0.3922 and ΔI = 0.07A of P&O and INR algorithms, respectively results in instability and 426 

substantial power loss under steady-state power oscillations. 427 

From Table 6, one can easily see that the SSS corresponding to the resolution of ADC, slightly improves 428 

the tracking speed. However, this also results in high power oscillations around MPP, which is due to the 429 

large step-size. 430 

To maintain the balance between response time to reach SS and power oscillations around MPP, the 431 

authors have evaluated step-sizes using (10), (11) and (12). The expressions in (10) and (11) can guide an 432 

engineer to calculate the minimum allowable change in voltage and current, respectively, due to 433 

perturbation. Once the minimum step change in voltage and current is defined, one can obtain the optimum 434 

step-size using (12). The optimum allowable change in voltage and current due to perturbation is 435 

determined as dVopt = 0.1V and dIopt = 0.01A, respectively. The duty step-size for P&OOSS and DFOSS 436 

corresponding to these limits is ΔD = 0.0166. The voltage and current step-size for INCOSS and INROSS are 437 

ΔV = 0.3729V and ΔI = 0.02A by taking into account the entire range of irradiance. The voltage and current 438 

step-size selection for INC and INR algorithms are chosen for the lowest and highest irradiance values of 439 
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250W/m2 and 1000W/m2, respectively. If we select the voltage step-size of the largest value of irradiance 440 

and current step-size for the lowest value of irradiance, there is a good chance that the change in voltage or 441 

current due to perturbation may fall below their minimum preset values. 442 

 443 

   444 

   445 

   446 

    447 
Fig. 15. Experimental waveforms of conventional and adaptive versions of P&O, INC, INR and DF MPPT 448 

algorithms under start-up at t1 = 0s, increase in irradiance t2 = 20s and decrease in irradiance at t3 = 40s 449 

with suboptimal step-size (SSS), i.e., corresponding to ADC resolution 450 

 451 

 452 

Table 6 Response time to reach steady-state (tss) of MPPT algorithms with SSS and OSS 453 

Algorithm tss during start-up (s) tss under rising G (s) tss under falling G (s) 

P&OSSS  2.1 1.4 1.1 

INCSSS 1.4 0.7 0.6 

INRSSS 2.5 0.8 1.4 

DFSSS 1.6 0.7 0.7 

Adaptive P&OSSS 2.1 1.4 1.1 

Adaptive INCSSS 1.4 0.7 0.6 

Adaptive INRSSS 1.7 0.7 0.5 

Adaptive DFSSS 1.4 0.6 0.5 

P&OOSS  2.1 1.7 0.8 

INCOSS 2.8 1.0 1.2 
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INROSS 2.2 0.8 1.3 

DFOSS 2.1 0.9 0.6 

Adaptive P&OOSS 1.2 0.8 0.6 

Adaptive INCOSS 1.4 1.0 0.7 

Adaptive INROSS 2.0 0.9 0.9 

Adaptive DFOSS 1.4 0.7 0.5 

   454 

   455 

   456 

  457 
Fig. 16. Experimental waveforms of conventional and adaptive versions of P&O, INC, INR and DF 458 

MPPT algorithms under start-up at t1 = 0s, increase in irradiance t2 = 20s and decrease in irradiance at t3 = 459 

40s with optimum step-size (OSS)  460 

The adaptive DFOSS uses a voltage and current step-size of ΔV = 0.3729V and ΔI = 0.02A, 461 

respectively. The experimental waveforms of conventional P&OOSS, INCOSS and INROSS algorithms with 462 

their adaptive versions for ΔD = 0.0166, ΔV = 0.3729V and ΔI = 0.02A under sudden change in irradiance 463 

are shown in Fig. 16. The zoomed experimental waveforms depicting the P-t curves under start-up at t1 = 464 

0s, increase in irradiance at t2 = 20s and decrease in irradiance at t3 = 40s are shown in Fig. 16. 465 

Response times of the MPPT algorithms with the OSS to reach steady-state around MPP are given in 466 

Table 6. The results show that adaptive DFOSS has the highest tracking speed, owing to dual perturbation, 467 

which results in low response time to reach steady-state around MPP. Adaptive P&OOSS also has a good 468 

tracking speed due to direct duty perturbation, whereas adaptive INCOSS/INROSS comes at a close third 469 

place. As the perturbation step-size is selected for the worst possible condition, similar response times 470 

among the conventional hill-climbing algorithms is noticed, under low irradiance levels. 471 

As previously discussed, the worst possible condition for P&O and INC occurs under low irradiance, 472 

whereas in INR algorithm, it occurs at the highest possible irradiance. By selecting the perturbation step-473 

size for worst conditions, the successful operation of ADC and thereby the reliability of the MPPT 474 
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algorithm is increased for a broad span of irradiance. Under low irradiance, the change in voltage and 475 

current is small; therefore, the resolution of ADC becomes an important constraint in tracking the MPP. 476 

5.2.Conventional vs adaptive P&O, INC, INR and DF algorithms for two distinct step-sizes under 477 

uniform irradiance condition 478 

In the second case, the conventional MPPT algorithms are tested for two distinct step-sizes under low 479 

value of uniform irradiance levels, namely, 250 W/m2 and 370 W/m2. This case study helped in determining 480 

the power oscillations around MPP. The experimental results are analyzed, and a comparison based on 481 

steady-state power oscillations between the conventional and adaptive MPPT algorithms for two distinct 482 

step-sizes is shown in Table 7. 483 

From the obtained results, one can see that the SSS corresponding to the ADC resolution, i.e., P&OSSS, 484 

INCSSS, INRSSS and DFSSS results in high steady-state oscillations. The power oscillations will keep on 485 

increasing as we go towards the higher value of irradiance. The OSS of the conventional MPPT algorithms 486 

results in low steady-state power oscillations because the change in voltage and current due these step-sizes 487 

is much greater than the resolution of ADC.  488 

Hence, the perturbation step-size should be selected based on the worst possible condition such that the 489 

difference in voltage and current is always higher than the minimum set values, which can be easily read 490 

by ADC. These worst conditions occur in the case of conventional and adaptive INR algorithms at high 491 

irradiance levels. On the other hand, such worst conditions occur at low irradiance levels for the 492 

conventional and adaptive P&O and INC algorithms, thereby establishing that performance analysis in the 493 

medium-low range of irradiance cannot be ignored. 494 

5.3.Robustness and Statistical Analysis 495 

This section compares the performance of the MPPT algorithms by evaluating the mean, minimum, 496 

maximum and standard deviation of the extracted power using the statistical analysis. The mean is 497 

calculated to determine the accuracy of the different MPPT algorithms, whereas the standard deviation 498 

helped in measuring the amount of dispersion within the power data sets. Two non-parametric tests are 499 

performed to evaluate the overall performance of each MPPT algorithm.  500 

To check whether Adaptive DFOSS outperforms other HC algorithms, Wilcoxon rank-sum test is 501 

performed with a significance level of α = 0.05. The sign ‘+’ indicates that the Adaptive DFOSS performs 502 

significantly better than the other algorithm, the sign ‘≈’ indicates that the Adaptive DFOSS is comparable 503 

to other algorithm and the sign ‘−’ indicates that the Adaptive DFOSS algorithm is worse than the other 504 

algorithm. Table 8 gives the statistical results obtained by testing all eight algorithms under 370 W/m2 and 505 

250 W/m2 irradiance. 506 

Another non-parametric Friedman ranking test is performed to determine the ranking of the HC 507 

MPPT algorithms. Table 9 gives the ranking obtained using the Friedman ranking test which also shows 508 

that the Adaptive DFOSS algorithm has a superior tracking performance as compared to other algorithms. 509 

Table 7 MPPT algorithms steady-state power oscillations for two distinct step-sizes 510 

Algorithm Power Oscillation (%) at 370 W/m2 Power Oscillation (%) at 250 W/m2 

P&OSSS 3.33 3.28 

INCSSS 3.20 3.18 

INRSSS 3.26 3.08 

DFSSS 3.18 3.17 

Adaptive P&OSSS  2.72 2.65 

Adaptive INCSSS 2.73 2.62 

Adaptive INRSSS 2.99 3.01 

Adaptive DFSSS 2.66 2.54 
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P&OOSS 1.73 2.18 

INCOSS 1.66 2.08 

INROSS 1.46 1.99 

DFOSS 1.64 1.98 

Adaptive P&OOSS  1.72 2.15 

Adaptive INCOSS 1.64 1.88 

Adaptive INROSS  1.42 1.75 

Adaptive DFOSS 1.38 1.35 

The distribution of extracted power obtained from the various HC algorithms is shown in the form of 511 

boxplot in Fig. 17. This distribution clearly shows the convergence accuracy and the sustained power 512 

oscillations in each MPPT algorithm. 513 

From the statistical analysis it can be easily seen that the adaptive versions perform better than their 514 

conventional counterparts when implemented using OSS. The use of OSS also prevents false tracking 515 

process within the MPPT algorithm as the ADC resolution is not challenged. 516 

Table 8 Statistical results using Wilcoxon rank-sum test with OSS 517 

Irradiance Algorithm Power (W)  

Max Min Mean Std rank-sum 

250 W/m2 A-DFOSS 10.03 9.91 9.96 0.03  

P&OOSS 9.75 9.38 9.60 0.10 (+) 

INCOSS 9.89 9.62 9.77 0.08 (+) 

INROSS 9.99 9.82 9.89 0.04 (+) 

DFOSS 9.78 9.38 9.61 0.10 (+) 

A-P&OOSS  9.84 9.51 9.71 0.09 (+) 

A-INCOSS 9.84 9.51 9.71 0.09 (+) 

A-INROSS  9.84 9.52 9.70 0.07 (+) 

370 W/m2 A-DFOSS 15.01 14.41 14.84 0.14  

P&OOSS 14.79 13.77 14.52 0.16 (+) 

INCOSS 14.98 14.56 14.78 0.08 (+) 

INROSS 15.00 14.40 14.86 0.13 (≈) 

DFOSS 14.79 13.79 14.53 0.16 (+) 

A-P&OOSS  14.86 13.93 14.60 0.15 (+) 

A-INCOSS 14.99 14.56 14.78 0.08 (+) 

A-INROSS  15.01 14.41 14.84 0.14 (≈) 

Table 9 Ranking of the HC MPPT algorithms according to Friedman ranking test 518 

Algorithm Friedman ranking at 

250 W/m2 

Friedman ranking at 

370 W/m2 

Overall ranking 

P&OOSS 7.85 7.01 8 

INCOSS 5.81 4.98 5 

INROSS 2.40 2.23 2 

DFOSS 7.00 6.36 7 

A-P&OOSS  5.01 5.56 6 

A-INCOSS 4.16 5.04 4 

A-INROSS  3.72 3.01 3 

A-DFOSS 1.82 1.99 1 
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 519 

(a) 520 

 521 

(b) 522 

Fig. 17 Boxplot graph delineating the extracted Power (W) under (a) 250 W/m2 and (b) 370 W/m2 523 

6. Discussion 524 

To evaluate the performance of MPPT algorithm under low irradiance conditions, eight well 525 

established HC algorithms have been thoroughly investigated. It is observed that the perturbation step-size 526 

is a key parameter that governs the performance of the MPPT algorithm and should be carefully evaluated 527 

by considering the ADC resolution of the controller. The algorithm’s performance is determined by 528 

evaluating the steady-state response time and the power oscillations around MPP at steady-state. 529 

Under 250 W/m2 and 370 W/m2, the Adaptive DF algorithm has the lowest steady-state response time 530 

implemented for both SSS and OSS as compared to other HC algorithms. This is due to the use of two 531 

perturbation parameters, i.e. both voltage and current which increases the speed of tracking. The other 532 

adaptive algorithms when tested using SSS has a large settling time due to the large step-size which is 533 

calculated by considering the resolution of the ADC. Both conventional and adaptive versions of P&O, 534 

INC and INR algorithms show similar response time when implemented using SSS. To improve the 535 

tracking process the OSS remain the obvious choice under low irradiance conditions as they significantly 536 

improve the tracking speed of both conventional and adaptive HC algorithms.  537 

The Wilcoxon rank-sum test is used to evaluate the standard deviation which helped in determining 538 

the dispersion in steady-state power. The test is used to compare the performance of the HC MPPT 539 

algorithms. The boxplot graphs under 370 W/m2 indicate that the Adaptive DF and INR algorithms have 540 

similar dispersion in steady-state power. This is because of the low perturbation step-size in current 541 

determined by considering the optimum change in voltage and current due to perturbation that is sensed by 542 
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the ADC. However, under 250 W/m2 the Adaptive DF algorithm outperforms the other HC algorithms as 543 

evident from the lowest standard deviation value obtained from the Wilcoxon rank-sum test. 544 

Finally, Friedman ranking test is used to determine the overall rank of the various HC algorithms. 545 

The Adaptive DF algorithm remains the obvious choice even under low irradiance. The Conventional and 546 

Adaptive INR algorithms comes at a close second and third place due to the low perturbation step-size 547 

which although slightly increases the tracking time but has low steady-state power oscillations. Both 548 

Conventional and Adaptive P&O has a very good tracking speed but results in higher power oscillations at 549 

steady-state. The Conventional and Adaptive INC algorithm has similar tracking performance as compared 550 

to INR algorithms and has low steady-state oscillations when compared with P&O algorithms. 551 

Hence, the proposed methodology to evaluate the optimum step-size is vital to improve the tracking 552 

response as well as ensure low steady-state oscillations around MPP especially under low irradiance. 553 

7. Conclusion 554 

This paper has compared and analyzed CHC and AHC algorithms for two distinct step-sizes under 555 

low irradiance levels. The imposition on the two preset values for the minimum allowable difference in 556 

voltage and current helped in comparing the performance of these algorithms. The first preset value is 557 

selected solely based on the resolution of the ADC. The authors proposed the second optimum preset value, 558 

such that the minimum allowable difference in current and voltage due to perturbation remains fairly larger 559 

than the resolution of the ADC. Two distinct step-sizes have been determined corresponding to these two 560 

preset values. 561 

The selection of proposed preset value helped in reducing the perturbation step-sizes of conventional 562 

hill-climbing algorithms. The authors determined a method to evaluate the optimum duty step-size by 563 

taking the ADC resolution as a critical attribute to ensure the correct operation of the MPPT algorithm for 564 

the entire range of irradiance. 565 

The major conclusions of the proposed work are as follows: 566 

• The perturbation step-size should be evaluated based on the resolution of the ADC of the controller. 567 

• The experimental results show that Adaptive DF algorithm is superior to other HC algorithms, in 568 

terms of tracking speed and low steady-state power oscillations. 569 

• The small-signal modelling is vital to ensure the stability of both voltage and current control loop. 570 

• The performance of the HC algorithms is similar when implemented using the SSS, because of the 571 

large perturbation step-size which is determined corresponding to the resolution of the ADC. 572 

• Among P&O, INC and INR algorithms, the P&O algorithm has the highest tracking speed due to 573 

the use of duty as a perturbation parameter which helps in reducing the tracking time. 574 

• The perturbation step-size should be optimized for the worst condition, i.e., analysis should be 575 

carried out for the lower end of irradiance. 576 

• The proposed methodology to determine the OSS helped in lowering the steady-state oscillations 577 

and maintaining a good tracking speed. 578 

This work will, hopefully, guide researchers, engineers and industry professionals working in this 579 

area to understand the key aspects when implementing MPPT algorithms and in evaluating their 580 

performance under low irradiance conditions. Furthermore, the performance of these MPPT algorithms can 581 

be analyzed on a grid-connected PV configuration for practical applications. 582 
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