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1.1

Executive summary

Background and Data Overview

Cefas (The Centre for Environment, Fisheries, and Aquaculture Science) is
an agency of Defra (the Government’s Department of Environment, Food and
Rural Affairs) and world leading experts in marine and freshwater science.
Research at Cefas aims to tackle the serious global problems of climate
change, marine litter, overfishing, and pollution to secure a sustainable future
for marine ecosystems.

The Cefas Endeavour, a multi-disciplinary research vessel, collects millions
of plankton images during its surveys through the Plankton Imager (PI)
system: a high-speed imaging instrument which continuously pumps water,
takes images of the passing particles, and attempts to identifies the
zooplankton organisms present (Figure [T). Images have varying shapes
and sizes with a highly-skewed distribution towards smaller
particles/images. Of these, over 80 percent can be classified as detritus
(e.g., sand, seaweed fragments, microplastics) which are traditionally
removed by-eye before any analysis, leaving the remaining plankton images
to be manually labelled.

Figure 1: RV Cefas Endeavour Pl pipeline. Water flows through perpendicular to a line-scan camera (A).
Scan lines are stitched (B) and regions of interest are extracted (C). Images are converted
from RGB and stored on external storage (D) (Source: James Scott (CEFAS))

The challenge dataset consisted of 58,791 TIF (Tag Image File Format)
images of individual objects detected and segmented in imagery collected
on the RV Cefas Endeavour research vessel using the Pl system.
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Approximately 17,000 of these images are of individual zooplankton. The
plankton images had previously been manually classified by experts into
two main categories: Copepods, small or microscopic aquatic crustacean
of the large taxonomic class Copepoda (see Figures [25]and [26), and Non-
Copepods (see Figures [28), for all other plankton not belonging
to the Copepoda class. The experts also categorised these images further
into 38 species classes. This expert manual classification allowed challenge
participants to verify the accuracy of the automated classification methods
explored.

The number of images varied greatly between the 38 classes, ranging from
4000 images to 10 images per class. Challenge participants therefore had
to decide how to address this imbalance in order to produce a model that
could be useful and accurate classifications of plankton.

The remaining 40,000 images consisted of individual pieces of detritus (see
Figures[29/and [30). These images were of other objects collected by the RV
Cefas Endeavour Pl system such as sand, seaweed, or microplastics.
Manual removal of these images has been shown to be a significant
bottleneck in the analysis of imagery collected using the PI. Therefore as an
additional challenge, participants had the opportunity to explore automated
sorting of images into plankton and detritus in order to facilitate application
of plankton classification models to imagery collected from the Pl in real
time without pre-processing to remove these erroneous objects.

Main objectives

1. The primary goal of the challenge was to build a classifier that can
distinguish between copepod and non-copepod plankton in images
that do not include detritus.

2. Build a classifier that can distinguish between the 38 labelled plankton
classes in images that do not include detritus.

3. Stretch Goal: To build a classifier capable of distinguishing between
detritus and plankton in addition to accurate classification of plankton
in copepods versus non-copepods, and between the 38 classes
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Approach
We approached the task with three key themes:

1. Exploratory data analysis including preliminary investigation of data
quality, spatial clustering of data, and principle component analysis
(PCA) of low-level features;

2. Use of Morphocut to extract low-level features to train a Random Forest
(RF) model which provided a baseline accuracy score;

3. Use of pretrained Convolutional Neural Networks (CNNs) with a
ResNet architecture to improve the accuracy of plankton classification
at finer taxonomic levels compared to the baseline RF, and Generative
Adversarial Networks (GANSs) to increase the number of images with
synthetic data based on the existing dataset.

Main conclusions

The plankton dataset collected by CEFAS endeavour is a valuable resource
which provides information on a wide range of variables that could be
used to improve image classification of plankton. As part of the DSG, we
were able to successfully and efficiently explore some of these variables
through unsupervised and supervised data-driven methods. For instance,
the clustering analysis of geo-location metadata and image-related metrics
using PCA gave valuable insights into what phenotypic features of plankton
may be most helpful to consider for improving classification over larger
geographical areas.

In order to address class imbalance between different plankton species and
detritus in the challenge datasets, data augmentation using GANs was also
explored. This could allow for a significantly increased in dataset size, in
particular for minority classes, and reduce bias in model performance due
the relative rarity of certain plankton species.

For the primary goal of classification, superior accuracy results (94-99%)
were obtained across all label levels when comparing the proposed ResNet
architecture with baseline models (74-92% accuracy). Taking advantage of
transfer learning, we optimised a pre-trained ResNet model derived from
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ImageNet, an extensive dataset of non-planktionic images, to provide
accurate results with reduced training effort for the plankton dataset.

scivision, a Turing-developed tool, aimed to accelerate the experimentation
of the challenge participants. While the usage of the tool was minimal for
model training, it allowed a quick dive into the dataset without an extensive
data preparation. In addition, some preliminary results showed the feasibility
of using scivision to visualise the best performing ResNet and RF
models.

Limitations

The first limitation is time available for the project. There were only two
weeks for the tuning of the models, a task that could potentially last several
months. A second limitation was that there were cases of mislabelling within
the detritus class.

MorphoCut only provides a rough thresholding of significant features. The
RF method, previously used to analyse the data, was more computationally
intensive than the CNNs. The processing of the images for the CNN involved
resizing the images to the same size irrespective of their original scale
which removed one of the features relevant in plankton classification: their
size.

Recommendations and future work

It is recommended that a more detailed evaluation of the models be carried
out on a larger, curated dataset. Data augmentation increased the accuracy
when using the CNN, so a test with the RF model is advised. As for feature
extraction, it is recommended that other approaches beyond MorphoCut
be investigated such as algorithms measuring the colour and hue of an
image). It would also be beneficial to increase the dataset by pooling data
from several research organisations, collected in other regions. It would
then be valuable to apply explainable Al methods to this expanded dataset
to further understand the morphological differences in plankton. It is also
recommended further exploration of the detritus images be carried out with
methods such as clustering. The ResNet pipeline developed could also
potentially be applied to other fields, such as micro plastic research, as
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the detritus imagery contains similarities to imagery of marine micro plastic
particles.

Introduction

Rationale

Plankton play an essential role in the marine ecosystem and the global
carbon cycle and carbon sequestration, regulating the exchange of carbon
dioxide between the atmosphere, surface ocean and ultimately the seabed.
In particular, the role of zooplankton in the food web is critical as they occupy
a central position, often controlling the abundance of smaller organisms
by grazing and providing food for many larval and adult fish and seabirds.
Zooplankton is also used in global monitoring efforts, providing reliable and
sensitive indicators to climate change and ecosystem health.

Zooplankton are defined as animals that cannot propel themselves against
the current [45]. This group includes a wide range of organisms from small
unicellular  organisms  (‘microzooplankton’) to giant jellyfish
('macrozooplankton’). Traditional zooplankton research focusses on
mesozooplankton, which are animals in the size range of 200 - 20,000 um,
including copepods (oar-footed crustaceans), euphausiids (e.g. krill),
medusae (jellyfish), chaetognaths (arrow worms), amphipods, marine
gastropds (sea snails and sea slugs), polychaetes (segmented worms) and
ostracods (seed shrimps). This diverse group fulfils a wide range of
ecological functions and hence play a critical role in the marine
ecosystems.

Traditionally, mesozooplankton have been collected with plankton nets or net-
based sampling systems, such as the Continuous Plankton Recorder, and
identified using light microscopy. These sampling techniques are, however,
relatively limited in their potential spatial and temporal extent as they typically
require ships for sample collection and extensive labour for sample analysis
(especially the enumeration and taxonomic classification). In recent years,
the advance of imaging and computing technologies make it now possible
to image zooplankton in-situ over larger spatio-temporal scales than with
traditional sampling methods.
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While technology has progressed rapidly, there is a bottleneck in large
amounts of imaging data collected. The taxonomic identification of each
object is still largely carried out by humans, taking just as much time as
traditional microscopy. To effectively sample, monitor and study
mesozooplankton, we require efficient data processing flows that generate
reliable taxonomy.

A range of in-situ and ex-situ plankton imaging systems are now available
[25]. We are here focusing on the Pl developed specifically for continuous
horizontal sampling of mesozooplankton (Figure [2).

3
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Figure 2: Mesozooplankton imaged by the Pl (Source: Pitois)

Our aim here is to develop on-the-fly machine learning methods for
automatically classifying plankton classes, that improves the usability of
in-situ imaging devices for real-time awareness of the planktonic
ecosystem.

Object Detection and Feature Extraction

Object detection

Object detection in plankton images is typically straightforward as, owing to
the low particle density and simple background, objects are typically imaged
against a white or, depending on the imaging system, black background. For

8
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the PI, the images are colour images on a white background. For this project,
object detection and segmentation had already been carried out.

Low-level features

One of the first plankton identification programmes, Plankton Identifierﬂ was
based on the open-source software Imaged and used the simple low-level
features that the standard algorithm of this software provided. A purpose-
build plug-in for this programme, ZooProcess, is still commonly used to
process zooplankton images collected ex situ (e.g. using FlowCam and
ZooScan) and in situ (e.g. using the Underwater Vision Profiler). These
features are also those used for RF classification prediction in the community
plankton sorting software EcoTaxaE], which hosts, at the time of writing, over
175 million plankton images.

More sophisticated low-level features have been used for planktion
classification predictions, for example on images from the PI [4]. Another
example is the study by Zheng et al. (2017) [54], who used a
comprehensive list of low-level features to describe plankton, including
geometric and grayscale features, texture features (Gabor filter, variogram
function, local binary pattern, binary gradient contours), granulometric
features and local features (histograms of oriented gradients, scale-invariant
feature transform, inner-distance shape context).

High-level features

While low-level features are often meaningful to humans (e.g. grey value,
image size), high-level features are calculated by neural networks. These
features are learnt by the neural network in the hidden layers, and can be
thought of as higher level descriptors such as complex shapes and textures
or parts of objects. High-level features make CNNs a powerful method for
object classification.

'https://www.obs-v1fr.fr/-gaspari/Plankton Identifier/index.php
2https://ecotaxa.obs-vlfr.fr


https://www.obs-vlfr.fr/~gaspari/Plankton_Identifier/index.php
https://ecotaxa.obs-vlfr.fr
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Object classification
Convolutional Neural Networks

CNNs are architectures that are suitable for image data and are modelled
on biological neurons [7], where the architecture involves processing of
units with identical weight vectors and arrangement of local receptive fields
in a spatial array. Their hierarchical architecture encompasses alternating
subsampling layers, which are analogous to simple and complex cells in the
primary visual cortex. CNNs perform mappings between spatially /
temporally distributed arrays in arbitrary dimensions and are generally
characterised by the following constraints [29]:

 Translation invariance: spatial translation has no effect on the neural
weights

+ Local connectivity: neural nodes which are located in spatially local
regions are connected

* Progressive decrease in spatial resolution: when there is a gradual
increase in the number of features

See Appendix Al for a timeline of CNN architecture development.

Bello [1] revisited the ResNet architecture [15] and concluded that the
strategies used to train and scale the data appear to matter more than
architectural changes, and that a well-trained ResNet matches state-of-the-
art models.

Architectures used for plankton images

For the classification of plankton, a range of CNN architectures have
previously been explored (Table 1).

10
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Reference

Model

Usage

Orenstein et al. 2015 [27]

CNN trained exclusively
on plankton data,
ImageNet

Starting point for development of plankton-
specific classifiers.

Dai et al. 2016 [5]

ZooplanktoNet (inspired
by AlexNet and VGGNet)

Deep convolutional network for zooplankton
classification

Lee et al. 2016 [21]

CIFAR10

Transfer learning to overcome class
imbalances

Li et al. 2016 [22]

ResNet (19, 32 and 50
layers) and VGG-19

Introduce a deep residual network to classify
images of plankton

Py et al. 2016 [33] Custom (inspired by | Design very deep CNN and developed a
Network in Network and | inception module for multi-scale input
GooleNet)

Pedraza et al. 2017 [30] AlexNet Classification of diatoms

Pedraza et al. 2018 [31] RCNN, YOLO Classification of diatoms

Cheng et al. 2019 [3] AlexNet, VGG16, | Multiple Deep Learning models to
VGG19, GoogLeNet, | collaborate in a single classification

and ResNet50

system improves classification accuracy for
minority classes compared with the best
individual model. ResNet50 performed best.

Ellen et al. 2019 [8] VGG-16 Improving plankton image classification
using context metadata

Lumini et al. 2019 [26] AlexNet, GoogleNet, | Evaluation of various CNN architectures for

InceptionV3, VGGNet, | plankton identification. Concludes that the

ResNet50, ResNet101,
DenseNet, MobileNetV2,
NasNet

best stand-alone model for most targets is
DenseNet, though an ensemble improves
the performance of the best single model.

Kerr et al. 2020 [18]

VGGNet, GooglLeNet,
ResNet, DenseNet

Comparison of different architectures for
plankton classification. Best performing
CNN was ResNet50. Concluded that
combination of CNN and Support Vector
Machine improves classification.

Schroder at al. 2020 [42] ResNet18 Clustering of plankton images based on
features for efficient annotation
Li at al. 2021 [23] CycleGAN (DenseNet | A novel detection and classification strategy
YOLO3) for imbalanced distributed plankton

Table 1: CNN Architectures Previously Used to Classify Plankton Images

Challenges for plankton classification

Plankton classification using deep neural networks suffers from two

11

challenges [23]. First, there is typically a large class imbalance in plankton
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datasets as organisms are not distributed equally and have widely varying
abundances. This imbalance challenges CNNs owing to overfitting. Second,
many subtle features of plankton in images may be lost during the CNN
operation.

Other challenges include [5]:

1. Image resolution is often limiting for smaller zooplankton (small
number of pixels), obscuring features critical for identification.
Classification of these organisms by humans, even by highly trained
taxonomists, is easily mistaken, resulting is uncertain training data. As
zooplankton abundance follows the typical particle size spectra (log
scale), these smaller zooplankton are much more frequent than larger,
clearly identifiable organisms.

2. The size of datasets, particularly those with high-quality training data,
is often small (compared to other fields).

3. The extracted features may not be discriminative enough for
zooplankton, due to both the overlap in common features between
many plankton species, and the high level of variation in phenotype
within many species.

Classification

Experts can reliably classify species into categories, e.g. detritus vs
zooplankton. However, when they deal with large amounts of data,
classification becomes a timely and expensive task, where an automated
solution is critical. As a data mining task, classification aims to accurately
predict the target class for each case in the data. We can identify two
classification tasks relevant to the analysis of plankton imagery (Figure

3):
1. Multi-class classification (e.g. detritus vs zooplankton, where we have
to predict if in an image we have detritus or zooplankton)

2. Multi-label classification (e.g. an image can contain multiple species,
as well as detritus; this can be done as a further step of this project,
as currently, we have just images that contain one class)

12
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Multi-Class Multi-Label

C=3 | samples Samples
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Figure 3: An infographic description of multi-class and multi-label classification [38]

Challenge summary and objectives

The Pl is a high speed imaging and analysis instrument that photographs
plankton in the size range 100 micron to 20 mm in water. Each specimen
imaged is timestamped, GPS located and recorded to disk for further
analysis.

The images contain examples of various plankton species. We also include
examples of detritus (sand, seaweed, particulates etc.)

The challenge is to:

1. Build a classifier that can distinguish between copepods and non-
copepods in images that do not include detritus.

2. Build a classifier that can distinguish amongst labelled plankton at a
finer taxonomic scale in images that do not include detritus.

3. Stretch Goal: Repeat the experiment including detritus images.

Based on a better understanding of Plankton data, we selected a set of
machine learning models that can help us find solutions to solve this real-
world problem.

Our main task was to classify our data and there are many ML models that
could help us to solve these tasks, but given the time constraint we selected

13
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the following: unsupervised models (clustering), supervised models (RF)
and deep learning models (CNNSs).

Data Overview

Data collection

Plankton images were collected over the UK continental shelf between
August 2016 and October 2020 using the PI.

Plankton Imager

The Pl is an in situ camera system designed to replicate continuous
horizontal sampling of mesozooplankton similar to the Continuous Plankton
Recorder, allowing underway sampling of mesozooplankton over wide
spatial scales. As the sample passes through the PI, the plankton is imaged
using a line scanning camera (Basler 2048-70kc) at a scanning rate of
70,000 lines per second. Each line is 10 um wide and 20.48 mm long. The
images are then assembled, producing colour images of mesozooplankton
against a white background. Resulting objects range in size from from 10
pum to 2 cm [4].
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Figure 4: Collage of example mesozooplankton images for 12 of the most abundant categories (Scott
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Classes according to label3

label2

300 copepod
—o— detritus

noncopepod

200

Median file size (KB)

100

100 1000 10000
Number of images In class

Figure 5: Graphical representation of class imbalances. X-axis shows number if images per label3
class; y-axis shows the median file size in each label3 class, which serves as a proxy of object
size. Error bars show upper and lower quartile (i.e. range of 25% to 75% of the data). Colours
identify label2 classes (red: copepods, blue: noncopepods, green: detritus). Note log-scale on
X-axis.

Data set

A total of 58,791 plankton objects were detected, saved as individual image
files (. tif), and classified by trained human taxonomists. Plankton were
identified, where possible, to species level. Labels were grouped into three
levels: (1) zooplankton and detritus, (2) copepod, non-copepod and detritus,
(3) species-resolved (38 plankton classes + 1 detritus class).

Label 1
detritus 40000
zooplankton 17069

Label 2
detritus 40000
copepod 10346
noncopepod 6723

Label 3
detritus 40000
copepod_calanoida_para-pseudocalanus-spp 1988
copepod_unknown 1853
radiolaria 1810
copepod_calanoida 1665

15



copepod_nauplii 1380

copepod_cyclopoida_corycaeus-spp 1117
echniodermata-larvae 799
copepod_calanoida_centropages-spp 773
copepod_cyclopoida_oncaea-spp 710
copepod_harpacticoida 643
copepod_cyclopoida_oithona-spp 492
nt-phyto_ceratium-spp 459
copepod_calanoida_acartia-spp 451
nt-bubbles 354
copepod_calanoida_calanus-spp 345
nt_phyto_chains 298
tunicata_doliolida 291
nt-phyto_rhizosolenia-spp 184
copepod_calanoida_temora-spp 168
chaetognatha 158
annelida_polychaeta 141
euphausiid_nauplii 139
copepod_cyclopoida 100
byrozoa-larvae 96
appendicularia 79
cirripedia_barnacle-nauplii 77
cnidaria 63
fish-eggs 50
ostracoda 47
bivalvia-larvae 43
euphausiid 41
copepod_calanoida_candacia-spp 41
gastropoda-larva 40
decapoda-larvae_brachyura 40
cladocera 37
mysideacea 33
tintinnida 32
cladocera_evadne-spp 32

Data quality issues

Of the 581791 images, 1722 are augmentations: 574 of the original images
were transformed (simple mirroring along X, y and xy axes). These images
can be identified by their file extensions (“" fx.tif”,“ fy.tif”, and“ fxy.
t1f”). These images were removed and not used further for this project. We
also removed images with duplicate labels i.e. with similar filename.

16
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The new data set is given in plankton-dsg-challenge/data/
processed/clean-index/ within the GitHub repository. We then split
the data into test and training data sets using stratified random sampling
to produce test.csv and train.csv in plankton-dsg-challenge/
data/processed/test-train/. The partition sizes were train (42317),
validation (10580) and test (5863). Later, during the exploratory data analysis,
we discovered that a number of the images labelled as detritus were in fact
empty. In the interest of time we chose to ignore this problem.

Data Augmentation

The amount of training data available often has a major impact on the
performance of deep learning neural networks.

Data augmentation is a technique for artificially generating additional training
data from existing training data. This is accomplished by using domain-
specific approaches to transform examples from the training data into
new and unique training examples. The most well-known kind of data
augmentation is image data augmentation, which involves transforming
images in the training dataset using operations such as shifts, flips, zooms,
pixel intensity and brightness changes. The goal is to add similar but distinct
examples to the training collection that can improve the model’s learning of
a class representation through variation of image characteristics like lighting,
perspective, noise, and rotation. By including these variations in the training
data, this could allow the model to perform better on real-world footage that
may be subject to similar variation.

Modern deep learning algorithms, such as CNNs, can learn features
independent of where they appear in the image. However, augmentation can
help with this transform invariant method to learning by assisting the model
in learning features that are also transform invariant, such as left-to-right
to top-to-bottom ordering, light levels in images, etc. Typically, image data
augmentation is only used on the training dataset, not the validation or test
datasets. A similar method of data preparation, such as image resizing or
pixel scaling, should be applied consistently across all training, validation,
and testing datasets.

17
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Basic techniques

Deep learning frameworks such as Tensorflow, Pytorch, and Keras
offer tools within their libraries to apply a range of data transforms for
augmentation when training a model. For example, Keras offers the
ImageDataGenerator class. First, the class may be instantiated, and
arguments to the class constructor specify the configuration for the types of
data augmentation.

* Image shifts via the width_shift.range and height_shift_range
arguments.

Image flips via the horizontal flip and vertical_flip arguments.

* Image rotations via the rotation_range argument.

Image brightness via the brightness_range argument.
* Image zoom via the zoom_range argument.

A range of image transform techniques are supported, as well as pixel
scaling methods (Figure 10; Figure 11). We will focus on five main types
of data augmentation techniques for image data; specifically: transforms
such as rotation, width/height shift, shearing, zooming, and flipping. Our
techniques are parameters inspired by prior work on plankton classification
for a Kaggle challenge as well as TensorFlow's ImageDataGenerator.

We focused on augmenting classes that had the poorest performance, which
roughly matched the classes that had the fewest image samples. To account
for this class imbalance, a scaling factor was applied so that smaller classes
had more image augmentations created and larger classes had fewer.

18
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Figure 6: Transformations performed on ecapoda larvae brachyura

Figure 7: Transformations performed on copepod calanoida acartia spp

3.3.2 Synthetic Data Generation

Another technique we explored is synthetic data generation through
Generative Adversarial Networks (GANSs). Introduced by lan Goodfellow
in 2014 [13], GANs use two neural networks—a generator and a
discriminator—which learn through a minimax game how to generate
synthetic data and distinguish between real and synthetic data,
respectively[13]. GAN’s central concept is derived from the Nash equilibrium
in game theory. It presupposes two players in the game: a generator and a

19



discriminator. The generator’s goal is to learn the composition of accurate
data, whereas the discriminator’s goal is to identify whether the input data is
actual or synthetic correctly. To succeed, the two players must constantly
increase their abilities. This process aims to arrive at a Nash equilibrium
between the two parties.

Deep Convolutional Generative Adversarial Network (DCGAN)

For synthetic data generation in our dataset, we used a Keras
implementation of DCGANSs, a class of CNNs used for unsupervised learning
of image representations.

DCGAN uses convolutional and convolutional-transpose layers in the
generator and discriminator, respectively. It was proposed by Radford
et al. in the paper Unsupervised Representation Learning With Deep
Convolutional Generative Adversarial Networks. Here the discriminator
consists of stridden convolution layers, batch normalization layers, and
LeakyRelu as activation function. It takes a 3x64x64 input image. The
generator consists of convolutional-transpose layers, batch normalization
layers, and RelLU activations. The output will be a 3x64x64 RGB image
[34].

Architecture for Deep Convolutional GANs

The architecture applied for DCGANs augmentation is as follows:

* replace any pooling layers with strided convolutions (discriminator)
and fractional-strided convolutions (generator).

Use batch norm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use RelLU activation in the generator for all layers except for the output,
which uses Tanh.

Use LeakyRelLU activation in the discriminator for all layers.

20
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Figure 8: Copepods generated using DCGANs

w Y 1 o »

Figure 9: Copepod Calanoida Acartia spp generated using DCGAN

3.4 Exploratory data analysis

3.4.1 Image classes

Examples of images in each class The images show a high diversity even
within each class (see Figures [23|to [28). The copepod classes look very
similar, particularly towards the smaller size of images.

For some classes, colour appears to be a good indicator. For example,
Euphausiids appeared to generally have a more yellow tint (Figure [27).
However, some images are dominated by blue shades, suggesting that
there were quality issues with the colour channels for some deployments.
If colour should appear important for classification, quality control of the
colours after each deployment might help to improve classification.

3.4.2 Density distribution of classes

Spatial distribution of classes using basic visual analysis of point
patterns

Our initial visual analysis of the spatial patterns of our data primarily
illustrates the sampling locations. When plotting the location of all objects
according to label 1 (plankton vs debris), plankton appears to be spread
over a much wider area, across the Celtic Sea, North Atlantic and English
Channel (Figure [T0}top). Debris appears to be much less widely spread

21



across the study area, primarily being focused in the English channel to
the east of the study site. For label 2 (three classes), both copepods and
non-copepods appeared fairly evenly distributed across the study site, with
small clusters of non-copepods in the area just west of Guernsey (Figure [T0}
middle). Copepods appeared to be less clustered across the study site, with
a larger proportion being present in the sea between Cornwall and Ireland.
For the third label (39 classes), no clear spatial patterns was apparent

(Figure [1OFbottom).

This visualisation method is not ideal as there is substantial of data points at
each location, so that the true distributions are not obvious. We therefore
used kernel density estimations to investigate the true distribution.

22



ENGLAND,

Figure 10: (Top) Spatial distribution of copepods (pink), non-copepods (yellow), and detritus (green).
(Middle) Spatial distribution of plankton (green) and detritus (brown). (Bottom) Spatial
distribution of the dataset at the third scale of classification.

Spatial distribution of classes based on kernel density estimation
Spatial density plots (using kernel density estimation) were created to enable
the distinction between plankton and detritus. This method was chosen
to overcome the limitations of the point plots. These plot does not show
true abundances and partly reflects sampling effort. Nonetheless, if object
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classes were equally distributed, we expect to see the same distribution
patterns.

The distribution of plankton was heterogeneous across the study area
(Figure [TT}top). Highest densities appear to occur on the south coast of
Cornwall and in the central Celtic Sea and the Irish Sea. Generally, plankton
was observed across the entire study region.

For detritus, highest densities appeared to occur on the North West French
coast, near Plousecat (Figure [ 1}bottom). Different to the plankton classes,
detritus did not occur at every sampling station. We suspect that this unusual
distribution is due to inconsistencies with the treatment of ‘'detritus’ images.
It appears that for many deployments, detritus categories were deleted all
together, whereas for some deployment, any images that was not clearly
plankton was labelled ‘detritus’.

This analysis suggests distinct spatial patterns of the different classes,
where particles of similar type appear to be geographically linked. This
interpretation makes sense from a biological perspective as plankton are
typically patchy [6]. Though we did not have time to explore this avenue,
we hypothesise that the incorporation of geolocation information of objects
might improve classification accuracy [51].
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Figure 11: Distribution of plankton (top) and detritus (bottom) visualised using density plots. Colours
show low to high densities as a colour gradient: blue > yellow > red.

Clustering

Clustering or clustering analysis is a machine learning technique, which
groups unlabelled datasets so that we can have a better understanding of
similarity between groups can be seen as a form of classification.

Most of the images collected by the Pl are of detritus. It is difficult
to categorise detritus manually, therefore in this dataset no detritus
classification was done. We explore whether we can use unsupervised
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3.5.1

clustering to find groups of detritus that are similar, and could be used for
environmental mapping. We explore this technique on low-level features
using MorphoCut pipeline. MorphoCut [41] is an image processing Python
library designed to handle large volumes of oceanographic data. MorphoCut
was developed with plankton images in mind, particularly the processing of
plankton images for uploading to EcoTaxa (see section [2.2.2)which allows
fast extraction of low-level features. Therefore, MorphoCut is particularly
well-suited for low-level feature extraction of our image database.

For the low-level features, most parameters were not normally distributed.
As distributions varied, we explored possible transformation techniques
and opted for the square-root transformation. It seemed to improve the
distribution of all parameters (visual inspection) and can also be used when
the data include zeros.

All data were scaled using scale() function in R. For the PCA calculation,
however, these values have different weights. We therefore scale each
parameter so that the mean is 0 and the SD is 1. This way, all variables -
regardless of the pca() function from R’s FactoMineR package.

The optimal number of clusters was determined visually using the elbow
method, plotted using the fviz_nbclust() function from R’s factoextra package.
For low-level features, the optimal cluster number was chosen as 7.

The data was clustered using k-means clustering (using R’s kmeans()
function). To visually explore each cluster, representative images for each
cluster were picked at random and compiled as a collage.

Clustering for detritus

The PCA of the low-level features shows that a large number of variables
contribute to the first principal component (Figure 12 Dimension 1). Closer
inspection of these variables shows that the majority of these are related
to size, specifically overall image size and length (e.g. perimeter, area,
diameter, major axis, height) (Figure [13). The second dimension, or the
second principal component, on the other hand, is influenced strongly by
parameters relating to object width and grey value. There also seems to
be some information in where the object is located within each image
frame.
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Figure 12: Correlation circle showing the relationship between all variables and how they influence the
components. Level of contribution is indicated in colour as shown in the colour legend.
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Figure 13: Contribution of variables to principal components. Variables significantly contribute to the

component if their contribution is above the threshold (red dashed line). Top: First dimension.
Bottom: Second dimension.

28



40 58425

cluster

20

Dim2 (17.4%)

[o]x]+]
~ o (&) S W N

57774
31467 29877

Dim1 (55.9%)

Figure 14: Cluster analysis of detritus features. Low-level features for all detritus images were evaluated
using PCA. The first axis approximates size metrics; the second axis approximates object
width and grey level. Points closer together have higher similarity. Images were grouped
using kmeans clustering with 7 clusters. Colours show cluster identity as indicated in the
legend. Numbers identify objects.

The k-means clustering with 7 clusters identified three clusters (cluster 4,
6 and 7) that were dominated by large objects. Clusters 6 and 7 appeared
to be separated based on the second dimension, indicating differences in
image width and grey values. When we explored sample images from these
clusters, this interpretation was confirmed. Cluster 4 contained mostly what
appeared to be empty strips of the sampling volume, with the exception of
one large organic object. The latter could be considered an outlier based on
the PCA plot (object 58425 in Figure[14). Cluster 6 was comprised of long
and thin images, showing a mix of empty images and organic material (likely
faecal pellets and fibre-like structures). Cluster 7 was comprised of larger,
wider objects. The objects appear to be mostly organic.

The majority of detritus images were assigned to clusters 1, 2, 3 and 5.
The largest cluster, cluster 1, contained primarily small circular objects of
insufficient resolution to allow positive identification. Cluster 2 contained
slightly larger images and darker images. Again, many of the images appear
to be empty. Cluster 3 appears similar to cluster 1 with primarily bright
images, albeit containing larger and more elongated objects. Cluster 5 was
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4.1

dominated by dark images. Again many of these images appeared to be
empty.

Overall, the clustering of detritus appeared to be a powerful method to
retrieve more information on the ecosystem. However, the detritus class
currently appears to be used as a bucket for any unwanted images, with a
lot of the images not containing any object, which hinders any meaningful
use of this class for ecosystem description.

Methods

Spatial exploration

The goals of visualising and performing geospatial analysis on the data as
part of the initial data exploration are as follows:

* to look at the spatial clustering of the classified data at different scales
of classes

* to compare the distributions of the classified images to the distributions
of the images we classify

* to identify whether the longitude and latitude data is useful in the
project

+ to provide visual context of the spatial considerations of the data i.e.
clustering of certain classes in a given region.

Extraction of metadata and geolocation

The metadata, including longitude and latitude data, for the images were
extracted using the ExifTool, a platform-independent Perl library and
command-line application used for reading, writing, and editing metadata.
For more information, see herelf|

See also https://github.com/alan-turing-institute/
plankton-dsg-challenge/blob/main/notebooks/python/scivision/3"
explore metadata.ipynbl|for a way to do this with Scivision.
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4.2

4.3

Geospatial mapping of data

The geolocation of the data was explored using QGIS, an OpenSource
software’] The data in csv format was imported into QGIS as a delimited
text file using ‘GPSLongitude’ as the X field’ and ‘GPSLatitude’ as the
‘Y field’. The Geometry Coordinate Reference System (CRS) was set as
EPSG:4326-WGS84 and the attribute was renamed to ‘planktonpoints’. The
csv containing the class types was also imported as csv and the table was
renamed ‘classifications’. In the properties of the ‘planktonpoints’ attribute,
the ‘classifications’ file was joined to the ‘planktonpoints’ attributes, using
‘FileName’ as the common join feature. Once joined, the symbology of the
‘planktonpoints’ attribute was changed to display different elements of the
dataset.

Low-level feature extraction with MorphoCut

Within the MorphoCut pipeline, images were converted to greyscale
and objects were detected using a threshold of 128 (default). In future,
we recommend using a more sophisticated thresholding algorithm as
thresholding strongly affects particle metrics (e.g. [10]). A total of 33 features
such as surface area of the object, the average grey value within the object,
among others (Table [8), were extracted for each image. There were used
for further data exploration (see Subsection and feature matrix for the
baseline RF model.

Baseline model: RF on low-level features

RF Classification is a simple classification algorithm that builds multiple
decision trees and merges them together to get a more accurate and stable
prediction.

RFs or random decision forests are an ensemble learning method, taking
the collective decision of many trees thus improving the performance of a
single random tree. They are a way of averaging multiple deep decision
trees, trained on different parts of the same training set, with the goal of
reducing the variance 7}

*https://download.qgis.org/

SVariance is a statistical measurement of the spread between numbers in a data set
and measures how far each number in the set is from the mean and thus from every other
number in the set.
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A limitation of RFs is the computational complexity (O(vnlog(n))) where n is
the number of records and v is the number of variables/attributes), as RFs is
slow in generating predictions because it has multiple decision trees. More
specifically, when it makes a prediction, all the trees in the forest have to
make a prediction for the same given input and then perform voting on it

(Figure[15).

lreeg
4 6
6 2
1/ \2 l 2
ki k, kg
voting
}
k

Figure 15: A general RF architecture for classification tasks [9]

Implementation: For implementing a RF classifier we used Scikit-learn
library [32], integrating in Python the sklearn.ensemble module that includes
the RF Classifier that should be fitted with two arrays: a sparse or dense
array X of shape (n_samples, n_features) holding the training samples, and
an array y of shape (n_samples,) holding the target values (class labels) for
the training samples. By default, the number of trees in the forest is set to
100 (n_estimators=100).

Evaluation Methods for Random Forest During the decision-making
process of RFs, multiple features are taken into consideration and each
feature can influence the prediction. In order to achieve a better performance,
RFs models can be evaluated using splitting measures, such as entropy and
Gini index. We focused on these two measures as we will use them for the
optimisation task (Figure[18).
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4.4

Entropy is a measurement of the randomness in data points and varies
between 0 and 1, where 1 indicates more randomness or uncertainty. The
value depends on the number of groups or classes present in the data
set.

Gini Index is a measurement of the purity of classification and ranges
between 0 and 1, where 1 indicates the random distribution of elements
across various classes and a value of 0.5 shows an equal distribution of
elements over some classes [49].

Implementation of advanced models (CNNs)

A classic CNN encompasses alternating layers of convolution and pooling.
The convolutional layers are tasked to extract patterns in the images that
are located in a particular region. This task is achieved by computing the
inner product of an arbitrary convolving filter and every region of the image
in order to obtain a feature map. The feature map is passed through a
non-linear function generating activations that are further processed in the
pooling layer. The most commonly used pooling functions are average- and
max-pooling, which, respectively, select the arithmetic mean and maximum
of the elements in a particular pooling region. The alternating convolution
and pooling layers extract features at each step. Succeeding this extraction
is the non-linear function that can be chosen among tanh, logistic, softmax
or RelLu activations. The final layer is the fully connected layer that outputs
class in a recognition task.

Convolutional Layer: The function of a convolutional layer is to transform
the input data using a group of connected neurons from the previous layer.
It computes a dot product between the region of neurons in the input layer
and the locally connected weights in the output layer. This provides the final
output volume for the layer. The feat is achieved by a concept known as
convolution.

1. Convolution: It is a mathematical operation which specifies the nature
in which two sets of information are combined together. The operation
is also known as the feature detector of a CNN where it applies a
convolution kernel to the input and returns a feature map as output.
This is achieved by sliding the kernel across the input data and
multiplying kernel with the segment of data within its bounds to create
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a single entry in the feature map. Finally, the activation map of each
filter is stacked together along the depth dimension to construct the
3D output volume. [7]. Like any other neural network model, the
parameter optimisation is performed using gradient descent. The major
components of convolutional layer are as follows:

+ Filters: These are one of the CNN architecture parameters which
learn to produce the strongest activation to spatially local input
patterns i.e. they will be activated only when the pattern occurs in
the training data. With increasing depth of CNN, it is observed that
the filters are able to identify nonlinear combination of features.

« Activation Maps: These are computed by sliding each filter across
the spatial dimensions of the input volume during forward pass
of information through CNN. A numerical value is obtained if a
neuron decides to pass the information through.

2. Hyperparameters: These dictate the spatial arrangement and size of
the output volume from a convolutional layer. Following are some of
the most important hyperparameters:

* Filter size: It is generally spatially small and possess three
dimensions width, height and colour channels.

» QOutput depth: This controls the number of neurons in the
convolutional layer which are connected to the same region in
the input volume.

« Stride: This defines the sliding pace of filter per application. The
depth of output volume is inversely proportional to the stride
value.

» Zero-padding: It determines the spatial size of output volume and
is quite useful when maintenance of input volume spatial size is
preferred in the output volume.

Pooling Layer: The layer helps to progressively reduce the spatial size of the
data representation and thus prevent overfitting on the training data. These
are generally incorporated between successive convolutional layers and use
the maximun operation to resize the input data spatially. Pooling layers do
not have any learnable parameters and generally have zero-padding.
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Fully Connected Layer: This layer acts as the output layer for the network
and has the output volume dimension as [1 x 1 x N] where N is the number of
output classes to be evaluated. Fully connected layers have general neural
network layer parameters and hyperparameters.

Our approach to an effective development for a plankton species recognition
model includes understanding the core modules of the system. In order
to effectively come up with a solution in the given time frame, this project
concentrates on only improving the accuracy of proven models on our
plankton dataset. Therefore, a pre-trained model was used for the generation
of image features.

VGG16

VGG16 is a CNN model proposed by K. Simonyan and A. Zisserman from
the University of Oxford in the paper “Very Deep Convolutional Networks
for Large-Scale Image Recognition” [46]. The model achieves 92.7 top-5
test accuracy in ImageNet, which is a dataset of over 14 million images
belonging to 1000 classes. It was one of the famous models submitted to
ILSVRC-2014 [46].

The plankton data is trained on the VGG-16 model as the baseline CNN
model. Then, this model is applied to classify 39 classes of species within
plankton and is trained for 25 epochs. Since training the mentioned models is
a demanding computational task, we used transfer learning, which consists
of taking models already trained for image recognition on ImageNet, an
extensive dataset of non-planktonic images (Russakovsky et al., 2015
[39)).

Network Architecture: During training, the input to our ConvNets is a fixed-
size 224 x 224 RGB image. The only preprocessing done is subtraction of
the mean RGB value, computed on the training set, from each pixel. The
image is passed through a stack of convolutional layers, where filters with
a very small receptive field: 3 x 3 (which is the smallest size to capture
the notion of left/right, up/down, center) have been used. The convolution
stride has been fixed to 1 pixel; the spatial padding of convolutional layer
input is such that the spatial resolution is preserved after convolution, i.e.
the padding is 1 pixel for 3 x 3 convolutional layers. Spatial pooling was
carried out by five max-pooling layers, which follow some of the convolutional
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layers (not all the convolutional layers are followed by max-pooling). Max-
pooling was performed over a 2 x 2 pixel window, with stride 2. A stack of
convolutional layers (which has a different depth in different architectures)
has been followed by three Fully-Connected (FC) layers: the first two have
4096 channels each, the third performs 1000-way ILSVRC classification
and thus contains 1000 channels (one for each class). The final layer is the
soft-max layer. The configuration of the fully connected layers is the same
in all networks. All hidden layers are equipped with the rectification (ReLU
(Krizhevsky et al., 2012)) non-linearity [46].

ResNet50

ResNet50 provides a residual learning framework to ease the training of
networks that are substantially deeper than VGG16. These are proven to
optimise easily and gain higher accuracy. On the ImageNet dataset, residual
nets with a depth of up to 152 layers—8 times deeper than VGG nets exhibit
lower complexity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the ILSVRC 2015
classification task [15].

ResNets incorporate an underlying mapping which could be fitted on a
few stacked layers which can asymptotically approximate complicated
functions. This addresses the degradation problem which suggests that
the solvers might have difficulties in approximating identity mappings by
multiple nonlinear layers. With the residual learning reformulation, if identity
mappings are optimal, the solvers may simply drive the weights of the
multiple nonlinear layers toward zero to approach identity mappings. The
residual learning has been adopted every few stacked layers and can be
expressed as:

256-d

1x1, 256

Figure 16: A deeper residual function F for ImageNet: a building block [15]
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y =F(x, W) +x (1)

Where x and y are the input and output vectors of the layers considered and
F(x, W;) represents the residual mapping to be learned.

Network Architecture: The baseline ResNet is mainly inspired by the
philosophy of VGG nets. The convolutional layers mostly have 3x3 filters
and follow two simple design rules: (i) for the same output feature map
size, the layers have the same number of filters; and (ii) if the feature map
size is halved, the number of filters is doubled so as to preserve the time
complexity per layer. Additionally, downsampling has been directly performed
on convolutional layers that have a stride of 2, the network ends with a global
average pooling layer and a 1000-way fully-connected layer with softmax.
The total number of weighted layers is 34. It is worth noticing that the ResNet
model has fewer filters and lower complexity than VGG nets i.e. 34- layer
baseline has 3.6 billion floating point operations per second (FLOPs), which
is only 18% of VGG-19 (19.6 billion FLOPs). Finally, the residual network
is created by inserting the shortcut connections (i.e. mappings discussed
earlier). The 50-layer ResNet has been created by replacing the 2-layer
block in the 34-layer net with this 3-layer bottleneck block which consists of
3.8 billion FLOPs [15].

Image Features from Pre-trained Models: ResNet50 and VGG-16

In literature, many models use VGG-16/ResNet50 model which works best
for large-scale image recognition. The VGG-16/ResNet50 model used the
ImageNet dataset with images split into three sets training (1.3M), validation
(50K) and testing (100K) divided within 1000 object categories. It achieves a
very high score of 92.7% top-5 test accuracy for ImageNet [46]

The training phase consists of inputs as fixed-size 224 x 224 RGB image.
The pre-processing included cropping images randomly from the rescaled
training images. Furthermore, random horizontal flipping and RGB colour
shift was performed to augment the training set. The stacks of convolutional
layers used on the image include filters with small receptive field of 3 x
3, capturing the notion of left/right, up/down and centre. The convolution
stride is fixed to 1 pixel with a padding of 1 pixel. The use of stacked small
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convolutional layer has multiple benefits as compared to a single large
receptive field. It incorporates multiple non-linear rectification layers which
makes the decision function more discriminate. It also decreases the number
of learnable parameters [46].

The process of spatial pooling is performed on five max-pooling layers
whereas max-pooling is carried out over a 2 x 2 pixel window with a
stride of 2. These layers are followed by three Fully-Connected layers with
4096 channels in the first two layers and 1000 channels in the last layer
(corresponding to each object class). These are followed by the final softmax
layer. Rectification non-linearity (ReLU) has been included in each of the
hidden layers [46].

Reasons for choosing VGG-16 and ResNet50 models for the object
recognition module

The requirement for the model that could work efficiently was to have high
accuracy for identifying specific objects with minor differences as well as be
lightweight. An intensive literature review was performed in order to choose
an appropriate object recognition module as its performance is crucial
to the performance of the model holistically. The VGG-16/ResNet50 [46]
model achieves 92.7'% top-5 test accuracy in the ImageNet dataset. This
information has been crucial in deciding which pre-trained CNN architecture
to choose for the image classification model. Furthermore, use of ImageNet
dataset was another reason for choosing the models as it consists of over 15
million images divided into 22,000 distinct categories which provides a good
estimation of the low level features for our plankton class identifier. The VGG-
16/ResNet50 architecture is the driving force for choosing it. It made a major
leap from the previous work AlexNet by replacing large kernel-sized filters
(11 and 5) with multiple 3 x 3 kernel-sized filters stacked one after another.
This made the training and computation time to significantly less. Though,
multiple better performing networks have been published after VGG-16 and
ResNet50, we chose it for the simplicity and lightweight implementation
it offers. However, due to the models containing depth and multiple fully-
connected nodes, thus, making it a tiresome task to deploy them. Therefore
we use transfer learning instead of training from scratch.
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Transfer Learning from pre-trained VGG-16 and ResNet50 models

Transfer learning is a technique where a model that has been trained for one
task is re-iterated to be used on another task. Such domain adaptation help
exploit information that has been learned in one situation to be applied in
another situation. It also helps to better learn generalisation, allows rapid
progress and improves performance in the second task [40].
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Figure 17: Transfer learning [40]

The transfer learning approach was undertaken as it is a good way to
optimise our model and save time. However, the output from the final fully
connected layer of the models were not useful as it is just a categorical label
(for instance cat, book, etc.), therefore, it was decided to remove the final
fully connected layer and extract the 4096 features from fully connected layer
before it. In addition, for simplicity and faster computation, downsizing the
features from 4096 to 256 using a dense layer was attempted. This however,
reduced the learning capacity of our model and made it less sensitive to
subtle differences in object which could lead to misidentifying objects that fall
under the same category (for instance identifying woman as man). Therefore,
it was finally decided to use all the 4096 features.
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4.5

4.5.1

4.5.2

Model implementation using scivision
What is Scivision?

scivision is a new tool currently being developed at the Alan Turing Institute
which aims to facilitate application of computer vision models to a wide
range of images from different scientific domains. To achieve this, the tool
will provide a generalised python framework capable of handling and loading
image datasets in a variety of formats. scivision will provide a wrapper
allowing users to efficiently run a catalogue of models and easily experiment
by switching between them.

Implementation

The scivision team designed and provided eight notebooks showing how
to access, explore and play with the challenge data. These notebooks are
hosted in the challenge GitHub repositoryﬂ Two existing scivision functions
for the version used in the challenge are described below.

The load_dataset function allows reading the challenge input data from
a YAML file provided in repository. The file follows the structure of an
Intake catalogue instance. The scivision team defined five datasets for
the challenge: two related to input images, and the rest to labels (see the
complete YAML file in the [A). Whilst images are fetched as xarray.Dataset
objects, labels are read as a pandas.DataFrame object. The set of challenge
notebooks show how to handle both object types after being imported
through scivision.

The load_pretrained_model function imports a given pretrained model for
predicting over images loaded through scivision. The pretrained model
can be defined into a local or remote source code which should contain a
configuration YAML file defining the model. An example of the configuration
file describing one of the models is provided in the listing{] below.

Listing 1: Configuration file defining a model.

name: plankton-models
url: https://github.com/acocac/scivision-plankton-models
import: scivision plankton models

Shttps://github.com/alan-turing-institute/plankton-dsg-challenge/
tree/main/notebooks/python/scivision
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model: resnets5o labela
args: None
prediction’ fn:
call: predict
args:
X: image
kwargs: None

Following the above functions, two separate notebooks were designed
throughout the challenge to highlight end-to-end predictions from one of
the CNN models and one of the RF models. These notebooks are a work
in progress and the scivision team expecits to refine them in order to apply
them to new plankton data from the Pl system as well as other sources of
images.

Experiments

RF

Optimisation: For better performance of our RFs model we optimise the
hyperparameters. We first used the default parameters from the scikit-learn
module. For hyperparameter tuning we created a parameter grid to sample
from during fitting, using RandomizedSearchCV. The parameters of the
estimator used to apply these methods are optimized by a cross-validated
search over parameter settings. As observed in Figure there is no
significant improvement (accuracy between 0.698 to 0.688) from hyper-
parameter tuning.
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Figure 18: Parameter estimation using Entropy and Gini index.

A RF was employed as a baseline model to establish a lower bound on
the classification metrics and gauge the performance of CNNs. RFs have
been employed in previous investigations of plankton monitoring [4], with
limited success in discriminating between plankton classes. Therefore it
was expected that our CNN model would considerably outperform the RF
model in the third level of classification (Label 3 - see Subsection |3.1.2).
Our RF models performed well in in Label 1 and Label 2 classification, with
accuracy values of 92% and 74%, respectively. However, it performed poorly
in Label 3 classification, with an accuracy of only 30%. A more detailed
discussion of model performance can be found in Section The feature
matrix for the RF models across all three labels was built using the 33
low-level features extracted with MorphoCut (see Subsection[4.2). Figure[19]
shows the feature importance, also known as Gini importance, across Label
1 and Label 2 (with detritus removed) classification. Feature importance has
been computed within the RF classifier of the scikit-learn package [32]. As
illustrated, integrated density is the most dominant feature in discriminating
between zooplankton and detritus, whereas the average grey value and the
grey-value range are important in the discrimination between copepods and
non-copepods. A detailed explanation of each low-level feature shown in
Figure [T9]is given in Table
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Figure 19: Feature importance in the RF models in Label 1 and Label 2 classifications

5.2 CNNs

Setup: In deep learning literature use of transfer learning has always shown
better results specially when there is shortage of training data for specific
domain, in our case plankton species identification/classification with highly
imbalanced dataset with 39 classes, having as low as around 35 samples
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for a few classes and 40000 samples for 1 class. So we tried Resnet50 and
VGG16 pretrained on ImageNet. Experimenting with Resnet50 and VGG16
we attached 1 fully connected layer after the CNN feature extractor, with
number of neurons depending upon number of classes, in our case 2, 3 and
39 classes for 3 levels of plankton classification.

We used Cross Entropy Loss [53], SGD (Stochastic gradient decent) [37]
with initial learning rate of 0.001 and 0.9 momentum. We also used a learning
rate schedular StepLR [19] with step size 7 and gamma value 0.1. We did
train test split using k-fold stratification with 10%. For all of our experiments
with CNNs above settings remained the same.

Training: We started experimenting with pretrained ResNet50 + 1 Fully
Connected layer (1FC), specifically we used pytorch for all of our
experimentations so we used Pytorch [28] implementation and publicly
available learned parameters of ResNet50 from TorchVision. We first trained
the model with 256x256 input image size, scaled image pixel values to
range [0.0, 1.0] as float tensor(see To Tensor from torchvision transforms).
Images in dataset were of different sizes from less than 100 pixels to greater
than 1000 pixels so we used bilinear interpolation to resize all images to
256x256 and trained the model for 25 epochs. During the first few epochs
the model converged reaching accuracy 91% on test set, and in remaining
epochs, accuracy and loss stopped improving. As our next experiment we
repeated previous experiment with image size 40x40 as we thought it would
be excessive with such large image size but it dropped the accuracy to 89%.
The we added some augmentations like Random Gray Scale with p=0.5;
Random Horizontal Flip with p=0.5; Random Vertical Flip with p=0.5 as our
next experiment keeping the image size 40x40. It improved the accuracy by
1% and in subsequent experiments we increased image size to 128x128
and then again to 256x256 keeping the previous set of augmentations and it
improved the accuracy [20].
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Epochs

Image . Test
Model . (1 Epoch run: Augmentation o
Resolution 1.5 mins) Accuracy(%)

1 256x256 30 None 91

2 40x40 25 Resize 40x40; 89
Resize 40x40; Random Gray Scale 0.5; Random

3 40x40 25 Horizontal Flip 0.5; Random Vertical Flip 0.5 90
Resize 128x128; Random Gray Scale 0.5; Random

4 128x128 35 Horizontal Flip 0.5; Random Vertical Flip 0.5 922

5 256x256 25 Random Gray Scale 0.5; Random Horizontal Flip 0.5; 03

Random Vertical Flip 0.5
Random Gray Scale 0.5; Random Horizontal Flip 0.5;
6 256x256 25 Random Vertical Flip 0.5; Weighted Sampling with 921
replacement
Random Gray Scale 0.5;Random Horizontal Flip 0.5;

7 256x256 25 Random Vertical Flip 0.5; Weighted Sampling w/o 92.3
replacement

Figure 20: ResNet50 Experiments

So far the model was not improving beyond 92.8% so we tried to handle the
class imbalance using Weighted Random sampler. We assigned weights
to each class relative to its contribution in dataset as the low the number
of samples the higher the weight. But, it did not improve the results further
therefore we did not perform any experiments on it.

Because of time constraints of the DSG, we could not repeat the same
experiments with VGG16 so only trained the VGG16 with configuration with
which resnet50 preformed highest. However, it could not improve results
beyond 91.4%.

Evaluation metrics we used are Precision, Recall, Accuracy and F1 score
for the best performed model which are available in Table [6]

53 Model performance

5.3.1 Classification Evaluation Metrics

The evaluation and accuracy assessment of machine learning models is
essential for comparing their relative performance. There is a large literature
on the accuracy assessment techniques, but given the time constraints
we adopted a simple strategy that we could quickly and easily apply to
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our models, namely the calculation of accuracy, precision, recall and F1-
score.

Accuracy is the most intuitive performance metric as it simply measures the
ratio of correctly predicted observations to the total observations. However,
in the presence of imbalanced data sets, other metrics such as precision and
recall must be used to asses the classifier's performance. Mathematically,
accuracy is defined as:

accuracy = TP+ TN (2)
Y = TPYFP+TN+FN

Where TP, FP, TN and FN in Equation [2]are the number of true positives,
false positives, true negatives and false negatives, respectively.

Precision, also known as positive predictive power, indicates the fraction
of relevant positive instances among all retrieved positive instances.
Mathematically, it is defined as:

P

TP+ FP ®)

precision =

Recall, also known as sensitivity, is the fraction of relevant positive instances
that were retrieved by the classifier, as defined by Equation [4]:

P

The F1-score is a weighted-average of precision and recall:

precision x recall

F1=2x —
precision + recall

Label 1: Zooplankton vs. Detritus
Metric RF ResNet CNN
Accuracy 92% 99%
Precision (average) 90% 98%
Recall (average) 90% 99%
F1 (average) 90% 98%

Table 3: Model performance in Label 1 classification
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Label 2: Copepod vs. Non-Copepod vs. Detritus

Metric RF ResNet CNN
Accuracy 84% 97%
Precision (average) 71% 95%
Recall (average) 70% 95%
F1 (average) 70% 95%

Table 4: Model performance in Label 2 classification (with detritus)

Label 2: Copepod vs. Non-Copepod
Metric RF ResNet CNN
Accuracy 74% 94%
Precision (average) 73% 94%
Recall (average) 72% 94%
F1 (average) 72% 94%

Table 5: Model performance in Label 2 classification (without detritus)

Label 3 with detritus
Metric RF ResNet CNN
Accuracy 73% 92%
Precision (average) 18% 73%
Recall (average) 17% 71%
F1 (average) 17% 72%

Table 6: Model performance in Label 3 classification (with detritus)

Label 3 without detritus
Metric RF ResNet CNN
Accuracy 30% 76%
Precision (average) 24% 78%
Recall (average) 22% 75%
F1 (average) 22% 76%

Table 7: Model performance in Label 3 classification (without detritus)

Confusion Matrix Confusion Matrix is a technique that summarises the
prediction results of the classification task, by displaying the number
of correct and incorrect predictions broken down by each class, Figure
21]
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Figure 21: Confusion matrix with advanced classification metrics [50]

AUC- ROC Curve The Area Under the Curve (AUC) is the measure of
the ability of a classifier to distinguish between classes and is used as a
summary of the ROC curve.

The higher the AUC, the better the performance of the model at
distinguishing between the positive and negative classes.

* AUC =1, the classifier is able to perfectly distinguish between all the
Positive and the Negative class points correctly.

» AUC = 0, the classifier would be predicting all Negatives as Positives,
and all Positives as Negatives.

* 0.5 < AUC < 1, there is a high chance that the classifier will be able
to distinguish the positive class values from the negative class values.
This is so because the classifier is able to detect more numbers of True
positives and True negatives than False negatives and False positives.

« AUC = 0.5, then the classifier is not able to distinguish between Positive
and Negative class points. Meaning either the classifier is predicting
random class or constant class for all the data points. [2]

The Receiver Operator Characteristic (ROC) curve is an evaluation metric
for binary classification problems. It is a probability curve that plots the
TPR against FPR at various threshold values and essentially separates the
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5.3.2

‘signal’ from the ‘noise’. In a ROC curve, a higher X-axis value indicates a
higher number of False positives than True negatives. While a higher Y-axis
value indicates a higher number of True positives than False negatives. So,
the choice of the threshold depends on the ability to balance between False
positives and False negatives.

Conclusions

The ResNet model performed better than the baseline RF model in terms of
accuracy, precision, recall and F1 value at all three label levels. The ResNet
model also maintained a high level of accuracy when more specific labels
were used in classification, with an average accuracy of over 90% for all
three label levels. Conversely, the accuracy, precision, recall and F1 score
of the RF model decreased as the specificity of labels increased, widening
the gap in performance between the two approaches.

Both models performed less accurately at classifying images at Label 3
level without including detritus than when classifying images at Label 3 level
classification with detritus included, though the performance of the ResNet
model was still better than the RF. This is noteworthy as it suggests the
ResNet performs very accurately at distinguishing detritus from zooplankton
but less accurately at distinguishing plankton species from each other. This
has the potential to introduce bias in the accuracy score of the model when
detritus images are included as they make up the vast majority of imagery
collected. However, overall the accuracy and precision of the ResNet model
presents an improvement on both the RF and previously developed models,
as well as allowing the imagery to be analysed more efficiently than manual
classification by domain experts.

Future work and research avenues

There are several avenues for future work that we have identified.

1. While our results are very promising for on-the-fly automatic
classification of plankton, the machine learning models should be
evaluated more carefully. There are a number of biases in the data
owing to unequal class representation and a majority of detritus. We
recommend a more detailed, wide-ranging evaluation including the
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classification of more unseen data after filtering out empty images.
We are particularly keen to explore classification performance of
under-represented classes and marginal cases. It would be interesting
to benchmark classification performance against human annotator
performance.

. We further recommend repeating the RF and CNN experiments
with augmented images. The image augmentation experimentation
demonstrated an increase in CNN accuracy, but there was too little
time to make extensive use of these new images during the project.

. The selection of low-level features used in the RF model was very
simple. Future studies may want to consider using other image feature
extraction approaches beyond MorphoCut. For example, [14] discuss
algorithms for measuring the colourfulness of an image.

. The implementation of the MorphoCut pipeline allowed us to prepare
the data in a format that allows direct upload to EcoTaxa, should this be
of interest for future manual validation. If so, we recommend exploring
whether the predicted classifications from our models can be uploaded
to EcoTaxa in order to use the EcoTaxa interface for fast and efficient
human validation.

. The principal component analysis and RF models both suggested
that size is an important information for plankton classification. Yet,
the CNN algorithms herein resized the images (which originally have
different dimensions, i.e., the same resolution yields different sized
images) to fit the CNN aperture. We hence recommend exploring
how the size of the images, and therefore of the organisms, can be
preserved within the CNN architecture and whether this will yield
classification improvements.

. We noticed some duplication in the supplied labelled data. We suspect
that this is because multiple annotators have classified particular
images differently, and all of these labels have been included. This is
perhaps a useful indicator of uncertainty, but makes the classification
task more difficult, so we removed any images with more than one
label. A de-duplicated version of the dataset would be most useful for
similar tasks.
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7. A separate ‘unknown’ category (distinct from ‘detritus’) would be helpful
for training the classifiers.

8. The current work raises important questions about transferability of the
models; would the models work with other instruments operating other
ocean regions? One way to test this would be a collaborative effort to
pool data from several research organisations, covering a wider spatial
and temporal scale.

9. A useful future avenue is the application of explainable Al techniques to
the models to better understand the discriminatory variables describing
plankton. Understanding how the classifiers are deciding between
classes could lead to new insights in plankton morphology.

10. Consider clustering the detritus images to explore micro plastic
pollution. Although the Pl is primarily designed to sample plankton,
images of detritus are a by-product which may prove useful for micro
plastics research.

We also recommend three avenues for immediate impact:

* We suggest that a version of this dataset (bearing in mind point 6
above) be made publicly available under a liberal license to allow
the scientific community to compare and benchmark algorithms.
For instance, further approaches such multi-label and hierarchical
classification could be tested to provide a more end-to-end multi-level
classification.

» Given the unexpectedly high performance of this classifier, it has
potential as a real-time index of estimated copepod abundance in the
North Sea. We therefore recommend to explore why the model has a
superior performance and, subsequently, whether the label2 (copepod,
non-copepod and detritus) CNN model can be put into production on
the Cefas vessel.

+ We recommend, with further validation of the methods, preparing a
submission to a peer-reviewed scientific journal.

One of the steps of the challenge included the use of a Turing-developed tool,
scivision. The access to the dataset aimed to be seamless in order to allow a
quick dive into the problem rather than extensive data preparation. From the
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participants experiences, the scivision team gathered important feedback,
which will be taken into account in the next iterations of the tool:

* More extensive documentation is needed about the libraries used for
data handling (e.g. intake catalogues).

» User guide to be provided for data preparation and handling with
scivision.
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Appendix

CNN architectures

Variety of Architectures

There is a large variety of network architectures, with the first architecture
having been released in 2012. The flow on the progression of CNN is as

follows.

» AlexNet (2012): The short object recognition history began in 2012,

when Krizhevsky et al. [20] trained a deep CNN to classify images
into 1000 different classes during the ImageNet LSVRC-2010 contest.
They incorporated RelLU, dropouts and GPU implementation. The
object recognition was performed by an additional SVM model. The
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model achieved record-breaking results for purely supervised learning
[20].

RCNN (2012): Around the same time, RCNN was proposed by
Girshich et al. claiming localisation and segmentation of objects
by bottom-up region proposals, supervised pre-training and domain-
specific fine-tuning is the secret to its performance boost[12].

OverFeat (2013): OverFeat [44] implemented a multi-scale, sliding
window approach which could efficiently perform classification,
localisation and detection tasks. The model possessed some flaws
which could be remedied, first, the localisation task was not performed
by back-propagating though the entire network and second, it utilised
12 loss as opposed to 10U criterion optimisation.

ZFNet (2013): In 2013, ZFNet [52] won the ILSVRC. Their model
implemented information retention by using a 7x7 kernel for the
AlexNet model.

SPPNets (2014): Spatial Pyramid Pooling [17] had been introduced to
combat the issue of fixed-size input image. The advantage of SSP-net
was that it was able to generate fixed-length representation regardless
of the image size/scale. Due to arbitrary sub-image pooling, it is
comparatively faster than R-CNN with similar accuracy score.

MultiBox (2014): The drawback of previous agnostic proposal
generation approach was that it had no or an extremely weak proposal
ranking system which had adverse effects on the runtime. This
led to development of MSC-Multibox [48] which provided learning
based proposal methods that could be paired upwith hard-engineered
methods efficiently and deliver decent quality-runtime trade-offs.

VGGNet (2014): In 2015, the VGGNet [46] provided a very deep
network architecture with small (3 x 3) convolutional filters and layers
up to 19. These proved to perform better as compared to their priors
in localisation and classifications tasks.

InceptionNet (2015): A well-crafted design, based on the Hebbian
principle and multi-scale processing intuition, led to the foundation
of InceptionNet [47] which experimented on the depth and width of
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the network while maintaining the computation expenditure constant.
The most efficient architecture consisted stacks of Inception modules
instead of multiple parallel convolutional and maxpooling layers.

Fast RCNN (2015): Following the drawbacks of R-CNN [12] and
SPPNet [17] training being expensive, slow and consisting of multi-
stage pipeline, a remedial approach was required. The Fast R-CNN
[11] was built on the previous works R-CNN for object classification. It
incorporated very deep VGG16 network which provided results nine
and three times faster than R-CNN and SPPnet respectively.

YOLO (2016): The YOLO [35] (You Only Look Once) approach
has been based on the Multibox [48] regional proposal where it is
considered as a regression problem to spatially separated bounding
boxes with associated class probabilities. The architecture was fast
with processing speed of 45 frames per second in real-time. The only
drawback the model possessed was higher occurrences of localisation
error, however, it outperformed R-CNN.

ResNet (2015): Deep residual learning, ResNet [15] provided a
framework of re-designed layers including residual functions with
reference to the input layers. The approach proved to be optimised
easier as compared to prior unreferenced functions. The ResNet
ensemble achieved 3.57% error on ILSVRC in 2015 beating the
average human performance (of 5-10%).

Faster RCNN (2015): In contrast to the SPPNet and Fast R-
CNN [11] utilising heuristic region proposal, the Faster R-CNN [36]
incorporated region proposed network (RPN) for its architecture.
Further, it incorporated the attention mechanism which specifically
directed the network towards the right region to find the object.

SSD (2016): The Single Shot Multibox Detector, SSD [24] applied
a comparatively simpler approach to the prior models by completely
eliminating additional object proposal step which makes it faster. This
was achieved by discretizing the output space into default boxes
for which the network generates a prediction score for each object
category. The main giveaway from this approach was faster and more
accurate results for images with varied sizes, scales and aspect ratios.
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* Mask RCNN (2017): The Mask R-CNN [16] developed in 2018
accomplished multiple object recognition tasks with a simple and
flexible framework by extending the work of Faster R-CNN [36] and
implementing an addition object masking branch with minimally small
overhead. It has been proven useful for tasks like estimation of human

poses.
ConvNet Conﬁg—uration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers

input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | eonv3-512 | conv3-512

conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max
layer name | output size 18-layer [ 34-layer | 50-layer 101-layer 152-layer
convl | 112x112 77, 64, stride 2
33 max pool, stride 2
" 1x1,64 1x1, 64 [ 1x1,64
conv2x | 56x56 [g‘g'gﬂ 2 ng‘::]xz 33,64 | %3 33,64 | %3 30364 |3
3 o 1x1,256 1x1,256 | 1x1,256
1x1, 128 1x1,128 [ 1x1.128
conv3x | 28x28 HZ; i: }xl Hz;i;z }m 3x3, 128 | x4 3x3,128 | x4 3x3,128 | x8
- ; 11,512 1x1,512 | 1x1,512
11,256 1x1,256 1x1,256
convdx | 1414 Bxggg }xl {;Xigg} 33,256 |6 | | 3x3,256 |x23 || 3x3,256 |x36
o X 1x1, 1024 1x1, 1024 1x1,1024
=1, 512 1x1, 512 1x1,512
covix | 7x7 Hﬁjg }xl Hﬁ;g }xz 3512 |63 | | 3xasiz [x3 || 3xasi2 [x3
. ' 1x1,2048 11,2048 11,2048
1 average pool, 1000-d fe, softmax
FLOPs 18x10° [ 36x10° | 3.8x10° [ 7.6x10° [ 11.3x10°

Figure 22: Tables with network configurations for VGG |46| (top) and ResNet [15] (bottom), for different
number of layers. Adapted from respective papers.
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A2 Plankton and Detritus Classes
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Figure 23: Plankton classes 1 to 8. Name and number of objects in class (n) are indicated in each
collage.
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Figure 24: Plankton classes 9 to 16. Name and number of objects in class (n) are indicated in each
collage.
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Figure 25: Plankton classes 17 to 20. Name and number of objects in class (n) are indicated in each
collage.
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Figure 26: Plankton classes 21 to 24. Name and number of objects in class (n) are indicated in each
collage.
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Figure 27: Plankton classes 25 to 32. Name and number of objects in class (n) are indicated in each
collage.
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Figure 28: Plankton classes 33 to 39. Name and number of objects in class (n) are indicated in each
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Figure 30: Detritus clusters 5 to 7. Name and number of objects in cluster (n) are indicated in each

collage.

MorphoCut features

Table 8: List and definition of low-level features extracted using MorphoCut

Feature Name Description

[1] “object_label” Label Label of region of interest in image. Should be 1
as only one particle is detected per image.

[2]  “object-width” Width Width of the smallest rectangle enclosing the
object (used to extract thumbnails, not really a
measurement)

[8] “object_height” Height Height of the smallest rectangle enclosing the
object (used to extract thumbnails, not really a
measurement)

[4]  “object_bx” BX X coordinate of the top left point of the smallest

rectangle enclosing the object (used to extract
thumbnails, not really a measurement)
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[5] “object_by” BY Y coordinate of the top left point of the smallest
rectangle enclosing the object (used to extract
thumbnails, not really a measurement)

[6]  “objectcirc” Circularity  Circularity = (4 * Pi * Area) / Perim"2 ; a value of
1 indicates a perfect circle, a value approaching
0 indicates an increasingly elongated polygon.
(it is the reverse of compactness)

[71  “object.area_exc” Area Surface of the object excluding holes in square

excluding pixel (=Area*(1-(%area/100))

[8] “object.area” Area Surface of the object in square pixel.

[9] “object_.area” Y%area Surface of holes in percentage.

[10] “object-major” Major Primary axis of the best fitting ellipse to the
object.

[11] “object-minor” Minor Secondary axis of the best fitting ellipse to the
object.

[12] “objecty” Y Y position of the centre of gravity of the object
(can be used in customized variables, do not use
it directly as a measurement)

[13] “objectx” X X position of the centre of gravity of the object
(can be used in customized variables, do not use
it directly as a measurement)

[14] ’“object_convex_area” Area of convex hull. The convex hull can be
thought of as a rubber band wrapped tightly
around the points that define the selection.

[15] “object-min” Min Minimum grey value within the object (0 = black)

[16] “object-max” Max Maximum grey value within the object (255 =
white)

[17] “object.mean” Mean Average grey value within the object; this is the
sum of the grey values of all the pixels in the
object divided by the number of pixels

[18] “object.intden” IntDen Integrated density. This is the sum of the
grey values of the pixels in the object (i.e. =
Area*Mean)

[19] “object_perim. Perimeter  The length of the outside boundary of the object

[20] “object_elongation” Elongation  Major / Minor (‘ellipse’ elongation)

[21] “object_range” Range Max — Min

[22] “object_perimareaexc” Perim / Area_exc

[23] “object_perimmajor” Perim / Major

[24] “object_circex” (4 * Pi* Area_exc) / Perim™2

[25] “object_angle” Angle Angle between the primary axis and a line

parallel to the x-axis of the image (used to get
object positioning, not really a measurement)
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[26] “object_bounding_box_area” Area  of Are of the smallest rectangle enclosing the
bounding selection. Also see headings BX, BY, Width and
box Height.

[27] “object_eccentricity” Eccentricity Eccentricity of ellipse

[28] “object_equivalent_diameter” ESD Angle between the primary axis and a line
parallel to the x-axis of the image (used to get
object positioning, not really a measurement)

[29] “object_euler_.number” Euler Here 1.
number

[30] object_extent” Extent Net area of feature / bounding rectangle

[31] “object_local_centroid_col” Centroid X X position of the center point of the selection.
This is the average of the x and y coordinates of
all of the pixels in the selection.

[32] “object_local_centroid_row” Centroid Y Y position of the center point of the selection.
This is the average of the x and y coordinates of
all of the pixels in the selection.

[33] “object_solidity” Solidity Area/Convex Area.

73



A4

Random Forest results
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Figure 31: Label1 Confusion Matrix for RF
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Figure 32: Label2 Confusion Matrix for RF
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Figure 33: (a) Precision-Recall for Label1 RF; (b) ROC curve for Label1 RF; (c) Precision-Recall for
Label2 RF; (d) ROC curve for Label2 RF.
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A5 ResNet50 results
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Figure 34: Label2 Confusion Matrix for ResNet50
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Figure 35: Label3 Confusion Matrix for ResNet50
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scivision catalogue

Listing 2: Configuration file for the data catalogue to be loaded with scivision.

sources:
plankton’single:
description: Load a single labeled images
— from CEFAS zooplankton dataset
origin:
driver: intake xarray.image.ImageSource
parameters:
id:
description: which filename
type: str
default:
<~ P1a1.2017-10-03.1726+Ne6296786 hc
args:
# Update with the correct path to the data
— 1n the Data Safe Haven
urlpath: '/scratch/data/images/——id”".tif"'
storage ‘options: —-'anon': True”
exif tags: True
plankton ' multiple:
description: Labeled images from CEFAS
— zooplankton dataset
origin:
driver: intake xarray.image.ImageSource
args:
# Update with the correct path to the data
— 1n the Data Safe Haven
urlpath: '/scratch/data/images/-filename”
chunks: -”
storage ‘options: —-'anon': True”
coerce ‘shape: [832, 1040]
exif tags: True
labels raw:
description: ;
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Contains the classification labels for
—~ all images.
IMPORTANT NOTE: only use this data source
— 1f you intend to fetch the
labels for ALL of the images (both the
-~ test and training set)
origin:
driver: csv
args:
# Update with the correct path to the data
— 1n the Data Safe Haven
urlpath: '/scratch/data/index.csv'
labels:
description: Contains a subset of filenames
- to use as the primary working dataset for
-~ the challenge
origin:
driver: csv
args:
# Update with the correct path to the data
< 1n the Data Safe Haven
urlpath: '/output/data/partition/train.csv’
labels "holdout:
description: Contains a subset of filenames
< to be used as the final holdout set, for
— model assessment
origin:
driver: csv
args:
# Update with the correct path to the data
<« 1n the Data Safe Haven
urlpath: '/output/data/partition/test.csv'
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