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Abstract—Evolutionary algorithms (EAs) have emerged as an
efficient alternative to deal with real-world applications with
high complexity. However, due to the stochastic nature of the
results obtained using EAs, the design of benchmarks and
competitions where such approaches can be evaluated and com-
pared is attracting attention in the field. In the energy domain,
the ”2021 CEC-GECCO-PESGM Competition on Evolutionary
Computation in the Energy Domain: Smart Grid Applications”
provides a platform to test and compare new EAs to solve
complex problems in the field. However, the metric used to
rank the algorithms is based solely on the mean fitness value
(related to the objective function value only), which does not
give statistical significance to the performance of the algorithms.
Thus, this paper presents a statistical analysis using the Wilcoxon
pair-wise comparison to study the performance of algorithms
with statistical grounds. Results suggest that, for track 1 of the
competition, only the winner approach (first place) is significantly
different and superior to the other algorithms; in contrast, the
second place is already statistically comparable to some other
contestants. For track 2, all the winner approaches (first, second,
and third) are statistically different from each other and the
rest of the contestants. This type of analysis is important to
have a deeper understanding of the stochastic performance of
algorithms.

Index Terms—Evolutionary computation, metaheuristics,
power systems, optimization, smart grids

I. INTRODUCTION

The evolution of the electrical grid adopting new technolo-

gies has given place to smart grids (SG), intelligent networks

that promise different stakeholders in power systems [1]. This

shift in the paradigm of the energy field, together with the

high penetration of Distributed Generation (DG), poses a

new level of complexity in the planning, management, and

operation of power and energy systems. Therefore, utilities,

governments, and R&D centers are trying to find ways to

cope with the challenges that such a complex and dynamic
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environment brings [2]. For instance, the consideration of un-

certainty associated with stochastic renewable generation turns

the mathematical formulations of some optimization problems

almost intractable without a huge deal of assumptions and

simplifications, making the solutions unrealistic in real-world

scenarios [3].

One of the alternatives to find solutions to complex prob-

lems in the energy domain, while attracting the interest of

research centers in solving such problems, relays in the orga-

nization of worldwide competitions launched at major events

and conferences [4], [5]. This article presents the two tracks

launched at the 2021 CEC-GECCO-PESGM Competition on

Evolutionary Computation in the Energy Domain: Smart Grid

Applications, an initiative that has been running already for

several years and is becoming a valuable reference to test

and compare state-of-the-art algorithms using computational

intelligence (CI).

Track 1 ”Bi-level optimization of bidding strategies in local

energy markets (LEM)” follows the same model as the 2020

competition edition in which a bi-level problem for bidding

in local energy markets is formulated [6]. In this competitive

environment, agents search for profits at the upper level (multi-

leader problem), while their energy transactions are maximized

at the lower level (single-follower problem). The bids/offers

of agents in the upper level set the clearing price in the lower

level resulting in a strong interdependence of their decisions.

Track 2 ”Flexibility management of home appliances to

support DSO requests”, presents a mixed-integer non-linear

programming (MINLP) model. The model represents an aggre-

gator that provides flexibility to a distribution system operator

(DSO) using the load flexibility coming from end-users. The

aggregator and end-users are assumed to be equipped with

technology and infrastructure that enable the re-schedule of

shifting/real-time home-appliances to provide a request from a

DSO. In addition, remuneration to the households participating

in the demand response program according to their preferences

and the modification of their baseline profile is also considered

[7].

This article presents briefly how the 2021 ”Competition

on Evolutionary Computation in the Energy Domain: Smart



Grid Applications” was organized, explaining the competition

framework briefly. We also provide the datasets and results of

the competitors and provide a Wilcoxon statistical test of the

top three winner approaches. 16 algorithms submit entries to

track 1, and 16 algorithms to Track 2 (a total of 20 different

algorithms). The algorithms were developed, tuned, and tested

by different researchers around the world. A predefined com-

puting budget of function evaluations was established for each

track, and the performance of each algorithm was compared

considering the fitness value over a given number of runs.

While evaluating the performance of algorithms based on the

average fitness is more practical, we cannot claim that an

algorithm is statistically superior (or even different) to rest

based on that metric [8]. Therefore, statistical analysis is used

in this paper to investigate the performance of the winner

approaches in more detail.

The article is organized as follows. Section II presents the

competition schedule and present the two proposed tracks.

Section III presents the simulation framework and intro-

duces the algorithms submitted to the competition. Section

IV provides the basis of the statistical pair-wise comparison

Wilcoxon test used to evaluate the performance of the winner

approaches. Section V contrast the results of the evaluation

criteria used in the competition and the results obtained with

the statistical test. Finally, Section VI concludes the paper and

provides some final discussion on the findings.

II. COMPETITION SCHEDULE AND TRACKS

The 2021 Competition on “Evolutionary Computation in the

Energy Domain: Smart Grid Applications” has been launched

at three major events, the IEE Congress on Evolutionary Com-

putation (CEC), the ACM Genetic and Evolutionary Compu-

tation Conference (GECCO), and the IEEE Power and Energy

Society General Meeting (PESGM), to bring together and test

state of the art algorithms applied to challenging problems in

the energy domain. These alternative methods are attracting the

attention of practitioners due to their potential of dealing with

complexities in some mathematical problems such as high-

dimensionality, non-linearity, non-convexity, multimodality, or

discontinuity in the search space [3]. Furthermore, understand-

ing the validity of the ”no-free lunch theorem” [9], we provide

a coherent simulation framework where participants can test

CI algorithms solving real-world applications beyond typical

benchmarks and standardized CI problems.

The 2021 edition of the competition, supported by computa-

tional intelligence society (CIS), the working group on modern

heuristic optimization (WGMHO), and the Intelligent System

Application Technical Committee (ISATC) task force 3 Com-

putational Intelligence in the Energy Domain, introduces two

independent tracks:

Track 1: Bi-level optimization of bidding strategies in local

energy markets Track 2: Flexibility management of home

appliances to support DSO requests

The guidelines and rules, as well as the schedule of the con-

ference can be found at ”http://www.gecad.isep.ipp.pt/ERM-

competitions/2021-2/”. The simulation framework and algo-

rithms that took part in the competition can be found there;

thus, the tracks are an open challenge to CI practitioners inter-

ested in solving such problems. The platform was implemented

and tested in MATLAB©. The schedule of the competition

and the major events in which the results were considered and

presented was:

• 15 January 2021: Call for competition.

• February 21, 2021: Submission of articles to CEC SS-
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in the Energy Domain

• April 12, 2021: Submission of 2-page papers to be

included in the GECCO Companion.

• 15 June 2021: Submission of results and codes.

• 28 June - 01 July, 2021: Announcement of the best three

ranked algorithms at CEC 2021.

• 10 July - 14 July, 2021: Announcement of the best three

ranked algorithms at GECCO 2021.

• 28 July, 2021: Presentation of the winners at the IEEE

PES General Meeting.

In the following subsections, the two tracks are described

briefly.

A. Track 1: Bi-level optimization of bidding strategies in local

energy markets

In track 1, a bilevel optimization problem models a bidding

procedure in local energy markets (LEM). Figure 1 shows the

simulated environment in this track, in which players (also

called agents) submit bids to minimize their costs and offers to

maximize their profits. Three types of agents are considered:

consumers, small producers, and prosumers (i.e., consumers

with PV generation). The LEM (lower level) responds to the

bids and offers of agents (upper level), maximizing the energy

transacted and sending the clearing price cpt and correspond-

ing energy transactions Xi,j to all the market participants.

It is assumed that an aggregator/retailer acts as a backup to

guarantee demand supply and avoid balance deviations due to

PV and load uncertainty.

Considering a set of consumer agents i = {1, 2, ..., Nc}, and

producer agents j = {1, 2, ..., Np}, the upper level (multi-

leader problem) captures the minimization of costs of each

agent i (Eq. 1), and the maximization of profits of each agent

j (Eq. 2):

minimize Ci =

T
∑

t=1





∑

j

cpt ∗ xj,i,t + cagg
t ∗ Ebuy

i,t



 (1)

maximize Pj =

T
∑

t=1

(

∑

i

cpt ∗ xj,i,t + cF
t ∗ E

sell
j,t − cm

t ∗Gj,t

)

(2)

where cpt is the LEM clearing price (equal for buyers and

sellers); xj,i,t contains the energy sold/bought by agent i/j
to agent j/i in the LEM; cagg

t is the aggregator tariff and

Ebuy
i,t is the energy buy by agent i from the grid; cF

t is the

feed-in tariff and Esell
j,t is the energy sold by agent j to the



Fig. 1. Track 1 considers a local market with different types of agents.

grid; cmt ∗ Gj,t is the marginal cost associated to producer

j. The formulation is also subject to constraints such as the

energy balance constraints and supply demand constraints (not

included here due to space limitations).

On the other hand, the lower level problem (single-follower

problem) maximizes the energy transacted in LEM according

to:

maximize XLEM = GEv ∪DEw (3a)

st.

cpt = max(sj(GEv)) (3b)

cpt, X
LEM ≥ 0, (3c)

where XLEM is the energy transacted in the LEM; GE is a set

containing the offers of energy gj in ascending order of price;

DE is a set containing the bids for energy di in descending

order of price; GEv and DEw describe the aggregated amount

of bids and offers that comply with sv ≤ sw (i.e., when

the supply and demand curves intersect). Thus, the clearing

price at each time t (cpt) is determined by the highest offer

still accepted in the LEM merit order mechanism. Notice

that the cp is determined in the lower level by applying a

merit-order procedure, and therefore, depends directly on the

decisions taken at the upper level. Also, as explained in [],

we assume that agents trade energy in the LEM with prices in

the range of a feed-in tariff cf and a wholesale market plus

an aggregator fee cAGG. With this assumption, and assuming

that cF < cAGG, we guarantee that buying or selling energy

to the aggregator is less beneficial than participating in the

LEM.

More details about the formulation of the problem is avail-

able in the publication [6].

B. Track 2: Flexibility management of home appliances to

support DSO requests

In track 2, mixed-integer non-linear programming (MINLP)

formulation models the flexibility management of home ap-

pliances by an aggregator to support DSO requests. Figure

2 shows the simulation environment of track 2, in which an

aggregator is in control of the management of devices with

demand response capabilities. Furthermore, considering that

users register voluntarily for participation in flexibility provi-

sion, receiving monetary compensations for it, the aggregator

is enabled to modify their baseline profiles by shifting or

regulating the power of some home appliances.

The objective function in this problem is modeled as in [7]:

Minimize f =





NI
∑

i=1

RemA(i) +

NJ
∑

j=1

RemB(j)



+CDSO·Fmatch

(4)

RemA(i) =

{

CA(i) if tstart(i) 6= tnew(i)

0 otherwise

RemB(j) = CB(i) ·

NT
∑

t=1

∣

∣Bbase(j,t) −Bflex(j,t)

∣

∣

Fmatch =

NT
∑

t=1

∣

∣Fagg(t) − FDSO(t)

∣

∣

where the first term of Eq. (4) is monetary compensation

payment for shifting device i (a flat payment CA(i) in EUR

independent of the periods the device is shifted); the second

term is a remuneration given for the modification of the

baseline profile of type B devices (where CB(j) is compensa-

tion payment in EUR/kWh modification); and the third term

is a penalty, CDSO in EUR/kWh, paid for the mismatch

between the flexibility procured by the DSO (FDSO(t)) and

the flexibility provided by the aggregator (Fagg(t)) in each

period t.

Other features and assumptions of the optimization model

in track 2 are as follows:

• we consider the perspective of an aggregator connected to

home energy management systems with DR capabilities.

• Two types of devices are considered for DR, 1) devices

which consumption can be shifted, 2) devices with real-

time control capabilities.

• The aggregator has the required infrastructure (e.g., smart

metering systems, communication lines, HEMS)to re-

spond to flexibility requests from a distribution system

operator who pays monetary compensation for the flexi-

bility.

• the distribution system operator and the aggregator have

information (either by a third party or by forecasting

tools) of the baseline power consumption (represents

normal consumption in case no DR is activated).

• End-users can register and configure the devices for

flexibility provision, programming preferences regarding

allowed shiftable times, expected remuneration, the pri-

ority of the available devices, among others.

More details about the formulation of the problem is avail-

able in the publication [7].
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Fig. 2. Track 2 considers a distribution network in which an aggregator is in
control of the management of devices with DR capabilities.

Fig. 3. General framework of the simulation platform - Competition 2021.

III. SIMULATION FRAMEWORK AND ALGORITHMS

As in previous editions of these competitions, we set a plat-

form where participants can easily implement their algorithms

(e.g., metaheuristics such as differential evolution, particle

swarm optimization, etc.). We provide an algorithm sample,

the HyDE-DF algorithm [10], that can work as a baseline

approach. The simulation framework follows the structure of

Fig. 3.

We provide a simulation platform implemented in MAT-

LAB© 2018 64-bit. The platform is composed of different

scripts that have different functions in the simulation. In Fig. 3,

we highlight in blue some encrypted scripts that the organizers

use to load the case study (depending on the selected track),

set some specific parameters and variable bounds for the

simulation, and save automatically the results obtained by

participants. The idea is to limit the possibility of changing

the case studies by the participants and turning the problems

into black-boxes optimization functions.

With these considerations, the participant only needs to

implement two scripts: i) one script for setting the parameters

required by their algorithm (A.2); ii) a second script for the

implementation of their proposed solution method (A.6). A

detailed explanation on how to implement these two script

functions and how the organizer’s scripts work in the platform

are provided in [11], Sect. 4.

In the guidelines document [11], we also provide informa-

tion about the encoding of solutions, assumptions, and the

evaluation process. One important parameter to consider is

the maximum allowed number of function evaluations on each

track, set to 10,000 function evaluations for track1 and 100,000

function evaluations for track2. This is the limit that each

participant needs to consider when designing their algorithms,

taking into account that a different number of functions

evaluations could be done at each iteration depending on the

algorithm.

In this competition, we have received the participation of 20

entries, distributed in the different tracks. Table I summarizes

the competition entries, which encompasses a nice set of

evolutionary algorithms.

IV. STATISTICAL TEST: WILCOXON PAIRWISE

COMPARISON

The evaluation in this competition has been based solely on

the average value of the fitness function over the 20 requested

trials:

RIuser
a =

1

Ntrials

·

[

Ntrials
∑

i=1

Fita( ~Xi)

]

(5)

where RIuser
a is the so-called ranking index of participant a,

Ntrials is the number of trials (20 for this competition, and

the same number for both tracks and for all participants), and

Fita( ~Xi) is a function that receives solution ~Xi and return the

fitness value (notice that depending on the track, this function

computes the fitness value accordingly). The evaluation of

the performance of algorithms is easy and guarantees that

the winner approach has achieved a better average fitness on

a given track. However, due to the stochastic nature of the

solutions provided by these algorithms, it is impossible to

claim that a better average fitness guarantees a consistent and

statistically better performance of an algorithm with a certain

interval of confidence.

An alternative to compare the performance of EAs using sta-

tistical tools is the so-called pairwise comparisons. This type

of comparison is the simplest kind of statistical test applied

within a framework like the one proposed in this work. The

test represents a direct comparison between two algorithms

that solve a common problem. In this work, we apply the

Wilcoxon signed-rank test to compare the performance of the

winner approaches. The Wilcoxon test is used to analyze if

two samples represent different populations. In other words,

the Wilcoxon test is a nonparametric procedure that detects

the significant differences (performance or behavior) of two

algorithms.



TABLE I
2021 PARTICIPANTS: 20 ALGORITHM SUBMISSIONS FROM A DIVERSIFIED NUMBER OF TEAMS AND COUNTRIES SUBMITTED THEIR RESULTS USING

CLASSIC AND HYBRID APPROACHES.

ID Algorithm Affiliation Country Track

1 Levy Fast Covariance Matrix Adaptation Evolution Strategy
(LFC-MAES)

CHARUSAT India

1 & 2

2 Fast Covariance Matrix Adaptation Evolution Strategy (FC-
MAES)

1 & 2

3 Fast Matrix adaptation Evolution Strategy (fastMAES) 1

4 First Coordinate Improvement Evolution Strategy (FCI ES) 2

5 Cooperative Co-evolution Strategies with Time-dependent
Grouping (CCS-TG)

South China University of Tech-
nology

China 1 & 2

6 Harris Hawks Optimization + Differential Evolutionary Par-
ticle Swarm Optimization + Hybrid-Adaptive Differential
Evolution with Decay Function (HHO-DEEPSO-HyDE-DF)

Universidad Nacional de Colom-
bia

Colombia 1 & 2

7 Contribution-Based Cooperative Co-evolution Recursive Dif-
ferential Grouping (CBCC-RDG3)

St. Petersburg State University Russia 2

8 Population REgeneration STar-guided Optimization (Presto) Deakin University Australia 1 & 2

9 differential evolution with Teaching-Learning-Based Opti-
mization (DE-TLBO)

Sardar Vallabhbhai National Insti-
tute of Technology India

1

10 Genetic Algorithm Simulate Anneling Particle Swarm Opti-
mization (GASAPSO)

1

11 Hill Climbing to Ring Cellular Encode-Decode Univariate
Marginal Distribution Algorithm (HC2RCEDUMDA)

Unidad de Transferencia Tec-
nológica Tepic del Centro de In-
vestigación Cientı́fica y de Edu-
cación Superior de Ensenada

Mexico, Cuba 1 & 2

12 Artificial Bee Colony (ABC) Sardar Vallabhbhai National Insti-
tute of Technology

India 1 & 2

13 Simulated Annealing Genetic Algorithm Particle Swarm Op-
timization (SaGaPSO)

India 1 & 2

14 Genetic Algorithm with Particle Swarm Optimization (GA-
PSO)

India 1 & 2

15 First Coordinate Improvement Evolution Strategy and En-
hance Levy Particle Swarm Optimization (FCI ES-ELPSO)

CHARUSAT India 2

16 Gaining Sharing Knowledge - Influence Factor (GSK-IF) National University of San Luis Argentina 1 & 2

17 Cellular UMDA with Normal-Gamma distribution (CUM-
DANGamma)

Camagüey University Cuba, Mexico 1

18 Cellular UMDA with Normal distribution (CUMDANSimple) Camagüey University Cuba, Mexico 2

19 Memory Adaptive Differential Evolution (MJADE) Ene Operador Regional El Salvador, USA 1 & 2

20 Success-History based Adaptive Differential Evolution
(SHADE)

University of Salamanca Spain 1 & 2

To define the Wilcoxon test, let di be the difference be-

tween the performance scores (i.e., the fitness value) of the

algorithms over a given problem (i.e., a specific track). Next,

these differences are ranked according to their absolute value

(there are different methods to deal with ties in the literature

[12]; in this work, we used the build-in ”tiedrank” function of

MATLAB). After that, let R+ be the sum of ranks in which the

first algorithm outperforms the second, and R− the opposite.

Ranks of 0 are evenly split among the sum, and odd numbers

are ignored:

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di) (6)

R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di) (7)

Let T be the minimum value of the rank sums T =
min(R+, R−). With these computations, if T is less than

or equal to the value of the distribution of Wilcoxon for n

degrees of freedom ( [13], Table B.12), the null hypothesis

H0 of equality of means is rejected (The null hypothesis

H0 for this test is: ”There is no difference between the

median of the solutions of algorithm A and the median of the

solutions of algorithm B for the same benchmark problem”.).

By rejecting the null hypothesis, we imply that a given

algorithm outperforms the other one, assuming the associated

p-value (0.05 in this work). We have used the in-built function



”signrank” implemented in MATLAB, although other well-

known statistical softwares have implemented methods to

perform this test.

V. RESULTS AND DISCUSSION

In this section, we present the main results of this edition of

the competition. We start by verifying the statistical meaning

of the RI produced in the competition according to the

organizers’ guidelines. We use a confidence level of 95%

for these results. The Wilcoxon test as described in Section

IV is used for this purpose. The test results depicted in the

tables, including the symbols ’+’, ’-’, ’=’, should be interpreted

by comparing the top algorithm with the ones in the left.

The meaning of ’+’,’-’,’=’ is: significantly better, significantly

worse, and not significantly better neither, respectively.

Table II depicts the Wilcoxon test results by comparing

all the submitted algorithms in Track 1 with the announced

winners of the respective track. It can be seen that CCS-TG

is significantly better than the other algorithms that enrolled

in the competition. On the other hand, HC2RECEDUMDA

is not significantly better than PRESTO, GSK-IF and MJ-

DAE, and it is significantly worse than CCS-TG as ex-

pected. Regarding PRESTO, it is not significantly better than

HC2RECEDUMDA, GSK-IF and MJADE, and it is signifi-

cantly worse than CCS-TG. Table III depicts the Wilcoxon

test results by comparing all the submitted algorithms in Track

2 with the announced winners of the respective track. It can

be seen that HC2RECEDUMDA is significantly better than

the other algorithms that enrolled in the competition. CCS-

TG is better than the other algorithms with one exception; it

is significantly worse than HC2RECEDUMDA as expected.

Regarding GSK-IF, it is significantly worse than CCS-TG and

HC2RECEDUMDA. Tables IV and V show a summary of

the results between the winners of each track, respectively.

The results clarify that the competition winners in each track

are significantly better than the others in their own track.

The same cannot be concluded to the second and third place

in track 1 since some results come as a surprise. Indeed

HC2RECEDUMDA and PRESTO are not significantly bet-

ter than GSK-IF in track 1. Also, HC2RECEDUMDA and

PRESTO compared are not better in statistical terms. In fact,

GSK-IF has ranked third in track 2 ahead of PRESTO and the

statistical Wilcoxon test shows it is significantly better than it.

The convergence of the top 3 algorithms for track 1 and 2

are depicted in Figs. 4 and 5, respectively. The fitness values

have been obtained with a random run of each algorithm

and the variability has been confirmed to be robust, i.e.,

the results are similar in each run. It can be seen that

H2RCDEDUMDA presents an initial high convergence rate in

both tracks. PRESTO is noticeably slower in track 1. Despite

CCS-TG being slower to converge in track 1, it manages to

escape from a local optimum where H2RCDEDUMDA gets

stuck and obtain a better result with statistical significance, as

seen before. In track 2, the H2RCDEDUMDA is clearly the

quickest to converge and the best in the trials. GSK-IF con-

verges very slowly. The convergence properties suggest that

if the competition allowed more fitness function evaluations,

GSK-IF could become the ”winner”, at least in track 2.
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Fig. 4. Convergence properties of the top 3 ranked algorithms in Track 1.
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Fig. 5. Convergence properties of the top 3 ranked algorithms in Track 2.

VI. CONCLUSIONS

This edition of this competition in the energy domain

provides a platform to test and compare new EAs to solve

complex problems in the field. The winning algorithms of

this edition, CCS-TG in track 1 and H2RCDEDUMDA in

track 2, were significantly better than the other participants.

These algorithms were clear winners in their own track since

their results are statistically significant when compared with

the other entries. Therefore the ranking index worked well

for those cases. Regarding second place and third place, in

track 1, our analysis raised some doubts about the statistical

meaning of their differences. Their differences are not very

meaningful in 20 trials as tested. This issue could perhaps be

investigated by running more than 20 trials as it was initially

established in our competition rules. We would suggest at



TABLE II
WILCOXON TEST ALL PARTICIPANTS TRACK 1

CCS-TG

(1st)

HC2RCEDUMDA

(2nd)

PRESTO

(3rd)

RI

(position)

LFC-MAES ’+’ ’+’ ’+’ 1.933 (14th)
FC-MAES ’+’ ’+’ ’+’ 1.895 (13th)
fastMAES ’+’ ’+’ ’+’ 1.637 (8th)
CCS-TG ’=’ ’-’ ’-’ 1.478 (1st)

HHO-DEEPSO-HyDE-DF ’+’ ’+’ ’+’ 1.636 (7th)
GASAPSO ’+’ ’+’ ’+’ 1.659 (9th)
HC2RCEDUMDA ’+’ ’=’ ’=’ 1.544 (2nd)

ABC ’+’ ’+’ ’+’ 1.801 (12th)
SaGaPSO ’+’ ’+’ ’+’ 1.659 (9th)
GAPSO ’+’ ’+’ ’+’ 1.772 (11th)
DE-TLBO ’+’ ’+’ ’+’ 2.035 (15th)
PRESTO ’+’ ’=’ ’=’ 1.548 (3rd)

GSK-IF ’+’ ’=’ ’=’ 1.552 (5th)
CUMDANGamma ’+’ ’+’ ’+’ 1.567 (6th)
MJADE ’+’ ’=’ ’=’ 1.549 (4th)
SHADE ’+’ ’+’ ’+’ 1.687 (10th)

TABLE III
WILCOXON TEST ALL PARTICIPANTS TRACK 2

HC2RCEDUMDA

(1st)

CCS-TG

(2nd)

GSK-IF

(3rd)

RI

(position)

LFC-MAES ’+’ ’+’ ’+’ 10.896 (16th)
FC-MAES ’+’ ’+’ ’+’ 10.776 (15th)
FCI ES ’+’ ’+’ ’+’ 7.660 (10th)
CCS-TG ’+’ ’=’ ’-’ 4.349 (2nd)

HHO-DEEPSO-HyDE-DF ’+’ ’+’ ’+’ 6.919 (5th)
CBCC-RDG3 ’+’ ’+’ ’+’ 8.316 (12th)
HC2RCEDUMDA ’=’ ’-’ ’-’ 3.493 (1st)

ABC ’+’ ’+’ ’+’ 7.967 (11th)
SaGaPSO ’+’ ’+’ ’+’ 7.341 (8th)
GAPSO ’+’ ’+’ ’+’ 7.643 (9th)
FCI ES-ELPSO ’+’ ’+’ ’+’ 7.140 (6th)
PRESTO ’+’ ’+’ ’+’ 5.789 (4th)
GSK-IF ’+’ ’+’ ’=’ 4.795 (3rd)

CUMDANSimple ’+’ ’+’ ’+’ 8.484 (13th)
MJADE ’+’ ’+’ ’+’ 7.146 (7th)
SHADE ’+’ ’+’ ’+’ 10.429 (14th)

TABLE IV
WILCOXON TEST BETWEEN THE WINNERS TRACK 1

CCS-

TG

(1st)

HC2RCEDUMDA

(2nd)

PRESTO

(3rd)

CCS-TG (1st) ’=’ ’-’ ’-’
HC2RCEDUMDA

(2nd)

’+’ ’=’ ’=’

PRESTO (3rd) ’+’ ’=’ ’=’

TABLE V
WILCOXON TEST BETWEEN THE WINNERS TRACK 2

HC2RCEDUMDA

(1st)

CCS-TG

(2nd)

GSK-IF

(3rd)

HC2RCEDUMDA

(1st)

’=’ ’-’ ’-’

CCS-TG (2nd) ’+’ ’=’ ’-’
GSK-IF (3rd) ’+’ ’+’ ’=’

least 100 trials to verify this issue in future work. In fact,

another surprise is that GSK-IF and MJADE are equivalent to

H2RCDEDUMDA (2nd place) and PRESTO (3rd place). As

a result of this, if the metric in the competition would have

been the Wilcoxon test, there would be three algorithms in the

second place. Another highlight of our analysis is that GSK-IF

convergence seems to be slower. Hence, if more evaluations

were given, GSK-IF could perhaps provide better solutions

than the winning algorithms. This is an aspect that can be

investigated in future work. Future editions of this competition

should look to include some statistical meaning metric instead

of the useful but simple ranking index as in the past editions.
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