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Executive summary 

This deliverable proposes a methodology to quantify the value of an energy efficiency 

improvement project, or a portfolio of such projects, as a power grid resource. The main 

assumption is that a retrofit project can be regarded as a grid resource if it helps in either 

phasing out old, polluting power plants that are only kept commissioned for the provision of 

capacity reserves or reducing curtailment of renewable-based power generation to improve 

the grid’s hosting capacity for renewables. 

Energy efficiency improvements in buildings may affect power consumption in two (2) ways: 

(a) Decrease power consumption by improving the efficiency of a piece of electric equipment 

(such as the efficiency of an air cooling system) or reducing the total amount of work that 

must be performed by an existing piece of electric equipment (such as upgrading 

envelope insulation so that to reduce the cooling load); 

(b) Increase power consumption due to fuel substitution, such as when an old oil-fuelled 

boiler is replaced by an electric heat pump.   

The deliverable promotes the position that when energy efficiency projects lead to power 

consumption changes that persistently modify the power system’s load shape in ways that 

harmonize with the system operator’s goals, they should be regarded as a valuable grid 

resource. Quantifying and rewarding this value is a way to coordinate two energy policy 

aspects that are generally detached from each other: the medium-term planning for resource 

adequacy in the power system and the operation of public programmes that provide financial 

support to energy efficiency improvements in buildings. 

The presented results suggest that it is possible and straightforward to define what an 

appropriate profile of power consumption changes should be and how the value of a retrofit 

project that contributes to such power consumption changes can be calculated. In addition, 

the proposed methodology is implemented using the same process and the same tools that 

power system operators use for capacity adequacy studies. Thisshowcases that the design of a 

program that compensates energy efficiency for its contribution to the grid does not need a 

radically new toolset, but rather a different way to treat energy efficiency; energy efficiency is 

not just a change in average yearly consumption, but has seasonal/temporal characteristics 

that may decrease or increase the total cost of the power system’s operation. A grid positive 

energy retrofit project, i.e. one where the positive impacts for the grid outweigh the negative, 
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has value, and rewarding this value is a way to influence energy retrofit projects to implement 

measures that are better aligned with the needs and challenges that the power system faces 

towards decarbonization. 

Pay for Performance (P4P) schemes can be utilized for rewarding energy retrofits to the extent 

that they lead to load shape changes that are beneficial for the grid’s operation. The main 

premise of the P4P concept is simple: compensate an asset or a service according to its actual 

impact. Adopting P4P is necessary because all other alternatives for ensuring the power grid’s 

reliability – capacity reserves and demand response – are compensated based on their 

performance. Treating energy efficiency on equal basis with the alternative options that 

system operators have at their disposal means that energy efficiency is rewarded based on 

actual rather than deemed impacts. 

In the most general case, P4P is not meant to replace energy efficiency grants and subsidies; 

subsidizing the upfront investment costs is a strong driver for energy efficiency upgrades and, 

in particular, for deep retrofits. Instead, SENSEI promotes the idea of offering a premium to 

energy efficiency retrofit projects that can be regarded as valuable grid resources, and using 

P4P as the mechanism to provide this premium. 

All the functionality that has been developed to enable the implementation of the proposed 

methodology has been open-sourced and can be accessed at https://github.com/hebes-

io/eevalue. 

 

 

 

 

 

 

  

https://github.com/hebes-io/eevalue
https://github.com/hebes-io/eevalue
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1 Introduction 

The ongoing EU goal for the decarbonisation of the power system means that decentralized 

and fluctuating solar- and wind-driven power generation substitutes more and more power 

from dispatchable, fossil-fuelled power plants. This results to increased variability of supply 

and to power system operators requiring more options to efficiently handle the stability and 

adequacy challenges of the power grid. While the most often suggested option is demand 

flexibility, i.e. the fast-responding adaptation of power consumption to the variable 

generation, the SENSEI project examines the role that energy efficiency, i.e. the persistent and 

maintained changes in power consumption compared to a baseline level, can play in a 

renewables-based electricity system.  

Energy efficiency improvements may affect power consumption in two (2) ways: 

(c) Decrease power consumption by improving the efficiency of a piece of electric equipment 

(such as the efficiency of an air cooling system) or reducing the total amount of work that 

must be performed by an existing piece of electric equipment (such as upgrading 

envelope insulation so that to reduce the cooling load); 

(d) Increase power consumption due to fuel substitution, such as when an old oil-fuelled 

boiler is replaced by an electric heat pump.   

Accordingly, energy efficiency improvements may reduce power demand during the hours 

when the probability of load loss is high and/or hours when persistent variability in the net 

load1leads to ramping events2. In both of these cases, energy efficiency can help phase out old, 

polluting power plants that are only kept commissioned for the provision of capacity reserves, 

as well as reduce the amount of new generation capacity that is needed to serve the future 

load growth. On the other hand, there are times when increased power demand may be 

actually beneficial, such as during periods of renewable power over-generation and 

curtailment. If energy efficiency interventions reduced power demand during those hours, the 

system needs for demand flexibility would increase.  

Under this perspective, energy efficiency could be regarded by the power grid as a load 

modifying resource: although it is not dispatchable by the power or capacity market, energy 

 

1  Net load is the difference between the total system load and the electricity generation from 
renewable sources 
2 Defined as large changes in the magnitude of the net load lasting for a period of up to three (3) hours 
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efficiency is able to persistently modify the power system’s load shape in ways that harmonize 

with the system operator’s goals, such as peak shaving, increased hosting capacity for 

renewables, reducing steep upward and downward ramps, and reducing the overall costs of 

power procurement.  

The study of Langevin et al. (2021)3 has shown that implementing efficiency measures 

alongside flexibility measures can be of high value to grid operators so as to avoid future 

investments in generation capacity and relieve pressure on power storage deployments to 

support variable renewable energy integration. These results are aligned with the outcomes of 

the Southern California Edison (SCE) Preferred Resources Pilot4, the primary objective of which 

was to determine whether locally deployed distributed energy resources can reliably serve the 

forecasted load growth. The main insight from the pilot was the need for a diverse mix of 

resource types to manage load growth, since no single resource type has all the performance 

characteristics to meet local and temporal grid needs. 

In general, a load modifying resource would be most valuable if it could induce persistent 

changes in the power consumption profile that increase demand during some time periods 

and decrease demand during others, so that to better align with the daily/seasonal net load 

profile. This means that the value of an energy efficiency project for the power grid is highly 

dependent on the temporal profile of the power consumption changes that it induces: some 

aspects of a consumption profile change may increase the value of the project, such as when 

power demand decreases during periods of high probability of capacity deficit, while others 

decrease its value, such as when the probability of renewable generation curtailment is 

increased. 

Accordingly, the value of an energy efficiency project for the power grid can be determined 

through a composite indicator that consolidates the different ways the project affects the grid.  

A project can be considered as grid positive if the positive impacts outweigh the negative. This 

deliverable proposes and demonstrates a methodology to estimate such an indicator. The 

proposed methodology is implemented using the same process and the same tools that 

system operators use for capacity adequacy studies. There are two (2) reasons for this 

 

3 Jared Langevin, Chioke B. Harris, AvenSatre-Meloy, Handi Chandra-Putra, Andrew Speake, Elaina 
Present, Rajendra Adhikari, Eric J.H. Wilson, Andrew J. Satchwell (2021) “US building energy efficiency 
and flexibility as an electric grid resource”, Joule, Volume 5, Issue 8, pp. 2102-2128, 
https://doi.org/10.1016/j.joule.2021.06.002 
4 SCE Preferred Resources Pilot, Lessons Learned About DER Sourcing and Deployment, 2019 

https://doi.org/10.1016/j.joule.2021.06.002
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approach. The first reason is that the coordination between the needs of the power system 

and the incentives for energy efficiency improvements must take place during the medium-

term planning for resource adequacy in the power system. The second reason is to showcase 

that the design of a program that compensates energy efficiency for its contribution to the grid 

does not need a radically new toolset, but can be done using the tools that power system 

operators already use for capacity adequacy planning. 
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2 Methodology 

2.1 Energy efficiency and capacity adequacy 

The identification of the capacity adequacy needs for the different EU Member State power 

systems is carried out by the respective Transmission System Operators (TSOs). These needs 

are quantified in the TSOs’ capacity adequacy assessment studies that guide the national 

strategy for planning the introduction of new power plants and the decommissioning of old 

and polluting ones. The assessment of capacity adequacy evaluates two (2) main aspects: 

a) Adequacy of peak capacity. The assessment evaluates the extent to which the sum of the 

expected available capacities is sufficient to meet the demand minus the expected 

generation from renewable sources. 

b) Adequacy of flexibility. The assessment evaluates whether the existing capacity has the 

right technical characteristics to cope with the expected and unexpected variations in 

demand and renewable power generation. Flexibility can be distinguished into two (2) 

types: 

o Slow flexibility. According to the ELIA Adequacy and Flexibility Study for Belgium 2022-

2032, “… slow flexibility represents the ability to deal with expected deviations in 

demand and generation based on information received between the day-ahead 

market (up to 36 hours before real-time) and the intra-day forecast received several 

hours before real-time”. 

o Fast flexibility. Fast flexibility represents the ability to deal with unexpected power 

deviations in real time. 

This deliverable aims at exploring the potential contribution of energy efficiency to the overall 

needs for peak capacity and slow flexibility of a power system. 

Peak capacity 

The capacity margin of a power system is the proportion by which the total available 

generation exceeds the demand at any given time period𝑡: 

𝑀𝑎𝑟𝑔𝑖𝑛𝑡 =
𝐺𝑡 + 𝑉𝐺𝑡

𝐿𝑡
 

(2.1) 

where: 
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𝐺𝑡 is the available capacity of all the dispatchable power generation plants at time 𝑡 

(MW) 

𝑉𝐺𝑡 is the variable power generation that is available at time 𝑡, i.e.the nameplate capacity 

multiplied by the respective capacity factor (MW) 

𝐿𝑡 is the total load at time 𝑡 (MW). 

The assessment of the capacity adequacy focuses on the probability that the margin will 

become less than one under some conditions in the future. The capacity margin is not 

deterministic due to the variability in the demand and generation from renewable sources, as 

well as the forced outages of the dispatchable capacity. However, it does exhibit 

seasonal/temporal patterns.  

The plot of Fig. 2.1 shows the yearly distribution of the lower 10% of the daily capacity margin 

values, whereas the plot of Fig. 2.2 depicts the average daily profile of the capacity margin in 

the Greek power system for the period 2018-2020. 

 

Figure 2.1– Yearly distribution of lower 10% of the daily capacity margin valuesfor 2018-2020 

 

Figure 2.2– Average intra-day profile of the capacity margin for 2018-2020 

Slow flexibility 

The ramp-up requirements of a power system can be approximated as: 
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𝑅𝑈𝑡 = max [𝑁𝐿𝑡 −
∑ 𝑁𝐿𝑡+𝑗

3
𝑗=1

3
, 0  ] 

(2.2) 

where 𝑁𝐿𝑡is the net load at time t (MW). 

The plot in Fig. 2.3 shows the average intra-day ramp-up needs in the Greek power system for 

2018-2020, where a temporal pattern is obvious.  

 

Figure 2.3– Average intra-day ramp-up needs in the Greek power system, 2018-2020 

The existence of seasonal/temporal patterns is an argument in favour of considering energy 

efficiency support schemes as a way to reduce the needs for peaking or ramping capacity. In 

this case, the value of energy efficiency can be derived based on the capacity reserves that it 

can reliably displace. The value of these reserves can be quantified using the operating reserve 

demand curve (ORDC), which is calculated as: 

𝑉(𝑅) = 𝑉𝑂𝐿𝐿 × 𝐿𝑂𝐿𝑃(𝑅) (2.3) 

where: 

𝑅 The reserve capacity that the system should carry before resorting to involuntary 

load shedding 

𝑉(𝑅) The value of the reserve capacity 

𝑉𝑂𝐿𝐿 The value of lost load 

𝐿𝑂𝐿𝑃(𝑅) The loss of load probability given the available amount of reserve capacity 𝑅 

The loss of load probability (LOLP) at a given time period𝑡 is derived as: 

𝐿𝑂𝐿𝑃𝑡 = 𝑃𝑟𝑜𝑏(𝐺𝑡 + 𝑉𝐺𝑡 + 𝐼𝑡 − 𝐿𝑡 < 0) (2.4) 

where: 

𝐼𝑡 is the cross-border inflows at time 𝑡 (MW). 

The plot in Figure 2.4 depicts a stylizedORDC. 
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Figure 2.4– Stylized operating reserve demand curve 

Based on the aforementioned, strategic load reductions at some hours of the year can be 

beneficial to the grid. However, this does not mean that load reductions are always beneficial. 

It should be expected, for instance, that load reductions are detrimental for the grid when they 

increase the probability of renewable generation curtailment. Accordingly, the value of an 

energy efficiency project for the power grid can be determined through a composite indicator 

that consolidates the different ways the project affects the grid. The proposed methodology 

offers a way to estimate such an indicator using the same process and the same tools that 

capacity adequacy studies use.  

To this end, the quantitative analysis that is carried out utilizes a unit commitment model to 

identify the conditions under which energy efficiency improvements are most valuable for the 

power system and its operation. The details of the model are presented in Chapter 5. In this 

section, it is sufficient to note that the model:  

▪ Simulates the state of a national power system given scenarios for future demand and 

supply; 

▪ Identifies when conditions of missing capacity may arise; 

▪ Allocates a limited amount of load modifying resources to the hours where largest impact 

on minimizing the overall system operation cost can be achieved. 

2.2 The quantitative analysis workflow 

The proposed quantitative modelling and analysis approach consists of the following six (6) 

stages: 
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1. Preprocessing stage. The preprocessing stage implements the clustering of the power plants 

based on their technology (such as combined cycle gas turbines or steam turbines) and 

primary fuel (such as natural gas, coal or water/hydro). The quantitative analysis that is 

proposed by this deliverable utilizes a unit commitment model to identify the conditions under 

which energy efficiency improvements are most valuable for the power system and its 

operation. To limit the computational cost of solving unit commitment problems, power plants 

are aggregated into a small number of clusters. Existing literature includes examples where 

clustered unit commitment formulations are applied to generation expansion planning and/or 

to integrating flexibility constraints in longer-term operational planning5. 

Furthermore, this stage performs Principal Components Analysis (PCA) on a data matrix that 

includes all hourly historical time series, and stores the principal components that explain up 

to 90% of the variability (this is a user-defined parameter and can be changed). The 

components are utilized during simulation to generate scenarios for all hourly time series (such 

as demand, wind and solar availability factors, maximum levels of power imports and exports, 

and so on). 

2. Back-testing stage. The back-testing stage runs a simulation using historical data so as to 

compare actual and predicted results in terms of committed capacities per technology cluster. 

This helps evaluate how well the simulation model performs, as well as whether calibration to 

historical data is required. 

3. Calibration stage. The calibration stage is a sequence of two (2) steps: 

▪ The 1st step identifies a function that predicts the effective availability factor of the 

hydropower resources. Although nominal availability data for hydropower plants can be 

found from the respective system operators’ web sites, the corresponding capacity 

cannot be used in an unconstraint fashion, since reservoir water levels cannot be 

replenished at will. The effective availability factor of the hydropower resources is 

estimated as a function of their nominal availability factor and the value of water. The 

latter is quantified as the inverse of the ratio of the reservoirs’ filling rate to their long-

term average.  

▪ The 2nd step (optional) identifies a function that generates a markup to be added to the 

variable cost of each technology cluster given the power system’s conditions. For such a 

 

5 Meus, J., Poncelet K.and Delarue E. (2018) “Applicability of a Clustered Unit Commitment Model in 
Power System Modeling,” in IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 2195-2204 



SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 16 

function to make sense, it should be consistently related to factors that one would 

expect to define the power plants’ bidding decisions: the levels of net load and 

available capacity in the system, and the value of water. 

4. Forward scenario simulation stage. This stage creates forward scenarios for the parameters 

that define the state of the power system (such as demand, available generation capacity, 

etc.), runs the corresponding simulations, and stores both the scenarios and the results. By 

default, the model stores results on committed capacities per technology cluster, curtailment 

of renewable generation and lack of peak and ramping capacity.   

5. Replay scenario simulation stage. This stage simulates the same scenarios that the previous 

stage (created and) simulated, but now adds storage and/or load modifying resources. The 

goal is to identify: (a) how to best utilize the available storage and/or load modifying 

resources, and (b) what these resources’ impact is on the system’s probability of capacity 

deficit and renewable power curtailment.  

6. Counterfactual comparison stage. This stage compares the results of the two (2) previous 

steps to construct an indicator that associates storage capacity levels and/or load profile 

changes at specific hours of the year with reductions in capacity deficit and renewable power 

curtailment. This indicator defines the “grid friendliness” of an energy efficiency project given 

its pre- and post-retrofit power consumption profiles.  

The whole workflow is summarised in Fig. 2.5 below. 

 

Figure 2.5– The modelling workflow 

The details of each modelling step are presented in Chapter 5 as well. All the relevant 

functionality has been open-sourced and can be accessed at https://github.com/hebes-

io/eevalue.

https://github.com/hebes-io/eevalue
https://github.com/hebes-io/eevalue


SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 17 

3  The Value of Energy Efficiency in the Greek Power System 

3.1 Introduction 

This chapter applies the methodology of Chapter 2 to the case of the Greek power system 

using data that is publicly available through the website of the Greek TSO (ADMIE)6. For the 

development of future scenarios, datafrom the Public Consultation7 on Assumptions of the 

new National Resource Adequacy Assessment of the Greek system operator was utilized. 

3.2 Overview of power capacity in Greece 

The historical data that is used for calibration purposes include information from 2018 until 

the end of 2020. The power generation plants in the Greek power system during 2020 can be 

clustered as in Table 3.1: 

Table 3.1 Clusters of power generation plants in the Greek power system 

Parameters Units Cluster 1 Cluster 2 Cluster 3 

N units - 15 16 10 

Technology - STUR HDR COMC 

Fuel - LIG WAT GAS 

Power capacity MW 317.1 198.2 425.2 

Minimum stable output  MW 150 0 94 

Efficiency % 0.36 1 0.55 

CO2 intensity TCO2/MWh 1.35 0 0.44 

Minimum up time hour 8 0 2 

Minimum down time hour 6 0 2 

Ramp up rate MW/hour 190 4,758 765 

Ramp down rate MW/hour 190 4,758 765 

Ramp start-up rate MW/hour 52.8 160 212 

Ramping cost EUR/MW 189 0 35 

 

6https://www.admie.gr/en/market/market-statistics/detail-data 
7https://www.admie.gr/en/node/124648 and  

https://www.admie.gr/sites/default/files/diaboyleyseis/diabouleusi-01-07-
2021/Public%20Consultation%20on%20the%20assumptions%20of%20the%20new%20National%20Reso
urce%20Adequacy%20Assessment%20of%20IPTO.pdf 

https://www.admie.gr/en/market/market-statistics/detail-data
https://www.admie.gr/en/node/124648
https://www.admie.gr/sites/default/files/diaboyleyseis/diabouleusi-01-07-2021/Public%20Consultation%20on%20the%20assumptions%20of%20the%20new%20National%20Resource%20Adequacy%20Assessment%20of%20IPTO.pdf
https://www.admie.gr/sites/default/files/diaboyleyseis/diabouleusi-01-07-2021/Public%20Consultation%20on%20the%20assumptions%20of%20the%20new%20National%20Resource%20Adequacy%20Assessment%20of%20IPTO.pdf
https://www.admie.gr/sites/default/files/diaboyleyseis/diabouleusi-01-07-2021/Public%20Consultation%20on%20the%20assumptions%20of%20the%20new%20National%20Resource%20Adequacy%20Assessment%20of%20IPTO.pdf
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On February22th of 2021, the Public Power Corporation (PPC) officially announced the 

retirement of the lignite fleet due to economic losses. According to a subsequent capacity 

adequacy study by the system operator, the capacity gap due to lignite phase out could 

compromise the system’s stability until the beginning of 2023, when new power plants are 

expected to be operational. As a result, a Strategic Reserve scheme has been proposed so as to 

postpone the total phase-out of lignite. 

Since energy efficiency has value for the grid mainly under conditions of capacity scarcity, the 

analysis carried out in this chapter focuses on the year 2025 assuming a phase-out of lignite 

happens until the end of 2024. In this way, the analysis aims to explore whether energy 

efficiency can help in phasing out lignite in the Greek power system.  

In particular, the baseline scenario for entries and exits of conventional power plants is the 

following: 

Table 3.2The baseline scenario for entries and exits of conventional power plants in Greek power system 

Unit Fuel Capacity (MW) Year 

Entries 

New CCGT Gas 825 2023 

Ptolemaida V Lignite 615 2023 

Hydro with reservoir Water 29 2025 

Ptolemaida V Gas 1000 2026 

Hydro with reservoir Water 160 2026 

Hydro with reservoir Water 83 2028 

Exits 

Old lignite Lignite 2,871 2024 

Old natural gas Gas 1,574.4 2034 

Furthermore, the baseline scenario for the capacity for generation from renewable resources 

is: 

Table 3.3The baseline scenario for renewable generation capacity expansion 

Year Wind 
(MW) 

PV 
(MW) 

2022 4246 4239 

2023 4513 4934 

2024 4813 5457 

2025 5117 5885 

2026 5393 6261 
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Year Wind 
(MW) 

PV 
(MW) 

2027 5645 6612 

2028 6022 6961 

2029 6387 7184 

2030 6619 7342 

2031 6770 7436 

2032 6883 7477 

2033 6997 7519 

2034 7111 7560 

2035 7224 7601 

3.3 Overview of power generation in Greece 

The Greek power system is dominated by natural gas and renewables. The plot in Figure 3.1 

shows the average daily profile of all generation, including net imports (Greece is net importer 

of electricity). Renewable generation (mainly solar) is dominant during noon hours, while 

hydropower is mainly used for filling the gap during evening hours when renewable generation 

decreases significantly.  

 

Figure 3.1– The average daily profile of all generation in the Greek power system 

The plot in Figure 3.2 shows the average daily profile of the net load for the years 2018, 2019 

and 2020 (upper panel) and the average profile of the one-hour-ahead changes in the net load 

(lower panel). The profiles show already a “duck-curve” shape: as demand increases and solar 

irradiation decreases during the evening hours, the available generation resources need to 

ramp up fast up to the demand peak that occurs at around 20:00.  
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Figure 3.2– The average daily profile of the net load in the Greek power system 

Finally, the plot in Figure 3.3 shows the relationship between the value of water (upper panel) 

and the committed capacity of hydropower generation (middle panel). It can be seen that 

significantly low water values can be associated with increased hydropower generation (green-

coloured period). However, this may not be true when high levels of power imports are 

present (red-coloured period). It should be noted that negative values of net imports imply 

that imports exceed exports.   

 

Figure 3.3– The relationship between value of water and committed capacity of hydropower generation 
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3.4 Scenarios for the future evolution of the Greek power system 

According to the data from the aforementioned public consultation, two (2) demand evolution 

scenarios can be considered: 

Table 3.4Scenarios the demand evolution 

Year Baseline 
(GWh) 

Increased 
demand 
(GWh) 

2022 51506 52146 

2023 52674 53333 

2024 52970 54144 

2025 53711 55112 

2026 53838 55768 

2027 53957 56432 

2028 55910 59033 

2029 56728 60311 

2030 57327 61117 

2031 57952 61977 

2032 58593 62742 

2033 59236 63509 

2034 59886 64282 

2035 60543 65060 

The consultation used the fuel and CO2 prices that are considered in the ERAA 20218 and 

TYNDP 20229reports by ENTSO-E, presented in Table 3.5: 

Table 3.5Scenarios for fuel and carbon prices 

  2022 2025 2030 2040 

€ /GJ Lignite 3.10 3.10 3.10 3.10 

€ /GJ Natural gas 5.17 5.57 6.23 6.90 

€ /ton CO2 price 40 40 70 90 

Given the available information so far (April 2022), the fuel and CO2 prices for 2022 have been 

significantly underestimated. However, since the Greek power system is dominated by natural 

gas and renewables, this price underestimation does not fundamentally change the results.   

 

8https://www.entsoe.eu/outlooks/eraa/ 

9https://2022.entsos-tyndp-scenarios.eu/ 

https://www.entsoe.eu/outlooks/eraa/
https://2022.entsos-tyndp-scenarios.eu/


SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 22 

3.5 Simulation results without considering load modifying resources 

For the forward simulation, the year 2025 was selected, so that to test the system under 

conditions of lignite-fuelled generation phase-out. In total, six hundred (600) yearly scenarios 

were evaluated. 

The plot in Figure 3.4 shows the probability of demand exceeding supply in all simulated 

scenarios. A clear daily and yearly profile can be detected. The existence of a clear pattern 

suggests that there is scope for using energy efficiency as one of the tools for supporting the 

phase-out of lignite.  

 

Figure 3.4– The probability of demand exceeding supply in all simulated scenarios 

At the same time, the plot in Figure 3.5 offers a complementary view of the power system’s 

needs. In particular, the plot shows the probability of renewable generation curtailment in all 

simulated scenarios. The plot indicates that there are specific hours and seasons during a year 

that demand reduction is not beneficial for the grid, since it increases the need for curtailment. 

 

Figure 3.5– The probability of renewable generation curtailment in all simulated scenarios 

Finally, the distribution of the missing capacity results over all the simulated scenarios can be 

used for determining the loss of load probability (LOLP) given different levels of additional 

capacity in the system (Figure 3.6). 
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Figure 3.6– LOLP given different levels of additional capacity in the system 

For the value of lost load, this deliverable uses the results from Giaccaria, Longo, Efthimiadis 

and Bouman (2018)10 to choose a value of 20 €/kWh. Then, based on the (2.3) formula, the 

ORDC curve is calculated as in Figure 3.7 below. 

 

Figure 3.7– ORDC curve based on all simulated scenario results 

3.6 Simulation results with load modifying resources available 

Optimal allocation of load modifying resources would lead to persistent changes in the power 

consumption profile that increase demand during some time periods and decrease demand 

during others, so that to better align with the daily/seasonal net load profile (Figure 3.8). 

Accordingly, the methodology estimates separately the impact from reducing demand during 

specific hours of the year and the impact from increasing it. 

 

10Giaccaria S., Longo A., EfthimiadisT. and Bouman T. (2018) “Societal appreciation of energy security, 
Volume 4: Value of Lost Load - Greece”, Joint Research Center 
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Figure 3.8: Optimal direction for load modification 
(Source: Source: LBNL for the Load Shift Working Group) 

3.6.1 Impact from load shedding resources 

The impact from load shedding resources is estimated from the change in overall capacity 

deficit when they become available. To this end, the scenarios that were used by the forward 

simulation (Section 3.5) are replayed for a new simulation that has enabled load modifying 

resources, which are allowed to only reduce demand when it is optimal in terms of overall 

system operation cost. The total amount of the available load modifying resources remains 

always less than total missing capacity so that it is reasonable to assume a linear relationship 

between load reductions in each of the 8,760 hours of the year and the yearly reduction in 

missing capacity. 

The resulting linear model is sparse, so most hours of the year have a zero coefficient. The plot 

in Figure 3.9 shows the model’s coefficients for all hours of the year. The coefficients are 

positive, because reductions in load result in reductions in capacity deficit. For demonstration 

purposes, however, they have been negated so that is easier to recognize that they correspond 

to load reductions. The way to interpret the absolute value of the coefficients is that a retrofit 

project that reduces demand during a specific hour of the year displaces11 reserve capacity (or, 

alternatively, reduces the need of additional capacity) that is equal to the demand reduction 

multiplied by the respective coefficient (x-axis of Figure 3.9).  

 

11 On average, across all simulated scenarios  
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Figure 3.9– Impact coefficients of strategic load shedding 

At this point, a series of simple thought experiments is needed so that to better define what 

the coefficients actually represent: 

▪ Suppose that a power system is missing 1MW of capacity. If in all scenarios, this amount of 

capacity is missing during one specific hour of the year, an energy efficiency project that 

reduces load by 1MW at that hour is equivalent to having 1 MW of extra capacity available 

for every hour of the year.  

▪ Suppose that a power system is missing 1MW of capacity. If in all scenarios, this amount of 

capacity is missing during two specific hours of the year, an energy efficiency project that 

reduces load by 1MW at only one of these hours has zero impact on the need for 

additional capacity.  

▪ Suppose that a power system is missing 1MW of capacity at different hours of the year. If 

there is a portfolio of energy retrofit projects with enough diversity to include, on 

aggregate, load reductions at all those hours, the coefficients of Figure 3.9 provide a way 

to calculate the contribution of each project to the portfolio’s ability to displace capacity. 

In order to highlight what type of load changes the coefficients dictate, Figure 3.10 presents 

the total achievable impact per season of the year. Indicatively, a project that reduces load by 

1 MW during all 19:00 hours of winter displaces on average 0.2 MW of extra capacity (that 

should have been available for the whole year).  

 

Figure 3.10– Total achievable impact per season of the year for strategic load reduction 
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This is the first step towards building an indicator for the value of an energy efficiency project 

from the perspective of the grid: the coefficients map to displaced capacity, and, displacing 

capacity is equivalent to shifting the ORDC curve of Figure 3.7 to the left. The resulting 

reduction in the capacity value reflects the value of the project. 

As an example, the plots in Figure 3.11 show the pre- and post retrofit power consumption of a 

hypothetical office building where a package of envelope improvements and heating system 

upgrade has been installed. The data comes from the dataset that accompanies the work of 

Langevin et al. (2021)12. 

 

Figure 3.11– Pre- and post retrofit power consumption of a hypothetical office building 

The first step to calculate the value of this project is to multiply the impact coefficients with 

the savings in the corresponding hours of the year. The result is the time series of Figure 3.12. 

Then, the time series is summed to calculate the equivalent amount of displaced capacity over 

the year; in this case, it is 10.7 kW. Finally, the displaced capacity amount is multiplied by the 

capacity value provided by the ORDC curve of Figure 3.7, which would lead to a total value of 

the project that is equal to €107/year. 

 

12 Jared Langevin, Chioke B. Harris, AvenSatre-Meloy, Handi Chandra-Putra, Andrew Speake, Elaina 
Present, Rajendra Adhikari, Eric J.H. Wilson, Andrew J. Satchwell (2021) “US building energy efficiency 
and flexibility as an electric grid resource”, Joule, Volume 5, Issue 8, pp. 2102-2128 
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Figure 3.12– Contribution in capacity displacement by hypothetical energy retrofit project 

In order to demonstrate how the timing of the savings affects their value, Figure 3.13 presents 

the average savings by the hypothetical energy retrofit project during all months of winter. 

One can imagine a case were the building was a residential one, and the savings took place in 

the evening instead of the morning. This can be easily realized by going through all days of the 

year and swapping the savings during the 05:00-07:00 interval for the savings during the 

18:00-20:00 interval, and vice versa (Figure 3.14). 

 

Figure 3.13– Average savings by hypothetical energy retrofit project during all months of winter 

 

Figure 3.14– Average savings by hypothetical energy retrofit project after swap 

In this case, the contribution of the project is presented in Figure 3.15, while the total value 

almost doubles to €217.7/year. 
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Figure 3.15– Contribution in capacity displacement by hypothetical energy retrofit project after swap 

3.6.2 Impact from load increasing resources 

The impact from load increasing resources is estimated from the change in overall curtailment 

of renewable generation. To this end, the scenarios that were used by the forward simulation 

are replayed for a new simulation that has enabled load modifying resources, which are 

allowed to only increase demand when it is optimal in terms of overall system operation cost. 

The coefficients are negative because increases in demand reduce the average curtailment of 

renewable generation. For demonstration purposes, however, they have been negated so that 

is easier to recognize that they correspond to load increases (Figure 3.16). 

 

Figure 3.16– Impact coefficients of strategic load growth 

In order to highlight what type of load changes the coefficients dictate, Figure 3.17 presents 

the total achievable impact per season of the year. In particular, the plot shows much many 

MWs of curtailment a 1-MW increase in demand can achieve on average (i.e. across all 

simulated scenarios) for different hours of the day. 
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Figure 3.17– Total achievable impact per season of the year for strategic load growth 

The end result is as set of coefficients that can be applied sequentially on the consumption 

changes of a retrofit project. Consumption changes that decrease demand generate value 

when they correspond to hours when capacity deficit will be mitigated, and decrease value 

when they correspond to hours of high renewable generation curtailment.  

It is possible to add more coefficient layers to this approach for indicator development, such as 

coefficient layers that increase the value of a project if it reduces the needed amount of 

electricity storage/demand flexibility in the system, and/or layers that decrease a project’s 

value when the utilization of some power generation plants decreases: 

Effect of change in demand profile Impacts on grid 

Reduction of probability of capacity deficit 
 

Reduction of needed amount of electricity storage (proxy for 
flexibility)  

Increase of renewable generation curtailment 
 

Reduction of utilization factor of technology clusters that are not 
in phase-out stage  

The last point is important because, in many cases, capacity markets and strategic reserve 

schemes exist so that to support generation capacity that is necessary but cannot be profitable 

due to its low utilization factor in the power market. If an energy efficiency project or portfolio 

of such projects further reduces the utilization factor of a group of power plants (without 

completely displacing them), it actually increases the total cost of the power system’s 

operation. 
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4  Linking Energy Efficiency to the Power Grid’s Needs 

4.1 Pay-for-Performance schemes 

Pay for Performance (P4P) schemes can be utilized for rewarding energy retrofits to the extent 

that they lead to load shape changes that are beneficial for the grid’s operation. The main 

premise of the P4P concept is simple: compensate an asset or a service according to its actual 

impact. For the specific case of energy efficiency, a P4P scheme is a scheme where an entity 

with a mandate to support energy efficiency does so by compensating real, post-retrofit 

results instead of deemed ones estimated before the implementation of the retrofits. 

In the most general case, P4P is not meant to replace energy efficiency grants and subsidies; 

subsidizing the upfront investment costs is a strong driver for energy efficiency upgrades and, 

in particular, for deep retrofits. Instead, SENSEI promotes the idea of offering a premium to 

energy efficiency retrofit projects that can be regarded as valuable load modifiers, and using 

P4P as the mechanism to provide this premium. An overview of the proposed scheme is 

presented in Figure 4.1 below. 

 

Figure 4.1– P4P scheme to compensate energy efficiency retrofits 

A P4P scheme can steer energy efficiency improvements into a direction that is beneficial for 

the grid without interfering with the daily operation of the power markets: 

▪ It operates outside of the power and capacity market. This is important because power 

system operators cannot directly compensate the energy efficiency measures and 

cannot directly monitor their performance; 

▪ It is based on target load shapes that change gradually according to the evolving 

conditions of the grid. In this sense, it provides consumers with a consistent signal 
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which steers the energy efficiency measures towards high peak periods or periods 

when ramping reserves are systematically required, instead of providing a variable 

signal which incentivizes measures that increase demand flexibility (like demand 

response does); 

▪ It incentivizes decisions with a persistent effect on the daily and seasonal profile of 

power consumption, such as equipment upgrades, installation of control technologies 

and building envelope improvements. 

In principle, a P4P program can offer compensation rates that are higher than the value for the 

grid if, for instance, the rates are otherwise not enough to incentivize the right energy 

efficiency measures. In this case, however, underperformance should be linked to negative 

compensation. One way to structure such a scheme is by requiring ESCOs to participate by 

providing performance guarantees to the program facilitator. A P4P program facilitator is a 

third party that is responsible for the execution of a P4P program on behalf of the 

corresponding program owner (the public entity that offers the premium).The facilitator also 

provides measurement and verification (M&V) services to both the program owner and the 

involved building owners. Performance guarantees would level the playfield between 

dispatchable capacity resources that are subject to penalties for non-compliance and the 

resources participating in a P4P program. This approach is depicted in Fig. 4.2. 

 

Figure 4.2– Mitigating the risk of underperformance through ESCO performance guarantees 

4.2 The interplay between energy efficiency and demand response 

A P4P scheme, as described in the previous section, is complementary to tertiary reserves, 

such as the R3 product from the Belgian system operator ELIA. In support of this argument, the 

plot in Figure4.3 shows the daily distribution of the upward tertiary reserve capacity 

activations in the Belgian power system for the years 2020 and 2021. The curve that 
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corresponds to the 95% quantile of the hourly values highlights clearly the periods during 

which power consumption reductions would reduce the needed amount of upward capacity 

reserves. Since a consistent pattern is evident in the activations, energy efficiency 

improvements that target the hours of the pattern should be valuable for the grid.   

 

Figure 4.3 – Daily distribution of upward tertiary reserve capacity needs in the Belgian power system 

The use of P4P makes it possible to coordinate the need for tertiary reserves with the supply of 

load modifying resources from energy efficiency. Conceptually, this can be achieved if demand 

response and load modifying resources share the same funding source: load modifying 

resources are compensated for the demand response resources that they replace, and if load 

modifying resources underperform, demand response can cover the gap (Fig. 4.4). 

 

Figure 4.4– Coordination of financial flows between demand response and P4P of energy efficiency 
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5 The power market modelling approach 

5.1 The unit commitment model 

The structure of the utilized unit commitment model is largely based on the Linear 

Programming (LP) formulation of the Dispa-SET model that has been developed within the 

Joint Research Centre of the European Commission13. The mathematical details of the model 

are presented next. 

5.1.1 Sets 

All the model’s parameters and variables are indexed using one or more of the following sets: 

Name  Description 

𝒉 Hours 

𝒄𝒍 Clusters of generation units. Each cluster is homogeneous in terms of the technology 

and the primary fuel of the included power plants. 

𝒕 Power generation technologies.  

𝒇 Fuel types.  

𝒎𝒌 Markets (day-ahead, secondary reserve up, secondary reserve down). 

5.1.2 Parameters 

The parameters of the model include: 

Name  Index Units Description 

𝑨𝑭 (𝑐𝑙, ℎ) % Availability factor: percentage of the 

total nominal capacity of cluster 𝑐𝑙 

that is available at hour ℎ 

𝑪𝒐𝒎𝒎𝒊𝒕𝒕𝒆𝒅𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑐𝑙 - Number of units initially committed 

per cluster 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑼𝒑 𝑐𝑙 EUR/MW Ramping up cost of cluster 𝑐𝑙 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏 𝑐𝑙 EUR/MW Ramping down cost of cluster 𝑐𝑙 

𝑫𝒆𝒎𝒂𝒏𝒅 (𝑚𝑘, ℎ) MW Hourly demand per market 

 

13Quoilin, S., Hidalgo Gonzalez, I., and Zucker, A. (2017) “Modelling Future EU Power Systems Under 
High Shares of Renewables: The Dispa-SET 2.1 open-source models,” Publications Office of the European 
Union 
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Name  Index Units Description 

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 𝑐𝑙 % Power plant efficiency 

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝑹𝒂𝒕𝒆 𝑐𝑙 tonCO2/MWh Emission rate of CO2 from cluster 𝑐𝑙 

𝑭𝒖𝒆𝒍 (𝑐𝑙, 𝑓) - Fuel type. Binary: 1 if cluster 𝑐𝑙 uses 

fuel 𝑓 otherwise 0 

𝑭𝒖𝒆𝒍𝑷𝒓𝒊𝒄𝒆 (𝑓, ℎ) EUR/MWh Fuel price 

𝑴𝒂𝒓𝒌𝒖𝒑 (𝑐𝑙, ℎ) EUR/MWh Markup that is added to the variable 

cost of each cluster. 

𝑵𝒖𝒏𝒊𝒕𝒔 𝑐𝑙 - Number of units inside cluster 𝑐𝑙 

𝑷𝒆𝒓𝒎𝒊𝒕𝑷𝒓𝒊𝒄𝒆 ℎ EUR/tonCO2 CO2 emission permit price 

𝑷𝒐𝒘𝒆𝒓𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 𝑐𝑙 MW Nominal capacity of each unit in 

cluster 𝑐𝑙 

𝑷𝒐𝒘𝒆𝒓𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝑐𝑙 MW Power output of cluster 𝑐𝑙 before 

initial simulation period 

𝑷𝒐𝒘𝒆𝒓𝑴𝒊𝒏𝑺𝒕𝒂𝒃𝒍𝒆 𝑐𝑙 MW Minimum power output for stable 

operation of cluster 𝑐𝑙 

𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏𝑴𝒂𝒙 𝑐𝑙 MW/h Ramp down limit of cluster 𝑐𝑙 

𝑹𝒂𝒎𝒑𝑼𝒑𝑴𝒂𝒙 𝑐𝑙 MW/h Ramp up limit of cluster 𝑐𝑙 

𝑹𝒂𝒎𝒑𝑺𝒕𝒂𝒓𝒕𝑼𝒑𝑴𝒂𝒙 𝑐𝑙 MW/h Start-up ramp limit of cluster 𝑐𝑙 

𝑹𝒂𝒎𝒑𝑺𝒉𝒖𝒕𝑫𝒐𝒘𝒏𝑴𝒂𝒙 𝑐𝑙 MW/h Shut-down ramp limit of cluster 𝑐𝑙 

𝑹𝒆𝒔𝒆𝒓𝒗𝒆 𝑡 - Binary: If 1, technology  𝑡 provides 

reserve services 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 - MWh Nominal storage capacity installed 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑪𝒉𝒂𝒓𝒈𝒊𝒏𝒈𝑪𝒂𝒑 - MW Maximum charging capacity of 

storage 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑪𝒚𝒄𝒍𝒆𝑪𝒐𝒔𝒕 - EUR The cost of a full (charge-discharge) 

cycle of power storage 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑭𝒊𝒏𝒂𝒍𝑴𝒊𝒏 - MWh Minimum storage level at the end of 

the simulation period 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑰𝒏𝒊𝒕𝒊𝒂𝒍 - MWh Storage level before initial simulation 

period 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑴𝒊𝒏𝒊𝒎𝒖𝒎 - MWh Minimum storage level 

𝑺𝒕𝒐𝑪𝒉𝒂𝒓𝒈𝒆𝑬𝒇𝒇 - % Storage charging efficiency 

𝑺𝒕𝒐𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆𝑬𝒇𝒇 - % Storage discharging efficiency 

𝑻𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 (𝑐𝑙, 𝑡) - Binary: If 1, 𝑐𝑙 belongs to 𝑡 

𝑻𝑫𝑴 𝑐𝑙 ℎ Minimum down time of cluster 𝑐𝑙 

𝑻𝑼𝑴 𝑐𝑙 ℎ Minimum up time of cluster 𝑐𝑙 

𝑽𝑶𝑳𝑳 - EUR/MWh Value of lost load 
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In addition, the presence of some parameters depends on whether the model is used for 

calibration to historical data, back-testing or forward scenario modelling: 

Name  Index Units Description Added during 

𝑨𝑭𝑺𝒐𝒍𝒂𝒓 ℎ % Availability factor of installed solar 

PV power capacity  

Forward 

simulation 

𝑨𝑭𝑾𝒊𝒏𝒅 ℎ % Availability factor of installed wind 

power capacity  

Forward 

simulation 

𝑪𝒐𝒔𝒕𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒎𝒆𝒏𝒕 - EUR/MWh Cost of renewable energy 

generation curtailment 

Forward 

simulation 

𝑬𝒙𝒑𝒐𝒓𝒕𝒔𝑴𝒂𝒙 ℎ MW Upper bound for power exports Forward 

simulation 

𝑰𝒎𝒑𝒐𝒓𝒕𝒔𝑴𝒂𝒙 ℎ MW Upper bound for power imports Forward 

simulation 

𝑳𝒐𝒂𝒅𝑺𝒉𝒂𝒑𝒆𝑴𝒂𝒙 - MW Maximum amount of load 

modifying resources 

Forward 

simulation 

𝑵𝒆𝒕𝑰𝒎𝒑𝒐𝒓𝒕𝒔 ℎ MW Hourly net power imports Back-testing, 

Calibration 

𝑷𝒐𝒘𝒆𝒓𝑹𝑬𝑺 ℎ MW Hourly power generation from 

renewable sources 

Back-testing, 

Calibration 

𝑺𝒐𝒍𝒂𝒓𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 ℎ MW Nominal solar power capacity 

installed 

Forward 

simulation 

𝑾𝒊𝒏𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 ℎ MW Nominal wind power capacity 

installed 

Forward 

simulation 

5.1.3 Variables 

The decision variables of the model include: 

Name  Index Units Description 

𝑪𝒐𝒎𝒎𝒊𝒕𝒆𝒅 (𝑐𝑙, ℎ) - Number of units of cluster 𝑐𝑙 committed at hour 

ℎ (takes values from 0 to 𝑁𝑢𝑛𝑖𝑡𝑠[𝑐𝑙]) 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑼𝒑𝑯 (𝑐𝑙, ℎ) EUR Realised cost of ramping up cluster 𝑐𝑙 at hour ℎ 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏𝑯 (𝑐𝑙, ℎ) EUR Realised cost of ramping down cluster 𝑐𝑙 at hour ℎ 

𝑪𝒐𝒔𝒕𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 (𝑐𝑙, ℎ) EUR/MW Variable cost of cluster 𝑐𝑙 operating at hour ℎ 

𝑳𝑳𝑴𝒂𝒙𝑷𝒐𝒘𝒆𝒓 ℎ MW Deficit in terms of maximum power at hour ℎ 

𝑳𝑳𝑴𝒊𝒏𝑷𝒐𝒘𝒆𝒓 ℎ MW Power exceeding the demand at hour ℎ 

𝑳𝑳𝑹𝑫 (𝑐𝑙, ℎ) MW Deficit in terms of ramping down capacity for 

cluster 𝑐𝑙 at hour ℎ 

𝑳𝑳𝑹𝑼 (𝑐𝑙, ℎ) MW Deficit in terms of ramping up capacity for cluster 

𝑐𝑙 at hour ℎ 
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Name  Index Units Description 

𝑳𝑳𝟐𝑼 ℎ MW Deficit in reserve up at hour ℎ 

𝑳𝑳𝟐𝑫 ℎ MW Deficit in reserve down at hour ℎ 

𝑷𝒐𝒘𝒆𝒓 (𝑐𝑙, ℎ) MW Power output of cluster 𝑐𝑙 at hour ℎ 

𝑹𝒆𝒔𝒆𝒓𝒗𝒆𝟐𝑼 (𝑐𝑙, ℎ) MW Spinning reserve up provided by cluster 𝑐𝑙 at hour 

ℎ 

𝑹𝒆𝒔𝒆𝒓𝒗𝒆𝟐𝑫 (𝑐𝑙, ℎ) MW Spinning reserve down provided by cluster 𝑐𝑙 at 

hour ℎ 

𝑺𝒕𝒂𝒓𝒕𝑼𝒑 (𝑐𝑙, ℎ) - Number of units in cluster 𝑐𝑙 started at hour 

ℎ (takes values from 0 to 𝑁𝑢𝑛𝑖𝑡𝑠[𝑐𝑙]) 

𝑺𝒉𝒖𝒕𝑫𝒐𝒘𝒏 (𝑐𝑙, ℎ) - Number of units in cluster 𝑐𝑙 shutting down at 

hour ℎ (takes values from 0 to 𝑁𝑢𝑛𝑖𝑡𝑠[𝑐𝑙]) 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑰𝒏𝒑𝒖𝒕 ℎ MWh Charging input o fall storage units at hour ℎ 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑳𝒆𝒗𝒆𝒍 ℎ MWh Storage level of charge at hour ℎ 

𝑺𝒕𝒐𝒓𝒂𝒈𝒆𝑶𝒖𝒕𝒑𝒖𝒕 ℎ MWh Discharging output of all storage units at hour ℎ 

𝑺𝒚𝒔𝒕𝒆𝒎𝑪𝒐𝒔𝒕 ℎ EUR Hourly total system cost 

In addition, the following variables are added for forward simulations: 

Name  Index Units Description 

𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒆𝒅𝑷𝒐𝒘𝒆𝒓 ℎ MW Curtailed renewable energy generation at hour ℎ 

𝑬𝒙𝒑𝒐𝒓𝒕𝒔 ℎ MW Power exports at hour ℎ 

𝑰𝒎𝒑𝒐𝒓𝒕𝒔 ℎ MW Power imports at hour ℎ 

𝑳𝒐𝒂𝒅𝑴𝒐𝒅𝑫 ℎ MW Negative difference from the baseline at hour ℎ 

𝑳𝒐𝒂𝒅𝑴𝒐𝒅𝑼 ℎ MW Positive difference from the baseline at hour ℎ 

𝑵𝒆𝒕𝑰𝒎𝒑𝒐𝒓𝒕𝒔 ℎ MW Hourly net power imports 

𝑷𝒐𝒘𝒆𝒓𝑹𝑬𝑺 ℎ MW Power consumed from renewables at hour ℎ 

All the decision variables except 𝑁𝑒𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑠 are non-negative real numbers; 𝑁𝑒𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑠 is a 

real number. 

5.1.4 Constraints 

The number of start-ups and shut-downs at each time step is computed as: 

𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ − 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ−1 = 𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑐𝑙,ℎ − 𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑐𝑙,ℎ (5.1) 

The operation of the generation units is limited by the amount of time each unit has been 

running or stopped; once a unit is started up, it cannot be shut down immediately, and if the 

unit is shut down, it cannot be started immediately: 
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𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ                               ≥ ∑ 𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑐𝑙,ℎ−𝑖

𝑇𝑈𝑀[𝑐𝑙]

𝑖=0

            ∀ℎ > 𝑇𝑈𝑀[𝑐𝑙] 

𝑁𝑢𝑛𝑖𝑡𝑠[𝑐𝑙] −  𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ    ≥ ∑ 𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑐𝑙,ℎ−𝑖

𝑇𝐷𝑀[𝑐𝑙]

𝑖=0

      ∀ℎ > 𝑇𝐷𝑀[𝑐𝑙] 

(5.2) 

Each unit is characterized by a maximum ramp up and ramp down capability. The following 

constraints ensure that each cluster operates within its ramping limits while also accounting 

for start-up and shut-down events: 

𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ − 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ−1 ≤  (𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ − 𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑐𝑙,ℎ) ∙ 𝑅𝑎𝑚𝑝𝑈𝑝𝑀𝑎𝑥𝑐𝑙 

+ 𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑐𝑙,ℎ ∙ 𝑅𝑎𝑚𝑝𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑀𝑎𝑥𝑐𝑙 

–  𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑐𝑙,ℎ−𝑖 ∙ 𝑃𝑜𝑤𝑒𝑟𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ 

+ 𝐿𝐿𝑅𝑈𝑐𝑙,ℎ
 

𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ−1 − 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ ≤  (𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ − 𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑐𝑙,ℎ) ∙ 𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑀𝑎𝑥𝑐𝑙 

+ 𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑐𝑙,ℎ ∙ 𝑅𝑎𝑚𝑝𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑀𝑎𝑥𝑐𝑙 

 –  𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑐𝑙,ℎ ∙ 𝑃𝑜𝑤𝑒𝑟𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ 

+ 𝐿𝐿𝑅𝐷𝑐𝑙,ℎ
 

(5.3) 

Ramping costs are defined by the following equations: 

𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝐻𝑐𝑙,ℎ ≥ 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝑐𝑙 ∙ (𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ − 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ−1) 

𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝐻𝑐𝑙,ℎ ≥ 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑐𝑙 ∙ (𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ−1 − 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ) 

(5.4) 

The upward secondary reserve (2U) can only be covered by spinning units and is limited by the 

capacity margin between current and maximum power output: 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝑈𝑐𝑙,ℎ
≤ 

𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ ∙ 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ − 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ 
(5.5) 

The downward secondary reserve (2D) is limited by the different between current power 

output and minimum power output for stable operation, with an additional term to take into 

account the downward reserve capability of storage units: 
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𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝐷𝑐𝑙,ℎ
≤ 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ 

− 𝑃𝑜𝑤𝑒𝑟𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ ∙ 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ 

+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝐶𝑎𝑝 − 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎ  

(5.6) 

The minimum power output of a cluster is determined by its minimum stable generation level 

if it is committed: 

𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ ≥  𝑃𝑜𝑤𝑒𝑟𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ ∙ 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ (5.7) 

In addition, the power output is limited by the available capacity, if the cluster is committed: 

𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ ≤  𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐𝑙 ∙ 𝐴𝐹𝑐𝑙,ℎ ∙ 𝐶𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑐𝑙,ℎ (5.8) 

Each hour, the sum of the power produced by all the generation clusters, the power generated 

by renewables, the discharging output of the storage units, and the power injected from net 

imports14is equal to the demand in the day-ahead market, plus the power consumed for 

energy storage charging, adjusted by the impact of the load modifying resources (applicable 

only for forward simulations). 

∑(𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ)

𝑐𝑙

+ 𝑃𝑜𝑤𝑒𝑟𝑅𝐸𝑆ℎ
+ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑂𝑢𝑡𝑝𝑢𝑡ℎ − 𝑁𝑒𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑠ℎ = 

                             𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝐴,ℎ +  𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎ + 𝐿𝑜𝑎𝑑𝑀𝑜𝑑𝑈ℎ
− 𝐿𝑜𝑎𝑑𝑀𝑜𝑑𝐷ℎ

− 𝐿𝐿𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟ℎ
+ 𝐿𝐿𝑀𝑖𝑛𝑃𝑜𝑤𝑒𝑟ℎ

 

(5.9) 

The secondary reserve demand should be fulfilled at all times as well: 

𝐷𝑒𝑚𝑎𝑛𝑑2𝑈,ℎ ≤ ∑(𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝑈𝑐𝑙,ℎ
∙ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝑐𝑙,𝑡 ∙ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑡)

𝑐𝑙,𝑡

 + 𝐿𝐿2𝑈ℎ
 

𝐷𝑒𝑚𝑎𝑛𝑑2𝐷,ℎ ≤ ∑(𝑅𝑒𝑠𝑒𝑟𝑣𝑒2𝐷𝑐𝑙,ℎ
∙ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦𝑐𝑙,𝑡 ∙ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑡)

𝑐𝑙,𝑡

 + 𝐿𝐿2𝐷ℎ
 

(5.10) 

Storage level must be above a minimum and below storage capacity: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑀𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙ℎ ≤ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (5.11) 

 

14Net imports are negative if imports are larger than exports. 



SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 39 

Storage charging is bounded by the maximum capacity: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎ ≤ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶ℎ𝑎𝑟𝑔𝑖𝑛𝑔𝐶𝑎𝑝 (5.12) 

Storage discharging is limited by the level of charge, and storage charging is limited by the 

remaining storage capacity: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑂𝑢𝑡𝑝𝑢𝑡ℎ ≤ 𝑆𝑡𝑜𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝐸𝑓𝑓 ∙  𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙ℎ 

𝑆𝑡𝑜𝐶ℎ𝑎𝑟𝑔𝑒𝐸𝑓𝑓 ∙ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎ ≤ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙ℎ 
(5.13) 

The power stored in a given period is given by the power stored in the previous period, net of 

charges and discharges: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙ℎ−1 + 𝑆𝑡𝑜𝐶ℎ𝑎𝑟𝑔𝑒𝐸𝑓𝑓 ∙ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎ = 

                                       𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙ℎ +
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑂𝑢𝑡𝑝𝑢𝑡ℎ

𝑆𝑡𝑜𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝐸𝑓𝑓
 

(5.14) 

A minimum storage level constraint is required for the last hour of the optimisation, since 

otherwise the model would systematically tend to empty the storage level: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐿𝑒𝑣𝑒𝑙𝑁 ≥ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐹𝑖𝑛𝑎𝑙𝑀𝑖𝑛 (5.15) 

The amount of RES curtailment during a given hour is defined by: 

𝑆𝑜𝑙𝑎𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∙ 𝐴𝐹𝑆𝑜𝑙𝑎𝑟ℎ
+ 𝑊𝑖𝑛𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∙ 𝐴𝐹𝑊𝑖𝑛𝑑ℎ

= 𝑃𝑜𝑤𝑒𝑟𝑅𝐸𝑆ℎ
+ 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑𝑃𝑜𝑤𝑒𝑟ℎ 

(5.16) 

The amount of power imports cannot exceed the upper bound: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑠ℎ ≤ 𝐼𝑚𝑝𝑜𝑟𝑡𝑠𝑀𝑎𝑥ℎ (5.17) 

The amount of power exports cannot exceed the upper bound: 

𝐸𝑥𝑝𝑜𝑟𝑡𝑠ℎ ≤ 𝐸𝑥𝑝𝑜𝑟𝑡𝑠𝑀𝑎𝑥ℎ (5.18) 

Imports and exports define the net imports: 

𝑁𝑒𝑡𝐼𝑚𝑝𝑜𝑟𝑡𝑠ℎ = 𝐸𝑥𝑝𝑜𝑟𝑡𝑠ℎ − 𝐼𝑚𝑝𝑜𝑟𝑡𝑠ℎ  (5.19) 

The amount of the load modifying resources is limited: 



SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 40 

∑ 𝐿𝑜𝑎𝑑𝑀𝑜𝑑𝑈ℎ

ℎ

 + ∑ 𝐿𝑜𝑎𝑑𝑀𝑜𝑑𝐷ℎ

ℎ

≤ 𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝑆ℎ𝑎𝑝𝑖𝑛𝑔 (5.20) 

The total number of cycles is calculated as: 

𝐶𝑦𝑐𝑙𝑒𝑠 =
∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐼𝑛𝑝𝑢𝑡ℎℎ + ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑂𝑢𝑡𝑝𝑢𝑡ℎℎ

2 ∙ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (5.21) 

The variable cost of each cluster is calculated as: 

𝐶𝑜𝑠𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑙,ℎ = 𝑀𝑎𝑟𝑘𝑢𝑝𝑐𝑙,ℎ + ∑ (
𝐹𝑢𝑒𝑙𝑐𝑙,𝑓 ∙ 𝐹𝑢𝑒𝑙𝑃𝑟𝑖𝑐𝑒𝑓

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑐𝑙
)

𝑓

 

+ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑐𝑙 ∙ 𝑃𝑒𝑟𝑚𝑖𝑡𝑃𝑟𝑖𝑐𝑒  

(5.22) 

Finally, the goal of the optimization problem is to minimize the sum of the system cost: 

min [∑(𝐶𝑜𝑠𝑡𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑐𝑙,ℎ ∙ 𝑃𝑜𝑤𝑒𝑟𝑐𝑙,ℎ)

𝑐𝑙,ℎ

 

        + ∑(𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝐻𝑐𝑙,ℎ + 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝐻𝑐𝑙,ℎ)

𝑐𝑙,ℎ

 

        + ∑(𝐶𝑜𝑠𝑡𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 ∙ 𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑒𝑑𝑃𝑜𝑤𝑒𝑟ℎ)

ℎ

 

        + 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑦𝑐𝑙𝑒𝐶𝑜𝑠𝑡 ∙ 𝐶𝑦𝑐𝑙𝑒𝑠 

       + 𝑉𝑂𝐿𝐿 ∙ ∑(𝐿𝐿𝑀𝑎𝑥𝑃𝑜𝑤𝑒𝑟ℎ
+ 𝐿𝐿𝑀𝑖𝑛𝑃𝑜𝑤𝑒𝑟ℎ

)

ℎ

 

       + 0.8 ∙ 𝑉𝑂𝐿𝐿 ∙ ∑(𝐿𝐿2𝑈ℎ
+ 𝐿𝐿2𝐷ℎ

)

ℎ

 

+ 0.7 ∙ 𝑉𝑂𝐿𝐿 ∙ ∑(𝐿𝐿𝑅𝑈𝑐𝑙,ℎ
+ 𝐿𝐿𝑅𝐷𝑐𝑙,ℎ

)

𝑐𝑙,ℎ

] 

(5.23) 

5.2 The details of the preprocessing stage 

5.2.1 Creation of clusters 

The clustering of the plants is carried out based on their technology and primary fuel. As a 

result, each cluster includes a unique technology and fuel combination. The corresponding 

parameters are derived as follows: 
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𝑨𝑭 The 𝐴𝐹 parameter corresponds to the availability factor of each 

cluster. Since the relevant data is publicly available through the 

websites of the corresponding system operators, we model the 

availability factors using the historical availability data divided by 

the nominal capacity of each cluster, instead of using the plants’ 

equivalent forced outage rates. 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑼𝒑 The 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝 parameter corresponds to the ramping up costs 

of each cluster. Start-up costs are included into the ramping up 

costs as: 

𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝑐𝑙 =
∑ (𝑃𝑗,𝑚𝑎𝑥 × 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝑈𝑝𝑗)𝑗

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗
 

+
∑ 𝐶𝑜𝑠𝑡𝑆𝑡𝑎𝑟𝑡𝑈𝑝𝑗𝑗

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗
 

for all 𝑗 units in the cluster.  

𝑃𝑗,𝑚𝑎𝑥 is the nominal capacity of the 𝑗 unit. 

Shut-down costs are included into the ramping down costs 

similarly to the ramping up case 

𝑪𝒐𝒔𝒕𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏 The 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛 parameter corresponds to the ramping 

down costs of each cluster. Shut-down costs are included into the 

ramping down costs as: 

𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑐𝑙

=
∑ (𝑃𝑗,𝑚𝑎𝑥 × 𝐶𝑜𝑠𝑡𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝑗)𝑗

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗
 

+
∑ 𝐶𝑜𝑠𝑡𝑆ℎ𝑢𝑡𝐷𝑜𝑤𝑛𝑗𝑗

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗
 

for all 𝑗 units in the cluster. 

𝑵𝒖𝒏𝒊𝒕𝒔 The 𝑁𝑢𝑛𝑖𝑡𝑠 parameter of each cluster corresponds to the number 

of plants that have been assigned to this cluster.  

𝑷𝒐𝒘𝒆𝒓𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 The 𝑃𝑜𝑤𝑒𝑟𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 parameter of a cluster is the average nominal 

capacity, i.e. 

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗

𝑁𝑢𝑛𝑖𝑡𝑠
 

for all 𝑗 units in the cluster. 
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𝑷𝒐𝒘𝒆𝒓𝑴𝒊𝒏𝑺𝒕𝒂𝒃𝒍𝒆 The 𝑃𝑜𝑤𝑒𝑟𝑀𝑖𝑛𝑆𝑡𝑎𝑏𝑙𝑒 parameter of a cluster is the minimum of all 

the minima power outputs of the units in the cluster, i.e. 

min(𝑃𝑗,𝑚𝑖𝑛) 

𝑹𝒂𝒎𝒑𝑫𝒐𝒘𝒏𝑴𝒂𝒙, 

𝑹𝒂𝒎𝒑𝑼𝒑𝑴𝒂𝒙, 

𝑹𝒂𝒎𝒑𝑺𝒕𝒂𝒓𝒕𝑼𝒑𝑴𝒂𝒙, 

𝑹𝒂𝒎𝒑𝑺𝒉𝒖𝒕𝑫𝒐𝒘𝒏𝑴𝒂𝒙, 

𝑻𝑫𝑴, 

𝑻𝑼𝑴 

The ramp up and down limits are computed as a weighted 

averaged, e.g.: 

𝑅𝐷𝑀𝑐𝑙 =
∑ (𝑃𝑗,𝑚𝑎𝑥 × 𝑅𝐷𝑀𝑗)𝑗

∑ 𝑃𝑗,𝑚𝑎𝑥𝑗
 

for all 𝑗 units in the cluster. 

The same applies to the minimum up/down times. 

The 𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝐴 parameter corresponds to the total load that is used as an input to the day-

ahead scheduling. Following the approach that the Dispa-SET model has adopted, the demand 

for secondary reserves – if not available as historical data –is defined as a function of the 

maximum expected load for each day: 

𝐷𝑒𝑚𝑎𝑛𝑑2𝑈,ℎ = √10 ∙ max
ℎ

(𝐷𝑒𝑚𝑎𝑛𝑑𝐷𝐴,ℎ) + 1502 − 150 

𝐷𝑒𝑚𝑎𝑛𝑑2𝐷,ℎ = 0.5 ∙ 𝐷𝑒𝑚𝑎𝑛𝑑2𝑈,ℎ 

(5.24) 

5.2.2 Dimensionality reduction of hourly time series through PCA 

All hourly historical data is arranged into a table with a structure similar to the one in Figure 

5.1. Then, PCA is applied so that to reduce the number of columns (>140) to a small number of 

new ones (<10) that are linear combinations of the original. This will be useful for the 

simulation of forward scenarios later on.     

 

Figure 5.1– The input to the PCA analysis step 

One way to evaluate the impact due to the PCA compression is to compare the characteristics 

of the power demand between: (a) the actual dataset and (b) a dataset where all the daily 
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demand profiles have been derived by inverting the PCA transformation. The plot of Fig. 5.2 

shows the distribution of the total daily demand in the Greek power system for 2019-2020; the 

upper panel corresponds to the actual dataset, while the lower panel to the one with the 

reconstructed data. 

 

Figure 5.2– Distribution of the total daily demand in the Greek power system for 2019-2020 

Similarly, the plot of Fig. 5.3 shows the distribution of the hourly demand in the Greek power 

system for 2019-2020; the upper panel corresponds to the actual dataset, while the lower 

panel to the one with the reconstructed data. 

 

Figure 5.3– Distribution of the hourly demand in the Greek power system for 2019-2020 

5.3 The details of the back-testing stage 

The back-testing stage runs a simulation using historical data and compares the actual and 

predicted results in terms of the committed capacities per technology cluster. The main 

function of this stage is to evaluate how well the simulation model performs. The metric that is 

used for the evaluation is the coefficient of variation of the root mean squared error 

(CVRMSE). The CVRMSE provides a quantification of the typical size of the error relative to the 

mean of the observations. The CVRMSE is calculated by: 
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CV(RMSE) =
1

�̅�
× √

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

𝑛
× 100(%) (5.25) 

where: 

𝑛 The number of observations 

�̅� The mean value of the observed data. 

𝑦𝑖  The actual value of the 𝑖th observation (𝑖 = 1,2, … , 𝑛) 

�̂�𝑖  The estimation for the 𝑖th observation’s value. 

The plot in Fig. 5.4 shows the actual and predicted committed capacity for natural gas-fuelled 

plants in the Greek power system – aggregated to daily sums so that it is easier to compare 

between the two time series (CVRMSE is 56%). 

 

Figure 5.4– Actual and predicted power generation from natural gas plants before calibration 

In contrast, the plot in Fig. 5.5 shows the actual and predicted committed capacity for 

hydropower plants in the Greek power system with a CVRMSE of 368%. In this case, calibration 

is definitely needed because the utilized model assumes that there are not limitations in 

replenishing the reservoir levels. As a general rule, if a model includes hydropower capacity, 

calibration is required so that to estimate an effective availability factor for the hydropower 

generation. 

 

Figure 5.5– Actual and predicted power generation from hydropower plants before calibration 
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5.4 The details of the calibration stage 

The calibration stage consists of two (2) steps. The first step learns the effective availability 

factor for hydropower generation through the following process (Figure 5.6): 

 
Figure 5.6– The process for learning the effective availability factor for hydropower generation 

The second step, which is optional, learns a markup function for each technology cluster. The 

relevant process is the same as the one for learning the effective availability factor for 

hydropower generation, with three (3) differences: 

(a) The state of the markup function is composed of: (a) the margin of the system, quantified 

as the net load divided by the total available capacity in the system, and (b) the value of 

water. 

(b) Each day in the sample is simulated using random trials for the markup values. 
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(c) During the last step, the predictive model is used to find the markup values that minimize 

the simulation error given the system state. 

The results after the calibration are presented in Fig. 5.7 (CVRMSE of 62%), Fig. 5.8 (CVRMSE of 

72%) and Fig. 5.9 (CVRMSE of 108%). 

 

Figure 5.7– Actual and predicted power generation from natural gas plants after calibration 

 

Figure 5.8– Actual and predicted power generation from lignite plants after calibration 

 

Figure 5.9– Actual and predicted power generation from hydropower plants after calibration 

5.5 The details of the forward scenario simulation stage 

Scenarios are generated and run using two (2) loops, one nested into the other. The outer loop 

provides yearly variation and concerns demand and capacity levels, as well as fuel and 
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CO2prices. The inner loop provides daily and intra-daily variation, and concerns demand 

profiles, availability factors for dispatchable capacity, solar and wind, the value of the water for 

hydropower generators, as well as the markup values (Figure 5.10). 

 

Figure 5.10– The nested loops of scenario generation and simulation 

Forward scenario data at yearly level, such as total demand, or capacity levels for solar, wind 

and each technology cluster, are taken from input files and, if a multiplying coefficient has 

been provided, stochasticity is added by uniformly sampling a value for the coefficient 

between 1 and the provided coefficient’s value.      

To generate scenarios for hourly time series, the simulation functionality first samples from 

the principal components (estimated during the preprocessing stage) and, then, reconstructs 

the time series. The sampling methodology makes sure that samples are drawn from same 

groups of data (same season, same month and/or same day of week). 

The provided functionality simulates yearly scenarios, i.e. 8,760 hours. However, the scenario 

generation and simulation process runs in line with another process that aims to predict if the 

scenario data for any given day are really informative. In this context, scenario data is 

informative if there is a non neglectable probability that one of the following variables will not 

be zero: 

Name  Units Description 

𝑪𝒖𝒓𝒕𝒂𝒊𝒍𝒆𝒅𝑷𝒐𝒘𝒆𝒓 MW Curtailed renewable energy generation at hour ℎ 

𝑳𝑳𝑴𝒂𝒙𝑷𝒐𝒘𝒆𝒓 MW Deficit in terms of maximum power at hour ℎ (i.e. shortage) 

𝑳𝑳𝑴𝒊𝒏𝑷𝒐𝒘𝒆𝒓 MW Power exceeding the demand at hour ℎ (i.e. oversupply) 

𝑳𝑳𝑹𝑫 MW Deficit in terms of ramping down capacity at hour ℎ 

𝑳𝑳𝑹𝑼 MW Deficit in terms of ramping up capacity at hour ℎ 
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Name  Units Description 

𝑳𝑳𝟐𝑼 MW Deficit in secondary reserve up at hour ℎ 

𝑳𝑳𝟐𝑫 MW Deficit in secondary reserve down at hour ℎ 

Initially, all scenario combinations are considered informative, and full-year scenario data is 

simulated. As the underlying classification model learns to distinguish between informative 

and uninformative combinations, some days are excluded from the full year scenario data, and 

as this process continues, the number of scenarios to actually simulate becomes smaller and 

smaller. This significantly reduces the computational resources that are needed for evaluation 

scenarios. 

The underlying classification model performs One-Class Classification (OCC). OCC is a special 

case of classification, where the data that is used during training is considered to belong to a 

single “normal” class. The goal of OCC is to learn to distinguish between normal data and 

novelty data (unusual observations).The inputs to the classification model are the sampled 

principal components – and this is the main reason for estimating the principal components in 

the first place. This process is summarized in Figure 5.11. 

 

Figure 5.11– The scenario reduction approach 
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5.6 The details of the replay scenario simulation stage 

The replay simulation stage re-runs the scenarios that were generated during the previous 

stage (forward simulation stage) with storage and/or load modifying resources activated. This 

acts as a what-if simulation process that explores how the results of the forward simulation 

stage would change if storage and/or load modifying resources were available to the power 

system. As an example, the diagram in Figure 5.12 describes the reply concept when the goal is 

to quantify the impact from enabling load modifying resources that can only reduce demand 

when it is optimal to do so.  

 

Figure 5.12– The process of learning the impact of load shedding resources 

5.7 The details of the counterfactual comparison stage 

The counterfactual comparison stage learns a sparse linear model between load changes 

during each hour of the year and the corresponding impact in terms of reducing capacity 

deficit (in MW) or curtailed generation (in MWh). The linear model is estimated using an L1 

prior as regularizer (commonly referred to as LASSO regression). Finally, the model’s 

coefficients are divided by their sum, so that their sum is equal to one.   
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6 Conclusions 

The deliverable presented a methodology for quantifying the value of an energy retrofit 

project for the power grid. This value is estimated through a composite indicator that 

consolidates the different ways a retrofit project affects the grid.  A project can be considered 

as grid positive if the positive impacts outweigh the negative. 

The methodology was applied on the Greek power system so as to explore the potential 

contribution of energy efficiency in phasing out old, polluting lignite plants that are kept 

commissioned only for ensuring the system’s reliability. Data suggests that phasing out lignite 

and installing more capacity for renewables leads to a non neglectable probability of over-

generation during some hours of the day and lack of adequate capacity during others. 

Although storage can level out such capacity peaks and valleys, the contribution of energy 

efficiency should also be taken into consideration given its multiple benefits for consumers.  

If the goal is to decrease CO2 emissions and/or reliance on imported fossil fuels, the power 

system needs to utilize in the best possible way all the resources that can be available, 

including energy efficiency. In addition, rewarding energy efficiency as a grid resource is a way 

to expand the way energy efficiency is perceived by consumers: from the notion of improving a 

building to reduce the energy bill to improving a building so that to help transform the national 

energy system into a more sustainable and resilient version.  

The overall conclusion of the deliverable is that energy efficiency can be valuable for the 

power grid when its impact is aligned with persistent needs of the grid that reflect the 

regularity and seasonality of power demand at the aggregated level. The proposed 

methodology quantifies this value using the same process and the same tools that system 

operators use for capacity adequacy studies. There are two (2) reasons for this approach:  

(a) The coordination between the needs of the power system and the incentives for 

energy efficiency improvements must take place during the medium-term planning for 

resource adequacy in the power system.  

(b) To showcase that the design of a program that compensates energy efficiency for its 

contribution to the grid does not need a radically new toolset, but can be done using 

the tools that power system operators already use. 



SENSEI H2020 project – Grant agreement nº 847066 

Deliverable D4.2 - The drivers of the value of energy efficiency as an energy resource Page 51 

The proposed methodology builds upon a unit commitment model that is largely based on the 

formulation of the Dispa-SET model that has been developed within the Joint Research Centre 

of the European Commission. However, any commitment model can be used to replicate the 

methodology. Furthermore, the deliverable proposes ways to address some computational 

difficulties that power system modelling commonly faces. In particular, the deliverable offers: 

▪ A quantitative approach for model calibration. Calibrating a model on historical data is an 

important step before a practitioner is able to trust its results. The deliverable offers a way 

to use the historical data so that what the model learns is consistent and generalizable. 

▪ A quantitative approach for scenario number reduction. Since the simulation of a large 

number of yearly scenarios is computationally intensive, the utilised model learns to 

distinguish between informative and uninformative scenario combinations so that more 

and more days are excluded from the full year scenario data. This significantly reduces the 

computational resources that are needed for the scenario evaluation. 

All the functionality that has been developed to enable the implementation of the proposed 

methodology has been open-sourced and can be accessed at https://github.com/hebes-

io/eevalue. 

 Although the calculation of the indicator is straightforward, the adoption of the proposed 

approach requires a retrofit project aggregation process in place. A project aggregator would 

bring together a variety of projects with synergistic effects on the buildings’ consumption 

profiles so that the resulting portfolio can capture as much as possible of the value potential 

that energy efficiency has as a grid resource. 

In addition, the aggregator would be responsible for the reliability of the provided load shape 

changes; as the variability in the load shape changes increases, their value decreases, and, in 

the limit case, high variability could mean zero value. The aggregator would control how 

projects are added or removed from a portfolio so that to maintain its reliability and 

consistency. 

 

https://github.com/hebes-io/eevalue
https://github.com/hebes-io/eevalue

