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ABSTRACT

One of the key capabilities of the human sense of hearing
is to determine the direction from which a sound is ema-
nating, a task known as localization. This paper describes
the derivation of a machine learning model which performs
the same localization task: Given an audio waveform which
arrives at the listener’s eardrum, determine the direction of
the audio source. Head-related transfer functions (HRTFs)
from the ITA-HRTF database of 48 individuals are used
to train and validate this model. A series of waveforms is
generated from each HRTF, representing the sound pressure
level at the listener’s eardrums for various source direc-
tions. A feature vector is calculated for each waveform
from acoustical properties motivated by prior literature on
sound localization; these feature vectors are used to train
multi-layer perceptrons (MLPs), a form of artificial neu-
ral network, to replicate the behavior of single individuals.
Data from three individuals are used to optimize hyperpa-
rameters of both the feature extraction and MLP stages for
model accuracy. These hyperparameters are then validated
by training and analyzing models for all 48 individuals in
the database. The errors produced by each model fall in
a log-normal distribution. The median model is capable
of identifying, with 95% confidence, the sound source di-
rection to within 20 degrees. This result is comparable
to previously-reported human capabilities and thus shows
that an MLP can successfully replicate the human sense of
sound localization.

1. INTRODUCTION

The Acoustic and Tactile Engineering Lab (ACUTE) of
the Icelandic EuroCC National Competence Center 1 for
Artificial Intelligence and High-Performance Computing
performs research and product development for societally
relevant challenges in many applications together with its
European partners (e.g., project Sound of Vision won the
Tech for Society award in 2018 2 ). This includes the devel-
opment of wearable assistive devices for visually impaired
persons, cochlear implant recipients, and solutions for de-
livering accurate virtual acoustics.

1 http://ihpc.is/community
2 https://soundofvision.net/sound-of-vision-at-ict-2018/
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One particular application of virtual acoustics is the de-
velopment of spatial audio systems, which are designed to
present realistic virtual soundscapes to the listener. In order
for a spatial audio system to present a realistic soundscape,
it is imperative to stimulate all aspects of an individual’s
sense of hearing. One important aspect of this is ‘localiza-

tion’, the ability of a listener to determine the location of
a sound source. This requires an accurate characterization
of the listener’s head-related transfer function (HRTF). A
number of approaches have been proposed to estimate these
individualized HRTFs, such as selecting a nearest match
from a database of measured HRTFs [1] or calculating the
HRTF from a numerical simulation of the indivdual’s head
shape [2]. Unfortunately, they all produce results that are
significantly worse than a direct measurement taken in an
anechoic chamber [3]. Developing a better HRTF estima-
tion method for use in spatial audio systems is an ongoing
project within ACUTE.

A major challenge in this project is evaluating the effec-
tiveness of the HRTF estimates produced. One approach is
to develop a model which can replicate the localization re-
sponse of an individual to arbitrary audio waveforms. This
model can then be presented with the waveforms produced
by a candidate spatial audio system, and the intended virtual
location compared to the model’s output, i.e. the listener’s
perceived audio source direction.

This paper derives a class of individualized machine learn-
ing models for this task, based on a multi-layer perceptron
(MLP) [4]. The training data for each model consists of
an audio signal dataset derived from a white noise gener-
ator and an HRTF from the ITA-HRTF database [5], rep-
resenting sound pressure levels (SPLs) at the individual’s
eardrums. Features representing both broadband and spec-
tral interaural level difference (ILD) and interaural time de-
lay (ITD) information are extracted from these waveforms
and presented to the input layer of an MLP.

Three of these individualized models are simultaneously
optimized for both accuracy and training cost, producing
a generally-applicable hyperparameter configuration that
can be used to train models against arbitrary HRTFs. Mod-
els are then trained for the remaining 45 individuals in the
ITA-HRTF dataset to validate the hyperparameter configu-
ration’s general applicability.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a brief introduction to the computational
models employed and the physical mechanism of sound
localization. Section 3 describes the dataset, hardware, and
software used for this experiment. Section 4 derives the
structure of an individualized sound localization model and
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describes the hyperparameter optimization process. Indi-
vidualized models are then trained for 45 additional HRTFs
that were not used in the derivation process; Sec. 5 presents
an analysis of these models, including overall statistics
and a detailed investigation of selected models. The pa-
per concludes with some remarks about the the possible
applications of these models in Sec. 6.

2. BACKGROUND

This section provides an introduction to the underlying
concepts of sound localization and machine learning. Sec-
tion 2.1 describes the physical mechanism of sound local-
ization. Section 2.2 then provides a brief overview of the
machine learning techniques used, i.e. multi-layer percep-
trons and hyperparameter optimization.

2.1 Sound Localization

Sound localization is possible due to the acoustic filtering
effected by sound waves interacting with an individual’s
body, especially the pinnae [6]. As incoming sound waves
interact with the pinna, reflections and refractions internal
to the pinna mutually interfere, altering the waveform that
arrives at the listener’s eardrum as illustrated in Fig. 1a. For
point sources in the far field, this alteration can be repre-
sented as a direction-dependent, linear and time-invariant
audio filter known as the HRTF.

HRTF

Virtual Location

(A) PHYSICAL ENVIRONMENT

(B) VIRTUAL SOUND SOURCE

SPL at source

SPL at eardrum

Figure 1. Acoustic filtering of the pinna and its relationship
to the HRTF. Adapted from Gray, Plate 907 [7]

As the geometry of each individual’s pinnñ are unique,
the HRTF is also unique to each individual; determining
an analytic relationship between these is a field of active
research. With an accurate measurement of an individual’s
HRTF, it is possible to predict the SPL at each eardrum
given a source audio signal and its location, as illustrated in
Fig. 1b. When this prediction is played through headphones,
bypassing the physical filter, the listener perceives the sound
to be coming from the direction of the virtual source [8].

Prior studies have identified the acoustic properties neces-
sary for humans to perform sound localization tasks. For
sound sources on the horizontal plane, humans rely pri-
marily on the ITD and ILD [9]. Vertical localization ad-
ditionally requires spectral information in the 4-16 kHz

range [10]. The frequency response of a typical HRTF ex-
hibits a number of notches in this range, with directionally-
varying center frequencies. These notches introduce local
spectral gradients which the human auditory system uses to
estimate the source direction [11].

2.2 Machine Learning

‘Machine learning’ refers to the class of algorithms that
can infer structure from examples, instead of having that
structure explicitly stated by a programmer. One of the
earliest of these algorithms is still in common use today,
the multi-layer perceptron; i.e. a fully-connected, feed-
forward artificial neural network, which is often coupled to
a domain-specific feature extraction stage.

An MLP is formed of an input layer, several hidden layers,
and an output layer, each consisting of several ‘neurons’,
or ‘nodes’. The output of each neuron is defined as a linear
combination of the previous layer’s output values passed
through a nonlinear, univariate ‘activation function’. The
linear input weights of all the neurons in the network form
the parameters that will be learned during training. Training
an MLP is a supervised process which requires exemplar
data samples labeled with a desired output. Each example is
presented to the network’s input layer and the corresponding
output layer values are compared with the example’s desired
output. A backpropagation process then determines the
contribution of each parameter to this measured error. The
error contribution for several examples are grouped together
in a ‘batch’, and a gradient descent optimization algorithm
uses this information to adjust the internal parameters such
that the observed errors approach zero. In this way, the
entire ‘training set’ of examples is processed many times
in so-called epochs, ultimately resulting in an MLP which
can reproduce the sample outputs with high accuracy.

Though MLPs are universal estimators on their own, they
often require large amounts of computation and training
data to produce an acceptable model. When some domain-
specific information is known, adding a feature extraction
stage prior to the MLP can greatly reduce these costs. In-
stead of feeding the source data directly into the input layer
of the MLP, interesting properties of the source data are
calculated and formed into a feature vector. This feature
vector usually has a much lower dimensionality than the raw
source data, which means that fewer neurons are required
within the MLP. This, in turn, means that fewer internal
parameters need to be calculated during training.

Most machine learning models have a number of parame-
ters that cannot be automatically learned from the training
data. These are called ‘hyperparameters’ to indicate that
they need to be specified manually before training begins.
These can include properties of both the domain-specific
feature extraction algorithm and the MLP itself, such as
the included features, the topology of the MLP’s network,
the activation function of each neuron, the concrete opti-
mization algorithm used, and the halting condition, among
others.

Choosing appropriate values for these hyperparameters is
the primary task of a machine learning engineer, but they
often have subtle and non-intuitive effects on the overall
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model accuracy. In many cases, the only way to select these
is a process of trial-and-error. As the number of hyperparam-
eters increases, performing this search manually becomes
intractable. Recently, a number of automated approaches
to this ‘hyperparameter optimization’ problem have been
proposed. These use techniques like Bayesian optimization
to select the optimal hyperparameter configuration to test
in each trial [12].

3. EXPERIMENTAL SETUP

The model training and evaluation code are written in Python
and executed in the Jupyter programming environment [13]
on a 6-core Intel i7-10750H CPU. Section 3.1 describes the
dataset used for this experiment, and Sec. 3.2 describes the
software environment used.

3.1 Dataset

The HRTFs used for this paper come from the ITA-HRTF
database [5]. This database contains head geometry infor-
mation and HRTFs for 48 individuals, stored in Spatially-
Oriented Format for Acoustics (SOFA) [14] files. These
files consist of impulse responses sampled along azimuth,
elevation, and time dimensions. Each HRTF contains 360◦

of azimuth data and 160◦ of elevation data, sampled in 5◦

increments. These 2,304 impulse responses each contain
256 samples at 44.1 kHz, for an overall frequency resolution
of 172.3 Hz.

3.2 Software Environment

All of the third-party packages in this paper use NumPy [15]
arrays as their data transfer format. NumPy also provides
the linear algebra, random number generation, and discrete
Fourier transform (DFT) [16] routines needed for the model.
Additional signal processing routines are provided by Li-
brosa [17], which is designed for audio feature extraction.

The SOFA standard specifies that files shall be in network
common data form 3 (netCDF) and mandates the inclusion
of metadata describing the data collection process, such
as the sampling rates and properties of the emmitters and
recievers used. The implementation uses the PySofaCon-
ventions 4 package to make SOFA data available as NumPy
arrays.

The MLP training and evaluation routines are provided
by Scikit-learn [18], and the hyperparameter optimization
routines are provided by the Optuna framework [19]. The
plots in this report were generated with the Plotly package
for Python 5 .

4. MODEL DESIGN

This section describes a class of machine learning mod-
els, each of which can replicate a single individual’s sound
localization behavior; Fig. 2 shows a schematic represen-
tation of the model’s operation and how it relates to the

3 https://www.unidata.ucar.edu/software/netcdf/
4 https://andresperezlopez.github.io/

pysofaconventions/
5 https://plotly.com/python/

HRTF data used for training and evaluation. Section 4.1
describes the overall structure and training strategy, and
Sec. 4.2 details the calculation of the feature vector. Sec-
tion 4.3 describes the search used to determine appropriate
values for the model’s hyperparameters, shown in Fig. 2 in
italic.

Multi-Layer
Perceptron

Training
Schedule

Virtual Location

Estimated
LocationVirtual

Audio

*
HRTF

Broadband
Level Difference

Freq. Band 1..n
Level Difference

Freq. Band 1..m
Phase Delay

Window
Size

Audio
Feature

Extraction

White Noise

Error
(Hyperparameters indicated in Italic)

Individualized Model

Figure 2. Structure of an individualized model and its
relationship to training data

4.1 Model Design and Evaluation

Each model is trained on audio samples transformed by a
single HRTF, to replicate the behavior of that individual. All
of the source directions ŷ present in the HRTF are extracted,
and 20% are reserved for the testing (evaluation) set E; the
remaining 80% form the training set T.

For each impulse response in the HRTF, NumPy gener-
ates half a second of white noise, which is then convolved
with the impulse response to produce the virtual waveform
which would be present at each of the listener’s eardrums.
These waveforms are then divided into windows and a fea-
ture vector x⃗i is calculated for each window i, as detailed in
Sec. 4.2. This feature vector is then presented to the input
layer of an MLP with three output nodes representing a
vector y⃗∗i in Cartesian coordinates. The error ∆y⃗∗i , which
is driven towards zero by the gradient descent optimiza-
tion algorithm, is calculated as the difference between this
estimate and the unit vector ŷi which represents the true
direction to the sound source (Eq. 1).

∆y⃗∗i = y⃗∗i − ŷi (1)

The number of input nodes for the MLP is dependent on
the hyperparameters of the feature extraction stage, which
determine the length of the feature vector x⃗i. The MLP has
a total of five hidden layers; the first contains 128 nodes,
which was chosen to maintain an approximate factor of two
reduction from the input layer. Each subsequent hidden
layer is a factor of two smaller, and the final hidden layer
contains eight nodes which feed the three output nodes y⃗∗.

The input and output nodes use a linear activation func-
tion, and all of the hidden nodes use a common activation
function fhidden, which is a hyperparameter of the model;
this is one of the hyperbolic tangent, the logistic sigmoid
function, or the rectified linear unit (ReLU) (Eq. 2).

fhidden(x) ∈
{

tanh(x),
1

1 + e−x
, max(0, x)

}
(2)
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The MLP is trained with the adaptive moment estimation
(Adam) [20] gradient descent optimization algorithm with
L2 paramater regularization, which introduces three addi-
tional hyperparameters: The L2 penalty coefficient α and
the Adam moment decay rates β1 and β2. This processes
the entire training set T each epoch, in mini-batches of 200
data points. The training process terminates once the overall
training loss fails to improve in 20 consecutive epochs.

As each window of audio is processed separately, the se-
quence of model outputs over time can be considered a sig-
nal of instantaneous direction estimates. In the case where
neither the sound source nor the listener are moving, as here,
the mean of this signal can be used as an overall direction
estimate. It is also desirable for the model to be consistent,
i.e. most directions should produce good estimates. Taking
these concerns into consideration, the accuracy score A
for the model is defined as the 95th percentile of the mean
subtended error angle for all source directions in the testing
set E (Eq. 3). Here, y⃗∗i is the estimated direction for audio
window i, n is the set cardinality function, P95 is the 95th
percentile function, and · is the scalar product.

A = P95








∑
i∈{j:ŷj=ŷ}

arccos
(
~y∗i ·ŷ
||~y∗i ||

)

n({j : ŷj = ŷ}) : ŷ ∈ E






 (3)

4.2 Feature Vector Design

The feature vector x⃗i for a single window i of length N is
calculated from the sampled waveforms that arrive at the
listener’s left and right eardrums, l⃗i ∈ RN and r⃗i ∈ RN .
It is composed of three parts, the broadband ILD xBB,i,
spectral ILD features X⃗i, and spectral phase differences
ϕ⃗i (Eq. 4). This last component effectively encodes the ITD
due to the relationship of phase in the Fourier domain to a
shift in the time domain.

x⃗i =
[
xBB,i, X⃗i, Re

(
ϕ⃗i

)
, Im

(
ϕ⃗i

) ]
(4)

The broadband ILD xBB,i is calculated as twice the dif-
ference between the left and right channels’ log root-mean-
square (RMS) value (Eq.5), which is directly proportional
to the difference in power level, expressed in decibels.

xBB = log(⃗li · l⃗i)− log(r⃗i · r⃗i) (5)

To calculate the spectral features, the DFT of the left and
right waveforms are calculated, L⃗i ∈ CN and R⃗i ∈ CN .
To ensure that the DFT can be calculated efficiently, the
window length N is restricted to be a power of two, and
ranges from 1024 to 8192 samples. This corresponds to a
duration of 23-186 ms. Humans are capable of perform-
ing localization on sounds as brief as 250 ms, so a longer
window duration than this would be unsupported [21].

Each of the spectral portions of the feature vector are repre-
sented by a number of frequency bins corresponding to the
Mel scale. There are several competing definitions of the
Mel scale [22], but they all attempt to maintain the property
that a constant shift along the scale represents a constant
perceived pitch change. This paper uses the definition pro-
vided by the Librosa Python package [17], where Mk is a

filter bank matrix which maps a DFT onto k perceptually-
uniform bins. These bins span the 4-16 kHz range known
to be significant to the sound localization task [10]. The
size of each of filter bank is drawn from a log-uniform
distribution that ranges from 8 to 256 bins. Because the
Mel scale is logarithmic, the lower-frequency bins will be
calculated from fewer DFT samples than higher-frequency
bins; increasing the bin count above 256 can result in these
lower-frequency bins having a lower bandwidth than the
DFT resolution.

The spectral ILD is calculated from the DFT similarly
to the broadband ILD except that the contribution of each
frequency component is weighted according to the Mel-
filterbank Mn (Eq. 6), where n is a hyperparameter repre-
senting the filter bank size. Here, the single vertical bars
represent the component-wise absolute value and the super-
script 2 represents a component-wise squaring operation.
This will result in a different scaling factor than the broad-
band ILD calculation; this is corrected during the MLP
training process.

X⃗i = log(|L⃗i|2Mn)− log(|R⃗i|2Mn) (6)

To calculate the phase portion of the feature vector ϕ⃗i, a
vector ϕ⃗∗i of DFT-domain phase differences is first calcu-
lated (Eq. 7); each component of this vector is a unit-length
complex number. 6 These are then weighted by the coeffi-
cients in the Mel-filterbank Mm, where m is a hyperparam-
eter of the model and re-normalized to unit length (Eq. 8).
To avoid problems with discontinuities in an angular rep-
resentation, the real and complex parts of this vector are
included in the feature set separately.

∀k ∈ [1, N ] : ϕ⃗∗i [k] =
L⃗i[k]

∣∣∣R⃗i[k]
∣∣∣

R⃗i[k]
∣∣∣L⃗i[k]

∣∣∣
(7)

ϕ⃗i =
ϕ⃗∗iMm

|ϕ⃗∗iMm|
(8)

4.3 Hyperparameter Search

Several hyperparameters are described in Secs. 4.1 and
4.2, which fall into two broad categories. The selection
of features can be adjusted by changing the window size
N and by choosing how many bins are used in each of
the two filter banks, m and n. The network training can
be adjusted by changing the activation function fhidden, the
regularization coefficient α, or the Adam parameters β1 and
β2.

Appropriate values for these hyperparameters are obtained
using the Optuna optimization framework [19]. 7 Each trial
trains models for 3 different HRTFs with the hyperparame-
ters suggested by Optuna, and submits the most pessimistic
result as the overall trial result. The study consists of 361 tri-
als with two optimization targets, the model accuracyA and
an estimate of the required training effort. This estimate is

6 The notation ~v[k] here refers to the k-th component of ~v.
7 The source code and hyperparameter search results are available at https:

//2-71828.com/smc22/SMC22_files.zip
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Figure 3. Trial results from Optuna study.

the product of the size of the training set n(T) and the num-
ber of epochs processed during training. Notably absent
from the estimate is any consideration of the computational
cost of each training iteration, such as the differing costs of
calculating gradients for the varying activation functions.

Figure 3 summarizes the results of the Optuna study. Plot
(a) shows a marker for every trial in the study, and plot
(b) show only those trials on the Pareto frontier, i.e. those
that are better in some sense than any other trial. On plot
(a), the trials on the Pareto frontier [23] are indicated in
red. The color saturation indicates the trial order; later trials
are shown with a more saturated color. In both plots, the
accuracy score A appears on the horizontal axis and the
training cost estimate on the vertical. The parameters and
optimization values for the five of the trials on the Pareto
frontier are reported in Table 1.

The clustering of high saturation points, representing later
trials, towards the bottom-left portion of Fig. 3a indicates
that the Optuna algorithm has successfully identified some
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Figure 4. Hyperparameter relative importance.

properties of the hyperparameter space that promote lower
training times and higher accuracy. Figure 4 shows Op-
tuna’s estimate of the relative importance of the various hy-
perparameters to each of the optimization targets. Though
the order is different, the most important three parameters
are the same for both targets: the activation function fhidden,
L2 penalty coefficient α, and window size N .

The accuracy (Fig. 4a) is primarily affected by the choice
of activation function fhidden and the L2 regularization coef-
ficient α. Of the three options evaluated for the activation
function, only the hyperbolic tangent appears on the Pareto
frontier; this is likely due to the trigonometric character of
the underlying problem. The search space for the L2 coeffi-
cient α covered the range [10−5, 10−1] but α ≤ 5.57×10−4

on the Pareto frontier, indicating that the upper portion of
the search range is unfruitful in this application.

In contrast to the accuracy score, the most important factor
in training cost is the audio window size N . Four of the five
trials on the Pareto frontier feature the maximum window
size of 8192 samples. This maximizes the frequency resolu-
tion of the DFT, but also minimizes the number of windows
produced for each audio sample. This, in turn, minimizes
the size of the MLP training set T. There is a strong neg-
ative correlation (-0.62) between log2N and the training
cost, and a weak positive correlation (0.16) between log2N
and the model’s error: Reducing the window size N has the
potential of slightly improving accuracy at a large cost in
training effort, as can be seen in the results of trial #317.

5. RESULTS AND ANALYSIS

Optuna trial #347 was selected as having the best tradeoff
between accuracy and training cost. The parameters from
this trial were used to train models for all 48 HRTF records
in the ITF database; the results are plotted in Figure 5. With
the exception of MRT02, all of the HRTFs form a dense
cluster. The accuracy scores for this cluster, which represent
the 95th percentile error for each individual model, have
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a mean of 19.3° and a standard deviation of 4.45°. As the
models used for the parameter search lie in the center of this
cluster, there is no evidence that the search over-optimized
for those models specifically.

Three of these models were selected for further analysis:
the most accurate (MRT35), the least accurate within the
main cluster (MRT22), and the outlier (MRT02). Their
individual results are plotted in figure 6. The polar plots
show the directions that were selected for evaluation and
their corresponding errors. The emitter azimuth is plotted
on the angular axis, with the listener facing the top of the
page. The elevation angle is plotted on the radial axis: The
center point represents a vertical alignment and the outer
edge represents the horizontal. In each case, the sampling
of test vectors is fairly uniform with a bias towards high
elevation angles. This bias is inherent in the sampling
method used to originally collect the ITA-HRTF data: The
same number of azimuth angles were sampled for every
elevation angle, so the subtended angle between samples
gets denser as the elevation angle increases.

The bottom row of figure 6 shows a kernel-density es-
timate of the error distribution. In each case, this resem-
bles a log-normal distribution. The maximum likelihood
log-normal distribution for each of the 48 trained models
predicts the observed quartiles within 14% in all cases. The
median estimation error is 3.6% for the lower quartile and
4.3% for the upper quartile.

The color of each marker represents the mean error of
sound samples from the indicated direction, where blue
points represent a correct prediction and red points indicate
a significant error. The two models from the main cluster
both exhibit a few randomly-placed outliers and some gen-
eral regions that have a relatively lower accuracy: MRT35
generally performs well on sounds coming from ahead or
above, but performance degrades as the emitter moves to
the side. Sounds from very low elevation angles in the left-
rear quadrant are particularly troublesome. MRT22 has a
reasonable accuracy for sounds that come from above and
ahead, but significantly worse performance for all sources
below the horizontal.

The outlier, MRT02, still shows good performance for
sounds that appear from directly overhead, where the sam-
pling density is highest. Aside from that, the errors appear
to be quite uniformly distributed. Where records 22 and
35 sampled elevation angles with a 5° period, the elevation
angles in record 2 are sampled with a 10° period. This

indicates that the hyperparameter configuration is strongly
dependent on the distribution of sample directions in the
HRTF.

6. CONCLUSIONS

The hyperparameter search described here takes 3 days
to complete on a 6-core Intel i7-10750H processor. This
high computational cost severely limits the dimensionality
of the hyperparameter search space, rendering larger stud-
ies intractable, such as exploring different network topolo-
gies. The authors plan to replicate this model in a high-
performance computing (HPC) environment to enable such
larger studies.

Overall, the developed model performs comparably to hu-
mans. When presented with a short-duration sound sample,
humans are able to locate a sound source within a p95 confi-
dence interval of (-20.2°, 21.6°) azimuth and (-23.5°, 32.2°)
elevation [21]. The average model presented here has a
95th percentile error of 19.3°. Excluding the one outlier,
the worst model observed has a 95th percentile error of
30.1°.

The derived hyperparameters show a good resilience to
HRTF contents, as long as the distribution of sampled HRTF
directions matches the model HRTFs used for the hyper-
parameter search. Coupled with the fact the features have
been derived from characteristics known to be important
in the human localization process, this provides strong evi-
dence that this is a good computational model for human
localization, suitable for use in evaluating spatial audio
systems.
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