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ABSTRACT

The pitch chroma is a popular way to represent pitch in-
formation in an octave independent way, with applications
in automatic chord recognition, cover song identification,
audio-to-score alignment, and others. Early chroma ex-
traction algorithms employed expert knowledge to derive
pitch chromas from short-time spectra. With the rise of
deep learning, the emphasis moved from algorithm design
to the structure of the network and the selection of appro-
priate training data. The approaches perform differently
for various types of audio input. We conducted a set of
experiments in order to explore the qualitative properties
that each algorithm exhibits. These include how the num-
ber of concurrent pitches influences the chroma represen-
tation, and how noise or unpitched percussion can degrade
the performance of the algorithms. We performed a quan-
titative analysis of various algorithms under these scenar-
ios. The results show that chromas based on deep learning
show huge potential, especially when it comes to noise re-
duction and ignoring non-tonal aspects of the music. How-
ever, we also found that some deep learning based chromas
fail to accurately detect pitches at lower polyphony levels.
We reflect on these results and discuss some paths to im-
provements for future chroma extraction algorithms.

1. INTRODUCTION

Data representation is an important aspect in designing sys-
tems that analyze and process real-world data. In the case
of natural language processing it is common to use the
words themselves with special tokens to indicate the be-
ginning and end of phrases. In computer vision, the RGB
channels of the images are used to feed the algorithms. In
both of these areas, an unprocessed representation of the
data can be used as the input for the systems. For music
data, approaches that directly act on time-domain sample
data have been less common. This can be attributed to the
fact that the waveform representation is inherently diffi-
cult to interpret for humans and hence makes it difficult to
design expert systems without any intermediate represen-
tation. More practically, machine learning systems that act
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on waveform data turned out to be significantly harder to
train and usually result in larger model sizes that require
more training data [1]. Intermediate representations that
transform the raw audio into some more interpretable rep-
resentation, however, have proven useful even for machine
learning systems, as they can reduce the dimensionality
of the input data and often lead to more accurate and ro-
bust results. Since music can be understood in different
aspects, such as rhythm, melody, instrumentation, genre,
etc., different intermediate representations such as STFT
spectrograms, CQT spectrograms or Mel spectrograms, or
features derived from these have been extensively used for
analysis algorithms.

The pitch chroma is a feature addressing the tonal infor-
mation contained in a music signal. It is sometimes de-
noted as pitch-class profile (PCP) or simply as chroma. It
encodes tonal information of music in an octave indepen-
dent representation, also known as pitch-class. A chroma
is a vector of usually 12 dimensions, each representing the
presence of a pitch class (C, C#, D, . . . , B). Finer pitch res-
olutions like quarter tones (a chroma with 24 dimensions)
can be used, but are less common in the literature. Chro-
mas are usually extracted for short, consecutive blocks of
audio, resulting in a chromagram representation for an ex-
tended section of music. Pitch chroma representations can
be considered more robust than those accounting for octave
height, since the compression to a single octave eliminates
wrong pitch estimates in a different octave (octave errors)
caused by ambiguous harmonic patterns in the spectrum.
Although initially designed for automatic chord estimation
(ACE), chromas became useful in a wide range of tasks,
such as cover version identification (CVI) [2], audio-to-
score alignment [3] and music creation [4].

Given the above definition and applications for pitch chro-
mas, a chroma extraction algorithm is expected to fulfil
a number of tasks when transforming audio to chromas.
Generally, a chroma extractor should eliminate any type of
irrelevant spectral content in order not to obscure the tonal
information. Irrelevant content can be any transient, non-
tonal components (percussive or noise-like) such as drums,
cheering audience, etc. We here neglect the fact that per-
cussive instruments might also have a tonal component to
them. In the same way, overtones should not contribute to
pitch classes other than their corresponding fundamental
frequency. It is arguable whether a chroma should rep-
resent the tonal content as it is, or whether it should in-
corporate further processing steps depending on the target
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application, e.g temporal smoothing in the case of ACE.
In any case, a transparent processing structure would re-
quire a chroma to only represent those pitch classes that
are present at each point in time. Subsequent processing
stages would decide then, if a set of notes belong to an
arpeggiated chord, or if some notes are ornaments that do
not belong to the chord itself.

The rest of the paper is divided into four sections. In Sec-
tion 2 we give an overview of the most popular algorithms,
highlighting the main differences and evolution over time.
In Section 3 we describe the experiments we have carried
out in order to do a qualitative analysis of the different ap-
proaches. The results derived from the different experi-
ments are presented in Section 4. Section 5 contains our
reflections on the properties of the different chromas and
possible future research directions.

2. RELATED WORK

In this section, we present an overview of various notable
approaches to chroma extraction. We divided the algo-
rithms into three different classes: knowledge-based chro-
mas, deep chromas from chord labels, and multipitch deep
chromas. In the first category, we included chroma algo-
rithms that only use expert knowledge and digital signal
processing techniques to obtain chroma representations.
The second one contains chroma algorithms that make use
of deep learning with ACE datasets. Lastly, we introduce
chroma algorithms trained with datasets containing pitch
annotations instead of chord labels.

2.1 Knowledge-based Chromas

Chroma algorithms evolved since the first algorithm pre-
sented by Fujishima [5]. In his work, he presents a bank
of non-overlapping rectangular filters (see Figure 1a) that
maps STFT magnitude spectra to pitch classes. After ap-
plying the filters to the spectrum, the energy of all filter
outputs belonging to the same pitch class are accumulated
to form the pitch chroma. The fact that the filters are non-
overlapping makes them quite selective w.r.t the frequency
components. The rectangular shape of the filters has the
effect that all frequency components in a semitone range
contribute equally to the pitch class. Since the tonal com-
ponents of interest will usually appear closer the the center
of the filter, it might be beneficial to give less weight to
components that deviate from the center, in order to reduce
the influence of non-tonal (noise, percussion) and spurious
components. Following this idea, Ellis & Poliner [6] pro-
posed a filterbank of Gaussian filters with a semitone spac-
ing. With this shape, frequency components further away
from the center of the filter will contribute less to that spe-
cific pitch class. Also, to reduce the influence of percussion
or other elements, the filters emphasize mid-frequencies,
where most of the tonal content will be located. See Fig-
ure 1 for a comparison of Fujishima and Ellis & Poliner
filters.

With both these approaches, energies of harmonics which
contribute to the pitch perception of their fundamental are
here erroneously assigned to different pitch classes. E.g.

(a) Fujishima’s [5] filters (b) Ellis & Poliner filterbank [6]

Figure 1: Filterbanks in the 2-5 kHz range. Each color rep-
resents a different pitch class. Fujishima rectangular filters
make abrupt changes between pitch assignments. Ellis &
Poliner penalize the deviations from the ideal frequencies.

the 3rd harmonic is a perfect fifth above the fundamen-
tal and will hence not contribute to the pitch class of its
fundamental, but to the pitch class a fifth above. This
leads to false contributions to the resulting pitch chroma.
GÂomez [7] therefore proposes to extract harmonic pitch-
class profiles (HPCP). This method differs from the previ-
ous methods in two significant ways: Firstly, it only con-
siders peaks of the spectrum instead of complete frequency
bands, and it secondly also maps harmonics to the pitch
class of their fundamental frequency. The use of peaks
aims to reduce the influence of undesired elements, such as
unpitched percussion or background noise. The mapping
of harmonics is achieved by accumulating the energies not
only of the fundamentals but also of their overtones with
decreasing weight. The contribution of the harmonics to
the fundamental can be seen as a pattern-matching mecha-
nism.

The NNLS chroma proposed by Mauch & Dixon [8] em-
ploys another pattern matching mechanism to identify har-
monic structures in the short-time spectrogram. Their sys-
tem first maps STFT magnitude spectra onto a log-frequency
axis with a 1/3-semitone resolution. Given a dictionary
of prototypical spectra for a pitch range range from A0 to
G#6, approximate note activations are extracted by means
of a non-negative least squares (NNLS) algorithm. The
note activations are then summarized to form the pitch classes
for each instantaneous chroma.

Another popular chroma representation with pattern match-
ing mechanisms is the chroma DCT-reduced log pitch (CRP)
[9]. This approach is inspired by mel-frequency cepstral
coefficients (MFCCs), a popular representation for speech,
which produces a set of coefficients where the firsts ones
are closely related to timbre [10]. During the MFCC ex-
traction process, the discrete cosine transform (DCT) cap-
tures periodicities present in the spectrum. After mapping
the STFT magnitude spectra onto a log-frequency axis with
a semitone resolution, the authors apply the DCT as it is
done during the MFCC extraction process to extract a num-
ber of coefficients. The information concerning timbre is
discarded by setting the first n coefficients to zero, and the
inverse DCT is expected to return a chroma with improved
robustness to timbre. Both the number of coefficients to
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Figure 2: The general schema to train deep chromas. The
audio signal is converted to an intermediate representation
such (e.g: CQT), which is used as input for the neural net-
work that returns the chromagrams. The red box illustrates
the case of Wu & Li [11] where a MIDI score is used to
create the audio and later to serve as the ground-truth

extract and to discard are parameters that must be set ac-
cording to the use case.

2.2 Deep Chromas: Chord Labels

Pattern matching mechanisms help to distinguish between
fundamentals and harmonics, but also add even more pa-
rameters in order to adapt to multiple situations: The tun-
ing reference, the number of harmonics and peaks to con-
sider, the parameters used to create the note dictionary
in NNLS chromas, the number of MFCCs to retain, etc.
Recalculating the optimal parameters for different music
styles, instrumentation and possible sonorities become im-
practical for many applications. With the arrival of deep
learning (DL), researchers switched from manually design-
ing these algorithms and tuning their parameters to letting
neural networks (NN) learn them from examples. We call
this set of chroma extraction algorithms deep chromas.

Most of the chromas extracted using these techniques were
designed to improve the accuracy of ACE systems, mostly
because a critical amount of data was available for west-
ern pop music, making it possible to train deep learning
systems. In their work, Korzeniowski & Widmer [12] de-
signed a system named the deep chroma extractor (DCE)
that learns to extract chromas from the output of a filter-
bank. This is to the best of our knowledge the very first
deep chroma, and its architecture is based one of the ear-
liest kinds of NNs, the multilayer perceptron. Given a set
of audio signals and corresponding chord labels, specific
chroma targets are set up that contain activations of those
pitch classes that correspond to the annotated chord at that
time instance. For the estimation of a single chroma in-
stance, the authors consider a context window of approx-
imately 0.7 seconds around the time instance. This pro-
vides the neural network the opportunity to take preceding
and subsequent content into account when estimating each
chroma.

Another algorithm that extracts chroma features from au-
dio for the purpose of ACE was proposed in [13]. Instead
of using a fully connected layer and context frames, the
authors employed convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). The CNN part
learns convolution kernels to convolve with the input spec-
trogram, looking for patterns related to pitch sensations.
RNNs are a particular type of neural network that can con-
sider information about previous and posterior audio frames.
Here, the RNN part learns to ignore spurious changes in the
spectrum through time, eliminating the necessity of using
fixed-length context frames as in the deep chroma extrac-
tor.

2.3 Deep Chromas: Multi-pitch Labels

Since the deep chroma approaches of the previous section
are trained on chord-based chroma targets, those systems
will usually output a set of concurrent pitches. This might
be acceptable or even desired for ACE applications, how-
ever, it makes those extractors less suitable for applications
that rely on the analysis of more detailed pitch-class infor-
mation. To obtain a more accurate representation, instead
of using chord labels, Wu & Li [11] employ chroma tar-
gets based on note annotations, i.e. onset time, offset time
and pitch. This enables the network to capture only the
active pitch classes at each point in time. This network is
based on a CNN. It uses the harmonic constant Q transform
(HCQT) [14] as its input representation, which associates
each CQT bin with its corresponding harmonics. This al-
lows the network to see fundamental frequencies and har-
monics simultaneously. Due to the lack of sufficient real-
world data with corresponding note annotations, the au-
thors revert to synthesized MIDI data. 6000 MIDI files
were collected from the RWC Classical, Jazz and Genre
dataset [15], and the Lakh MIDI dataset [16] ensuring a di-
verse range of musical styles. These files were synthesized
using a sample-based SoundFont to create the audio input
of the network. The problem of creating an audio dataset of
real instruments with finer pitch-class information is that it
would require note annotations including pitch, onset and
offset times with sufficient precision. This laborious pro-
cess does not scale easily to the amount of required data
for training deep NNs.

Weiss et al. [17,18] proposed to circumvent this problem
by using real audio recordings of classical music together
with non-aligned MIDI scores. To temporally match in-
put and output data of the network, the authors employ
the connectionist-temporal-classification (CTC) loss. The
CTC was originally proposed for automatic speech recog-
nition [19] where ground truth sentences require temporal
alignment with speech utterances. This loss does not re-
quire a precise alignment between audio and score. Instead
it only relies on the correct order of note events in both the
MIDI score and the audio.

3. EXPERIMENTS

The chroma extractor families introduced in the previous
section follow different design principles and partly serve

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

226



Polyphony 1 2 3 4 5 6
# Examples 1798 723 963 955 390 205

Table 1: Number of examples per polyphony level.

different purposes. We are interested in analyzing the be-
haviour of these systems for different types of audio input.
More specifically, the accuracy of these systems was stud-
ied for audio inputs with varying levels of polyphony, as
well as their ability to suppress non-tonal elements. For
this purpose, we conducted a number of experiments in
which we measured these properties quantitatively. A num-
ber of relevant use cases was defined and corresponding
pairs of audio/chromagram were set up for each of those.
To obtain audio/ground-truth chromagram pairs, we use a
synthesized MIDI dataset with individual instrument stems
(see Subsection 3.4). The audio of those pairs were then
processed by a selection of existing chroma extraction al-
gorithms. The output of each system was compared with
the target chromas and metrics were computed to measure
the similarity between actual and target chromas.

3.1 Varying Polyphony

In a first set of experiments, we evaluated the accuracy of
the chroma algorithms for different levels of polyphony,
i.e. different numbers of concurrent pitches. For that pur-
pose, the dataset was divided into sections of 1, 2, 3, ...
up to 6 concurrent pitches. We ensured that each fragment
was at least 4 seconds long, resulting in several hundred
examples for each polyphony level (see Table 1). We ex-
pect the chromas to contain high values at the present pitch
classes and low values at all others. The accuracy of the
systems is measured as the cosine similarity of each chro-
magram output o and the corresponding target chroma t:

S(o, t) =
o
T · t

||o|| · ||t|| (1)

These similarities cover a range from 0 to 1, with 0 indi-
cating complete dissimilarity and 1 identical chromas. We
call the cosine similarity between the algorithm’s chroma
and the ground truth chroma accuracy.

3.2 Suppression of Non-tonal Elements

A second set of experiments looked at the suppression of
non-tonal components in the chroma output. As discussed
in Section 1, chromas are expected to only capture the tonal
content. Any non-tonal components should not contribute
to the result. To measure the influence of percussive ele-
ments, we selected fragments from the datasets containing
percussion with a minimum length of 10s. The individual
stems of the dataset allowed us to store a version of each
fragment without percussive elements alongside a version
containing the full mix. The target chromas are the same
for both cases since the percussive elements do not con-
tribute to the targets. Again, we measure the cosine simi-
larity between the actual and the target chromas. Percus-
sive components are very common, particularly in popular
music tracks, however, those elements usually have limited

Algorithm Type Name
Ellis & Poliner Knowledge-based Ellis

HPCP Knowledge-based Gomez
NNLS Knowledge-based Mauch
DCE Deep: chords Korzeniowski

McFee & Bello Deep: chords McFee
Wu & Li Deep: multi-pitch Wu

Weiss & Peeters Deep: multi-pitch Weiss

Table 2: The algorithms used in our experiments, along
with the type of algorithms. The name column indicates
the way we will refer to these algorithms in the results.

durations and hence only affect a part of the spectrogram.
Stationary noise, on the other hand, poses a different chal-
lenge, covering a much wider time-frequency range and is
also present in otherwise silent sections. Therefore we also
evaluated the chroma extractors on the input sequences
with added white noise instead of percussion. The ratio of
tonal and non-tonal components depends on the mix and is
most likely not fixed across music tracks. We hence eval-
uated percussion and noise at various levels of intensity.
We use the signal-to-noise ratio (SNR) to characterize how
present they are in relation to the tonal elements. Given a
signal x with the tonal elements, and the signal y with only
non-tonal elements, we define our SNR as:

SNRdB = 10 log10

(∑
i x

2
i∑

j y
2
j

)
(2)

In this case, we compare the algorithm’s output for the
signals x and y. Note that by varying the intensity of the
non-tonal elements, we do not want to compare how much
the algorithm resembles the ground truth, but how much
of these elements’ presence is able to achieve a signifi-
cant change at the resulting chromagram. Instead, as we
compare how similar is the resulting chromagram with and
without the presence of non-tonal elements, we call in this
case the result of the cosine distance chroma similarity.

3.3 Tested Systems

We selected seven existing chroma extraction systems. An
overview can be found in Table 2.

From the knowledge-based chromas (see Section 2.1) we
employed Ellis & Poliner’s system [6] as implemented in
Librosa [20] 1 . For HPCP by GÂomez we used the Essen-
tia library [21]. In the case of NNLS we used the original
vamp plugin 2 with a python wrapper; note that this algo-
rithm returns a chroma for bass frequencies and another
one for treble frequencies. We only used the treble chroma
output of this algorithm.

For the family of chromas based on chord labels (see Sec-
tion 2.2), we selected two algorithms. The DCE by Ko-
rzeniowski & Widmer as implemented in the Madmom li-
brary [22], which partially differs from the original model
but according to the authors achieves similar results. For

1 https://librosa.org/doc/main/generated/
librosa.feature.chroma_stft.html

2 http://www.isophonics.net/nnls-chroma
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Figure 3: Mean chroma accuracy for each algorithm ac-
cording to the number of pitches present. The algorithms
that perform better for smaller levers of polyphony (Ellis
and Gomez) perform worse at higher levels and viceversa.

the algorithm by McFee & Bello [13], we used the the pub-
lic implementation provided by the authors 3 .

For the family of deep chromas based on multi-pitch la-
bels (see Section 2.3) we selected two algorithms: Wu &
Li [11], and Weiss et al [18] with the public implemen-
tations given by the authors 4 5 . Note that from the two
works previously mentioned by Weiss, we selected the one
using prealignment since it seems to provide slightly better
results.

Each of the chromas based on deep learning operate at
their own hop size, FFT size, and sample rate. For all the
knowledge-based algorithms we used a hop size of 4410, a
FFT size of 8096, and a sample rate of 44100.

3.4 Dataset

For all experiments, the Slakh dataset [23] was employed,
which contains audio synthesized from 2100 files in the
MIDI Lakh dataset (140 hours in total). There are 34 dif-
ferent instrument categories that cover a wide range of mu-
sical instrument timbres. The MIDI files were used to set
up our target chroma representations for each track. The
target chromas were sampled with the same hop size as the
algorithms.

4. RESULTS

4.1 Varying Polyphony

The results for the polyphony experiments can be seen in
Figure 3. This figure shows the mean chroma accuracy for
the different levels of polyphony described in section 3.1.

We can observe two main tendencies: Chroma algorithms
with less intricate pattern matching mechanisms such as
Ellis or Gomez, perform better at lower levels of polyphony,
but achieve lower chroma accuracies as the number of con-
current pitches grows. The rest of the algorithms on the
other hand, perform worse for 1 or 2 concurrent pitches,

3 https://github.com/bmcfee/crema
4 https://github.com/Xiao-Ming/

ChordRecognitionMIDITrainedExtractor
5 https://github.com/christofw/pitchclass_mctc

(a)

(b)

Figure 4: From left to right, the target chromas and chro-
magrams from Gomez, Korzeniowski, and Weiss.

but then reach a high chroma accuracies for 3 or more con-
current pitch-classes.

Deep chromas based on chords are at the lower part of
this chart for 1 and 2 concurrent pitches. This is an ex-
pected behaviour since the models were trained on chord
labels that contain three or more pitches, making the out-
puts of these algorithms usually chord-like chromas.

Deep chromas trained on multi-pitch labels follow the
same trend as those trained on chord chromas: they ex-
hibit better results for higher polyphony. But while the
algorithm of Weiss is almost as good as Ellis or Gomez
for 1 and 2 pitches, the chroma accuracy of Wu is signifi-
cantly lower. We hypothesize that this could be attributed
to the datasets used to train the models. Wu was trained
with synthesised MIDI files from various datasets which
consist mostly of pop music. This results in just a few pas-
sages where there are just one or two notes being played
simultaneously. In contrast, Weiss was trained with clas-
sical music, which is more likely to have solo passages or
sections where several instruments playing in unison.

To provide some intuition for these result, Figures 4a and
4b show chromagrams for two example sequences. The
first is an excerpt of multiple concurrent pitches. The algo-
rithm from Gomez gets some of the pitches right but strug-
gles to clearly show all simultaneous notes; The DCE by
Korzeniowski shows concurrent pitches more clearly, but
at the same time smoothes the activations over time, re-
sulting in ‘chord-like’ activations. The algorithm by Weiss
generally shows less clear activations than the DCE but
overall captures the finer details of the target chromagrams
while at the same time recognising concurrent pitches. The
second example in Fig. 4b shows a short melody with only
a single active pitch at each time instance. Gomez’ algo-
rithm clearly highlights the correct pitch classes, but also
contains spurious peaks, most likely caused by overtones
that were not correctly assigned to their fundamentals. The
DCE by Korzeniowski on the other hand contains activa-
tions for pitches that are actually not present in the audio
at all. In order to produce chord-like chromas, the addi-
tional pitches form a major triad above the actual pitch.
The extraction algorithm by Weiss only contains spurious
activations for the last note.
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Figure 5: Chroma accuracy in 3 different scenarios: Just
tonal information, added noise, and percussion. The al-
gorithms performed best when only tonal elements were
present in the signal. After adding noise or percussion
(SNRdB = −15) the output of the chromagrams resem-
bled less to the targets.

Figure 6: Chroma similarity as a function of percussion
intensity. A smaller slope means that the algorithm is less
affected by the presence of percussion.

4.2 Suppression of Non-tonal Elements

Figure 5 shows the results of the experiments with non-
tonal components. It can clearly be seen that the addition
of noise and percussion in all cases degrades the accuracy
of the chromas. While the algorithms by Korzeniowski,
McFee and Wu are least affected by the presence of non-
tonal elements, all other algorithms show significant losses
in accuracy. However, noise and percussion do not affect
the algorithms in the same way. The peak selection from
Gomez for example deals very well with noise, however, it
struggles to suppress percussive elements in the spectrum.
The opposite is the case for the algorithms by Mauch and
Wu: noise seems to affect these algorithms more than per-
cussion.

Figures 6 and 7 show how the intensity of the non-tonal
elements (percussion and noise, respectively) affects the

Figure 7: Chroma similarity as a function of noise inten-
sity. A smaller slope means that the algorithm is less af-
fected by the presence of noise.

algorithms. Some algorithms were able to deal with the
non-tonal elements even with an SNRdB = −15, and af-
ter SNRdB = 0 most of the algorithms had a chroma sim-
ilarity of 0.95 for both scenarios. Notice however that Wu
is affected by noise even when this is quite small compared
to the tonal signal.

5. CONCLUSIONS

In this work we investigated the performance of several ex-
isting pitch chroma extraction algorithms, analyzing their
capability to deal with tonal content of increasing polyphony,
as well as their robustness against non-tonal components.
Given a dataset of music tracks with corresponding MIDI
ground truth, pitch chromas were extracted by each algo-
rithm for each scenario, and their accuracy w.r.t. a target
chroma representation was measured. Results showed that
chroma extraction algorithms based on deep learning pro-
duce a more accurate representation for higher polyphony
levels and are generally more robust in suppressing non-
tonal components. However, their reduced accuracy for
lower polyphony levels hints at biases in the correspond-
ing training sets.

Chromas are a well known and widespread feature in MIR.
We argue that a generic chroma extraction algorithm should
capture the tonal content as it is, thereby neither adding
pitches that are not present in the audio nor performing
additional processing steps such as temporal smoothing.
While this might be obvious for applications such as audio-
to-score alignment for which a temporal resolution at the
note level is required [3], it will also be beneficial for ACE
as it disentangles the detection of active pitch classes from
the interpretation by a musical model.

Our results in Fig. 5 show that chroma extraction algo-
rithms overall yield meaningful representations with de-
cent accuracies. However, even for the case of music con-
taining only tonal components, median accuracies do not
exceed the 90% mark. With additional percussion or noise,
these accuracies decrease. This shows that there is still
room for improvement in the overall quality of the algo-
rithms. The fact that the algorithm by Wu & Li achieves
the highest results for content with only tonal components,
encourages us to think that using multi-pitch content for
the training of chroma algorithms is indeed worthwhile and
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might pave the way to more accurate chroma representa-
tions.

A crucial factor for the training of better systems, how-
ever, is the choice of training data. Obviously, a sufficient
amount of real-world audio with precise annotations is re-
quired, but also other qualitative data properties seem to
be important: a diverse number of timbres and the pres-
ence of unpitched percussion and potentially non-musical
sounds. Biases in the number of concurrent pitches should
be addressed as well. This could be either by balancing the
levels of polyphony in the training data or using loss func-
tions that can diminish the number of false positives, such
as the Weighted Binary Cross Entropy [24].
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