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ABSTRACT

Guitar tablature transcription is an important but under-
studied problem within the field of music information re-
trieval. Traditional signal processing approaches offer only
limited performance on the task, and there is little acoustic
data with transcription labels for training machine learn-
ing models. However, guitar transcription labels alone are
more widely available in the form of tablature, which is
commonly shared among guitarists online. In this work, a
collection of symbolic tablature is leveraged to estimate the
pairwise likelihood of notes on the guitar. The output layer
of a baseline tablature transcription model is reformulated,
such that an inhibition loss can be incorporated to discour-
age the co-activation of unlikely note pairs. This natu-
rally enforces playability constraints for guitar, and yields
tablature which is more consistent with the symbolic data
used to estimate pairwise likelihoods. With this methodol-
ogy, we show that symbolic tablature can be used to shape
the distribution of a tablature transcription model’s predic-
tions, even when little acoustic data is available.

1. INTRODUCTION

Automatic Music Transcription (AMT) is a well-known
task within the Music Information Retrieval (MIR) com-
munity dealing with the estimation of note content within
a music signal [1]. Guitar tablature transcription refers to
the specific problem of identifying all of the notes within
a solo guitar recording and assigning the string that was
used to play them. The task represents the determination
of not only what was played, but also how it was played
on the instrument. This information is necessary to realize
tablature, a type of prescriptive notation for stringed in-
struments where fret numbers are superimposed atop lines
representing each string. The fret numbers correspond to
the notes that are to be played for a specific piece.

The guitar is a very popular musical instrument with users
spanning all skill levels. The value of knowing how a piece
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was played on guitar is immeasurable for the vast commu-
nity of guitarists learning to play the instrument. Guitar has
a relatively low barrier to entry w.r.t. music theory knowl-
edge, and many guitarists use guitar tablature instead of
standard staff notation. Even more experienced players of-
ten prefer tablature for storing and communicating guitar-
specific music ideas due to the intuitiveness and simplicity.
Tablature is also widely shared across the internet through
primarily user-curated websites such as Ulimate-Guitar 1 .

Despite the popularity of guitar, the instrument has re-
ceived considerably less attention when it comes to music
transcription. The main obstacles stem from a lack of au-
dio recordings with transcription labels, or acoustic data,
capturing the exceeding variability of the instrument. The
guitar has many expressive dimensions such as the pluck-
ing style, plucking location, the use of embellishments 2 ,
etc. These and many other factors can affect the audio.
Standard guitars do not have a digital interface, and ex-
pensive manual processing is required to obtain qualitative
note labels. Without large datasets capturing the breadth
of the intrument, it is very difficult to train reliable models
and avoid over-fitting.

Since a standard guitar has six independent strings, it is a
polyphonic instrument. This means that guitar transcrip-
tion carries all of the intrinsic challenges of polyphonic
note transcription. One further challenge is the estimation
of the string on which each note was played. The pitch
ranges of adjacent strings have a significant overlap, with
their lowest pitches being only 4-5 semitones apart. The
timbral cues of different strings are very subtle, and it is
difficult to learn these without a lot of data.

There have been several attempts to realize systems which
can transcribe solo guitar audio into tablature. Often, the
approaches consist of two-stage systems, which first esti-
mate pitch salience and then map pitch estimates to the gui-
tar. Many works employ a basic signal processing pipeline,
e.g. [2±4], whereby some form of spectral analysis or peak-
picking is carried out. Some approaches attempt to esti-
mate the string of detected pitches based off of inharmonic-
ity measurements [5], which vary across strings. Others
employ graph-search algorithms to find the optimal path
through a list of fingerings for the observed pitches [6±8].
Often, to determine if a fingering or a transition is opti-
mal or even feasible, these approaches have relied on rule-
based procedures with hand-crafted weightings.

1 https://www.ultimate-guitar.com/
2 Examples include bends, slides, hammer-ons/offs, vibrato, etc.
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More recently, machine learning has become a popular
strategy for guitar tablature transcription. Several works
train Hidden Markov Models (HMMs) to model the transi-
tion between fingerings and chords [9, 10]. Other works
perform classification to estimate, among other parame-
ters, the string associated with each note using a collection
of hand-crafted features [4], or the use of a Deep Belief
Network (DBN) to produce pitch estimates [11]. Bayesian
classification has also been proposed [12±14] to estimate
the string and fret of notes.

Convolutional Neural Network (CNN) based approaches
have been proposed [15, 16] to perform the task of pitch
estimation and tablature arrangement jointly. These mod-
els benefit from being able to learn features directly from
acoustic data, and tend to generalize much more effectively
to real-world data. Our main contributions stem from a
simple observation: the output layer formulation of these
CNNs is prone to falsely producing tablature with dupli-
cated pitches. This is because the output layer formulation
represents six independent classification problems, i.e., one
per string. While the output neurons of each softmax group
implicitly share information from previous layers of the
network, they do not explicitly communicate when deter-
mining which class to choose. In contrast, the fretting of
one string is highly correlated to other string frettings. This
is related to what pitch intervals are likely to be played at
different locations as well as bio-mechanical feasibility.

In order to incorporate the knowledge of likely fingerings
and feasibility, we propose a new output layer formula-
tion for guitar tablature transcription models 3 . In the new
formulation, a novel inhibition objective is applied during
training to discourage the concurrent activation of unlikely
or infeasible fingerings. The inhibition weights are derived
from the likelihood of co-occurrence for each pair of notes
on the guitar, which is estimated using DadaGP [17], a
large dataset of guitar tablature. The proposed output layer
formulation essentially learns a language model without
requiring acoustic data. We directly compare the new for-
mulation to the previous formulation, and show that its pre-
dictions more closely match the distribution of DadaGP.

2. PROPOSED METHOD

Given a collection of symbolic tablature data, the pairwise
likelihood of each string and fret (S/F) combination can be
estimated. The new output layer formulation is amenable
to training with the pairwise likelihoods through a pair-
wise inhibition loss. As a result, the predictions of the new
output layer more closely match the distribution of the tab-
lature within the collection. Assuming a preponderance of
the tablature is playable, the generated tablature will natu-
rally be more feasible to play. In the following sections, we
introduce the baseline CNN architecture used in this work,
and discuss the new output layer formulation in more de-
tail, the process of estimating the pairwise likelihood of
each S/F combination, and the proposed inhibition loss.

3 All code is available at https://github.com/cwitkowitz/
guitar-transcription-with-inhibition.

2.1 Baseline Model

We employ TabCNN [16] as our baseline model for gui-
tar tablature transcription, leaving most of the original de-
sign choices largely unchanged. TabCNN is a simple CNN
which processes Constant-Q Transform (CQT) frames and
produces sets of fret class predictions. It was designed to
be compatible with real-time processing, so it is relatively
lightweight and operates on multiple CQT frames in or-
der to make one set of predictions. The model comprised
three 2D convolutional layers with ReLU activations, fol-
lowed by a max pooling layer, a fully-connected layer with
ReLU activation, and finally the output layer discussed in
the following section. During training, dropout is applied
after the max pooling layer and directly before the output
layer. The network is trained using AdaDelta optimizer
with an initial learning rate of 1.0. We implemented the
model from scratch in PyTorch, using all of the same hy-
perparameters as in the original paper for feature extraction
and the model architecture. We also insert a uni-directional
long short-term memory (LSTM) [18] layer before the out-
put layer. This is a simple modification which results in a
relatively significant improvement (see Sec. 4), without
disrupting the real-time processing capacity of TabCNN.

2.2 Output Layer Formulation

The output layer of TabCNN is a fully-connected layer
with one softmax activation for each string. The output
neurons represent all combinations of string s ∈ {1, ..., 6}
and fret class f ∈ {−1, 0, 1, ..., F}, where f = −1 repre-
sents a class for silence, f = 0 represents the open string,
and F is the total number of frets supported. In the stan-
dard model, the softmax operations are applied indepen-
dently to the neurons associated with each string. This
results in probability activations zs,f,n for each frame n
where zs,f,n > 0 ∀s, f, n and

∑F
f=−1 zs,f,n = 1, ∀s, n.

The loss for a track is then computed by summing the cat-
egorical cross entropy for each string group and averaging
across the N total frames. This can be expressed as

LCCE = − 1

N

N∑

n=1

6∑

s=1

log (zs,f ′,n), (1)

where zs,f ′,n is the activation corresponding to the ground
truth fret f ′ for string s during frame n. Inference then
consists of choosing the frets with the highest activation,
resulting in six predictions for each frame. Using a binary
representation the predictions can be written as

ys,f,n = I(argmax
f
{zs,f,n} = f), (2)

where I(·) is the indicator function. We refer to this for-
mulation as the 6D Softmax formulation. One advantage
of this formulation is that the model is not capable of gen-
erating invalid predictions, i.e., only one note can be cho-
sen at maximum for each string. While this property is
highly desirable, the six softmax activations act indepen-
dent of one another, causing the model to treat transcription
as six somewhat independent classification tasks. In prac-
tice, the ground truth S/F combinations making up a fin-
gering arrangement are highly correlated at all times. This
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is due to both the physical limitations of what a human
hand can play as well as musical motivations that make it
unlikely to play certain pitches at the same time.

In contrast, we propose to formulate the output layer as
representing a binary classification problem for each fret
of each string. In this way, the likelihood of each S/F com-
bination being active is independently computed using a
sigmoid activation. As such, we refer to the new formula-
tion as the Logistic formulation. This formulation allows
us to expand the loss function to include an inhibition ob-
jective to discourage the co-activation of certain pairs of
S/F combinations. This additional objective would oth-
erwise conflict with the 6D Softmax formulation, due to
normalization of the activations in the softmax function.

The new loss is computed by summing the binary cross
entropy across each fret class for each string and again av-
eraging across all frames. For convenience, let us now
fold string and fret into a single variable c ∈ {1, ..., C}
representing each distinct S/F combination, where C =
6× (F + 2). The loss can then be expressed as

LBCE = − 1

N

N∑

n=1

C∑

c=1

tc,n log (zc,n) +

(1− tc,n) log (1− zc,n), (3)

where tc,n is a binary number indicating whether there is
a positive class label in the ground-truth at the correspond-
ing S/F combination c at frame n. This new output layer
formulation is similar to that of standard piano transcrip-
tion models [19]. However, we still use Equation (2) to
obtain the final predictions, rather than considering each
activation above a certain threshold a positive prediction.
This is because, ultimately, we can still only choose one
fret class per string. Note that the inhibition objective is
applied during training and is unaffected by inference.

2.3 Estimating Pairwise Likelihood

Certain S/F combinations on the guitar have a very low
chance of being played at the same time. These can in-
clude S/F combinations located on the same string, S/F
combinations with the same pitch, S/F combinations which
are far apart, or simply musically uncommon S/F combi-
nations. In order to incorporate these considerations into
the Logistic formulation, we estimate the likelihood of co-
occurrence for all S/F combination pairs, to inform a novel
training objective for pairwise S/F combination inhibition.

The pairwise likelihood of two S/F combinations ci and
cj can be estimated using an arbitrary collection of sym-
bolic tablature data. Here we define symbolic tablature
data as one-hot encoded annotations for each string of the
guitar at the frame-level. Given the symbolic tablature for a
single track, we compute the intersection over union (IoU )
of frame-level occurrences for all pairs of S/F combina-
tions that co-occur in at least one frame. Mathematically,
the intersection of a pair is defined as the number of frames
where both combinations occur concurrently:

inter(i, j) =

N∑

n=1

tci,n ∧ tcj ,n. (4)

The union is defined as a the number of frames where ei-
ther of the combinations occur.

union(i, j) =
N∑

n=1

tci,n ∨ tcj ,n. (5)

Let T ′(i, j) be the set of tracks where ci and cj , indepen-
dently, each occur in at least one frame. Then, the IoU of
the pair is averaged across these valid tracks:

IoU(i, j) =
1

|T ′(i, j)|
∑

t∈T ′(i,j)

inter(i, j)t
union(i, j)t

, (6)

where |T ′(i, j)| is the cardinality of T ′(i, j). Note that this
is only valid for pairs where |T ′(i, j)| > 0. All pairs where
|T ′(i, j)| = 0 receive IoU(i, j) = 0.

The final pairwise likelihoods are stored in a symmetric
matrix, ordered by string and fret on both axes. As a result
of Equation (6), the likelihood of a pair co-occurring with
itself is always 1, and the likelihood of pairs within the
same string co-occurring is always 0. This is convenient
for the next step, as self-occurrence will never be inhib-
ited, whereas same-string-occurrence will be maximally
inhibited. The pairwise likelihood for the rest of the S/F
combinations with differing strings will fall somewhere in
between 0 and 1 (inclusive). See Fig. 1 for an example of
a pairwise likelihood matrix.

2.4 Inhibition Loss

In order to apply the estimated pairwise likelihoods to the
problem of guitar tablature transcription, we introduce a
new loss term for inhibiting the co-activation of unlikely
pairs. We refer to this as the inhibition loss Linh. The
inhibition loss requires that each pair of S/F combinations
receive an inhibition weight w(ci, cj) between 0 and 1, in-
dicating how much to penalize the model for producing
high activations for the combinations in the pair in a single
frame. The inhibition weights here are chosen to be the
complement of the pairwise likelihood (IoU ) estimated in
the previous step:

w(ci, cj) = (1− IoU(i, j))b, (7)

where b is a parameter which boosts the effective pairwise
likelihood by pushing the mass of the inhibition weights
closer to 0. Many S/F combinations which tend to co-occur
do not necessarily have a high likelihood of occurring to-
gether, relative to the amount of times they occur sepa-
rately. This can make the estimated pairwise likelihood
for many combinations small, leading to a high inhibition
weight. Since we do not wish to discourage the activations
of pairs which commonly co-occur, it can be helpful to
boost the pairwise likelihood in this way. Empirically, we
found that b = 27 produced weights with nice contrast be-
tween common pairs and uncommon pairs. Boosting can
also be thought of as computing the joint probability of
not observing ci and cj across b total frames, ≈ 3 seconds
here. Given the inhibition weights, the inhibition loss for a
sequence of N frame is computed as

Linh =
1

2N

N∑

n=1

C∑

i=1

C∑

j=1

zci,nzcj ,nw(ci, cj). (8)
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Figure 1. Visualization of estimated pairwise likelihood for all S/F combinations, ordered row- and column-wise by string
s and fret f , computed using DadaGP [17] with b = 1 (left) and b = 27 (right). Grid lines are overlayed atop the string
boundaries. The likelihoods range from 0 (dark purple) to 1 (bright yellow), where 1 represents pairs which always co-occur
(e.g., identical pairs on diagonal) and 0 represents pairs which never co-occur (e.g., non-identical same-string pairs).

Here, the product for every combination of activations pro-
duced by the model is taken and scaled by the appropriate
inhibition weight, and the result is subsequently summed
over all combinations. Since both permutations of each
S/F combination are included in the summation, we divide
by two to remove redundancy. The total loss then becomes

Ltotal = LBCE + λLinh, (9)

where λ is a scaling term for balancing the two terms.

3. EXPERIMENTAL SETUP

In order to evaluate the efficacy of the proposed output
layer formulation, we use it within TabCNN [16]. We com-
pare it to the 6D Softmax layer, and experiment with sev-
eral variations to study the effect of inhibition.

3.1 Datasets

We use two datasets for our experiments. GuitarSet [20]
is used to train, validate, and test our models, and DadaGP
[17] is used to compute weights for the inhibition loss ap-
plied during training and employed as an evaluation metric.
We briefly introduce the datasets in the following sections.

3.1.1 GuitarSet

GuitarSet [20] is a guitar transcription dataset compris-
ing roughly three hours of acoustic guitar audio. It con-
tains various types of annotations, including pitch and note
annotations with string labels. The provided labels were
obtained by employing monophonic pitch tracking on the
independent audio of each string, recorded with a hexa-
phonic pickup mounted to the guitar. The dataset features

six guitarists playing two unique interpretations over 30
different chord progressions from various keys, resulting
in 360 distinct tracks. Each track is approximately 1312.7
frames or 30.5 seconds on average. GuitarSet is used within
a six-fold cross-validation schema, with the dataset splits
representing the tracks produced by each respective gui-
tarist. We limit training to only four splits during each fold,
holding out one split for validation and one split for testing.

3.1.2 DadaGP

DadaGP [17] is a large collection of symbolic tablature
encoded using the proprietary GuitarPro file format. The
dataset features many popular songs from a variety of artists
and spanning many musical styles, with a bias toward rock
and metal music. The GuitarPro file format can store the
transcription of multiple musical voices as tracks in a sin-
gle file. Tracks corresponding to guitars have note labels
which are always associated with an S/F combination.

We process all tracks corresponding to guitars in stan-
dard tuning within the GuitarPro files, ignoring duplicate 4

files. Note that many files include more than one guitar
track. Using the Python package PyGuitarPro [21], we
carry out a series of steps 5 where we assign an onset and
offset to each note in the track to obtain tablatures in JAMS
format [22]. Ultimately, we end up with 33967 pieces of
symbolic tablature, most of which comes from full-length

4 A duplicate is defined as having a preexisting file name or the ªcopyº
tag in the file name. In cases where there are duplicates with alternate file
extensions, we keep the one with the more recent GuitarPro version.

5 Due to the many complexities of GuitarPro, we refer interested read-
ers to the code for more information about these steps. It is also worth
mentioning here that we treat slides and hammer-ons/offs as two separate
notes, and that for bends we only retain the original note.
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songs. We use these to estimate pairwise likelihoods.

3.2 Metrics

We compute all of the same metrics 6 as in [16]. These
include precision, recall, and f-measure for all frames of
tablature and the equivalent string-agnostic multipitch, as
well as the tablature disambiguation rate (TDR), which in-
dicates how well the model maps pitches to their respec-
tive strings. We also report the average inhibition losses
Linh and Linh

+ using the standard and boosted inhibi-
tion weights, respectively. The inhibition losses serve as a
proxy for how well the predictions of the model match the
distribution of the symbolic tablature used to estimate the
pairwise likelihoods. The lower the losses, the smaller the
presence of inhibitory pairs in the predictions. Since the
pairwise likelihoods were estimated using a large collec-
tion of real-world data, the inhibition losses also serve as
a proxy for the feasibility of the predicted tablature. Note
that the inhibition losses are calculated on the final predic-
tions of a model. This is in contrast to the inhibition loss
applied during training, which is computed on the activa-
tions after the sigmoid operation.

Additionally, we note that the inhibition weights tend to
be very high for pairs on different strings corresponding
to the same exact pitch p ∈ {1, ..., P}, where P is the to-
tal number of unique pitches. A duplicate pitch error is a
common mistake made by the network, since the acoustic
profile of the same pitch on different strings is very simi-
lar. We report the average number of duplicate pitch errors
per track, where the duplicate pitch error count Ed.p. for a
track with N frames is expressed as

Ed.p. =
N∑

n=1

P∑

p=1

max(0,m(y)
p,n −m(t)

p,n), (10)

where m(y)
p,n ∈ {0, . . . , 5} and m(t)

p,n ∈ {0, . . . , 5} are the
number of string-wise model predictions and ground-truth
targets, respectively, at frame n corresponding to pitch p.
Since it is extremely rare that a guitarist duplicates the
same pitch in practice, this error count is a more explicit
way of telling if the inhibition objective is effective. We
also report the average number of false alarm errors,

Ef.a. =
N∑

n=1

6∑

s=1

F∑

f=0

ys,f,n ∧ ¬ ts,f,n, (11)

indicating more generally all predictions made by the model
which do not occur in the ground-truth. This allows us
to compare the number of duplicate pitch errors to the to-
tal number of false alarm errors in each experiment. Note
that here we do not consider incorrect silence predictions
(f = −1) to be false alarm errors.

3.3 Experiments

We conduct a series of experiments to observe how the
proposed output layer formulation compares to the base-

6 The original metrics were computed across all frames of all tracks
in a track-agnostic manner, whereas we compute the metrics across all
frames of each track and average results across all tracks. This is done to
weight the influence of every track in the dataset equally.

line 6D Softmax formulation. All of our experiments are
trained and evaluated on GuitarSet following the six-fold
cross-validation schema laid out in [16]. There is one ma-
jor difference in that we hold out one extra dataset split
for validation. This means that per fold, only four splits
are used for training, while the other two are used for val-
idation and evaluation, respectively. Within each fold, the
criterion for choosing the model checkpoint to evaluate on
the evaluation split is the checkpoint with the maximum
tablature f-measure on the validation split.

The purpose of first few experiments is to verify our re-
production of TabCNN and our experimental setup, and
to investigate the difference in performance when using a
validation set. The models in these experiments are trained
with a batch size of 30 for 10000 iterations, where 200
consecutive frame groups within each track in the train-
ing set are sampled per iteration. Experiment (1) features
our reproduction of TabCNN, with the standard 6D Soft-
max output layer formulation. In order to try to match the
original TabCNN results as closely as possible, we do not
perform validation in this experiment, and simply evaluate
the final models within each fold at 10000 iterations. Next,
in experiment (2), we run the same experiment but with the
validation methology outlined above. All of the remaining
experiments utilize the same validation methodology.

The purpose of the remaining experiments is to compare
the 6D Softmax and Logistic output layer formulations di-
rectly. As discussed in Sec. 2.1, an LSTM is inserted be-
fore the output layer of each model in these experiments
as a simple improvement, and to observe what happens
to the proposed metrics when a simple language model is
added. In order to create a balance between the sequence
length and the batch size when training the models with the
LSTM, we also modify the training hyperparameters such
that we train with a batch size of 50 with a sequence length
of 125 frame groups for 50000 iterations. We increase the
amount of training iterations to account for the additional
model complexity of the LSTM.

Experiment (3) is the same as Experiment (2), except for
the insertion of the LSTM layer and the new training hy-
perparameters. Experiment (4) features the Logistic output
layer formulation detailed in Sec. 2.2, but with an inef-
fective inhibition objective, i.e. λ = 0. In the remaining
experiments, λ 6= 0, and various different matrices of in-
hibition weights are employed. In Experiment (5), a set
of weights which only cover the hard string constraints is
used for the inhibition loss. The weights can be expressed
as the following:

w(ci, cj) =

{
1 if |i− j| < (F + 2) and i 6= j
0 otherwise

.

(12)
This matrix of weights inhibits all of the pairs which are
intrinsically impossible with the 6D Softmax formulation.
A visualization of the complement to these weights is pro-
vided in Fig. 2. All other experiments employ matrices
estimated using DadaGP [17] with the procedure detailed
in Sec. 2.3. The standard inhibition weights (DadaGP )
are used in Experiment (6). Experiment (7) and (8) use in-
hibition weights boosted with b = 27 (DadaGP+). The
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Figure 2. Complement of the inhibition weights which en-
force hard string constraints, described by Equation (12).

estimated pairwise likelihoods corresponding to each set
of weights are presented in Fig. 1. Experiments (4-7) use
an inhibition loss multiplier of λ = 1, whereas Experiment
(8) uses λ = 10. These experiments make up a sort of
ablation study w.r.t. the design choices of the inhibition
objective within the Logistic formulation.

4. RESULTS & DISCUSSION

4.1 Transcription

The transcription results for the experiments outlined in
Sec. 3.3 are presented in Table 1. The results of Exper-
iment (1), our reproduction of TabCNN [16], are almost
identical to what was originally reported. Regarding Ex-
periment (2), validation lowers transcription performance
slightly, as expected, but to a surprisingly small degree.
This validates our decision to trade an extra dataset split
for a more justifiable selection criterion. In Experiment
(3), insertion of the LSTM significantly improves tablature
transcription performance, mainly by increasing recall.

Without the inhibition objective, the logistic formulation
in Experiment (4) yields essentially the same performance
as the 6D Softmax formulation in Experiment (3). When
using the inhibition objective with the string constrains in
Experiment (5), the overall tablature transcription perfor-
mance improves slightly. Since the weights only discour-
age activations on the same string from co-occurring, simi-
lar to the 6D Softmax formulation, this is an interesting re-
sult. With the DadaGP weights in Experiment (6), the in-
hibition objective lowers performance slightly by decreas-
ing tablature and multipitch recall. This is not surprising,
since the weights are very strict and inhibit almost every-
thing besides perfect 4th/5th intervals. With the boosted
weights DadaGP+ in Experiments (7-8), recall improves
and precision drops slightly for tablature and multipitch.
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e

Figure 3. Estimated pairwise likelihoods for all S/F com-
binations computed using GuitarSet [20] with b = 27.

Finally, the stronger inhibition objective (λ = 10) in Ex-
periment (8) lowers overall performance for multipitch es-
timation, while maintaining roughly the same tablature tran-
scription performance w.r.t. Experiment (7).

The lack of an increase in tablature performance when us-
ing the inhibition objective can most likely be attributed to
the small size of GuitarSet [20] and the presence of some
noisy labels. Using the procedure detailed in Sec. 2.3,
pairwise likelihoods were estimated from GuitarSet [20]
for analysis. These are illustrated in Fig. 3. Clearly, there
are co-occurrences for pairs which are highly inhibited by
theDadaGP andDadaGP+ weights. Upon inspection of
the tracks which produced these artifacts, we found some
instances of duplicate pitch errors and octave errors in the
annotations. It could be that the inhibition variants actually
avoided making these types of predictions, but received a
lower score due to the likely annotation errors. Further-
more, the rock and metal bias in DadaGP [17] may have
skewed the distribution of model predictions in the rele-
vant models away from the distribution of GuitarSet [20],
which contains genres such as Jazz and Bossa Nova.

4.2 Loss & Errors

The distribution and error measurements for the experi-
ments outlined in Sec. 3.3 are presented in Table 2. Some
key observations can be made about these results. First,
the standard inhibition loss Linh remains relatively consis-
tent across experiments. As noted earlier, the DadaGP
weights are very strict and inhibit most pairs, so the inhibi-
tion objective can conflict with the transcription objective.
For this reason, it makes sense that among Experiments (3-
8), Experiment (6) had the most influence on this metric,
given that it used Linh for training. We do observe a sig-
nificant decrease in Linh+ for Experiments (7-8), which
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Tablature Layer ptab rtab ftab ppitch rpitch fpitch TDR

(1) Reproduction 0.809 0.692 0.742 0.910 0.762 0.825 0.903
(2) Reproduction w/ Val. 0.775 0.696 0.730 0.895 0.781 0.830 0.886

(3) Reproduction w/ Val./Rec. 0.783 0.757 0.768 0.879 0.835 0.854 0.905
(4) Logistic (No Inhibition) 0.782 0.757 0.767 0.878 0.836 0.854 0.902
(5) Logistic w/ String Constraints 0.789 0.761 0.773 0.881 0.836 0.856 0.907
(6) Logistic w/ DadaGP 0.787 0.743 0.763 0.880 0.821 0.847 0.902
(7) Logistic w/ DadaGP+ 0.782 0.754 0.766 0.876 0.833 0.852 0.902
(8) Logistic w/ DadaGP+(λ = 10) 0.781 0.755 0.766 0.867 0.829 0.845 0.907

Table 1. Average six-fold cross validation results on GuitarSet [20] for transcription metrics. Bold values indicate the
highest observed result for each metric across experiments which follow the validation methodology outline in Sec. 3.3
(i.e., Experiments (2-8)). The break separates experiments without recurrence and experiments which used an LSTM.

Tablature Layer Linh Linh
+ Ed.p. Ef.a.

(1) Reproduction 8.87 0.132 21.4 359.8
(2) Reproduction w/ Val. 9.01 0.152 34.2 442.5

(3) Reproduction w/ Val./Rec. 9.27 0.158 24.3 489.6
(4) Logistic (No Inhibition) 9.27 0.154 20.0 503.3
(5) Logistic w/ String Constraints 9.25 0.155 19.5 485.8
(6) Logistic w/ DadaGP 9.19 0.147 12.0 481.8
(7) Logistic w/ DadaGP+ 9.25 0.143 13.8 496.6
(8) Logistic w/ DadaGP+(λ = 10) 9.26 0.132 10.6 504.6

Table 2. Average six-fold cross validation results on GuitarSet [20] for distribution and error metrics. Bold values indicate
the lowest observed result for each metric across experiments which follow the validation methodology outline in Sec. 3.3
(i.e., Experiments (2-8)). The break separates experiments without recurrence and experiments which used an LSTM.

train with the boosted inhibition loss. In contrast to Linh,
even when Linh+ continues to go down, the transcription
performance improves for Experiments (6-8). This agrees
our hypothesis that the boosted inhibition weights are more
suitable for use with the transcription objective.

We also notice that, despite a significant increase in Ex-
periment (2) and subsequently Experiment (3), the aver-
age number of false alarm errors Ef.a. remains relatively
consistent across Experiments (3-8). It does seem to im-
prove slightly with inhibition using string constraints and
the DadaGP weights. The average number of duplicate
pitch errors Ed.p. improves significantly in Experiments
(6-8). As discussed before, there are cases of duplicate
pitches in the ground-truth of GuitarSet. The reason why
the duplicate pitch error count is not lower may be be-
cause the models are trained to produce duplicate pitch
predictions in some scenarios. Overall, we argue that the
lower Ed.p. and Linh+ suggests that models trained with
DadaGP andDadaGP+ produce tablature which is more
feasible to play and more consistent with DadaGP [17].

4.3 Future Work

Although the inhibition objective was presented here in the
context of improving guitar tablature transcription, it has
several other potential uses. Inhibition shapes the distribu-
tion of model predictions by inhibiting unlikely S/F pairs.
This means that one can estimate the pairwise likelihoods
using a curated distribution, e.g. a collection of tablature

corresponding to a specific musician or genre. Similarly,
collections based on playing difficulty could be curated to
influence the model to produce tablature more suitable for
specific users with varying proficiency.

Another usage could be within the context of tablature ar-
rangement, where the inhibition objective could be applied
to train a model to allocate a set of preexisting pitches to
strings, such that the resulting fingerings are playable. This
may even be useful in a two-stage approach to tablature
transcription, where a generic multipitch estimation model
feeds predictions into the arrangement system.

We also suggest several directions for improving the in-
hibition objective. First, one could explore various types
of data augmentation for symbolic tablature. One exam-
ple we refer to as capo augmentation, where a constant fret
offset is added to all notes within a track. This could pre-
vent issues related to a dataset’s lack of fretboard cover-
age. Another interesting direction would be the inclusion
of a temporal inhibition objective at the note-level. This
could prevent a model from generating predictions which
shift around the fretboard too much. Lastly, it would be in-
teresting to investigate higher-order S/F relationships (e.g.,
3 notes or more), since the current method only takes pair-
wise relationships into account.

5. CONCLUSION

We propose a new output layer formulation for guitar tab-
lature transcription which takes advantage of large collec-
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tions of symbolic tablature data. The pairwise likelihood
of concurrent activation for all possible notes on the guitar
is estimated using a recently published dataset. The com-
plement of the pairwise likelihood is used as a weight for
an accompanying inhibitory objective during training. We
compare the new formulation against the output layer for-
mulation of a baseline tablature transcription model. The
inhibition objective is shown to be effective in shaping the
distribution of the output predictions and lowering the num-
ber of duplicate pitch errors. We also discuss alternative
uses and future directions for the inhibition objective.

Acknowledgments

This work has been partially funded by the National Sci-
ence Foundation grants IIS-1846184 and DGE-1922591.

6. REFERENCES

[1] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, ªAuto-
matic music transcription: An overview,º IEEE Signal
Processing Magazine, vol. 36, no. 1, pp. 20±30, 2019.

[2] X. Fiss and A. Kwasinski, ªAutomatic real-time elec-
tric guitar audio transcription,º in Proceedings of
ICASSP, 2011.

[3] L. Alcabasa and N. Marcos, ªAutomatic guitar mu-
sic transcription,º in Proceedings of the International
Conference on Advanced Computer Science Applica-
tions and Technologies (ACSAT), 2012.

[4] C. Kehling, J. Abeßer, C. Dittmar, and G. Schuller,

“Automatic tablature transcription of electric guitar

recordings by estimation of score and instrument-

related parameters,” in Proceedings of DAFx, 2014.

[5] I. Barbancho, L. J. Tardon, S. Sammartino, and A. M.

Barbancho, “Inharmonicity-based method for the au-

tomatic generation of guitar tablature,” IEEE Trans-
actions on Audio, Speech, and Language Processing
(TASLP), vol. 20, no. 6, pp. 1857–1868, 2012.

[6] G. Burlet and I. Fujinaga, “Robotaba guitar tablature

transcription framework,” in Proceedings of ISMIR,

2013.

[7] K. Yazawa, D. Sakaue, K. Nagira, K. Itoyama, and

H. G. Okuno, “Audio-based guitar tablature transcrip-

tion using multipitch analysis and playability con-

straints,” in Proceedings of ICASSP, 2013.

[8] K. Yazawa, K. Itoyama, and H. G. Okuno, “Automatic

transcription of guitar tablature from audio signals in

accordance with player’s proficiency,” in Proceedings
of ICASSP, 2014.

[9] A. M. Barbancho, A. Klapuri, L. J. Tardon, and I. Bar-

bancho, “Automatic transcription of guitar chords and

fingering from audio,” IEEE Transactions on Audio,
Speech, and Language Processing (TASLP), vol. 20,

no. 3, pp. 915–921, 2011.

[10] G. Hori, H. Kameoka, and S. Sagayama, “Input-output

HMM applied to automatic arrangement for guitars,”

Information and Media Technologies, vol. 8, no. 2, pp.

477–484, 2013.

[11] G. Burlet and A. Hindle, “Isolated guitar transcription

using a deep belief network,” PeerJ Computer Science,

vol. 3, p. e109, 2017.

[12] J. Michelson, R. Stern, and T. Sullivan, “Automatic

guitar tablature transcription from audio using inhar-

monicity regression and bayesian classification,” Jour-
nal of the Audio Engineering Society (AES), 2018.

[13] J. M. Hjerrild and M. G. Christensen, “Estimation of

guitar string, fret and plucking position using paramet-

ric pitch estimation,” in Proceedings of ICASSP, 2019.

[14] J. M. Hjerrild, S. Willemsen, and M. G. Christensen,

“Physical models for fast estimation of guitar string,

fret and plucking position,” in IEEE Workshop on Ap-
plications of Signal Processing to Audio and Acoustics
(WASPAA), 2019.

[15] E. J. Humphrey and J. P. Bello, “From music audio to

chord tablature: Teaching deep convolutional networks

to play guitar,” in Proceedings of ICASSP, 2014.

[16] A. Wiggins and Y. Kim, “Guitar tablature estimation

with a convolutional neural network,” in Proceedings
of ISMIR, 2019.

[17] P. Sarmento, A. Kumar, C. Carr, Z. Zukowski, M. Bar-

thet, and Y.-H. Yang, “DadaGP: A dataset of tokenized

GuitarPro songs for sequence models,” in Proceedings
of ISMIR, 2021.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–

1780, 1997.

[19] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Si-

mon, C. Raffel, J. Engel, S. Oore, and D. Eck, “On-

sets and frames: Dual-objective piano transcription,”

in Proceedings of ISMIR, 2018.

[20] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello,

“GuitarSet: A dataset for guitar transcription,” in Pro-
ceedings of ISMIR, 2018.

[21] S. Abakumov, “PyGuitarPro,” [Online], available at:

https://github.com/Perlence/PyGuitarPro.

[22] E. J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R. M.

Bittner, and J. P. Bello, “JAMS: A JSON annotated

music specification for reproducible MIR research,” in

Proceedings of ISMIR, 2014.

Proceedings of the 19th Sound and Music Computing Conference, June 5-12th, 2022, Saint-Étienne (France)

138


