
Scaling ML Analytics with Knowledge Graphs:
A Bosch Welding Case

Baifan Zhou
baifanz@ifi.uio.no

SIRIUS Centre, University of Oslo
Oslo, Norway

Dongzhuoran Zhou
dongzhuoran.zhou@de.bosch.com
Bosch Center for AI, Germany

SIRIUS Centre, University of Oslo, NO

Jieying Chen
jieyingc@ifi.uio.no

SIRIUS Centre, University of Oslo
Oslo, Norway

Yulia Svetachova
yulia.s@causaly.com

Causaly
London, UK

Gong Cheng
gcheng@nju.edu.cn

State Key Laboratory for Novel
Software Technology, Nanjing

University, China

Evgeny Kharlamov
evgeny.kharlamov@de.bosch.com
Bosch Center for AI, Germany

SIRIUS Centre, University of Oslo

ABSTRACT
Automated welding is heavily used in automotive industry to pro-
duce car bodies by connecting metal parts with welding spots. Mod-
ern welding solutions and manufacturing environments produce
high volume of heterogeneous data. Analytics of these data with
machine learning (ML) can help to ensure high quality of welding
operations. However, due to heterogeneity of data and application
scenarios, scaling such ML-based analytics is challenging. We ad-
dress this challenge by relying on knowledge graphs (KG) that not
only conveniently allow to integrate welding data, but also to serve
as the bases for layering ML-based analytical applications, thus
enabling quality monitoring of welding operations. In this work we
focus on construction of a KG for welding that is tailored towards
further use for ML applications. Furthermore, we demonstrate how
selected ML analytical tasks are supported by this KG.
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1 INTRODUCTION
Industry 4.0 [14] and technologies of the Internet of Things (IoT) [12]
behind it lead to unprecedented growth of data generated during
manufacturing processes [3, 26]. Indeed, modern manufacturing
machines and production lines are equipped with sensors that con-
stantly collect and send data and with control units that monitor
and process these data, coordinate machines and manufacturing
environment and send messages, notifications, requests. Availabil-
ity of these voluminous data has led to a large growth of interest in
applying Machine Learning (ML) approaches for monitoring man-
ufacturing processes, machines, and products, e.g., by predicting
machines’ down-times or the quality of manufactured products [27].

Consider an example of welding quality monitoring at Bosch,
where welding is performed with machines as shown in Fig. 1 to
connect pieces of metal together by pressing them and passing high
current electricity through them [4]. The high current generates a
huge amount of heat due to resistance in the small area between
the two welding electrodes. The metal materials in that area will
melt and congeal after cooling down, creating a welding spot that

effectively connects the two metal worksheets. Hence, this type of
welding is named as resistance spot welding (RSW).

In automotive industry, such welding is essential for producing
high-quality cars, where theworksheets are car body parts in the car
factories. Indeed, RSW processes are fully automated, introduce up
to 6000 spots [29] in each car, and each spot comes with thousands
of sensor measurements, welding configurations, status, quality
indicators, etc. resulting in millions of data records generated by
RSW only from one car. The quality failure of a single spot can halt
an entire car production line, which means the loss of several cars,
production down-time, and cost to bring the production line back
to running. Thinking about the number of cars produced everyday,
it reveals the huge economic benefit behind improving quality
monitoring of RSW. Effective monitoring and quality control of
welding spots thus essentially impacts production efficiency and
cost. Furthermore, if the technology developed for improving RSW
can be generalised over a large amount of data and applications,
the industrial impact behind the research endeavour to improve
RSW will be tremendous.

However, it is very difficult to monitor the welding quality re-
liably and in a scalable way. The common practice is to tear the
welded car body apart andmeasure the spot diameters [5, 11], which
is extremely expensive and time-consuming. Bosch’s data are from
hundreds of Bosch plants worldwide and many Bosch’s renowned
customers. This huge amount of highly heterogeneous data come
from production lines in real-time, and are collected and stored
with highly diversified sensors settings, formats, databases, soft-
ware versions, customer individualisation, etc. Furthermore, the ML
solutions are typically tailored to the datasets and process where
the data scientists have gained a sufficiently deep understanding of
the welding process and data, after time-consuming communica-
tion between data scientists and welding experts. Considering that
data scientists usually have a background distinct from the welding
experts, if they need to develop ML solutions to other processes or
datasets, the same time-consuming communication needs to repeat
again, which makes it difficult to scale the developed ML solutions
to other datasets and processes. Therefore, it is demanding to: (1)
manage heterogeneous data from a large variety of sources with
a unified mechanism; (2) scale and reuse developed ML solutions
across different datasets.
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Figure 1: Schematic illustration of the Resistance SpotWeld-
ing (RSW) process. (a) The machine produces welding spots
continuously on a chassis (car body) part by passing a high
current through the car body part. (b) The welding work-
sheets are a sheet combination, including a top sheet and
a bottom sheet (sometimes also a middle sheet), between
which a welding spot is generated to connect the two metal
worksheets.

In this work we address these challenges by relying on knowl-
edge graphs (KG) that provide an efficient foundation for quality
monitoring applications like machine learning analysis. In par-
ticular, we present an application and introduce our system for
generating the Welding-ML KG in a semi-automated fashion. Our
KG solution can unify heterogeneous data into Welding-ML KG,
which disentangles the generality of ML solutions from the data
specificities, easing data retrieval and reuse of ML solutions, thus
making ML solutions scalable across datasets and processes.

The system consists of a set of semantic artefacts (including
core ontology, domain ontologies, ML ontology, and mappings),
semantic modules (including a mapping reasoner/annotator, a data
integration module, and a KG generation module), and an ML analy-
sis module. The core ontology is a upper level ontology that encodes
the general knowledge of manufacturing process. The domain ontol-
ogy rsw reflects specific knowledge of the RSW welding processes,
and follows patterns in core ontology. We summarise the complex
domain ontology rsw into a smaller domain ontology rsw-kg, which
reflects more specifities in particular datasets that the KG should
be constructed from.

The data to domain ontology mapping (Data-to-DO Mapping) is
created by the users, who annotate raw welding data with terms
from the domain ontology rsw. The mapping is used by the data
integration module to transform heterogeneous welding raw data
into uniform data formats, e.g. csv tables. From the Data-to-DO
Mapping, a Data-to-ML mapping is automatically reasoned. The
latter one combined with an ML ontology is used for generation
of the Welding-ML KG from uniform data formats (e.g. csv tables).
The Welding-ML KG provides a representation that considers the
perspective of ML analysis, thus making the data suitable for data
analysis/ML analysis. This representation includes entities of differ-
ent feature groups, which are syntactically and semantically well
defined abstract representation of data. TheWelding-ML KG is used
by the ML analysis module to generate ML results.

To summarise, our contributions are:
• We present an industrial application of KG generation for ML ana-
lytics in welding quality monitoring. The application is deployed
for industrial scenarios and uses data collected from welding
production plants.
• We propose a practical system architecture for our KG solu-
tion for ML analytics in automated welding, in which semantic
technological components like semantic artefacts (core ontology,

domain ontology, ML ontology) and reasoning are adequately
organised to achieve the application.
• We introduce a novel concept of KG-based data management
with specialised support for ML analytics, and provide proof-of-
concept examples of ML pipelines for quality monitoring.
This paper is organised as follows. Section 2 introduces the

use case of ML-based welding quality monitoring, and derives the
requirements from the use case and challenges. Section 3 presents
our solution of KG generation. Section 4 describes the ML analytics
application with three ML tasks and two example pipelines that
our KG-solution are deployed on. Section 5 briefly discusses some
related works. Section 6 concludes the paper, summarises lessons
learned and previews future directions.

2 USE CASE: BOSCHWELDINGMONITORING
This section gives an introduction to our use case of ML-based
welding quality monitoring at Bosch.

2.1 The Resistance Spot Welding (RSW) Process
Resistance Spot Welding at Bosch is a type of fully automated
manufacturing process widely applied in automotive industry. We
illustrate RSW with Figure 1, in which the two electrode caps of
the welding gun press two or three worksheets between the elec-
trodes with force. A high electric current then flows from one
electrode, through the worksheets, to the other electrode, generat-
ing a substantial amount of heat as a result of electric resistance.
The material in a small area between the worksheets will melt,
and form a welding nugget connecting the worksheets, known as
the welding spot. The quality of welding operations is typically
quantified by quality indicators like spot diameters, as prescribed
in international and German standards [5, 11]. To obtain the spot
diameters or tensile shear strength precisely, the common practice
is to tear the welded car body apart and measure these two quality
indicators [5], which essentially destroys the welded cars and is
extremely expensive. Nevertheless, the expensive practice to re-
peated to ensure the welded spots have good quality, because the
quality of each welding spot has a great importance. Consider a
scenario in the car factory, where cars are continuously produced
in several production lines. RSW production lines usually have a
sequential structure, where multiple types of car body parts go
through a sequence of welding machines. Each machine performs
welding operation for a number of welding spots on each car body
part in a fixed order, and each car body part has with a large num-
ber of welding spots (up to 6000 [29]). If a quality failure happens
on one single spot, the welding machine that works on that spot
needs to stop, and the entire production lines need to stop until the
quality failure is resolved and necessary maintenance measure is
undertaken. This causes a huge amount of loss in time and cost.

2.2 Analytic Tasks for Quality Monitoring
Since Bosch RSW solutions are fully automated and produce large
volumes of heterogeneous data, we rely on ML approaches [30]
for quality monitoring for RSW. ML approaches have proven their
great potential for quality monitoring and thus they have received
an increasing attention in industry [27]. The reasons are that ML
allows to predict the quality by relying on statistical theory in
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Figure 2: An architectural overview of our KG solution. Semantic connection means that they share some common classes or
some of their classes are connected by properties.

building mathematical models, thus enabling computers to make
inference from data without being explicitly programmed [1, 21].
ML analysis is an important practice to generate data-driven models
or insights for quality monitoring in RSW. Informally, ML analysis
is to mathematically transform the representation of input data
and then to model on the input data to predict output data with
statistic (e.g. linear regression) or biologically inspired (e.g. neural
networks) methods.

Our qualitymonitoring tasks can be categorised into three groups:
(1) Quality estimation, where the quality of a finished welding op-

eration needs to be reliably estimated. For example, the welding
electrode has just finished three welding spots in Figure 1, and
the quality of the finished three spots need to be assessed by
e.g. spot diameters.

(2) Quality prediction, where the quality of a welding operation
that has not happened needs to be predicted. For example, the
quality of the next spot (the fourth spot) in Figure 1 needs to
be predicted.

(3) Feature importance evaluation, where thewelding experts would
like to understand what features in the datasets are the most
important factors influencing the welding quality. This task
is essential for transparent ML analytics and explainable AI,
extremely desired in industrial applications.

2.3 Our Semantics-Enhanced MLWorkflow
For the use case, we have been working on enhancing ML analy-
sis [23, 30] with an ML workflow consisting of six iterative steps:
(1) data collection, (2) task negotiation, (3) data integration, (4) ML
modelling, (5) ML interpretation, (6) ML deployment. For the task
negotiation, we developed a core ontology and some domain on-
tologies1 to enable a common understanding basis in Step 1 and
Step 5 for the users from distinct knowledge background, includ-
ing welding experts, measurement experts, data scientists, data
managers, managers, etc. For data preparation, the users annotate
the collected data with domain ontology terms so that data from

1The domain ontologies are created in a semi-automated fashion based on core and
ontology templates [22]. The exact way it is created is beyond the scope of this paper.
Interested readers can refer to [23].

different sources can be integrated into uniform data formats. The
ML modelling was enhanced by an ML ontology and a set of ML
solutions in the form of ML pipelines, which ease the construction
of ML solutions and their explainability.

2.4 Requirements for the KG Solution
Based on the use case, tasks and challenges, we derive the require-
ments for our KG solution as follows.
• R1 Completeness. The knowledge graphs should be able to com-
pletely represent all different raw datasets, namely that the gen-
erated KG should cover all attributes in datasets from all sources..
• R2 Uniform data access. The knowledge graphs should integrate
all datasets into a uniform data format, and renaming the attrib-
uted names to unified property names.
• R3User-friendliness.TheKG-schema should not be over-complicated
for the users to write queries. It should be easy to understand
and use. The generated KG based on the schema should not have
too many blank nodes, ideally zero blank node.
• R4 ML analytics support. The knowledge graphs should support
ML analytics, for example, easing data retrieval or reuse of ML
analytic pipelines.

3 OUR SOLUTION: KG GENERATION FOR ML
ANALYTICS

Now we present our solution of KG generation for ML analytics.

3.1 Overview
Our solution transforms the Welding Raw Data into Welding-ML
KG via Semantic ETL (extract-transform-load). The system consists
of several semantic artefacts and modules. The Welding-ML KG
can support ML analysis, easing the data retrieval and reuse of ML
pipelines. We now walk the readers through the system with the
architectural overview illustrated in Figure 2.

We start with the bottom left, where data are collected constantly
from the welding machines in production. These data are called
welding raw data and depicted in a grey barrel. The welding raw
data are highly heterogeneous data. They are stored in various
data formats: SQL database, text files, csv files, Bosch rui files,
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Figure 3: Schematic illustration of part of the Core ontology𝑂𝑐𝑜𝑟𝑒 (a) and the domain ontology, Resistance SpotWelding (RSW)
ontology 𝑂𝑟𝑠𝑤 (b). Important classes are coloured with blue for readers’ convenience.

Figure 4: Schematic illustration of part of the KG ontology 𝑂𝑟𝑠𝑤−𝑘𝑔 (a) and the ML ontology 𝑂𝑚𝑙 (b). Object properties and
datatype properties are partially shown for simplicity. Important classes are coloured with blue for readers’ convenience.

json, etc. They go through the data integration module and are
transformed into uniform data formats, which are a series of data
formats with well-defined structures such as csv, json, KGs, etc. The
data integration takes two semantic artefacts as inputs, the domain
ontologies and the Data-to-DO Mapping.

The data integration module is part of the semantic ETL process,
which includes another module, the KG generation module. The
latter one takes the uniform data formats, the domain ontologies,
the ML ontology and Data-to-ML Mapping as inputs, and generates
theWelding-MLKG. TheML analysis module takes theWelding-ML
KG as inputs and executes ML pipelines to deliver ML results.

In the system, the semantic artefacts include the core ontology
𝑂𝑐𝑜𝑟𝑒 , two domain ontologies𝑂𝑟𝑠𝑤 and rsw-kg, the ML ontology ml
and two mappings. The 𝑂𝑐𝑜𝑟𝑒 is an upper level ontology for manu-
facturing processes. The𝑂𝑟𝑠𝑤 reflects the domain understanding of
the RSW process, and all classes in 𝑂𝑟𝑠𝑤 are sub-classes of classes
in 𝑂𝑐𝑜𝑟𝑒 . It is used by the welding experts users to annotate the
welding raw data, to create the Data-to-DOMapping. This mapping
goes through the Mapping Reasoner/Annotator, which automati-
cally generates the Data-to-ML Mapping through reasoning. The
latter mapping connects data with classes inml via annotations. The
Mapping Reasoner/Annotator also allows the users to manually
modify the annotations. The rsw-kg is a smaller domain ontology

that reflects specifities of datasets. The ml is an application ontology
that encodes general knowledge of ML. Between the domain ontolo-
gies, the core ontology and the ML ontology there exist semantic
connections, namely that they share some classes or their classes
can be connected by properties, which will be explained in detail
in Section 3.2.

3.2 Semantic Artefacts and Mapping Reasoner

Ontologies. The three types of ontologies are 𝑂𝑐𝑜𝑟𝑒 , the domain
ontologies (e.g. 𝑂𝑟𝑠𝑤 and 𝑂𝑟𝑠𝑤−𝑘𝑔) and the ML ontology 𝑂𝑚𝑙 . The
core ontology is an OWL 2 ontology and can be expressed in De-
scription Logics SHI(D). With its 1741 axioms, which contain
221 classes, 197 object properties, and 114 datatype properties, it
models the general knowledge of discrete manufacturing processes
that produce distinct, countable item [23, 31], e.g. a welding spot on
a car-body. Products of such manufacturing can be easily identified
and differ greatly from continuous process manufacturing whose
products are undifferentiated, e.g. petroleum. The core ontology
has an operation-centric view (Figure 3a), where an operation is
a process that produces an atomic product. The operation takes
raw resource in and outputs operation products. The operations
are performed by machines under some control systems. Quality
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indicators are essential for operations since they need to be moni-
tored to track the product quality. The core ontology is important to
make the patterns of different domain ontologies consistent across
different domain ontologies (explained in the next paragraph), thus
allowing the KG solution to scale to other manufacturing processes.
The core ontology is also important to allow semantic connections
of all domain ontologies of different manufacturing processes to
𝑂𝑚𝑙 in a standardised way (explained in the Mapping Reasoner/An-
notator paragraph). All classes in 𝑂𝑐𝑜𝑟𝑒 can be grouped into two
types: Type 1 classes correspond to the entities in the later KGs.
Type 2 classes correspond to data properties in the KGs. All Type
1 classes are connected to Type 2 classes with object properties.
All Type 2 classes are connected with datatype properties with
a similar name. These Type 2 classes correspond to features in
manufacturing datasets. For example, the triples:

core:Machine core:hasMachineID, core:MachienID
core:MachienID core:hasMachienIDValue xsd:string

where core:Machine is a Type 1 class corresponding to an entity in
KGs. core:MachienID is a Type 2 class, corresponding to a property of
the entity Machine (and a feature name in manufacturing datasets).

The domain ontologies follow the patterns in 𝑂𝑐𝑜𝑟𝑒 , namely all
the classes/properties in domain ontologies are sub-classes/sub-
properties of classes/properties in𝑂𝑐𝑜𝑟𝑒 . We constrain the creation
of domain ontologies in such a way to ensure the consistent pat-
terns and unified understanding across different domain ontologies.
We can see in Figure 3b that the𝑂𝑟𝑠𝑤 follows the patterns of𝑂𝑐𝑜𝑟𝑒

by instantiating the generic terms like operation, machine, control
system to RSW-specific terms, like RSW operation, welding ma-
chine, welding control, and adding a lot more detailed knowledge
of the RSW process, such as control module, spot diameter, etc.
The RSW domain ontology 𝑂𝑟𝑠𝑤 (Figure 3b) helps to reflect the
understanding of users for the domain so that they can use it as
a discussion basis and annotate data from difference sources with
RSW domain ontology terms, which correspond to classes in 𝑂𝑟𝑠𝑤 .
The 𝑂𝑟𝑠𝑤 follows the structure in 𝑂𝑐𝑜𝑟𝑒 that the datatype proper-
ties are connected with classes with the same name, so that these
classes can be used to annotate feature names in raw datasets. The
data annotation then helps to generate the Data-To-DO Mapping.

The KG ontology 𝑂𝑟𝑠𝑤−𝑘𝑔 is a simpler domain ontology (Fig-
ure 4a). It is used to generate the upper level schema of theWelding-
ML KG. The 𝑂𝑟𝑠𝑤−𝑘𝑔 differs from the domain ontology 𝑂𝑟𝑠𝑤 in
that 𝑂𝑟𝑠𝑤−𝑘𝑔 is created from a bottom-up and data-driven ap-
proach, and should reflect the the lower level projection of 𝑂𝑟𝑠𝑤

on specific datasets. The introduction of 𝑂𝑟𝑠𝑤−𝑘𝑔 is necessary be-
cause 𝑂𝑟𝑠𝑤 is more close to the domain understanding and cannot
meet the specificities of vaiours datasets. If 𝑂𝑟𝑠𝑤 is directly ap-
plied for KG-generation, the resulting KGs will have many blank
nodes, since many classes in𝑂𝑟𝑠𝑤 cannot find their correspondence
in the data, leading to inconvenience of the applications layered
on top of the KGs. The 𝑂𝑟𝑠𝑤 follows the structure in 𝑂𝑟𝑠𝑤 that
the datatype properties are connected with classes with the same
name, so that the Data-to-DO Mapping also works for 𝑂𝑟𝑠𝑤−𝑘𝑔 ,
e.g. rsw-kg:WeldingMachine rsw-kg:hasWeldingMachineID, rsw-kg:Welding-
MachienID, and rsw-kg:WeldingMachienID rsw-kg:hasWeldingMachienID,
xsd:string. The𝑂𝑟𝑠𝑤−𝑘𝑔 can be generated manually or automatically.
In this work, we assume it is generated manually. The automation

of generation of 𝑂𝑟𝑠𝑤−𝑘𝑔 through e.g. aggregating 𝑂𝑟𝑠𝑤 remains
as a future research direction.

The ML ontology𝑂𝑚𝑙 (Figure 4b) is a task ontology that encodes
the general knowledge of machine learning analysis. It contains
353 axioms, 86 classes, 25 object properties and 5 datatype prop-
erties; it can be expressed using Description Logic ALCH(D).
The 𝑂𝑚𝑙 enumerates the possible features groups that the domain
ontology terms should be assigned to, like single features, iden-
tifiers, time series, etc., which reflect the semantic aspects of the
features. The feature groups are also syntactically well-defined by
the object property ml:hasDataStructure, which links the semantic
feature groups to data structure classes like ml:SingleValue, ml:Array
or ml:Matrix, syntactically defining the dimension of data. Then
𝑂𝑚𝑙 also prescribes algorithms that are applicable to these feature
groups, such as preprocessing algorithms, feature processing algo-
rithms, and ml algorithms, thus defining the reachability between
the feature groups and algorithms. In this way, we categorise all
input data into feature groups in 𝑂𝑚𝑙 . This helps the users to se-
lect a series of feature processing algorithms, thus creating a chain
of feature processing modules, and generating ML solutions in a
semi-automated way [30].

Mappings. The KG solution system has two types of mappings:
Data-to-DO Mapping and Data-to-ML Mapping. The Data-to-DO
Mapping is generated manually by users (typically welding experts).
It maps the raw data to the domain ontology terms. In particular,
the users inspect the raw data and the domain ontology 𝑂𝑟𝑠𝑤 ,
and create links between the raw feature names and the domain
ontology terms, i.e. classes in 𝑂𝑟𝑠𝑤 . The class labels then serve
as unified feature names of the features in uniform data formats.
For example, the raw feature names CurrenAmp, Current, Strom
come from production datasets and simulation datasets. They are
all mapped to the Class rsw:OperationCurveCurrentArrayValue.

TheData-to-MLMapping is either generated automatically by the
Mapping Reasoner, or modified manually by the users via Mapping
Annotator. It maps the features in uniform data formats to the ML
feature groups. In particular, it maps the unified feature names (class
labels) to the feature group classes in the 𝑂𝑚𝑙 . For example, the
unified feature name ObservationCollectionArrayValue is mapped
to the class ml:TimeSeries, which is a feature group class that means
series of numeric values with time stamps. Since all features of type
ml:TimeSeries are one dimensional arrays, the class ml:TimeSeries is
linked to the class ml:Array.

Mapping Reasoner/Annotator. The Mapping Reasoner/Annota-
tor takes the Data-to-DO Mapping and 𝑂𝑐𝑜𝑟𝑒 as input and auto-
matically generates the Data-to-Mapping. It also allows users to
manually annotate the data with ML feature groups. We now illus-
trate how the automatic mapping generation works using OWL 2
axioms in the Manchester Syntax [9], where classes and proper-
ties have prefixes rsw-kg:, core:, ml: that indicate the ontologies they
belong to.

(1) Class: rsw-kg:OperationCurveCurrentArrayValue
(2) SubClassOf: core:ObservationCollectionArrayValue
(3) Class: core:ObservationCollectionArrayValue
(4) SubClassOf: ml:TimeSeries
(5) Class: ml:TimeSeries
(6) SubClassOf: ml:hasDataStructure only ml:Array
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Algorithm 1:Welding-ML KG Generation
Input: 𝑂𝑟𝑠𝑤−𝑘𝑔 , 𝑂𝑚𝑙 , M, D
Output: KG

1 Initialisation: S← 𝑂𝑟𝑠𝑤−𝑘𝑔 , KG← {}
2 foreach (𝐴, 𝐵, 𝐿, 𝑟1, 𝑟2) ∈ 𝑂𝑟𝑠𝑤−𝑘𝑔, 𝐶 ∈ 𝑂𝑚𝑙 do
3 if 𝑟1 (𝐴, 𝐵), 𝑟2 (𝐵, 𝐿) then
4 S := 𝑆 ∪ {𝑟1 (𝐴, 𝐿)}
5 S := S \{𝑟1 (𝐴, 𝐵), 𝑟2 (𝐵, 𝐿)}
6 if {𝐵 ⊆ 𝐶} ∈ M then
7 S := S ∪{𝑎(𝑟2,𝐶)}
8 end
9 end

10 end
11 E← extractEntities(S)
12 foreach (𝐸𝑖 , 𝐷𝑠𝑢𝑏 ) ⊆ (𝐸, 𝐷) do
13 foreach 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∈ D𝑠𝑢𝑏 do
14 o← identifyEntities(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
15 if 𝑜 ∈ 𝐸 then
16 KG := KG ∪{𝑟𝑜 (𝐸𝑖 , 𝑜)}
17 else
18 KG := KG ∪{𝑟𝑑 (𝐸𝑖 , 𝑜)}
19 end
20 end
21 end

We continue the example of the feature with the name Current
in the raw data. It is annotated by the users with the class rsw-
kg:OperationCurveCurrentArrayValue (Line 1), which is a sub-class of
core:ObservationCollectionArrayValue (Line 2). The class core:Observation-
CollectionArrayValue is linked to ml:TimeSeries via rdfs:SubClassOf, thus
connecting 𝑂𝑐𝑜𝑟𝑒 and 𝑂𝑚𝑙 . Here domain ontologies are connected
to 𝑂𝑚𝑙 through 𝑂𝑐𝑜𝑟𝑒 , so that we do not need to create seman-
tic connections for specific domain ontologies. Instead, there ex-
ists a standardised way of semantic connections between 𝑂𝑚𝑙

and all domain ontologies. To define that the class ml:TimeSeries
is a one dimensional array, it is linked to the data structure class
ml:Array. Through reasoning, the feature Current is mapped to
rsw-kg:OperationCurveCurrentArrayValue in domain ontologies, and
ml:TimeSeries and ml:Array in the ML ontology, namely:

(7) Class: rsw-kg:OperationCurveCurrentArrayValue
(8) SubClassOf: ml:TimeSeries
(9) SubClassOf: ml:hasDataStructure only ml:Array

3.3 KG Generation
We illustrate and explain the procedure of generation of theWelding-
ML KG in Algorithm 1. Our Welding-ML KG Generation algorithm
takes four inputs: the KG ontology 𝑂𝑟𝑠𝑤−𝑘𝑔 , the ML ontology 𝑂𝑚𝑙 ,
the Data-to-ML (data to ML ontology) mapping M, and the inte-
grated Data D in relational tables. It takes two steps to generate the
KG. Step 1: generate KG schema S; Step 2: transfer integrated data
D to KG.

We start our Algorithm 1 with initialisation (Line 1), where the
KG schema S is initialised with𝑂𝑟𝑠𝑤−𝑘𝑔 and the KG with an empty

set. In step 1 (Line 2 to 11), we simplify the KG ontology 𝑂𝑟𝑠𝑤−𝑘𝑔
to the KG schema S in order to make the KG more user-friendly
by directly connecting entities with datatype properties in S. We
first find all classes in 𝑂𝑟𝑠𝑤−𝑘𝑔 that are connected to datatype
properties in a structure of 𝑟1 (𝐴, 𝐵), 𝑟2 (𝐵, 𝐿) (Line 3), where 𝐴 and
𝐵 are classes, 𝐿 is a literal, 𝑟1 is the object property connecting 𝐴
and 𝐵, 𝑟2 is the datatype property connecting 𝐵 and 𝐿. The structure
is then simplified to 𝑟2 (𝐴, 𝐿) in the KG schema (Line 4 and 5). It
makes the hierarchy in the KG becomes shallow and more user-
friendly to be queried. Further more, we find the class𝐶 in the𝑂𝑚𝑙 ,
which is linked to class 𝐵 through the Data-to-ML Mapping M (Line
6), and create an annotation 𝑎(𝑟2,𝐶) (e.g. ml:hasMLAnnotation) that
links the simplified datatype property 𝑟2 (𝐴, 𝐿) to class 𝐶 (Line 7).
In Step 2 (Line 11 to 21), we first extract the entities E from the
Schema S (Line 11). Then we transform the relational csv tables D
to Welding-ML KG. Each sub-table D𝑠𝑢𝑏 corresponds to a class E𝑖 .
We enumerate all attributes in each sub-table D𝑠𝑢𝑏 , and identify
whether the attribute is an entity (Line 14), using the attribute name
(unified feature names). If the identified attribute is an entity (Line
14), the KG is extended by adding a triple 𝑟𝑜 (𝐸𝑖 , 𝑜) that connects
the entity E𝑖 in the sub-table D𝑠𝑢𝑏 to the object 𝑜 with an object
property (Line 16). Otherwise, the KG is expanded with another
triple 𝑟𝑑 (𝐸𝑖 , 𝑜) that connects the entity E𝑖 to the object 𝑜 with an
datatype property (Line 18).

4 ML ANALYTICS APPLICATIONS
We now introduce the ML analytics applications for solving the
three tasks in Section 2.2.

4.1 ML Analysis for Quality Estimation

Question Definition. In this application, the ML analysis will
process and model the welding data to estimate the welding quality
indicator, spot diameters, after each welding operation. Therefore,
the spot diameter will be the output feature of ML models. We
analyse a most common scenario simple scenario consisting of one
welding machine, one type of car body worksheets with identical
nominal sheet thickness and material, and three welding programs
for three different target spot diameters.

Data Description. The data are collected from welding simula-
tion process generated by a verified Finite Element Method (FEM)
model [29]. A total of 13,952 welding spots with diameter measure-
ments were collected. Two types of data exist for each welding
spot: (1) 20 process curves, including input curves such as electric
current, voltage, resistance, and process feedback curves, such as
welding electrode force of, electrode displacement, temperature of
certain measurement positions, etc. (2) 235 Single features, such
as nominal and measured geometry or material properties of the
welding electrodes and worksheets, simulation setting parameters,
welding programs etc.

ML Pipeline. To solve the quality estimation task, we follow the
ML pipeline depicted in Figure 4a, which requires three types of
feature groups: Single Features (SF), Time Series (TS), and Quality
Indicator (QI). This is easily achieved by querying the Welding-ML
KG since all data in the KG are annotated with ML feature groups.
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Figure 5: Schematic illustration of the ML pipelines. FE: feature engineering. The ML pipelines generated a number of ML
models for quality estimation and prediction, and Feature Importance Lists, which is ranking lists of the most influential
features.

We illustrate this with the Example 1, where we retrieve all single
features.

Example 1 Retrieving single features
SELECT ?feature
WHERE { ?feature ml:hasMLAnnotation ml:SingleFeature . }

After retrieving all of the single features, we enumerate them
with SPQRQL queries and serialise the data as some formats that
are amicable for data analysis, e.g. numpy arrays. Then these data
are fed into ML pipelines. In Figure 4a, the Single Features of the
data structure ml:SingleValue, namely single values (i.e. there exists
only one value for one operation entity). They are concatenated
with time series statistics (TSStats), which are generated from Time
Series. The feature group TS are of the data structure ml:Array,
namely one dimensional vectors. From the time series, statistic
features (such as mean, maximum, maximum position, etc.) are ex-
tracted and named as TSStats. The TSStats are of the data structure
ml:SingleValue, the same as SF, and thus can be concatenated with SF.
The concatenated features go to the algorithm Feature Selection,
which also takes in the output feature, the quality indicator, since it
follows a wrapper method [18]. After feature selection, the Selected
Features will serve as input, and Quality Indicator as the output, for
ML modelling with three methods: Polynomial Regression, Multi-
layer Perceptron, and K-Nearest Neighbours, generating a number
of ML models. The Selected Features with its ranking of importance

will be stored as the Feature Importance List, which reveals what
features are influential for estimating the spot diameters.

Benefits of the Solution. This example demonstrates that our
solution disentangles the specificities of heterogeneous data from
the generalities of ML pipelines. Both in the query and the ML
pipelines, no specific information of attribute names, data formats,
etc. are mentioned at all. Instead, the ML pipelines work directly
with the feature groups (e.g. single feature, time series). This is due
to: (1) unification of all data formats to the KG; (2) annotation of
properties in the KG with ML classes. Without the KG solution, this
disentanglement would not be so convenient and efficient.

4.2 ML Analysis for Quality Prediction

Question Definition. In this application, the ML analysis will
process and model the welding data to predict the welding quality
indicator, Q-Value, in the future before the actual welding operation
happens. Therefore, the Q-Value will be the output feature of ML
models.

Data Description. The data are collected from two welding ma-
chines in a running production line, with a total of 5994 welding
operations. The input features also contains two types: (1) 4 process
curves, including current, resistance, voltage and pulse width mod-
ulation; (2) single features, such as production setting parameters,
monitoring statuses, electrode wearing status, maintenance status,
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etc. The input feature will be single features and time series. One
more feature group added is a subset of the single features, named
as known future features, which include the welding program num-
ber, wear count, and dress count. These features for future welding
operations are already known before the operations happen since
the operations are performed according to a pre-designed scheme.

ML Pipeline. To solve the quality estimation task, we follow the
ML pipeline depicted in Figure 4b, which requires four types of
feature groups: Single Features (SF), Known Future Features (KFF),
Time Series (TS), and Quality Indicator (QI). The KFF are features
for future welding operations that are already known before the
operations happen since the operations are performed according to
a pre-designed scheme, e.g. welding program number, wear count,
and dress count.. Another complication is that here we need to
predict quality indicators in the future, which means the temporal
order of welding operations is important. This is different from the
quality estimation, where each welding is treated as an independent
event and the temporal order of data is largely ignored. The data
need to be retrieved and ordered by the temporal order to assure
that the data are arrange in such a way that they can attain the
correct temporal order. This is easily achieved by querying the
Welding-ML KG and is illustrated by Example 2.

Example 2 Retrieving time series and ordering by date time
SELECT ?operation ?feature
WHERE { ?operation rdf:type rsw-kg:RSWOperation .

?operation ?p ?feature .
?operation rsw-kgs:hasDataTime ?datetime.
?p ml:hasMLAnnotation ml:TimeSeries . }

ORDER BY ?datetime.

After data retrieval and preparation, the data go through the
ML pipeline for predicting the future quality indicators. Three
different types of input features, SF, KFF and TS go through different
modules of Feature Engineering (FE). In this example, the FE on
KFF is to perform mathematical transformation like deriving the
first difference, getting the index of change etc. The FE on TS is
to extract statistic features (such as mean, maximum, etc., similar
to the previous example) as well as geometric features, like slope,
drop, etc. The resulting engineered features are of the data structure
ml:SingleValue, and can be concatenated. The concatenated features
go to the algorithm Reshaping, which will reshape the data in such
a way that in each row of the reshaped data, a matrix of data of
the previous welding operations is created to predict the quality
indicator (Q-Value ). The Reshaped Data contain the temporal order
of the input data. They can be directly fed as input into LSTM (long
short-term memory), which is a type of neural networks that are
powerful for handling temporal data. The Reshaped Data can also be
flattened and then go through Feature Selection, to be modelled by
classic ML methods like Linear Regression (LR). The output feature
is the quality indicator, Q-Value. The ML modelling will generate
a number of ML models. Similarly, the Selected Features with its
ranking of importance will be stored as the Feature Importance List,
revealing what features are influential for predicting the Q-Values.

Benefits of the Solution. In addition to the disentanglement men-
tioned in the previous example, this example shows more advanced
manipulation to the data, that the ordering by date time becomes

simple by slightlymodifying the SPARQL query.Without which, the
users would need to rely on programming languages (e.g. Python)
to process the huge volume of data, which our users would need
excessive time to learn and adapt on.

5 RELATEDWORK
Knowledge graphs have been widely used in industries [7, 10, 19,
28]. The methods for KG generation have also been studied in
many works [8, 13, 17]. An extensive survey [20] covers semantic
technologies for data mining and knowledge discovery, in particular
in the facilitation of ML workflows. There exist other ontologies
for manufacturing (e.g., [2], [24], [16], [15], [6], [25]). Still, to the
best of our knowledge, existent ontologies and system solutions
only partially meet our R1-R4 requirements, and do not address the
challenges of handling heterogeneous data and scaling MLmethods.

Thus we had to develop our own KG solution and ontologies as
well as KG-based, highly customised and configurable application,
integrated into the workflow to support ML analytics for quality
monitoring in manufacturing.

6 CONCLUSION AND OUTLOOK

Conclusion. In this paper we introduced our Bosch use case of
ML-based quality monitoring in a highly-automated manufacturing
process, the resistance spot welding. We summarised the challenges
of the use case and derived requirements for KG solutions. To ad-
dress the challenges we proposed our KG solution that can generate
the Welding-ML KG from welding raw data. Our KG solution takes
semantic artefacts such as ontologies and mappings and inputs,
and generates the KG with reasoning and an algorithm. We demon-
strated the usage of the KG solution in tasks of ML analytics for
quality estimation and prediction, with two example ML pipelines.
The proposed KG solution is used in our system with real industrial
production data of two production lines and 27 welding machines.

Lessons Learned. The Welding-ML KG provides an efficient foun-
dation for the data retrieval, since the users do not need to dive into
the data level any more. They can simply pick a ML pipeline and
then query the KG to prepare the data. Further more, the ML solu-
tions encoded in such ML pipelines are highly reusable, since they
disentangle the ML generalities (feature groups and ML pipelines)
from data specificities (various feature names from different raw
datasets) by defining feature groups, which are abstract representa-
tion of data in the ML ontology.

Outlook. The KG solution is deployed in our evaluation environ-
ment, and we consider to push it further into a more advanced and
strict evaluation phase of production that runs in real-time. To show
the benefits, we also plan to demonstrate our KG solution with more
users and more use cases. In the future research, we plan to improve
the our KG solution in many directions: to enhance the KG genera-
tion modules to improve the compatibility of the KG schema to the
domain ontologies; to extend the KG solution for more applications,
e.g. question answering, visualisation, statistic analysis; to improve
the semantic artefacts, e.g. to compare the domain ontologies and
core ontology with generic upper ontologies.
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