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ABSTRACT

Wave Digital Filters and neural networks are two popu-

lar solutions for circuit modelling. This paper describes

the development of a Differentiable Wave Digital Filters

library. Diode clipper circuits were constructed. A dataset

was collected from the circuits and, with the library, was

used to train a real-time deployable model. The trained

model has higher accuracy and similar computation time

when compared to traditional white-box models.

1. INTRODUCTION

Virtual analog (VA) modelling is often divided into two

non-distinct types of approaches. “White-box” modelling

involves developing a circuit model based on the physi-

cal interactions of the circuit elements, while “black-box”

modelling involves taking measurements from the circuit,

and creating a digital system that replicates perceptually

relevant aspects of the circuit’s behaviour [1]. VA mod-

elling approaches that combine elements of both white-box

and black-box methods are typically referred to as “grey-

box” approaches.

Wave Digital Filters (WDFs) are a white-box method that

works by modelling individual circuit elements in the wave

domain, and modelling the interactions of those elements

with wave domain “adaptors” [2, 3]. WDFs are a power-

ful tool due to their modular and flexible nature; however,

as with many other white-box approaches, they may pro-

vide inaccurate results when modelling circuits containing

components that behave in a non-ideal manner.

In recent years, there has been significant research on de-

veloping black-box models using neural networks [4–6].

While this approach can achieve high levels of accuracy

when comparing the model to the reference circuit, one

drawback is that it can be difficult for neural network-based

models to include circuit control parameters, particularly

continuous controls such as potentiometers. Wright et al.

suggest training neural networks using control values as

additional inputs [6], however this approach often requires

training a larger network, which requires more computing

resources to run in real-time.

Copyright: © 2022 Jatin Chowdhury et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

One potential solution to the respective issues of the WDF

and neural network modelling techniques is to combine

them via Differentiable Digital Signal Processing (DDSP)

[7]. The fundamental idea behind DDSP is to implement

basic signal processing building blocks within a framework

of automatic differentiation. Then, gradient descent may

be used to optimize various parameters of the signal pro-

cessing algorithm for a given set of input and target data. In

recent years, DDSP has been applied to IIR filter design [8]

and parameter discovery for white-box circuit models [9].

This paper proposes a grey-box modelling technique using

Differentiable Wave Digital Filters (DWDFs). The DWDF

technique involves constructing a WDF model of a refer-

ence circuit, and then training neural networks to replace

one or more of the circuit elements in the WDF model.

With this technique, non-ideal components can be mod-

elled with a high degree of accuracy, since the neural net-

works may be trained with data collected from the actual

circuit. Further, including the circuit’s control parameters

in the model is trivial, so long as the control parameters

are connected to circuit elements being modelled with tra-

ditional WDF elements.

The structure of this paper is as follows: Section 2 dis-

cusses the development of a DWDF library, and the use of

that library for solving simple parameter discovery tasks.

Section 3 presents a process for training neural networks

to emulate the behaviour of anti-parallel diodes in the wave

domain. Section 4 considers the implementation of WDF

models with neural network components for real-time use.

2. DIFFERENTIABLE WAVE DIGITAL FILTERS

While several WDF libraries exist [10, 11], they are pri-

marily focused on implementing real-time circuit models,

and are not well-suited for differentiation. With that in

mind, a new WDF library was implemented in Python, us-

ing the TensorFlow framework for automatic differentia-

tion [12]. The source code for the DWDF library is avail-

able on GitHub [13].

2.1 Library Implementation

Wave Digital Filters operate on wave variables, rather than

the Kirchoff variables typically used for analyzing circuits

(voltage v, and current i). The wave domain variables are
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defined generically as,

a = Rρ−1
0 v +Rρ0i

b = Rρ−1
0 v −Rρ0i

(1)

where a is defined as the incident wave for a given circuit

port, b is the reflected wave, and R0 is the port impedance.

ρ is a wave definition parameter: “voltage waves” are de-

fined for ρ = 1, while “current waves” are given when

ρ = 0. In this writing, only voltage waves will be used.

2.1.1 DWDF 1-Ports

Most simple circuit elements, such as resistors and capac-

itors may be implemented as 1-port elements. A resistor is

defined by the voltage wave relationship,

b = 0 (2)

while a capacitor maybe similarly characterized as,

b = az−1 (3)

where z−1 is defined as a 1-sample delay. Both of these

circuit elements may be trivially implemented with Ten-

sorFlow, and may therefore be differentiated automatically.

For cases where the resistance or capacitance of a given cir-

cuit element may not be known, the library also allows the

component value to be initialised as a “trainable” variable.

2.1.2 DWDF Adaptors

Simple WDF adaptors such as series and parallel adap-

tors may be implemented generally as N-port elements.

These adaptors are typically implemented as 3-port adap-

tors, since any N-port adaptor can be made up of a chain of

3-port adaptors. A series adaptor is defined by the voltage

wave relationship,



b0
b1
b2


 =




0 −1 −1
−R1

R2

R1+R2

R1
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R1

R1+R2
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
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
 (4)

where an, bn, andRn are the incident wave, reflected wave,

and port impedance at a given port. A parallel adaptor is

similarly defined by the voltage wave relationship.
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 (5)

The DWDF library implements these adaptors using the

one-multiply form described in [2]. When training a DWDF

structure, TensorFlow will automatically propagate gradi-

ents through the relevant adapters so that a quantity any-

where in the structure maybe optimized via gradient de-

scent.

2.2 Parameter Discovery with DWDFs

As a test of the DWDF models constructed with the library,

two simple parameter discovery tasks were attempted, sim-

ilar to those outlined in [9].

Figure 1: Training the voltage divider WDF model.

2.2.1 Voltage Divider

For the first task, synthetic data was generated for a sim-

ple voltage divider circuit made up of two equivalent resis-

tors, corresponding to a gain of G = 0.5. A corresponding

WDF model was constructed, using resistors with starting

values of 2 kΩ and 100 Ω, both initialised as trainable vari-

ables. The WDF model was trained on the synthesized data

for 100 epochs, using an Adam optimizer [14],

θt ← θt−1 − α
√
1− βt2
1− βt1

· mt√
vt + ϵ̂

, (6)

where θ is the quantity being optimized, α is the initial

learning rate, mt is the exponential moving average of the

gradient, and vt is the squared gradient. Hyperparameters

β1 and β2 represent the exponential decay rates of the first-

and second-order moment estimates respectively, with de-

fault values β1 = 0.9 and β2 = 0.999. For the voltage

divider circuit, the Adam optimizer was given an initial

learning of α = 25 Ω. The model was trained using a

mean-squared error (MSE) loss function,

LMSE =
1

N

N∑

i=1

(yt(i)− yp(i))2 (7)

where yt represents the “target” data, yp represents the

“predicted” signal output by the model, and N represents

the length of the signal in samples. Table 1 shows the start

and end values for each circuit element, as well as the final

error. Fig. 1 plots the component values and error over the

course of the training process. The component values after

training correspond to a gain of G = 0.502.

2.2.2 RC Lowpass Filter

For the second task, synthetic data was generated for a

first-order RC lowpass filter circuit, with a cutoff frequency

of fc = 720 Hz. A corresponding WDF model was con-

structed, with an initial cutoff frequency of 159 Hz (R =
1 kΩ, C = 1 µF), with both component values initialised

as trainable variables. The model was again trained with

an MSE loss function for 100 epochs. The resistor was

trained with an Adam optimizer with an initial learning

rate of α = 25 Ω, while the capacitor was trained with

a separate Adam optimizer with an initial learning rate of
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Figure 2: Training the RC lowpass WDF model.

Circuit Element Error [V]

Voltage

Divider

R1
Start 2 kΩ

3.4e−6End 984.75 Ω

R2
Start 100 Ω
End 975.65 Ω

RC

Lowpass

R
Start 1 kΩ

2.58e−5End 315.99 Ω

C
Start 1 µF

End 693.8 nF

Table 1: Training statistics for voltage divider and RC low-

pass parameter discovery tasks.

α = 10 nF. Table 1 shows the start and end values for each

circuit element, as well as the final error. Fig. 2 plots the

component values and error over the course of the training

process. The component values after training correspond

to a cutoff frequency of fc = 726 Hz.

3. NEURAL WDF DIODE MODELS

While traditional wave domain diode models can achieve

high accuracy when compared to the expected behaviour

of ideal diodes, they typically require the evaluation of the

Lambert W function at least once per-sample, which can

limit the performance of real-time implementations [15].

As a result, real-time implementations often use lookup ta-

bles or approximations, which offer a trade-off between

accuracy and performance [16]. Further, manufacturing in-

consistencies and other real-world factors may cause diodes

to behave non-ideally, thereby decreasing the accuracy of

traditional wave domain models.

Neural networks offer a potential solution to these limita-

tions, by leveraging data measured from a physical circuit

to help train a more accurate model. As an example, this

section will present a WDF model of an RC diode clipper

(similar to one found in many guitar distortion pedals), in

which the diodes are modelled using a neural network.

3.1 Diode Circuit Data

Data for the neural networks was prepared by constructing

the diode clipper circuit shown in Fig. 3. This circuit var-

ied with the amount of diodes on the “upward-facing” side

Input

10-100 kΩ

4.7 nF

Output

Figure 3: Diode Clipper with anti-parallel diode configu-

ration. In this schematic, there are only 1 upward-facing

and 1 downward-facing diode.

Diode Notation Upward Diodes Downwards Diodes

1U1D 1 1

1U2D 1 2

1U3D 1 3

2U2D 2 2

2U3D 2 3

3U3D 3 3

Table 2: This table shows the notation used for the la-

belling of the various diode clipper schematics, wherein

1U1D refers to a diode clipper with 1 upward-facing diode

and 1 downward-facing diode.

and “downward-facing” side. Table 2 shows the different

anti-parallel diode configurations sampled.

Following the construction of the 6 diode clipper circuits,

a dataset was prepared. The input data for this dataset was

taken from the IDMT-SMT-Guitar Dataset [17]. About 14

seconds of audio was used as input to the diode clipper cir-

cuit. The audio was output from a Universal Audio Apollo-

Twin to the diode clipper circuit, and was sampled with a

Digilent Analog Discovery 2 USB Oscilloscope, as shown

in Fig. 4. The oscilloscope offers a range of sampling rates

from 50 mHz to 100 MHz; measurements were made at

50 kHz since it was the closest option to a standard audio

sampling rate. Each diode clipper circuit was sampled at 5

different resistor values (10 kΩ, 25 kΩ, 45 kΩ, 75 kΩ, 100

kΩ). The capacitor value remained unchanged.

Although 14 seconds seems like a small amount of data,

one must note that model performance is being evaluated

at the sample level, meaning that there will be about 4×106
samples to be used for training. 80% of the data was used

for training the model, and 20% was used to validate the

model’s accuracy.

3.2 Diode Network Architecture

A network architecture was chosen as a sequence of fully-

connected layers similar to the network presented in [18],

with two inputs (the incident wave and port impedance)

and one output (the reflected wave). Since diodes typically

exhibit nonlinear behaviour, a tanh activation function is

used in between each neural network layer. To improve

training speed, the port impedance was replaced with the

log of the port impedance, and the reflected wave was re-

placed with the negation of the reflected wave. The model
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Figure 4: The experimental setup for data collection. Input

comes from a Universal Audio Apollo-Twin audio inter-

face, and data is captured and logged by a Digilent Analog

Discovery USB Oscilloscope.

hyperparameters consist of the number of “hidden” layers

to use in between the model inputs and outputs, as well as

the size of the hidden layers. A visualization of an exam-

ple “2x4” network with 2 hidden layers, each with 4 fully-

connected units can be seen in Fig. 5. When trained, the

diode network represents a memoryless mapping between

the inputs and outputs.

b = −f
([

a
log(R)

])
(8)

a

log(R)

−1 b

Figure 5: An example “2x4” diode network, with 2 hidden

layers, each with 4 fully-connected units.

3.3 Diode Network Pre-Training

While it is expected that the diode network could be trained

entirely within the DWDF model, training would be much

slower than training the network outside of the DWDF

model (due to the overhead introduced by the other WDF

elements). With that in mind, each diode network was

“pre-trained” against synthetic data, generated using wave

domain diode equations derived from the Shockley diode

law [15]. The training signal consists of a linear ramp of in-

cident voltage waves ranging from [−2.5, 2.5] V, repeated

for exponentially increasing port impedances in the range

[10, 109] Ω (see Fig. 6).

Diode networks were pre-trained for 2000 epochs, using

an Adam optimizer with a starting learning rate of 2e−5.

The networks were trained with a combined loss function

Figure 6: Synthetic data used for pre-training diode net-

works.

Figure 7: Pre-trained network results for 1-up/1-down

1N4148 diodes.

of mean-squared error, plus normalized error-to-signal ra-

tio (ESR), defined as,

LESR =

√√√√ 1

N

∑N
i=1(yt(i)− yp(i))2∑N

i=1 yt(i)
2

(9)

where yt and yp represent the “target” and “predicted” sig-

nal respectively, and N represents the length of the signal

in samples. Then, from Equation (7).

LTOT = LMSE + LESR (10)

Fig. 7 shows the results of pre-training a 2x8 network to

model a set of 1-up/1-down 1N4148 diodes.

3.4 RC Diode Clipper Training

A DWDF model of the diode clipper circuit was constructed,

with the diode set in the WDF model replaced by the neural

network architecture shown above.

3.4.1 Training Hyperparameter Search

The DWDF models were trained using an Adam optimizer,

as described in Equation (6) In order to determine the ideal

training parameters for the differentiable diode clipper mod-

els, the training process was run for 100 epochs using the

1-up/1-down dataset with a 2x16 network, using a set of

different training parameters for each run, as shown in Fig.

10. After completing the hyperparameter search, the set of

hyperparameters resulting in the lowest loss values were:

α = 1.0e-4, β1 = 0.5, and β2 = 0.999.
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3.4.2 Determining Ideal Network Size

Next, the training process was run for 500 epochs using

the 1-up/1-down dataset with a variety of network sizes,

as shown in Table 3. From the results, it can be seen that

using a “wider” network with larger hidden layers can im-

prove the network accuracy more so than using a “deeper”

network with more hidden layers. It was determined that

the 2x16 network size should be used for training future

networks, since it was able to achieve the highest accuracy.

Model Pre-Training Epoch 0 Epoch 100 Epoch 500

2x4 2.57e-3 3.22e-2 1.15e-2 9.31e-3

2x8 8.55e-4 3.01e-2 7.68e-3 5.96e-3

2x16 1.03e-4 1.14e-2 6.90e-3 4.42e-3

4x4 1.49e-3 2.13e-2 9.67e-3 7.88e-3

4x8 7.11e-4 2.11e-2 8.28e-3 4.92e-3

Table 3: Training results for 1-up/1-down models with dif-

ferent network sizes. “Pre-Training” shows the final loss

values after pre-training. The final three columns show the

validation loss values after epochs 0, 100, and 500.

3.4.3 Training Results

DWDF models of the diode clipper circuit containing 2x16

networks in place of the wave domain diode element were

trained for 500 epochs for each diode configuration, using

the training hyperparameters determined above. Table 4

shows the results of these training runs. The pre-training

loss shown in the second column of Table 4 is the network

error after the pre-training step described above. Note that

the loss at Epoch 0 (third column) can be interpreted as the

error between the ideal diode equations and the measured

data. The neural network models were able to improve

upon the initial error by more than a factor of two in al-

most all cases.

Finally, an additional 2x16 model was trained for 2000

epochs for the 1-up/1-down dataset, results in a final vali-

dation loss of 3.78e-3. Plots of the training and validation

output signals before and after the training run can be seen

in Fig. 9. From visual inspection, it appears that the largest

discrepancies between the two signals occur during the ex-

treme peaks in the signal. It is expected that adjustments to

the loss function used to train the networks could improve

the network performance for these parts of the signal.

Config Pre-Training Epoch 0 Epoch 100 Epoch 500

1U-1D 1.03e-4 1.14e-2 6.90e-3 4.42e-3

1U-2D 1.70e-4 2.36e-2 7.79e-3 6.12e-3

1U-3D 1.25e-4 2.77e-2 6.30e-3 5.05e-3

2U-2D 1.71e-4 1.38e-2 8.12e-3 7.45e-3

2U-3D 1.01e-4 1.89e-2 8.66e-3 7.04e-3

3U-3D 3.07e-4 1.25e-2 8.25e-3 6.04e-3

Table 4: Training results for 2x16 networks with different

diode configurations. “Pre-Training” shows the final loss

values after pre-training. The final three columns show the

validation loss values after epochs 0, 100, and 500.

Another useful comparison is to examine the transconduc-

tance of the neural network diode model compared to the

transconductance characteristic predicted by the Shockley

diode law [19], shown in Fig. 8. From the asymmetry

in the transconductance of the neural model, it is likely

that the upward- and downward-facing diodes used in the

circuit did not have identical characteristics, as the ideal

model assumes. Further, the loss in current at higher volt-

ages indicates that the diodes may have exhibited some

internal resistance that is not accounted for by the ideal

model.

Figure 8: Comparing the transconductance characteristic

between the ideal Shockley diode law, and the 2x16 neural

network for the 1-up/1-down diode configuration.

4. REAL-TIME CONSIDERATIONS

VA models are often implemented as part of a real-time

system that may be used for sound mixing/mastering, or

musical performance. With that end in mind, an audio plu-

gin was developed containing an implementation of the 1-

up/1-down WDF diode clipper model using several differ-

ent methods for modelling the wave domain diodes. The

first implementation uses the wave domain diode equations

presented in [15], along with a high-precision C++ imple-

mentation of the Wright Omega function in order to eval-

uate the LambertW function [20]. The second implemen-

tation uses the same diode equations, this time using an

approximate implementation of the Wright Omega func-

tion [16]. The remaining implementations use the trained

diode models developed in the previous section, imple-

mented using the RTNeural library for performing neural

network inferencing in real-time [21]. Source code for the

plugin is available on GitHub [13].

4.1 Performance Comparison

In order to compare the performance of the different diode

models, a performance benchmark was developed using

the Google Benchmark library. 1 . The benchmark initialises

the diode clipper WDF with the given diode model, and

processes 100 milliseconds of audio at a sample rate of 96

kHz. This process will repeat until the benchmarks time

1 https://github.com/google/benchmark
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Figure 9: Before and after comparison of the training process for the 2x16 model.

Model # Iterations x Ideal

Ideal Model 1816 –

Approx. Model 20779 11.44

2x4 Model 7006 3.86

2x8 Model 4401 2.42

2x16 Model 2302 1.27

4x2 Model 3531 1.94

4x8 Model 2903 1.60

Table 5: Results of the diode clipper performance bench-

marks. “Ideal/Approx. Model” refers to the diode model

implemented with a high-precision/approximate Wright

Omega function. The second column shows how many

iterations the benchmark was able to perform within 5 sec-

onds. The third column shows how many times faster each

model is when compared to the ideal model.

out after 5 seconds. The number of iterations completed

within 5 seconds can then be used as a “score” to com-

pare the run-time performance between the models. The

benchmarks were run on a 2018 Mac Mini, with a 3.2 GHz

Intel Core i7 CPU. Table 5 shows the results of the per-

formance benchmarks, including the number of iterations

completed within 5 seconds, as well as the number of iter-

ations compared against the ideal model score. The results

of the benchmark show that the neural network models can

out-perform the high-precision implementation, although

all the neural network models are clearly out-performed

by the approximate model. For the purposes of practi-

cal implementations of diode clipper circuit models, the

implementer should choose between the speed of using a

model based on mathematical approximations of lookup

tables relative to the improved accuracy given by the neu-

ral network model.

5. CONCLUSION

This paper has outlined the development of a Differen-

tiable Wave Digital Filter library, that can be used to train

neural network models of circuit components via gradient

descent. The DWDF library has been used to train neu-

ral network models of anti-parallel diodes, which may be

used in models of audio circuits. From a “white-box” per-

spective, DWDFs offer the ability to augment wave digital

circuit models with data measured from physical circuits.

From a “black-box” perspective, DWDFs offer a method

to construct neural network circuit models that is modu-

lar and utilizes prior knowledge about the circuit. The

WDF models constructed with trained neural networks can

be implemented for real-time use with comparable perfor-

mance to a model constructed with traditional WDF ele-

ments.

Future research in this area will focus on extending the

scope of DWDF models, to include models of circuits with

more complex topologies, such as circuits with multi-port

elements including tubes, transistors, and op-amps. In par-

ticular, training differentiable models of R-type adaptors

[3] could offer many possibilities for developing data-driven

models of more complicated circuits. In particular, WDF

models of circuits containing multi-port nonlinearities of-

ten require large multi-dimensional lookup tables or com-

putationally expensive iterative solvers. Replacing these

multi-port nonlinearities with neural networks has the po-

tential to improve the real-time performance of these cir-

cuit models.

DWDFs also make it possible for neural models of circuit

components that were originally trained in one circuit to

be used in a WDF model of a completely separate circuit.

Exploring this possibility is an interesting topic for future

research.

Another potentially interesting line of study is the use of

machine learning to generate a WDF topology for an un-

known circuit. While the DWDF strategy presented here

would be useful for optimizing the generated topologies,

the topology generation itself would require an approach

that is not based on gradient descent, such as genetic algo-

rithms or heuristics.
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Figure 10: Results of network hyperparameter search.
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