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Abstract. Digital twins are computational models that replicate the structure, 
behaviour and overall characteristics of a physical asset in the digital world. In the 

maritime domain, conventional approaches have relied on mathematical modeling 

(e.g., linearised equations of motion) and heavy computations for estimating ship 
resistance and propulsion, seakeeping and maneuverability and overall hull form 

optimization, treating the vessel as a point body. For instance, the ability to predict 

a vessel's future track in confined or congested waters presents a significant 

challenge due to the fact that as time passes, these models often fall out of sync with 

their digital counterparts due to changes that happen to the ship (e.g., foulding 

affecting maneuverability). In addition to this, mostly due to computational 
resources required, in real world deployments models are simplified, thus reducing 

their overall prediction accuracy. In our work, we implement AI-enabled coupled 

abstractions of the asset-twin system, which rely on machine learning methods for 
constant learning of the evolving over time behavior of a vessel based on historical 

trip data and information related to vessel’s structure and loading capacity. The 

evaluation results indicate that the inclusion of vessel and journey specific 
information is beneficial for the predictions. 
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1. Introduction 

The advancement of computational resources establishes the Digital Twins (DTs) as an 

important digitalization trend across industries [1][2]. In the maritime industry, a digital 

twin is a digital representation of any physical object, asset or system, which can be 

translated into a ship engine, embedded vessel sensors, a hull, a propeller, or even an 

entire ship. It can contain various digital models such as 3D, simulation or Artificial 

Intelligence (AI) models [3][4]. Several digital twin approaches are already applied 

covering the entire lifecycle of a vessel (design, manufacturing, operation, and 

maintenance phase) [5][6][7][8]. These approaches bring several benefits to the 

stakeholders [9][10], who try to cope with major challenges (e.g. reduction of costs, 

increase of overall efficiency, reliability, and sustainability) coming from new market 

demands [11], or stricter environmental and safety regulations [12].  

This paper presents a data-driven digital twin approach for the entire trajectory 

forecasting of the vessel till the destination port. Subsections 1.1 and 1.2 illustrate the 



related work and the problem definition, while sections 2 and 3 present the methodology 

and the evaluation results. Finally, Section 4 showcases the conclusions of this work.  

1.1. Related work 

DTs were initially and widely used in marine industry for design purposes, where 

Computer Aided Design (CAD) systems have to a large extent replaced traditional 

manual design, solving complex engineering tasks faster and more precisely using 

computer software such as 3D models and simulation tools [13]. Nowadays, digital twins 

were evolved from the static and descriptive models of the early CAD approaches to 

dynamic models for the behavior of the virtual entity during its entire lifecycle and 

operation [14][15]. 

The implemented approaches to reduce the gap between physical and virtual entities 

can be classified based on the software design patterns followed for the DT creation [16]. 

ML and physics-based DTs are two distinct implementation approaches of DTs in the 

maritime industry. The main advantages and disadvantages between the ML and physics-

based DTs are summarized in Table 1 [16], indicating that both approaches can be 

complementary and are always oriented to the specific scope and/or restrictions of the 

study. The tradeoff among the levels of performance, scalability and level of accuracy 

for each DT are the main factors driving the decisions on the type of the model that will 

be finally implemented. Some recent approaches to achieve high performance follow the 

co-simulation pattern for distributed resources, data, and models [9][17], however these 

approaches do not reach the high scalability levels for a large fleet of vessels, which can 

be achieved with a more abstract approach based on data science and ML principles. 

Table 1. Advantages and disadvantages of machine learning and physics based digital twins. 

Machine learning based Physics based 

Advantages Disadvantages Advantages Disadvantages 

• Model derived from 

data only – no need for 

domain knowledge 

• Generic and flexible 

handling heterogenous 
data types to extract 

knowledge 

• Model improves over 

time (reinforcement 

learning) 

• Good at discovering 

complex relationships 

and patterns 

•  Scaling for different 

vessels and parameters 
can be easily achieved 

leveraging data science 

principles. 

• Availability of large 

size training data to 

develop the model 

• Correlations and not 

causalities can be 
extracted. Back-box, no 

explanations for the 

behavior for some cases 

• Approximation 

methods, no exact 

mathematics 

• Predictive capabilities 

deteriorate quickly 
outside training set 

scope 

• Difficult to predict 

extreme/critical 

conditions due to few 
observations 

• Models capture deep 

existing knowledge on 

physics 

• Causal relationships 

provide insight and 
understanding 

• Uncertainty 

controlled by input and 
modeling accuracy 

• Model has universal 

validity 

• Require extensive 

domain (physics) 

knowledge 

• Computationally 

intensive (increased 
accuracy leads to extra 

needs for resources) 

• Scaling restrictions 

(extra resources and 

time are required to run 

multiple experiments 
for different vessels and 

parameters) 

• Assumptions about 

input-output should be 

made upfront 

 

DTs are also applied on the route planning process [18], when traditionally the route 

is plotted beforehand to be the most efficient in terms of fuel consumption, speed or 

distance travelled. With the rise of the first digital twins, the first geographic information 

systems [19] were created to assist the nautical navigation, while complying with high 

safety standards and strict regulations. Traditional applied methods for modelling ship 



movement are based on kinematic models and motion measurements such as acceleration 

[20][21], without accounting dynamic effects such as loading condition and 

environmental disturbances due to wind, waves and current; information that is handled 

by advanced dynamic models [22]. However, limitations due to the lack of direct 

measurements of these dynamic effects (e.g., current drift) leads to oversimplified 

models with substantial discrepancies between the behavior of the real ship and the 

virtual model. ML based and data driven approaches can bridge such discrepancies, 

providing accurate results for different vessels at large scale. 

After the establishment of the Automatic identification system (AIS), and as moving 

data volumes and availability increased, transportation intelligence also evolved with 

increased need for data-driven methods combined with DT technology to optimize 

moving objects operation. Various ML and data-driven methods based on AIS have been 

proposed in the past years to address the route (trajectory) forecasting problem in the 

maritime [24][25][26][27][28][29][30][31]. In addition, some previous works discuss 

digital twins’ implementations for planning and security monitoring of the transport 

corridors [7][32][33]. Finally, [34] recently proposed a data driven methodology to 

forecast the vessel trajectories in the open sea free-space.   However, the aforementioned 

methods are focused on extracting knowledge only from the spatio-temporal information 

of the AIS messages without taking into consideration additional static information 

related to the structural characteristics of the vessel (such as the size), and dynamic 

information such as the draught, deadweight tonnage (dwt), and schedule details, which 

can potentially affect the final trajectory of the vessel.  

1.2. Problem description 

A trajectory is a path that a moving object 

follows through space as a function of time.  

To capture though the accurate and complete 

trajectory of a moving object, is almost 

impossible in real conditions, due to the 

inherent limitations of data acquisition and 

storage mechanisms. As a result, the 

continuous movement of an object is usually 

obtained as an approximate form of discrete samples of spatiotemporal locations (Figure 

1). Thus, it can be captured as a time stamped series of location points as in Eq. (1), 

where 𝑥𝑖, 𝑦𝑖  represent geographic coordinates of the moving object at time 𝑡𝑖 and 𝑁 is 

the total number of elements in the series. Notice that the approximated trajectory can 

also be represented as a series of line segments between the stamped positions as in Eq. 

(2), given that there is a unique identifier grouping these positions into the same path. 

𝑝0(𝑥0, 𝑦0, 𝑡0), 𝑝1(𝑥1, 𝑦1, 𝑡1), … , 𝑝𝑁(𝑥𝑁 , 𝑦𝑁 , 𝑡𝑁) (1) 

𝑡𝑟𝑎𝑗1 = 𝑝0𝑝1, 𝑝1𝑝2 , 𝑝2𝑝3, 𝑝3𝑝4, 𝑝4𝑝5, 𝑝5𝑝6 , 𝑝6𝑝7, 𝑝7𝑝8 (2) 

In this work, an efficient technique is developed to forecast the path of the vessel till 

its arrival at the destination port by receiving as input the current location of a particular 

vessel along with its destination port. The proposed model is trained based on a huge 

data of historical trajectories for the same journey, while incorporating additional static 

Figure 1. Approximated trajectory captured by 

a sensor 



and dynamic features to improve accuracy of the prediction, leading to a Digital Twin 

model aligned with its physical counterpart. 

2. Methodology 

Although vessels in theory may be considered to be moving in free-space, historical data 

indicate that is not the case. In general, vessels tend to follow specific pathways across 

the seas in order to reach their destination. These pathways may originate from 

international passages, hydrographic studies or simply serve the closest path towards the 

destination port. The proposed approach translates historical data of a specific route (i.e., 

trajectories from a single pair of origin-destination ports) into a directed network. Figure 

2 presents all stages of the proposed approach for the actual training of the algorithm and 

the route prediction of a vessel based on its location and destination port. After 

discovering the frequent pathways of movement (corridors), the relations between 

neighboring pathways are modelled through the creation of a directed graph, which 

represents the movement of vessels. In the next step, and in order to improve the 

prediction accuracy, the algorithm is enhanced with classification models. Each model 

is responsible for deciding which pathway the vessel is to follow in a specific junction 

of the created graph. Features considered by these models include static and dynamic 

information regarding the moving vessel and the journey. The following sections 

describe in more detail all stages of the approach. 

 
Figure 2. Training and execution stages of the proposed methodology. 

2.1. Extracting corridors 

In the first stage of the methodology, the major pathways of the vessels are extracted 

through a preprocessing on a huge volume of historical data. More precisely, the AIS 

messages that were collected are cleaned and partitioned according to the route they 

belong. This is achieved by splitting the historical data of each vessel on trajectories 

beginning from and ending at a port, using the port geometries as an indicator based on 

[35]. After grouping the trajectories from all vessels based on the origin and destination 

port, a separate model for each group is constructed. 

Since the goal of this step is to determine the common pathways between vessels of 

the same route, clustering techniques are used to create spatial groups between the 

positions found in the historical trajectories. First, one of the historical trajectories is 

selected as the baseline trajectory. Moving along consecutive points of this trajectory, 

corresponding rectangles are generated, and then a clustering for all points falling in the 

same rectangle is performed (using the DBSCAN algorithm [36]). By keeping the 

clusters that include the baseline trajectory in each case, series of corresponding areas 

are extracted, forming a corridor. After removing all the trajectories that were covered 



by the previous steps, a new baseline trajectory is selected and the same process is 

performed to create all corridors of the journey (highlighted with color in Figure 3). In 

the end, multiple corridors are extracted from the dataset. The final number of the 

extracted corridors varies depending on both the clustering method, the parameters 

defined for the geometry extraction, as well as the characteristics of the route itself. 

Finally, for each corridor a representative path is extracted based on all the trajectories 

encapsulated in this corridor. 

2.2. Creating movement graph 

After extracting the corridors, the vessel movement is translated into a directed graph. 

To achieve this, the sub-areas where vessels have changed corridors during their travel 

are firstly detected. The number of vessels following this transition is captured as an 

indicative weight for each case. Next, a directed weighted graph is created for the vessel 

movement, so that each node represents these previously extracted points of transition 

between different corridors.  

2.3. Adding classification models 

To enhance the prediction with additional static and dynamic information, a mechanism 

that updates the graph weights is incorporated. Specifically, after the creation of the 

graph, these additional features are passed at the transition points to train a separate 

classification model at each point. This way, during the prediction step, the graph is 

updated based on the query’s characteristics and achieve more accurate results close to 

the physical replica of the vessel. The features taken into account in this study are the 

length, draught, deadweight tonnage (dwt) of the vessel as well as the day of the week 

the journey took place. The proposed system trains two classification models (based on 

Decision Trees [37] and Support Vector Machines [38]) for each junction point of the 

graph and keeps the most accurate one for the prediction. 

2.4. Route forecasting 

Using the created graph and the classification models from the previous stage and based 

on a vessel’s current position, a prediction for a vessel’s path until the destination port is 

produced by firstly identifying the closest corridor to the vessel’s position. Next, the 

algorithm moves along the corridor’s baseline trajectory until the next transition point, 

when the graph’s weights are used to decide whether to continue on the current corridor, 

or to change and continue the journey accordingly. These steps are repeated until 

reaching the destination port.  

3. Evaluation 

3.1. Experimental setup 

To evaluate the accuracy of our approach and quantify the inclusion of several features 

on the final prediction, two AIS datasets were used, each concerning a specific pair of 

origin-destination ports. The first dataset consists of all trips of passenger vessels from 



the port of Mykonos to Piraeus for a single year (2019), while the other includes all trips 

of container vessels from Marsaxlokk to Thessaloniki for a four-year period (2016-

2019). For the former dataset 82 trajectories were considered during training and 36 for 

evaluation, while for the latter the trajectories were split to 129 and 7, respectively. We 

perform full trip predictions from the origin port using different features as input and the 

results are compared to the real trajectory of the vessel collected through AIS using the 

Dynamic Time Warping (DTW) method [39]. 

3.2. Results 

Table 2 summarizes the results of the study for the aforementioned dataset, while Figure 

3 illustrates the extracted corridors of the two journeys.  

Table 2. Experimental results on real data for the route Mykonos-Piraeus targeting passenger vessels and 
Marsaxlokk-Thessaloniki for container vessels, respectively. The results shown are calculated through DTW 

and measured in km. The best combination of features in terms of prediction accuracy is highlighted in bold. 

Classification features Mykonos-Piraeus Marsaxlokk-Thessaloniki 

(None) 16.174813 10.930125 

dayOfWeek 14.000156 10.925935 

dayOfWeek, draught 13.954733 10.328922 

dayOfWeek. dwt 14.000127 10.914007 

dayOfWeek, length 13.986446 10.307028 

dayOfWeek, draught, length 14.412126 10.925935 

dayOfWeek, dwt, length 14.397106 10.914007 

dayOfWeek, draught,  dwt 13.987193 10.930887 

dayOfWeek, draught, dwt,length 13.99941 10.944829 

 

Figure 3. Resulting corridors for the Mykonos-Piraeus (left) and Marsaxlokk-Thessaloniki (right). Each 

corridor is represented by a different color. 

In general, the use of most features benefits our approach, decrease the prediction 

error up to 13.73% compared to the implementation without including any static or 

dynamic information using the real trajectory as reference point.  As seen in Figure 3, 

the selected routes are of high complexity, in terms of the number of different extracted 

corridors, mainly due their passage through the Aegean archipelago, which consists of 

numerous islands, giving many alternative paths for the journey. Furthermore, some 

combinations of more than one feature result in a more accurate prediction. For instance, 

it can be seen that the inclusion of both the journey’s day of the week along with the 

vessel’s draught leads to significant improvement to the resulting predictions in both 

journeys. On the contrary, in some cases allowing multiple features to be included may 

damage the model’s accuracy, as is illustrated in the last row of the table. 



4. Conclusions 

This work explores the use of DTs in the maritime domain, focusing mainly on the vessel 

trajectory prediction problem. Though several works provide accurate results for short-

term route forecasting, the presented work is dedicated to predicting the vessel’s future 

path until the destination port, regardless of the distance. Furthermore, based on 

clustering and classification techniques, the proposed method uses past movement 

patterns from historical data and vessel-specific characteristics to return better-suited 

predictions. Experimental results on real data show that our approach performs 

prediction of high accuracy even for complex trips (i.e., Mykonos-Piraeus), while further 

analysis indicates that the inclusion of additional static and dynamic information features 

can refine the prediction accuracy. Finally, the addition of dynamic information related 

to weather conditions may be considered as an extension of the current work. 
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