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Abstract— With real time vessel surveillance data now be-
coming available at an increasing rate, there is a growing
interest in applications that can forecast future vessel positions
and routes, especially in congested and busy areas. Since vessels
move in “free space”, a prerequisite to effectively forecasting
vessels’ future locations is accurately discovering representative
tracks (common paths followed by several vessels). Towards this
direction, this work introduces a novel data driven framework
that is capable of detecting spatial representations of complete
trajectories (from port to port) from massive Automatic Iden-
tification System (AIS) datasets. Along these lines, we present a
novel approach for forecasting representative tracks from noisy
and non-uniform datasets (number of points, sampling rates,
coverage gaps etc.) at a global scale. Our technique models the
entire space where the vessels traveled in the past, detecting
the set of frequently followed locations. This gives our proposed
method the ability to forecast the most likely movement from
a given query location towards a destination port. Finally, we
present extensive experiments with real-world data, so as to
demonstrate the effectiveness of our proposed method.

I. INTRODUCTION

Shipping patterns and the related shipping routes are
often falsely considered static over time. In reality they
are highly dynamic, affected by changes in supply and
demand, economic growth, port throughput and specializa-
tion, technical advancements, geopolitical tensions and other
external factors. The paths connecting these ports are often
highly affected on a spatial level (e.g. boundaries, length)
or completely disappear. For example, after the blockage of
the Suez Canal in March 2021, several ships were rerouted,
diverting around the Cape Horn (the southern tip of Africa)
adding extra 3,800 miles to their journey and up to 12 days
extra sailing time. The majority of route forecasting and
time of arrival forecasting algorithms failed to adapt their
forecasts, as they relied on traditional and now outdated
routing algorithms and cartography. Figure 1 illustrates Conti
Cortesia’s route deviation from the representative trajectory
that connects Mundra and Suez. Essential for effective
anomaly detection is building an accurate model of nor-
malcy and updating traditional cartographic maps depicting
representative routes between ports with novel data driven
commonly travelled routes. The understanding of the com-
plex maritime environment and a vessel behaviour though,
cannot be limited to simply connecting vessel positions as
they travel across the seas.

1 The authors are with MarineTraffic, Athens, 11525, Greece
{nikolas.zygouras,giannis.spiliopoulos,
dimitris.zissis}@marinetraffic.com

2Dimitris Zissis is also with the Department of Product and Systems
Design Engineering, University of the Aegean, Ermoupoli, Syros 84100,
Greece dzissis@aegean.gr

Mundra

Repr. Trajectory
Mundra→Suez

Destination Changed
Suez→Las Palmas
2021-03-26 22:07

CONTI CORTESIA
Mundra→Suez

2021-03-23 11:40

Las Palmas
Conti Cortesia
Mundra→Suez

2021-03-23 11:40

Suez Canal
Obstruction at 

2021-03-23 05:40

Fig. 1: Illustration of Suez Canal and the Ever Given
accident, that caused the Suez Canal obstruction on 2021-
03-23 and its impact in the route deviation of Conti Cortesia
that operated the route Mundra → Suez.

In 2002 the International Maritime Organisation SOLAS
Agreement made it compulsory for vessels over 299 Gross
Tonnage(GT) to be fitted with an Automatic Identification
System (AIS) transceiver, while in 2006 simpler transceivers
made it possible for even smaller ships to join the AIS.
The shipborne AIS allows for the efficient exchange of
navigational data between ships and between ships and shore
stations, with the aim of improving safety of navigation.
With the AIS, ships voluntarily broadcast their position and
velocity, along with other identification and voyage-related
information. This opened up a range of opportunities beyond
the original scope of AIS. Nowadays a number of publicly
available websites (such as marinetraffic.com) provide an
accurate up to date depiction of vessel traffic flows across the
globe, reporting the positions of more than 200,000 vessels
in real time.

We are now witnessing a growing demand for applica-
tions which can make use of the information hidden in
huge mobility data repositories (such as AIS), ranging from
travel time estimation, to predicting future traffic flow and
anomaly detection across the globe. A typical prerequisite
data analysis task is that of finding objects that have moved
in a similar way. This requires mapping the underlying
mobility data or trajectories into descriptive groups which
reveal common patterns in the data. The challenge is not
novel in the “trajectory data mining” research community
and can be defined as that of clustering trajectories. In this
context, common paths followed by several moving objects
are defined as representative trajectories. For this, throughout



the related literature numerous clustering approaches have
been presented (i.e. OPTICS[1], DBSCAN [2], BIRCH [3],
TRACLUS[4]), which as we shall see in the following
section can be categorised based on their capacity to work on
whole trajectories or only portions of these, and their ability
to forecast representative trajectories in "free space" or over
contained networks (such as roads).

However designing a complete framework for forecasting
representative trajectories at a global scale is not a trivial
task and can be rather challenging. A serious drawback
of the majority of these approaches is their capacity to
scale to large datasets and coverage areas. Unfortunately,
the majority of these works rely on input parameters which
need to be defined by domain experts or selected in a
visual way. Since these approaches are highly sensitive to
the selected input parameters, the usefulness and practicality
of the result is undermined. Also, simple density based or
hierarchical clustering techniques that are commonly applied
in point clouds are inadequate to model complex objects
movements that usually follow multiple paths towards a
destination port. Digital maps (i.e. Open Street Map1) that
contain paths connecting different ports may face outdated
issues. At the same time digital maps usually provide a single
path connecting an origin and a destination port, while in
practice it is likely that vessels follow multiple paths which
deviate significantly from each other.

Thus the focus of our work is on defining a real world
solution with the desired properties of i) practicality ii)
accuracy and iii) execution efficiency. In this paper, we
introduce a novel algorithmic approach for the purpose
of defining smooth representative trajectories in free-space
at a global scale. Our focus is on forecasting complete
representative trajectories in the maritime domain from a
given query location to a destination port. We demonstrate
our approaches effectiveness and accuracy on a large highly
skewed and non uniform dataset. Along these lines, we
present a computationally efficient approach for forecasting
representative tracks from noisy and non-uniform datasets
(number of points, sampling rates, coverage gaps etc.) in
free space.

In short, the core contributions of this article are as
follows:
• The approach is data driven and non supervised, thus

does not rely on any additional context or map infor-
mation. The algorithms do not rely on expert selected
parameters, thus exhibiting good accuracy and perfor-
mance over highly skewed and non uniform datasets.

• The entire workflow is computationally efficient and
distributable, thus capable of processing massive
amounts of raw mobility data in minimal time.

• The approach is capable of producing representative
trajectories that are complete (end to end) and smooth
thus useful for further analytical processing tasks (e.g.
anomaly detection, time of arrival estimation and oth-
ers).

1https://www.openstreetmap.org

We demonstrate all the above properties on a real world
dataset and compare the results with other state of the art
approaches.

II. RELATED WORK

Several seminal works have been proposed in order to
reveal the hidden structure of a set of unlabeled data points,
grouping in clusters similar subsets of points. Among dif-
ferent clustering approaches density-based clustering had
been widely adopted. DBSCAN [2] groups together closely
located data points, while points belonging to low density
regions are annotated as outliers. OPTICS [1] extended
DBSCAN by automatically adapting to various densities.
This is achieved by ordering the points and considering the
closest neighbors first. Another commonly used clustering
approach is hierarchical clustering. For instance, BIRCH
[3] builds a tree for the given data points. The density-
based and the hierarchical clustering approaches, that were
mentioned above, could be used in the trajectories domain
considering the distances between the entire trajectories. In
[5], [6] similar trajectories are grouped together into clusters.
These techniques consider the overall distance between the
entire trajectories. Such techniques are inadequate to handle
real trajectories where moving objects follow different paths
in order to reach the destination.

Several methods, that aim to discover moving patterns,
assume that the objects are moving in free space, examples
of such trajectories are animals’ movements (e.g. birds),
people hiking and vessels or planes trajectories. Lee et
al. [4] proposed a trajectory clustering algorithm, named
TRACLUS that discovers common subtrajectories from tra-
jectories. In TRACLUS the trajectories are partitioned firstly
into a set of subtrajectories, using the minimum description
length (MDL) principle. Then the different subtrajectories
are grouped into clusters introducing a clustering algorithm
similar to DBSCAN. Also, a pipelined algorithm for clus-
tering movement data was proposed by Gudmundsson et
al. [7]. The algorithm splits trajectories in subtrajectories
and provides labels for each subtrajectory according to its
geometric property. Then, the trajectories are transformed in
sequences of these labels used to detect frequently occurring
strings (motifs). Finally, similar subrajectories are detected
using the DBSCAN clustering algorithm. Cao et al. proposed
in [8], an approach that transforms a trajectory in a sequence
of segments and then a heuristic method searches for frequent
patterns in the data, using a substring tree. The authors in [9]
proved that the problem of finding subtrajectories’ clusters
is NP-Complete.

Additionally the problem of summarizing trajectories in
corridors has been investigated in [10]. In order to extract
the corridors they segemented trajectories into subtrajectories
using a mesh grid, then they grouped subtrajectories into
clusters using an agglomerative clustering algorithm that
considers their discrete Fréchet distance, creating clusters of
similar movement. Finally the corridors were the sequences
of the detected clusters with similar starting/ending locations.
Another technique that detects corridors that the moving

https://www.openstreetmap.org


objects frequently traverse together was proposed in [11],
partitioning the trajectories in subtrajectories taking into
account spatial areas that are frequently traversed together.
In [12] the trajectories are transformed into sequences of
regions of interest and they found frequent patterns in these
sequences considering the travel times.

The authors in [13] process AIS data in order to predict
the vessel’s behavior in the next 30 minutes proposing a
clustering algorithm that uses the Karhunen-Loeve transform
and Gaussian Mixture Models. A deep learning architecture
that forecasts the future locations of the vessel considering its
recent locations has been presented in [14]. A bidirectional
LSTM model is used in combination with an attention
mechanism to aggregate the past vessel’s locations. A deep
learning approach that forecasts the inflow and outflow of
vessels at a particular area has been presented in [15] em-
ploying a bidirectional LSTM network in combination with a
CNN network. In [16] a recurrent neural network is used that
consists of an encoder network aiming to summarize the past
movement of the vessel and a decoder network that forecasts
the next position of the vessel. A model that predicts the
ship’s position at a given time along with the association
probability between an existing track and a new message
has been proposed in [17].

The complex nature of trajectories (i.e. sequences of
coordinates) makes it difficult to estimate the distance or
the similarity between two trajectories. The problem of mea-
suring the similarity between two trajectories has attracted
considerable research effort over the last years. Simple
techniques like the sum-of-pairs distance [18] that assume
that the two trajectories have the same number of points
and the same sampling frequencies could not be applied in
real settings where the moving objects move with different
speeds and report their locations with different frequencies.
In order to treat this problem Dynamic Time Warping
(DTW) [19] technique was proposed aligning the positions
of the trajectories and allowing multiple matches to the same
point. A longest common subsequece (LCSS)-based model
was proposed in [20] for efficient spatiotemporal queries
in trajectories databases. Edit Distance on Real sequence
(EDR) distance function between two trajectories was in-
troduced in [21]. This function aims to reduce the effects
of trajectories noisiness quantizing the distance between a
pair of elements to two values, 0 and 1. Edit distance with
Real Penalty (ERP) metric was proposed in [22] and can be
viewed as a combination of EDR and L1-norm that assign
penalties to the gaps between two matched trajectories.

III. PROBLEM DESCRIPTION

In this work we develop an efficient technique that receives
as input the current location of a particular vessel along
with its destination port and forecasts the path that the
vessel will follow till its arrival at the destination port.
Our model is trained using a dataset of N historical vessel
trajectories D = T1, T2, . . . , TN of a particular route (i.e. a
pair of origin and destination ports) and extracts a mobility
graph G = (V, E) that abstracts the vessels’ movements.

The vertices correspond to locations that are frequently
traversed by multiple vessels and the edges favour the most
likely movement among these vertices. Each trajectory Ti :
p1 p2 . . . pMi

is defined as a time ordered sequence of Mi

consecutive coordinates pi ∈ R2. The total travel time of
the Ti is noted as Ti.tt Our formal definition is presented
bellow:

Given the vessel’s origin and destination ports
along with the vessel’s current query location pq
our task is to forecast the representative trajectory
T̂pq

that the vessel will follow towards the destina-
tion port aiming to minimize the distance between
T̂pq

and the actual trajectory Tpq
from the query

location pq towards the destination port.

IV. METHODOLOGY

In this section, we describe the components of the pro-
posed framework. Section IV-A describes the data prepro-
cessing that has been followed. Section IV-B describes a
technique for partitioning the locations considering sliding
envelopes along the vessels’ course. Section IV-C presents
the grouping of locations in different clusters considering
the vessels’ heading and location inside each envelope.
Section IV-D presents a technique for building a directed
graph that summarizes vessels’ transitions and models the
connectivity among different clusters. Finally, Section IV-E
describes the approach that is followed in order to extract the
representative trajectory from a given query location towards
a destination port.

A. Preprocess AIS Data

The data used in this study includes the following sources:
(i) AIS data of passenger vessels moving in the Aegean sea
for 1 year (January 2019 till December 2019) and (ii) port
geometries as provided by the World Port Index from the
National Geospatial Intelligence Agency [23]. Regarding the
AIS data, there is an upper limit of 64 possible types of
messages that AIS transceivers can exchange [24]. These
message types may be related to vessel position tracking,
vessel’s identification or voyage information. In our study
we focus on types 1-3, 18, 19 that are linked to tracking
vessel positions and type 5 which comprises vessel identi-
fication and voyage information. Our AIS dataset contains
approximately 5.5 million positions, broadcasted from more
than 450 passenger ships. Although the collected data include
all the required information to identify spatiotemporally the
operation of each ship, significant processing is needed to
extract additional value.

A ship journey begins and ends at a sea port (or an
anchorage within or close to the port’s operational area).
An essential preprocessing task is assigning to all positional
data collected through AIS, origin-destination information.
Although AIS messages often include a destination port, this
field is ignored in our study, as it is manually entered by each
vessel’s crew, without following a specific standard, making
it thus prone to errors. For this purpose we recalculate
destination and departure ports by making use of the World



Message (t-1) Message (t) Travelling Status Port Move

In Port(A) Not in Port Departure from Port(A) True
Not in Port In Port(A) Arrival at Port(A) True
In Port(A) In Port(A) In Port(A) False
Not in Port Not in Port Travelling at open sea False

TABLE I: Port call events.

Port Index dataset, which contains the location and physical
characteristics of major ports and terminals worldwide [23].
We calculate the operational boundaries of each port in a
data driven method as described in [25], [26]. We execute
a spatial query to assess intersections of port geometries (or
operational areas) with vessel positions.

All the positions that intersect with a port geometry are
assigned the corresponding geometry unique identifier (i.e.,
port id). Then, data are sorted per ship id and timestamp and
for each consecutive pair of messages with the same ship
id, changes in port id are detected, to determine port call
events (i.e., departures / arrivals). As depicted in Table I,
four different cases may occur for each pair of consecutive
messages received. All vessel positions that are between
departure and arrival time are considered as part of the same
voyage. Following this, we follow several data cleaning steps
such as identifying whether kinematic equations explain the
dynamic positional reports for each vessel or evaluating for
each data field whether it is complete and determining its
integrity. These cleaning steps are beyond of the scope of
the current paper, but are adequately documented in related
papers such as [27] and [28].

B. Building Envelopes

In this section, we propose a sequence of steps that creates
a set of envelopes sliding along the vessels’ course. These
envelopes will be used in order to partition vessels’ positions.

1) Detect Baseline Trajectory: In order to detect the
trajectories’ course we select a baseline trajectory applying
several filters in the set of trajectories D that followed a
particular route. The candidate baseline trajectories are firstly
selected by filtering out the trajectories with large travel
times, according to equation 1 (i.e. consider only the trips
with travel time less than the average travel time that is
required to traverse the route). Our assumption is that trips
with large travel times may be outliers containing parts
where the vessel was stopped waiting to enter the anchorage
or cases where the vessel faced severe weather conditions
deviating from the normal movement. From the set of the
remaining filtered trajectories Df we select the baseline
trajectory as the one that contains the minimum maximum
haversine distance among consecutive points, according to
equation 2. In this way we avoid the baseline trajectory to
have large gaps, generated due to the sparsity of the samples
and the non-uniform sampling rates. Finally, we smooth the
baseline trajectory Tr, computing its spline curve T̃r using
the B-Spline [29] approach and we set T̃r as the baseline
trajectory.
Example. Consider the four trajectories illustrated at the left

part of Figure 2, firstly we filter out the red trajectory since
its duration exceeds the trips’ average travel time. Then from
the three remaining trajectories (central part of Figure) we
select the one with the minimum maximum distance among
consecutive samples. The baseline trajectory is finally the
smooth curved line of the previously selected trajectory (red
trajectory in the right of Figure 2).

Df = {Ti : Ti.tt ≤
∑N

j=1 Tj .tt

N
,Ti ∈ D} (1)

Tr = min
∀Ti∈Df

max
∀k∈{1...Mi−1}

haversine(pk, pk+1) (2)

All
Trajectories

Filtered 
Trajectories

Baseline
Trajectory

Fig. 2: Example of baseline trajectory extraction process.

2) Building the envelopes: Here we generate a set of en-
velopes, traversing the coordinates of the smoothed baseline
trajectory T̃r. More specifically, we traverse the coordinates
of the candidate trajectories and we generate a rectangle with
width w rotated in the direction of the vector that joins two
consecutive points pk and pk+1, as it is illustrated in Figure 3.

In order to detect the coordinates of the envel e1, e2,
e3 and e4 we first compute the angle of movement θ =
arctan2(pk+1.lat − pk.lat, pk+1.lon − pk.lon). Then, we
compute the vertical and horizontal distances dy and dx
respectively from pk and pk+1, that will be used in order
to compute the coordinates of the envel.

dy =
w

2
cos(θ) (3) dx =

w

2
sin(θ) (4)

pk

pk+1
pk

pk+
1

θ

w/2 dy

dxe1
e2

e3
e4

Fig. 3: An example of two consecutive points pk and pk+1

and the generated envelope.



C. Clustering Locations

In this section we describe how the frequently followed lo-
cations inside each envelope are detected, grouping together
the locations of the vessels that are spatially close.

Initially we create an envelope considering two consecu-
tive points pk and pk+1 of the baseline trajectory T̃r, as it was
described in section IV-B.2 and the we detect the vessels’
reported positions that lie inside the envelope. If the number
of points inside the envelope does not exceed a pre-settled
threshold then the envelope is extended considering the next
point of the baseline trajectory (i.e. build an envelope consid-
ering pk and pk+2). This process is iterated till the number
of points inside the envelope exceeds the maxEnvPoints
threshold. In this way we avoid generating envelopes with
a limited number of points in areas with limited sampling
coverage. We selected maxEnvPoints to be equal to the
number of training trips of each route (i.e. each envelope
will have approximately one point per trip).

In order to detect the frequently followed locations we
project the vessels’ positions in a line perpendicular to the
direction of the vector that joins the points that form the
envelope, as it is illustrated in Figure 4. Then we group
together the closely packed together projected points using
DBSCAN. This procedure detects a set of dense locations
inside each envelope.

pk

pk+1

outlierCluster 1

Cluster 2

Projection Line

Fig. 4: (i) Projecting the points that lie inside the envelope on
a line perpendicular to the direction of the baseline trajectory
and (ii) Detecting clusters inside the envelope.

D. Building a Directed Graph

In order to capture the main mobility patterns we generate
a mobility graph that depicts the connectivity among different
envelopes’ clusters. A directed edge-weighted graph G =
(V, E) is constructed for each envelope’s cluster. The set of
vertices V corresponds to the spatial area covered by the
points inside each cluster and the set of edges E connects
the clusters. Two different weights w1 and w2 are assigned to
each edge e = (v1, v2), depicting the number of transitions
from v1 to v2 and favoring the most frequent path from v1
to v2 respectively.

Initially, the cluster and the corresponding envelope for
each point of the trajectories Ti ∈ D is detected transforming
Ti into T ′i . T ′i is defined as a sequence of envelope clusters
T ′i : C1 C2 . . . CM ′

i
, where M ′i is the number of clusters of

T ′i . If two or more consecutive coordinates of Ti are mapped
into the same envelope cluster then we keep only the first
instance, not allowing T ′i to have consecutive points of the
same envelope cluster, meaning that M ′i ≤Mi and that Ck 6=
Ck+1∀k ∈ {1, . . . ,M ′i − 1}. Finally, a new dataset D′ of
sequences of trajectories’ clusters is generated, after iterating
this process for each trajectory Ti ∈ D.

Then, in order to generate the graph G for each T ′i ∈
D′ each consecutive pair of envelope clusters Ck and Ck+1

∀k ∈ {1, . . . ,M ′i−1} is parsed updating at each step the
graph according to the following procedure:
• if the clusters Ck or Ck+1 are not in the set of vertices
V of the graph G then the missing clusters are added in
the set of vertices V .

• if there is not an edge connecting the vertices Ck and
Ck+1 (i.e. not in the set of edges E of G) then a
new edge connecting Ck and Ck+1 is added setting
the corresponding weight w1(Ck, Ck+1) ← 0, which
measures the number of connections between the two
consecutive clusters.

• update the weight w1(Ck, Ck+1)← w1(Ck, Ck+1)+1.
Following that, a second weight w2 is introduced for each

edge of G that favors the most likely movement among
clusters, considering the number of transitions from one
cluster to another. More specifically, we iterate over each
cluster Ck and we compute the total number of output
transitions Ck.out from Ck cluster towards any other cluster,
according to equation 5. The weight w2 is computed using
equation 6 favoring the connections with more transitions
in the historical data. In order to penalize the connections
with clusters in remote envelopes denv is introduced, denv
is defined as the distance between the envelopes of two
consecutive clusters. For instance, if one cluster Ck is in
the 5th envelope and its successor Cl belongs in the 8th

then denv(Ck, Cl) = 3. An example of how the weights
w2 are estimated from the transition weights is illustrated in
Figure 5.

Ck.out =
∑

{Cl:(Ck,Cl)∈E}

w1(Ck, Cl) (5)

w2(Ck, Cl) = denv(Ck, Cl)
Ck.out− w1(Ck, Cl)

Ck.out
,

∀(Ck, Cl) ∈ E , Ck ∈ Envj
(6)

Finally, several edges are inserted connecting all the
clusters Ck that belong to the last envelope Envlast with
a sink node with 0 weight, according to equation 7.

w2(Ck, sink) = 0,∀Ck ∈ Envlast (7)

E. Representative Trajectories

In this section, we describe how the representative tra-
jectories are forecasted considering a given query location
and a destination port. Our algorithm is presented in algo-
rithm 1. Firstly, the envelope cluster qcl that is closest to
the given query location qloc is identified. Following that,
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Fig. 5: An example of building the directed graph G (right),
considering the transitions between the clusters of the differ-
ent envelopes (left).

the shortest path from cluster qcl towards the sink node
considering the weight w2 of G is computed. The shortest
path contains the most likely sequence of envelopes’ clusters
from the given query location towards the destination port.
Then, a trajectory is constructed considering the centroids
of all the envelopes clusters of the shortest path. Finally,
the representative is created by smoothing the previously
detected trajectory, using the B-Spline [29] approach, since
the consecutive centroids of the forecasted trajectory are not
always aligned.

Algorithm 1: Forecasting the representative trajec-
tory

input : A query location qloc
output: A representative trajectory repr_traj
qcl ← Find the closest envelopes’ cluster of qloc;
envelopes_clusters←
G.shortest_path(qloc, sink, weight = w2);
trajectory ← [ ];
for envelope_cluster ∈ envelopes_clusters do

trajectory.append(envelope_cluster.get_centroid());

end
repr_traj ← b_spline(trajectory);

V. EVALUATION

In this section we present our experimental results that
evaluate the effectiveness of the proposed technique. We first
describe the experimental data. We then discuss the results
for passenger vessels that moved in the Aegean sea for the
entire 2019.

A. Experimental Setting

The dataset that was used was provided by MarineTraffic2

and contains AIS messages during a year (i.e. entire 2019).
We experiment with an AIS dataset retrieved from passenger
vessels moving in the Aegean sea. The overview of the
investigated routes is presented in the first columns of
Table II. For each route we present the number of trips
that are available in the dataset, along with the average
and the standard deviation of trips’ duration. In general,
we observed that routes with larger standard deviation of

2https://www.marinetraffic.com

duration tend to be more complex containing trips that follow
different paths. We preprocessed the AIS dataset extracting
the vessel trajectories between the origin and destination
ports following the steps described in Section IV-A. For each
trajectory we removed the part of trajectories that is inside
the port and the anchorage, modeling the vessels’ movement
outside the ports boundaries. Finally, we used the 70% of
the trips of each route for training and the rest 30% of the
trips for the testing.

B. Comparison Techniques

In order to study the proposed technique’s effectiveness
we describe the performance of the following techniques:
• ENVCLUS: contains the representative trajectory that

is forecasted by our technique, considering the shortest
path from the most frequently visited cluster of the first
envelope towards the sink node.

• TRACLUS: contains the clusters of trajectories that
were detected from the method that was introduced by
Lee et al. in [4]. We evaluate the TRACLUS algorithm
using all the trajectories that share the same origin and
destination ports (i.e. same route). Since, TRACLUS
could detect multiple clusters we are reporting the
performance of the trajectory cluster with the lowest
distance from the actual trajectory.

• Open Street Map (OSM): contains the detailed path
connecting two ports as it is displayed in Open Street
Map3. For each OSM route we removed the part of the
trip that is inside the port boundaries following a similar
approach with the preprocessing of vessel trajectories.

Since the extracted trips of OSM and TRACLUS are
usually sparsely sampled we interpolated the intermediate
points in case that the distance between two consecutive
points is very large.

C. Evaluation Metrics

For evaluating the effectiveness of the proposed approach
we used the DTW [19] in order to evaluate the distance
between the actual and the predicted trajectories. More
specifically, DTW is used to align the two trajectories
(the actual and the forecasted). Then the distances between
the matched points are computed in km, employing the
haversine distance. Finally, the reported value is the average
distance in km of all the matched points between the actual
and the forecasted trajectory.

D. Results for Passenger Vessels

The overall performance of the proposed technique (EN-
VCLUS) in comparison to the baseline techniques is illus-
trated in Table II. Along with the average DTW distance,
measured in km, between the actual and the predicted
trajectories we present the percentage improvement (i.e. %
impr.) that refers to the reduction of DTW distance that our
technique achieves. Greater percentage improvement means
that the representative trajectory that is produced by our

3https://www.openstreetmap.org
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(a) ENVCLUS (b) TRACLUS (c) OSM

Fig. 6: Results for the route Piraeus → Milos

(a) ENVCLUS (b) TRACLUS (c) OSM

Fig. 7: Results for the route Rafina → Marmari

(a) ENVCLUS (b) TRACLUS (c) OSM

Fig. 8: Results for the route Piraeus → Santorini

technique is closer to the actual trajectory considering the
baseline techniques. At the same time, Figures 6, 7 and 8
visualize the performance of the different techniques for 3
different routes.

Our technique in general outperforms the comparison
techniques and avoids large DTW distances from the actual
trajectories. More specifically, the total average percentage
improvement of our technique, considering all the routes is
28% against TRACLUS and 27% against OSM.

TRACLUS in several cases detects multiple clusters of
trajectories, as it described in Figure 8. In this case each
cluster models only part of the entire trip. At the same
time there are some parts where vessels moved that are not
modeled by any cluster, as it is shown in Figure 6.Thus, we
conclude techniques that detect clusters of trajectories are
not able to model in detail the objects movement.

Also, we observed that the paths of OSM in several cases
deviate considerably from the actual path that the vessels
followed. For instance, as it is described in Figure 7 the
vessels that moved towards Marmari port follow a different
path from the OSM path. Also, OSM path contains a single
path while the vessels may travel from a particular origin
port towards a destination port through various paths.

Finally, in Table III we present the performance of our
technique making queries at different parts of the test trajec-
tories. As we mentioned earlier a benefit of our approach is
that it is able to model the entire space where vessels moved.
This differentiates us from OSM that provides a single path.
For each test trip we generated 20 query points at different
parts of the trips. In this way, PartA contains queries at the

first 1/3 of the trip, PartB contains queries at the second
1/3 and finally PartC contains the queries at the last 1/3.
As we can see our approach is able to adapt to deviations
from the main path reducing the distance from the actual
trajectory as more information is provided regarding the path
followed by the vessel. This observation is more obvious for
complex routes where vessels tend to follow different paths
from the origin port towards the destination port (i.e. Piraeus
→ Santorini and Chios → Mytilini). For these cases the
comparison techniques might outperform our technique for
route forecast queries from the origin towards the destination
port (Table II), but we can see how the error is reduced in
our technique as the vessel moves and reports its locations
(Table III).

VI. CONCLUSION

In this paper we proposed a novel data driven framework
capable of revealing representative trajectories from massive
AIS datasets. To show the effectiveness of our approach we
performed extensive experiments using real world datasets
from passenger vessels moved in the Aegean sea. Overall
we observed that our technique outperforms the comparison
techniques in most of the testing routes. At the same time,
our technique is able to model the entire space where vessels
moved. Finally, we observed that our technique reduces the
average distances with the actual trajectories in comparison
to the baseline techniques more than 27% and that the
distance between the forecasted representative trajectory and
the actual trajectory is decreased as the vessel starts its trip.
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