Paleobiology

Supporting Information for

Small but mighty: how overlooked small species maintain community structure

through middle Eocene climate change

L.E. Kearns¹, S.M. Bohaty¹, K.M. Edgar² and T.H.G. Ezard¹

¹School of Ocean and Earth Science, National Oceanography Centre Southampton,

University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK

² School of Geography, Earth and Environmental Sciences, University of Birmingham,

Birmingham B15 2TT, UK.

Contents of this file

Supporting text describing statistical methodology Supplementary Figures 1 to 14 Supplementary Tables 1 to 25

Additional Supporting Information (Files uploaded separately)

Supplementary Tables 1, 3-8 and 11-12 are uploaded as Comma separated values (CSV) files for ease of use.

Contents

1	Intr	oduction to Supplementary Material	2
	1.1	Data preparation and processing	14
2	Gen	eralized additive models (GAMs)	18
	2.1	Genera	19
	2.2	Morphogroup	26
	2.3	Depth Habitat	33
	2.4	Predicting GAMs	39
3	Hill	Numbers	41
	3.1	Kruskal Test	41
	3.2	Post-hoc Dunn Test	44
Bi	bliog	raphy	48

1 Introduction to Supplementary Material

This supplement is intended to provide reproducible code for the results presented in the manuscript. All analyses were performed in the freely distributed R environment (R Core Team (2020)). This supporting information was written using knitr (Xie (2020)) and kableExtra (Zhu (2019)). The code uses the tidyverse (Wickham (2019)), readxl (Wickham and Bryan (2019)) and mgcv (Wood (2017)) and packages within as well as dependencies (Aze et al. (2011)). Here we provide the sample information for all samples included in our analysis as well as morphological and ecological classification of identified genera which are all referenced within the manuscript. For ease of use Tables 1, 3-8 and 11-12 are also uploaded as Comma separated values (CSV) files.

brary(readxl)	
brary(tidyverse)	
brary(knitr)	
brary(kableExtra)	
brary(mgcv)	
brary(FSA)	
brary(broom)	
brary(itsadug)	
brary(xtable)	
brary(formatR)	
brary(MuMIn)	
brary(rstatix)	
brary(ggpubr)	

Supplementary Figure 1: Expedition 342 Site locations used in this study (colored circles) on a plate reconstruction from 36 Ma from www.odsn.de. Site U1406 (black circle; 40°21.0 N, 51°39.0 W), U1408 (green circle; 41°26.3 N, 49°47.1 W) and U1410 (red circle; 41°19.6993 N, 49°10.1847 W) (Norris et al (2012)).

Supplementary Table 1: IODP Expedition 342 samples used in this study. Lab ID= Study specific sample ID, Expedition = IODP expedition number, Top Depth = Top interval (m), Bottom Depth = Bottom interval (m), Sample ages were calculated based on an age depth model constructed using available biostratigraphic and magnetostratigraphic data for Sites U1408 and U1410 (Norris et al (2012), Yamamoto et al (2018) and Cappelli et al (2019)). Age calibrations from the 2012 geologic timescale were used for middle Eocene geomagnetic polarity reversals (GTS2012; Gradstein et al (2012), Ogg et al (2012))

LAB ID	EXPEDITION	SITE	HOLE	CORE	SECTION	TOP_DEPTH	BOTTOM_DEPTH	Depth (CCSF-A, m)	U1408 Mapped Depth (CCSF-M, m)	Inter-site Mapped Depth (CCSF-X)	Age (GTS_2012)
67	342	1406	Ā	27	3	88	90				38.00
$\frac{7}{-60}$	342	1406	A	27	4	137.5	139				38.16
<u></u>	342	1406	A	27	5	100	102				38.25
	342	1408	B	$\frac{5}{27}$	2	60 62	62 63 5				38.50
$\frac{0}{74}$	342	1400	A Δ	5	$\frac{0}{2}$	38	40				30.12
$\frac{74}{75}$	342	1408	A	5	5	30	40 32				39.00
$\frac{10}{82}$	342	1408	B	7	1	98	100	49.08	49.08	49.76	39.56
96	342	1408	C	7	2	58	60	54.19	54.26	54.94	39.68
34	342	1408	B	8	1	120	121.5	60.11	60.13	60.81	39.85
20	342	1406	В	28	5	1.5	3				39.92
83	342	1408	В	8	4	28	30	63.69	63.69	64.32	39.95
35	342	1408	В	8	4	106.5	108	64.47	64.47	64.89	39.97
59	342	1410	В	10	5	117	118.5	90.04	90.04	70.64	40.14
76	342	1408	Α	8	2	117	118	71.57	71.57	78.89	40.38
30	342	1408	Α	8	3	69	71	72.59	72.59	79.91	40.41
98	342	1408	С	9	2	98	100	75.28	75.46	82.78	40.49
51	342	1410	Α	11	1	97	98.5	102.20	101.93	102.98	41.09
53	342	1410	Α	11	5	129.5	131	108.53	108.53	109.79	41.31
48	342	1408	C	11	5	137	139	99.33	99.33	113.51	41.45
	342	1410	A	12	2	64	65.5	115.07	115.07	116.66	41.58
$\frac{61}{-62}$	342	1410	B	14	2	79	80.5	121.82	121.56	122.99	41.83
<u>62</u>	342	1410	B	14	3	92.5	94	123.46	124.05	125.48	41.94
$\frac{49}{79}$	342	1408		13		142	144	114.37	114.37	129.48	42.10
$\frac{10}{114}$	342	1408	A A	15	7	140	51				43.00
$\frac{114}{115}$	342	1410	A	16	4	$\frac{49.0}{120}$	1215				43.20
116	342	1410	A	17	1	2	3.5				43.75
117	342	1410	A	17	4	56	57.5				44.00
118	342	1410	Α	18	1	67	68.5				44.25
119	342	1410	Α	18	4	122	123.5				44.50
120	342	1410	А	19	1	114	115.5				44.75
121	342	1410	Α	19	5	18	319.5				45.00

Genera	Morphogroup	Depth Habitat
Acarinina	7	Mixed layer
Catapsydrax	2	Subthermocline
Chiloguembelina	9	Mixed layer
Dentoglobigerina	2	Thermocline
Globigerina	2	Mixed layer
Globigerinatheka	3	Mixed layer
Globorotaloides	2	Subthermocline
Globoturborotalita	2	Mixed layer
Hantkinena	5	Thermocline
Jenkinsina	10	Subthermocline
Morozovelloides	8	Mixed layer
Orbulinoides	11	Mixed layer
Parasubbotina	2	Subthermocline
Planorotalites	8	Mixed layer
Pseudohastigerina	4	Mixed layer
Subbotina	2	Thermocline
Turborotalita	1	Mixed layer
Turborotalia	6	Mixed layer

Supplementary Table 2: Genera found in this study and there morphogroup and depth habitat based on Table S9 and Table S10 below, which are updated from those published by Aze et al. (2011)

Age (Ma)	Turborotalita	Subbotina	Globigerina	Catapsydrax	Globoturborotalita	Parasubbotina	Dentoglobigerina	Globorotaloides	Globigerinatheka	Pseudohastigerina	Hantkinena	Turborotalia	Acarinina	Morozovelloides	Chiloguembelina	Jenkinsina	\mathbf{P} lanorotalites	Orbulinoides	Total
38.00	0	73	0	5	0	0	0	15	0	41	0	0	48	0	8	0	184	0	374
38.16	0	30	0	22	0	180	3	0	4	0	0	0	15	0	9	0	13	0	276
38.25	0	152	0	7	0	0	0	13	3	8	0	0	8	0	16	0	63	0	270
38.50	0	64	0	13	0	0	2	20	3	25	1	6	22	0	44	0	134	0	334
38.72	1	35	0	10	0	122	0	9	1	29	0	1	26	2	0	30	56	0	322
39.00	0	64	0	4	0	0	2	31	5	36	0	0	11	0	51	0	111	0	315
39.25	0	89	0	17	0	0	0	50	0	43	0	2	31	0	43	0	235	0	510
39.56	0	37	0	22	0	19	0	40	0	52	0	0	8	1	53	4	83	0	319
39.75	0	41	4	6	12	11	0	49	2	53	0	2	9	0	56	0	94	0	339
39.85	0	8	0	0	6	35	0	24	2	32	0	0	14	0	160	1	88	0	370
39.92	0	56	0	27	0	77	0	0	16	0	0	0	9	0	2	0	36	0	223
39.95	0	51	0	5	0	7	0	23	0	41	0	1	6	0	50	0	69	0	253
39.97	0	53	0	1	0	20	0	35	7	36	0	1	25	0	57	19	105	0	359
40.14	0	37	4	0	0	47	0	3	3	3	0	1	27	4	4	0	182	0	315
40.38	0	128	0	41	4	19	0	8	38	22	0	6	15	3	11	1	38	1	335
40.41	0	43	0	0	1	44	0	17	9	16	1	1	12	1	5	73	17	0	240
40.49	0	109	0	42	4	44	2	70	9	57	0	4	48	24	58	1	150	0	622
41.09	0	20	4	0	4	32	0	27	2	13	0	2	20	1	65	0	98	0	288
41.31	0	18	0	0	18	87	0	23	1	32	1	0	28	35	28	1	20	0	292
41.45	0	19	0	0	0	41	0	38	2	51	0	1	13	15	404	155	34	0	773
41.58	0	23	0	0	2	49	0	33	0	59	0	2	26	2	65	8	45	0	314
41.83	0	74	11	9	12	32	0	0	15	39	1	1	111	12	6	5	32	0	360
41.94	0	34	0	0	0	40	0	33	1	48	0	1	31	13	76	18	84	0	379
42.10	0	21	0	0	7	26	0	23	2	67	0	0	62	15	14	8	40	0	285
43.00	0	74	0	2	0	26	0	10	4	59	1	6	99	20	59	36	116	0	512
43.25	0	74	0	5	0	39	0	28	0	32	0	3	75	2	41	10	83	0	392
43.50	0	90	1	3	0	17	0	30	10	5	0	4	81	5	2	4	58	0	310
43.75	0	84	0	0	0	28	0	7	0	26	0	2	50	19	12	6	88	0	322
44.00	0	56	4	5	0	26	0	30	1	59	0	18	129	17	60	45	135	0	585
44.25	0	59	0	3	0	10	0	21	0	55	0	25	104	1	3	4	96	0	381
44.50	0	47	0	3	0	0	0	19	3	38	0	15	106	1	1	1	43	0	277
44.75	0	67	0	0	0	0	0	84	0	35	0	0	89	1	5	4	47	0	332
45.00	0	99	0	1	0	0	0	27	0	55	0	0	104	2	10	5	62	0	365

Supplementary Table 3: Raw counts of genera in the ${>}63\mu\mathrm{m}$ size fraction

Age (Ma)	Turborotalita	Subbotina	Globigerina	Catapsydrax	Parasubbotina	Dentoglobigerina	Globoturborotalita	Globorotaloides	Globigerinatheka	Pseudohastigerina	Hantkinena	Turborotalia	Acarinina	Morozovelloides	Chiloguembelina	Jenkinsina	Planorotalites	Orbulinoides	Total
38.00	0	238	0	21	0	3	0	0	5	0	0	0	22	2	0	0	0	0	291
38.16	0	285	0	12	0	12	21	0	24	0	0	2	5	0	0	0	0	0	361
38.25	0	298	0	10	0	0	0	0	2	0	0	0	3	0	6	0	0	0	319
38.50	0	291	0	9	3	5	0	0	29	3	0	12	13	4	0	0	0	0	369
38.72	0	220	2	15	14	3	2	0	29	0	0	1	16	4	0	0	0	0	306
39.00	0	220	0	18	5	5	12	0	15	2	2	14	15	1	0	0	0	0	309
39.25	0	192	0	10	4	1	2	1	0	2	0	9	11	0	0	0	0	0	232
39.56	0	209	0	34	37	0	7	1	10	15	0	0	6	0	6	0	0	0	325
39.75	0	157	0	22	3	0	6	2	16	9	0	18	31	1	2	0	6	0	273
39.85	0	94	0	7	43	15	38	0	24	11	0	0	28	17	0	0	0	3	280
39.92	0	209	0	24	4	0	3	0	76	1	0	0	0	0	0	0	0	0	317
39.95	0	159	0	9	38	0	0	0	34	8	0	4	9	4	0	0	0	0	265
39.97	0	281	0	40	3	0	0	0	50	0	1	2	0	1	0	0	0	0	378
40.14	0	192	7	0	43	0	8	0	21	0	0	2	16	14	0	0	0	0	303
40.38	0	145	0	27	0	5	1	0	102	1	1	12	11	1	0	0	1	0	307
40.41	0	139	0	27	12	0	3	0	100	0	0	2	2	5	0	0	0	0	290
40.49	0	257	0	31	18	0	1	3	18	0	0	1	30	20	0	0	0	0	379
41.09	0	81	4	12	25	0	19	0	10	2	3	20	95	10	0	0	0	0	281
41.31	0	152	0	10	15	0	39	0	24	6	3	8	39	73	0	0	0	0	369
41.45	0	99	9	11	16	0	16	2	11	17	2	15	36	47	0	0	0	0	281
41.58	0	131	8	3	30	1	20	5	25	15	0	22	84	32	0	1	1	0	378
41.83	0	207	0	0	15	0	5	0	54	3	2	0	100	32	0	0	0	0	418
41.94	0	125	3	11	15	0	6	0	9	0	1	10	35	35	0	0	0	0	250
42.10	0	167	0	5	43	0	24	0	27	3	0	12	47	43	0	0	0	0	371
43.00	0	148	0	9	9	0	0	0	21	1	1	21	121	46	0	0	0	0	377
43.25	0	174	1	13	18	0	7	0	19	4	1	15	45	18	0	0	4	0	319
43.50	0	124	0	9	7	0	4	0	72	0	0	6	114	18	0	0	0	0	354
43.75	0	167	0	10	7	0	0	0	16	0	0	3	37	19	0	0	0	0	259
44.00	0	191	0	23	0	0	0	0	10	2	0	8	27	37	0	0	3	0	301
44.25	0	244	0	7	2	0	0	0	0	1	0	26	146	2	0	0	2	0	430
44.50	0	147	0	9	3	0	16	0	0	0	0	24	148	7	0	0	0	0	354
44.75	0	198	0	0	0	0	0	0	0	4	0	4	209	3	0	0	0	0	418
45.00	0	154	0	6	0	0	9	18	0	22	0	7	148	0	57	2	0	0	423

Supplementary Table 4: Raw counts of genera in the ${>}180\mu\mathrm{m}$ size fraction

Age (Ma)	1	2	3	4	5	6	7	8	9	10	11	Total
38.00	0	93	0	41	0	0	48	184	8	0	0	374
38.16	0	235	4	0	0	0	15	13	9	0	0	276
38.25	0	172	3	8	0	0	8	63	16	0	0	270
38.50	0	99	3	25	1	6	22	134	44	0	0	334
38.72	1	176	1	29	0	1	26	58	0	30	0	322
39.00	0	101	5	36	0	0	11	111	51	0	0	315
39.25	0	156	0	43	0	2	31	235	43	0	0	510
39.56	0	118	0	52	0	0	8	84	53	4	0	319
39.75	0	123	2	53	0	2	9	94	56	0	0	339
39.85	0	73	2	32	0	0	14	88	160	1	0	370
39.92	0	160	16	0	0	0	9	36	2	0	0	223
39.95	0	86	0	41	0	1	6	69	50	0	0	253
39.97	0	109	7	36	0	1	25	105	57	19	0	359
40.14	0	91	3	3	0	1	27	186	4	0	0	315
40.38	0	200	38	22	0	6	15	41	11	1	1	335
40.41	0	105	9	16	1	1	12	18	5	73	0	240
40.49	0	271	9	57	0	4	48	174	58	1	0	622
41.09	0	87	2	13	0	2	20	99	65	0	0	288
41.31	0	146	1	32	1	0	28	55	28	1	0	292
41.45	0	98	2	51	0	1	13	49	404	155	0	773
41.58	0	107	0	59	0	2	26	47	65	8	0	314
41.83	0	138	15	39	1	1	111	44	6	5	0	360
41.94	0	107	1	48	0	1	31	97	76	18	0	379
42.10	0	77	2	67	0	0	62	55	14	8	0	285
43.00	0	112	4	59	1	6	99	136	59	36	0	512
43.25	0	146	0	32	0	3	75	85	41	10	0	392
43.50	0	141	10	5	0	4	81	63	2	4	0	310
43.75	0	119	0	26	0	2	50	107	12	6	0	322
44.00	0	121	1	59	0	18	129	152	60	45	0	585
44.25	0	93	0	55	0	25	104	97	3	4	0	381
44.50	0	69	3	38	0	15	106	44	1	1	0	277
44.75	0	151	0	35	0	0	89	48	5	4	0	332
45.00	0	127	0	55	0	0	104	64	10	5	0	365

Supplementary Table 5: Raw counts of morphogroups in the ${>}63\mu\mathrm{m}$ size fraction

Age (Ma)	1	2	3	4	5	6	7	8	9	10	11	Total
38.00	0	262	5	0	0	0	22	2	0	0	0	291
38.16	0	330	24	0	0	2	5	0	0	0	0	361
38.25	0	308	2	0	0	0	3	0	6	0	0	319
38.50	0	308	29	3	0	12	13	4	0	0	0	369
38.72	0	256	29	0	0	1	16	4	0	0	0	306
39.00	0	260	15	2	2	14	15	1	0	0	0	309
39.25	0	210	0	2	0	9	11	0	0	0	0	232
39.56	0	288	10	15	0	0	6	0	6	0	0	325
39.75	0	190	16	9	0	18	31	7	2	0	0	273
39.85	0	197	24	11	0	0	28	17	0	0	3	280
39.92	0	240	76	1	0	0	0	0	0	0	0	317
39.95	0	206	34	8	0	4	9	4	0	0	0	265
39.97	0	324	50	0	1	2	0	1	0	0	0	378
40.14	0	250	21	0	0	2	16	14	0	0	0	303
40.38	0	178	102	1	1	12	11	2	0	0	0	307
40.41	0	181	100	0	0	2	2	5	0	0	0	290
40.49	0	310	18	0	0	1	30	20	0	0	0	379
41.09	0	141	10	2	3	20	95	10	0	0	0	281
41.31	0	216	24	6	3	8	39	73	0	0	0	369
41.45	0	153	11	17	2	15	36	47	0	0	0	281
41.58	0	198	25	15	0	22	84	33	0	1	0	378
41.83	0	227	54	3	2	0	100	32	0	0	0	418
41.94	0	160	9	0	1	10	35	35	0	0	0	250
42.10	0	239	27	3	0	12	47	43	0	0	0	371
43.00	0	166	21	1	1	21	121	46	0	0	0	377
43.25	0	213	19	4	1	15	45	22	0	0	0	319
43.50	0	144	72	0	0	6	114	18	0	0	0	354
43.75	0	184	16	0	0	3	37	19	0	0	0	259
44.00	0	214	10	2	0	8	27	40	0	0	0	301
44.25	0	253	0	1	0	26	146	4	0	0	0	430
44.50	0	175	0	0	0	24	148	7	0	0	0	354
44.75	0	198	0	4	0	4	209	3	0	0	0	418
45.00	0	187	0	22	0	7	148	0	57	2	0	423

Supplementary Table 6: Raw counts of morphogroups in the $>180\mu m$ size fraction

Age (Ma)	Mixed_Layer	Thermocline	Subthermocline	Total
38.00	281	73	20	374
38.16	41	33	202	276
38.25	98	152	20	270
38.50	234	67	33	334
38.72	116	35	171	322
39.00	214	66	35	315
39.25	354	89	67	510
39.56	197	37	85	319
39.75	232	41	66	339
39.85	302	8	60	370
39.92	63	56	104	223
39.95	167	51	35	253
39.97	231	53	75	359
40.14	228	37	50	315
40.38	138	128	69	335
40.41	62	44	134	240
40.49	354	111	157	622
41.09	209	20	59	288
41.31	162	19	111	292
41.45	520	19	234	773
41.58	201	23	90	314
41.83	239	75	46	360
41.94	254	34	91	379
42.10	207	21	57	285
43.00	363	75	74	512
43.25	236	74	82	392
43.50	166	90	54	310
43.75	197	84	41	322
44.00	423	56	106	585
44.25	284	59	38	381
44.50	207	47	23	277
44.75	177	67	88	332
45.00	233	99	33	365

Supplementary Table 7: Raw counts of depth habitats in the ${>}63\mu\mathrm{m}$ size fraction

Age (Ma)	Mixed_Layer	Thermocline	Subthermocline	Total
38.00	29	241	21	291
38.16	52	297	12	361
38.25	11	298	10	319
38.50	61	296	12	369
38.72	54	223	29	306
39.00	59	227	23	309
39.25	24	193	15	232
39.56	44	209	72	325
39.75	89	157	27	273
39.85	121	109	50	280
39.92	80	209	28	317
39.95	59	159	47	265
39.97	53	282	43	378
40.14	68	192	43	303
40.38	129	151	27	307
40.41	112	139	39	290
40.49	70	257	52	379
41.09	160	84	37	281
41.31	189	155	25	369
41.45	151	101	29	281
41.58	207	132	39	378
41.83	194	209	15	418
41.94	98	126	26	250
42.10	156	167	48	371
43.00	210	149	18	377
43.25	113	175	31	319
43.50	214	124	16	354
43.75	75	167	17	259
44.00	87	191	23	301
44.25	177	244	9	430
44.50	195	147	12	354
44.75	220	198	0	418
45.00	243	154	26	423

Supplementary Table 8: Raw counts of depth habitats in the ${>}180\mu\mathrm{m}$ size fraction

Morphogroup	Description
1	Spinose, flat
2	Spinose, globular
3	Spinose globular with supplementary apertures
4	Non-spinose, planispiral
5	Non-spinose, tubilospinate
6	Non-spinose, turborotaliform, keeled
7	Non-spinose, muricate, acariniform
8	Non-spinose, muriconate, keeled
9	Microperforate, non-spinose, biserial
10	Microperforate, non-spinose, triserial
11	Spinose, spherical, flat

Supplementary Table 9: Descriptions of morphological classification applied to genera of this study updated from previous work (Aze et al (2011)) to include microperforate genera

Supplementary Table 10: Descriptions of depth habitat classifications applied to genera found in this study updated from previous research (Aze et al (2011)) to include microperforate genera

Depth Habitat	Description
Mixed layer	Heavy 13C, light 18O
Thermocline	Light 13C, relativley heavy 18O
Subthermocline	Very light 13C, very heavy 18O

Supplementary Table 11: Calculated hill numbers for genera, morphogroup and depth habitat. Columns relating to different measured diversity are as follows: genera begin with Genus, morphogroup begin with Morph, and depth habitat begin with Eco. Hill refers to calculated hill numbers, UCI is the upper confidence interval, LCI is the lower confidence interval and SD is the standard deviation. Size fraction relates to the size fraction measured whilst Q is the order of q effective diversity was calculated. This table is too large in its entirety so only the first 11 lines are presented here with the .csv available as a supplement .

Size Fraction	Age	Fragmentation $\%$	ď	Genus_Hill	Genus_UCI	Genus_LCI	Genus_SD	Morph_Hill	Morph_UCI	Morph_LCI	Morph_SD	Eco_Hill	Eco_UCI	Eco_LCI	Eco_SD
180	38	9.7	0.0	6.00	6.19	5.19	0.41	4.00	4.15	3.15	0.36	3.00	3.00	3.00	0.00
180	38	9.7	0.1	5.22	5.51	4.49	0.33	3.43	3.66	2.77	0.28	2.82	2.86	2.78	0.02
180	38	9.7	0.2	4.55	4.89	3.90	0.28	2.97	3.23	2.45	0.22	2.66	2.73	2.58	0.04
180	38	9.7	0.3	3.98	4.35	3.41	0.25	2.60	2.86	2.19	0.18	2.50	2.60	2.40	0.06
180	38	9.7	0.4	3.50	3.87	3.00	0.22	2.30	2.56	1.98	0.15	2.36	2.48	2.23	0.07
180	38	9.7	0.5	3.11	3.47	2.68	0.20	2.07	2.32	1.81	0.13	2.23	2.37	2.09	0.08
180	38	9.7	0.6	2.79	3.13	2.42	0.18	1.89	2.12	1.67	0.11	2.12	2.26	1.96	0.08
180	38	9.7	0.7	2.53	2.85	2.20	0.17	1.75	1.96	1.55	0.10	2.02	2.17	1.86	0.09
180	38	9.7	0.8	2.32	2.62	2.02	0.15	1.64	1.83	1.47	0.09	1.93	2.09	1.76	0.09
180	$\overline{38}$	9.7	0.9	2.15	2.43	1.87	0.14	1.55	1.72	1.40	0.08	1.85	2.01	1.68	0.09
180	38	9.7	1.0	2.01	2.28	1.76	0.13	1.48	1.64	1.34	0.08	1.78	1.94	1.62	0.09

LAB ID	EXPEDITION	ELIS 1406	HOLE	CORE	< CORE_TYPE		GC	TOP_DEPTH	BOTTOM_DEPTH	8 Age_2021(Ma)	180_Fragmentation (%)	180_Recount_Fragmentation (%)	63_Fragmentation (%)	63_Recount_Fragmentation (%)
$\frac{07}{7}$	342	1400	A	27		$\frac{3}{4}$	no	$\frac{88}{1375}$	90	38.00	9.70	9.79	24.22	25.38
$\frac{1}{68}$	342	1400 1406	A	$\frac{21}{27}$		4 5	no	100	139 102	38.10	19.74 15.22	15.12	$\frac{30.78}{27.78}$	$\frac{23.36}{31.02}$
80	342	1408	B	5	H	2	no	60	62	38.50	8.80	10.12	17.08	01.02
8	342	1406	A	27	X	6	no	62	63.5	38.72	3.88		8.89	
74	342	1408	A	5	Н	2	no	38	40	39.00	4.85		13.27	
75	342	1408	Α	5	Н	5	no	30	32	39.25	5.18	4.97	11.62	11.09
82	342	1408	В	7	Н	1	no	98	100	39.56	10.42	12.35	16.08	17.14
96	342	1408	C	7	H	2	no	58	60	39.75	4.93		4.31	
20	342	1406	B	28	X	5	no	1.5	3	39.92	4.50	4.67	23.29	
34	342	1408	B	8	H	1	no	120	121.5	39.85	8.95		5.25	
83	342	1408	B	8	H	4	no	28	30	39.95	10.13		14.47	
$\frac{30}{50}$	342	1408	В	8		4	no	100.5 117	108	39.97	9.89		21.59	
08	342	1410		10 0	н Н	$\frac{3}{2}$	no	08	110.0	40.14	0.44 5.95		14.70	
$\frac{36}{76+77}$	342	1408	A	8	H	$\frac{2}{2}$	no	117	118	40.38	8 77		21.74	
$\frac{10+11}{30}$	342	1408	A	8	H	3	no	69	71	40.41	15.30	16.05	29.91	
51	342	1410	A	11	Н	1	no	97	98.5	41.09	3.96	2.92	9.41	
53	342	1410	A	11	Н	5	no	129.5	131	41.31	1.85		5.89	6.20
54	342	1410	Α	12	Н	2	no	64	65.5	41.58	1.34		3.33	3.66
48	342	1408	С	11	Н	5	no	137	139	41.45	1.36		4.45	3.21
61	342	1410	B	14	Η	2	no	79	80.5	41.83	20.91		12.12	
62	342	1410	B	14	H	3	no	92.5	94	41.94	2.01		5.18	
49	342	1408	C	13	H	1	no	142	144	42.10	6.64		10.16	
78	342	1408	A	13	H	1	no	140	142	43.00	3.09		7.99	
114	342	1410	A	15	H	1	no	49.5	51 191 5	43.25	8.98	E DC	0.68	
$\frac{110}{116}$	342	1410	A A	10	и Т	4	110 no	120	121.0	43.50	0.00	5.20	12.58	
117	342	1410		17			0	- <u>-</u> 56	57.5	43.73	10.70		8 49	
118	342	1410	A	18	X	+ 1	no	67	68.5	44 25	1 86		8 19	8 58
$\frac{110}{119}$	342	1410	A	18	X	4	no	122	123.5	44.50	1.51		5.43	0.00
120	342	1410	A	19	X	1	no	114	115.5	44.75	6.81		14.78	14.20
121	342	1410	A	19	X	5	no	18	19.5	45.00	6.65		3.80	

Supplementary Table 12: Fragmentation of samples at both size fractions including recounts. Lab ID= Study specific sample ID, Expedition = IODP expedition number, Top Depth = Top interval (m), Bottom Depth = Bottom interval (m)

Supplementary Figure 2: Fragmentation across samples from Expedition 342 at both size fractions. Symbols indicate site, whilst color indicates size fraction.

1.1 Data preparation and processing

Here we will show how we processed our data from raw abundance plots to data sets suitable for Hill number analysis. We only present the process for genera here for simplicity but morphogroup and ecogroup data sets were prepared in the same manner. Firstly, we import the data selecting only one sheet from the data set provided, the first two lines are skipped to remove surplus information then only the column containing abundance counts: *Turborotalita* to *Orbulinoides*. We then select only rows 1 to 33 so that any blank space in the datasheet is removed.

We then create a function so that all abundance data is transformed into the structure needed to Hill number analysis with the code provided in Chao and Jost (2015) (Appendix S8 of Chao and Jost (2015)). The data we import is structured so that each column is a genera whilst each row is a sample. The function transforms this in the following steps:

STEP 1. Transposes the data so that each column is now sample and each row is the genera STEP 2. Removes all row names STEP 3. Reorders each column into ascending order. For this analysis the name of genera does not matter, the analysis is based purely on counts STEP 4. Creates a dataframe for easy export

We then run the function on the data frame and we recommend saving the restructured data as a separate .csv file for future reference.

```
genus_63 <- read_excel("Data/Final_Abundance.xlsx", sheet = "Genus_>63_abs", skip = 2) %>%
select(Turborotalita:Orbulinoides) %>%
slice(1:33) # 18 Columns

structure_chao <- function(x) {
    x1 <- t(x)
    rownames(x1) <- c()
    ordered <- apply(x1, 2, sort)
    data.frame(ordered)
}
genus_63_chao <- structure_chao(genus_63)
write_csv(genus_63_chao, "Data/genus_180_chao.csv") # This is for illustration only.</pre>
```

Using this data we can then calculate Hill numbers using the code of Chao and Jost (2015) (as shown Appendix S8 Chao and Jost (2015)). You will need to download the code and run it once for the following code to work, without it the following lines of code will not work. If you are not interested in the process of calculating Hill numbers and are instead looking for the statistical analysis presented in the manuscript we recommend you skip to Section 2. As before we only show the process for genera but all data can be processing in the same manner. The data we provide (Supplementary Data 1) contains the combined calculated hill numbers generated following these steps, you do not need to do the following steps if you want replicate our statistical analysis, this is shown for transparency.

- STEP 1 Read in data and source and the analysis script
- STEP 2 Create a variable of sample ages
- STEP 3 Transform the restructured data set into a matrix
- STEP 4 Create a variable of n which should equal the number of columns in your matrix (i.e the number of samples)
- STEP 5 Create empty matrix's to put the calculated hill numbers into. The number of rows assumes you're outputting the default Hill numbers from 0 to 3 in steps of 0.1.

```
# STEP 1
source("Scripts/Chao_2014_Script.R")
age <- read_excel("Data/Final_Abundance.xlsx", sheet = "Genus_>63_abs", skip = 2) %>%
  select(Age_2021) %>%
  slice(1:33)
# STEP 2
Age <- signif(age$Age_2021, digits = 4)</pre>
# STEP 3
genus_63_chao <- as.matrix(genus_63_chao)</pre>
# STEP 4
# STEP5
# est = hill number calculated EMPERICAL
# sd = standard deviation ?
est <- matrix(0, nrow = 31, ncol = n)</pre>
lci <- matrix(0, nrow = 31, ncol = n)</pre>
uci <- matrix(0, nrow = 31, ncol = n)
sd \leftarrow matrix(0, nrow = 31, ncol = n)
estP <- matrix(0, nrow = 31, ncol = n)</pre>
lciP <- matrix(0, nrow = 31, ncol = n)</pre>
uciP <- matrix(0, nrow = 31, ncol = n)
sdP <- matrix(0, nrow = 31, ncol = n)</pre>
```

• STEP 6 - Calculate Hill numbers. WARNING this calculation will take a long time !

```
# STEP 6 - WARNING this calculation will take a long time !
## Time code
ptm <- proc.time()
# Loop to calculate the above for each sample and extract the calculated values
for (i in 1:n)
{
    cat(i, "\n")
    tmp <- genus_63_chao[, i]
    mych <- ChaoHill(tmp, "abundance")
    est[, i] <- as.numeric(mych$EST[1, ])
    lci[, i] <- as.numeric(mych$LCI[1, ])
    uci[, i] <- as.numeric(mych$SD[1, ])
    estP[, i] <- as.numeric(mych$EST[2, ])</pre>
```

```
lciP[, i] <- as.numeric(mych$LCI[2, ])
uciP[, i] <- as.numeric(mych$UCI[2, ])
sdP[, i] <- as.numeric(mych$SD[2, ])
}
## Stop the Clock
proc.time() - ptm</pre>
```

- STEP 7 Extract information from the matrix's and create a dataframe including sample age, this extracts empirical and predicted values. For the manuscript we only use empirical values.
- STEP 8 Save your data frames as a .csv.

```
## EXTRACTING VALUES##
chaolist <- list(est, uci, lci, sd)</pre>
df_reform <- lapply(chaolist, function(x) {</pre>
  x1 <- data.frame(x)</pre>
  names(x1) <- Age</pre>
  x1$Q <- seq(0, 3, 0.1)
  x1 %>% gather(Age, Hill, "38":"45", factor_key = TRUE)
emp_est <- df_reform[[1]]</pre>
emp_uci <- df_reform[[2]] %>% rename(UCI = Hill)
emp_lci <- df_reform[[3]] %>% rename(LCI = Hill)
emp_sd <- df_reform[[4]] %>% rename(SD = Hill)
emp_full <- list(emp_est, emp_uci, emp_lci, emp_sd) %>% reduce(left_join, by = c("Q", "Age"))
## PROPOSED##
chaolistP <- list(estP, uciP, lciP, sdP)</pre>
df reformP <- lapply(chaolistP, function(x) {</pre>
  x1 <- data.frame(x)</pre>
  names(x1) <- Age</pre>
 x1$Q <- seq(0, 3, 0.1)
  x1 %>% gather(Age, Hill, "38":"45", factor_key = TRUE)
})
pred_est <- df_reform[[1]]</pre>
pred_uci <- df_reform[[2]] %>% rename(UCI = Hill)
pred_lci <- df_reform[[3]] %>% rename(LCI = Hill)
pred_sd <- df_reform[[4]] %>% rename(SD = Hill)
pred_full <- list(pred_est, pred_uci, pred_lci, pred_sd) %>%
  reduce(left_join, by = c("Q", "Age"))
```

write_csv(pred_full, "Data/genus_63_Hill_predicted.csv")
write_csv(emp_full, "Data/genus_63_Hill_emperical.csv")

2 Generalized additive models (GAMs)

```
full <- read_csv("Data/Hill_Emperical_All_Frag_2021.csv") %>%
  rename(frag = `Fragmentation %`)
Age <- full$Age
full$size <- as.factor(full$size)

shan <- function(x) {
  conv <- log(x)
  return(conv)
}

simps <- function(x) {
  conv <- (x - 1) / x
  return(conv)
}</pre>
```

		df	AIC	ΔAIC	AICweight	$\Delta AICc$
Genera	s(Age, by = size) + size + Frag	15.00	260.22	269.81	9.988117e-01	0.00
Genera	s(Age)	4.52	283.18	284.00	8.276721e-04	14.19
Genera	s(Age) + Frag	5.56	284.74	285.97	3.101523e-04	16.15
Genera	s(Age, by = size) + Frag	7.57	287.34	289.60	5.044274e-05	19.79

Supplementary Table 13: AICc Comparison between models of genera richness

2.1 Genera

2.1.1 Richness

```
gh_Onull <- gam(Genus_Hill ~ s(Age, k = 11), data = full %>% filter(Q == 0))
gh0_0 <- gam(Genus_Hill ~ s(Age, k = 11) + frag, data = full %>% filter(Q == 0))
gh1_0 <- update(gh0_0, Genus_Hill ~ s(Age, k = 11, by = size) + size + frag)
gh2_0 <- update(gh0_0, Genus_Hill ~ s(Age, k = 11, by = size) + frag)</pre>
```

```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 6 iterations.
## The RMS GCV score gradient at convergence was 2.165044e-05 .
## The Hessian was positive definite.
## Model rank = 23 / 23
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
                   k' edf k-index p-value
##
## s(Age):size63 10.0 8.6
                               0.88
                                       0.13
## s(Age):size180 10.0 2.4
                               0.88
                                       0.14
## null device
##
             1
```

deviance residuals 00 0 2 2 residuals ଡ 00 കം 0 0 o ကို ကို 2 7 9 13 -2 0 4 8 11 -4 theoretical quantiles linear predictor Histogram of residuals **Response vs. Fitted Values** 00 Frequency Response 12 15 ω S ശ 0 Т -2 2 13 0 4 7 9 11 -4 8 Residuals **Fitted Values**

Resids vs. linear pred.

Supplementary Figure 3: Diagnostic plots for best fitting GAM for genera richness

	df	AIC	ΔAIC	AICweight	$\Delta AICc$
Genera $s(Age, by = size) + size + Frag$	9.20	7.00	10.36	1.000000e+00	0.00
Genera $s(Age) + Frag$	5.65	56.53	57.80	5.005720e-11	47.44
Genera s(Age, by = size) + Frag	7.56	59.49	61.74	6.970436e-12	51.38
Genera s(Age)	4.44	262.97	263.77	9.384318e-56	253.41

Supplementary Table 14: AICc Comparison between models of genera Shannon's index

2.1.2 Shannon's index

```
gh_1null <- gam(Genus_Hill ~ s(Age, k = 7), data = full %>% filter(Q == 1))
gh0_1 <- update(gh0_0, shan(Genus_Hill) ~ s(Age, k = 7) + frag, data = full %>% filter(Q == 1))
gh1_1 <- update(gh0_1, shan(Genus_Hill) ~ s(Age, k = 7, by = size) + size + frag)
gh2_1 <- update(gh0_1, shan(Genus_Hill) ~ s(Age, k = 7, by = size) + frag)</pre>
```

```
##
## Method: GCV
                Optimizer: magic
## Smoothing parameter selection converged after 6 iterations.
## The RMS GCV score gradient at convergence was 9.868576e-07 .
## The Hessian was positive definite.
## Model rank = 15 / 15
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may</pre>
## indicate that k is too low, especially if edf is close to k'.
##
##
                    k' edf k-index p-value
## s(Age):size63 6.00 2.18
                               1.07
                                       0.77
## s(Age):size180 6.00 3.02
                               1.07
                                       0.68
## null device
##
             1
```

Resids vs. linear pred.

Supplementary Figure 4: Diagnostoc plots for best fitting GAM for genera Shannon's index

	df	AIC	ΔAIC	AICweight	$\Delta AICc$
Genera $s(Age, by = size) + size + Frag$	9.55	16.88	20.51	1.000000e+00	0.00
Genera $s(Age) + Frag$	5.53	71.57	72.78	4.469471e-12	52.27
$\overline{\text{Genera} s(\text{Age, by} = \text{size}) + \text{Frag}}$	7.46	75.10	77.29	4.687029e-13	56.78
Genera s(Age)	4.27	249.66	250.40	1.202466e-50	229.89

Supplementary Table 15: AICc Comparison between models of genera Simpson's index

2.1.3 Simpson's index

```
gh_2null <- gam(Genus_Hill ~ s(Age, k = 7), data = full %>% filter(Q == 2))
gh0_2 <- update(gh0_0, shan(Genus_Hill) ~ s(Age, k = 7) + frag, data = full %>% filter(Q == 2))
gh1_2 <- update(gh0_2, shan(Genus_Hill) ~ s(Age, k = 7, by = size) + size + frag)
gh2_2 <- update(gh0_2, shan(Genus_Hill) ~ s(Age, k = 7, by = size) + frag)</pre>
```

```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 5 iterations.
## The RMS GCV score gradient at convergence was 5.013104e-06 .
## The Hessian was positive definite.
## Model rank = 15 / 15
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may</pre>
## indicate that k is too low, especially if edf is close to k'.
##
##
                    k' edf k-index p-value
## s(Age):size63 6.00 2.20
                               1.15
                                       0.84
## s(Age):size180 6.00 3.35
                               1.15
                                       0.84
## null device
##
             1
```

Resids vs. linear pred.

Supplementary Figure 5: Diagnostoc plots for best fitting GAM for genera Simpson's index

```
gh1_0_para <- summary(gh1_0)$p.table</pre>
gh1_1_para <- summary(gh1_1)$p.table</pre>
gh1_2_para <- summary(gh1_2)$p.table</pre>
genera_para <- rbind(gh1_0_para, gh1_1_para, gh1_2_para)
genera_para <- data.frame(genera_para)</pre>
genera_para$q <- c("0", "0", "0", "1", "1", "1", "2", "2", "2")</pre>
genera_para$model <- c("Genera ~ s(Age, by = size) + size + Frag")</pre>
genera_para$Parametric_Coefficient <- rep(c("Intercept", "Size:180", "Fragmentation"),</pre>
  times = 3
genera_para <- genera_para[, c(6, 5, 7, 1, 2, 3, 4)]
row.names(genera_para) <- NULL</pre>
genera_para$Pr...t.. <- round(genera_para$Pr...t.., digits = 2)</pre>
genera_para$Estimate <- round(genera_para$Estimate, digits = 2)</pre>
genera_para$Std..Error <- round(genera_para$Std..Error, digits = 2)</pre>
genera_para$t.value <- round(genera_para$t.value, digits = 2)</pre>
gh1_0_smooth <- summary(gh1_0)$s.table</pre>
gh1_1_smooth <- summary(gh1_1)$s.table</pre>
gh1_2_smooth <- summary(gh1_2)$s.table</pre>
genera smooth <- rbind(gh1 0 smooth, gh1 1 smooth, gh1 2 smooth)
genera_smooth <- data.frame(genera_smooth)</pre>
genera_smooth$q <- c("0", "0", "1", "1", "2", "2")</pre>
```

genera_smooth\$model <- c("Genera ~ s(Age, by =size) +size + Frag")
genera_smooth\$Smooth_term <- rep(c("s(Age):Size=63", "s(Age):Size=180"), times = 3)
genera_smooth <- genera_smooth[, c(6, 5, 7, 1, 3, 4)]
row.names(genera_smooth) <- NULL
genera_smooth\$p.value <- round(genera_smooth\$p.value, digits = 2)
genera_smooth\$edf <- round(genera_smooth\$edf, digits = 2)
genera_smooth\$F <- round(genera_smooth\$F, digits = 2)</pre>

		df	AIC	ΔAIC	AICweight	$\Delta AICc$
Morphogroup	s(Age, by = size) + size + Frag	14.64	194.25	203.35	9.999427e-01	0.00
Morphogroup	s(Age) + Frag	9.73	220.21	223.98	3.298426e-05	20.64
Morphogroup	s(Age)	4.38	224.30	225.07	1.912761e-05	21.73
Morphogroup	s(Age, by = size) + Frag	7.36	225.56	227.70	5.153883e-06	24.35

Supplementary Table 16: AICc Comparison between models of morphogroup richness

2.2 Morphogroup

2.2.1 Richness

```
mh_Onull <- gam(Morph_Hill ~ s(Age, k = 20), data = full %>% filter(Q == 0))
mhO_O <- gam(Morph_Hill ~ s(Age, k = 20) + frag, data = full %>% filter(Q == 0))
mh1_O <- update(mhO_O, Morph_Hill ~ s(Age, k = 20, by = size) + size + frag)
mh2_O <- update(mhO_O, Morph_Hill ~ s(Age, k = 20, by = size) + frag)</pre>
```

```
##
## Method: GCV
                 Optimizer: magic
## Smoothing parameter selection converged after 7 iterations.
## The RMS GCV score gradient at convergence was 5.71158e-05 .
## The Hessian was positive definite.
## Model rank = 41 / 41
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
##
                     k'
                          edf k-index p-value
## s(Age):size63 19.00 8.26
                                 0.97
                                         0.34
                                         0.35
## s(Age):size180 19.00 2.38
                                 0.97
## null device
##
             1
```

deviance residuals ବ୍ୟତ ०० °o രമം residuals COODO 90 0 C CO CO 0₀ ത Ø ഗ 0 2 $\widetilde{\mathbf{P}}$ 0 2 7 8 -2 1 5 6 -1 theoretical quantiles linear predictor Histogram of residuals **Response vs. Fitted Values** ດ യ 15 യ**റ**യാറ Frequency Response 00 10 റ റമ്മ മറ 00 00 00000000 S ന്നത്ത 0 S œ 0 c ٦ -3 2 5 7 8 -1 0 1 6 Residuals **Fitted Values**

Resids vs. linear pred.

Supplementary Figure 6: Diagnostoc plots for best fitting GAM for morphological richness

	df	AIC	ΔAIC	AICweight	ΔAICc
Morphogroup $s(Age, by = size)$	e) + size + Frag $ $ 9.09	-24.63	-21.35	1.000000e+00	0.00
Morphogroup $s(Age) + Frag$	5.40	48.84	50.00	3.222099e-16	71.34
Morphogroup s(Age, by = size)	e) + Frag 6.87	51.18	53.03	7.050141e-17	74.38
Morphogroup s(Age)	4.16	201.85	202.56	2.395645e-49	223.91

Supplementary Table 17: AICc Comparison between models of morphogroup Shannon's index

2.2.2 Shannon's index

```
mh_1null <- gam(Morph_Hill ~ s(Age, k = 8), data = full %>% filter(Q == 1))
mh0_1 <- update(mh0_0, shan(Morph_Hill) ~ s(Age, k = 8) + frag, data = full %>%
filter(Q == 1))
mh1_1 <- update(mh1_0, shan(Morph_Hill) ~ s(Age, k = 8, by = size) + size + frag, data = full %>%
filter(Q == 1))
mh2_1 <- update(mh2_0, shan(Morph_Hill) ~ s(Age, k = 8, by = size) + frag, data = full %>%
filter(Q == 1))
```

Optimizer: magic ## Method: GCV ## Smoothing parameter selection converged after 5 iterations. ## The RMS GCV score gradient at convergence was 1.076856e-06 . ## The Hessian was positive definite. ## Model rank = 17 / 17 ## ## Basis dimension (k) checking results. Low p-value (k-index<1) may ## indicate that k is too low, especially if edf is close to k'. ## ## k' edf k-index p-value ## s(Age):size63 7.00 1.62 1.13 0.83 ## s(Age):size180 7.00 3.47 1.13 0.82 ## null device ## 1

Resids vs. linear pred. deviance residuals 0.4 0.4 ଡ 0 residuals 0 °o 0.0 0.0 Ø \cap °° 0 0 -0.4 -0.4 0 0.0 0.4 1.2 1.6 -0.4 0.4 0.8 theoretical quantiles linear predictor Histogram of residuals **Response vs. Fitted Values** 1.5 0 12 Frequency Response ω 4 0.5 0 ٦ 1.2 -0.4 0.0 0.4 0.4 1.6 0.8 Residuals **Fitted Values**

Supplementary Figure 7: Diagnostoc plots for best fitting GAM for morphogroup Shannon's index

	df	AIC	ΔAIC	AICweight	$\Delta AICc$
Morphogroup $s(Age, by = size) + size + Frag$	8.70	-124.93	-121.93	1.000000e+00	0.00
Morphogroup s(Age) + Frag	5.22	-49.04	-47.96	8.653347e-17	73.97
Morphogroup $s(Age, by = size) + Frag$	6.60	-49.44	-47.73	7.709662e-17	74.20
Morphogroup s(Age)	3.77	192.83	193.42	3.342410e-69	315.34

Supplementary Table 18: AICc Comparison between models of morphogroup Simpson's index

2.2.3 Simpson's index

```
mh_2null <- gam(Morph_Hill ~ s(Age, k = 10), data = full %>% filter(Q == 2))
mh0_2 <- update(mh0_0, simps(Morph_Hill) ~ s(Age, k = 10) + frag, data = full %>%
filter(Q == 2))
mh1_2 <- update(mh1_0, simps(Morph_Hill) ~ s(Age, k = 10, by = size) + size + frag, data = full %>%
filter(Q == 2))
mh2_2 <- update(mh2_0, simps(Morph_Hill) ~ s(Age, k = 10, by = size) + frag, data = full %>%
filter(Q == 2))
```

Method: GCV Optimizer: magic ## Smoothing parameter selection converged after 4 iterations. ## The RMS GCV score gradient at convergence was 2.679448e-06 . ## The Hessian was not positive definite. ## Model rank = 21 / 21 ## ## Basis dimension (k) checking results. Low p-value (k-index<1) may ## indicate that k is too low, especially if edf is close to k'. ## k' edf k-index p-value ## ## s(Age):size63 9.00 1.06 1.15 0.86 ## s(Age):size180 9.00 3.64 1.15 0.89 ## null device ## 1

Resids vs. linear pred.

Supplementary Figure 8: Diagnostoc plots for best fitting GAM for morphogroup Shannon's index

```
mh1_0_para <- summary(mh1_0)$p.table</pre>
mh1 1 para <- summary(mh1 1)$p.table</pre>
mh1_2_para <- summary(mh1_2)$p.table</pre>
morph_para <- rbind(mh1_0_para, mh1_1_para, mh1_2_para)</pre>
morph_para <- data.frame(morph_para)</pre>
morph_para$q <- c("0", "0", "0", "1", "1", "1", "2", "2", "2")
morph_para$model <- c("Morphogroup ~ s(Age, by = size) + size + Frag")</pre>
morph_para$Parametric_Coefficient <- rep(c("Intercept", "Size:180", "Fragmentation"),</pre>
  times = 3
)
morph_para <- morph_para[, c(6, 5, 7, 1, 2, 3, 4)]
row.names(morph_para) <- NULL</pre>
morph_para$Pr...t.. <- round(morph_para$Pr...t., digits = 2)</pre>
morph_para$Estimate <- round(morph_para$Estimate, digits = 2)</pre>
morph_para$Std..Error <- round(morph_para$Std..Error, digits = 2)</pre>
morph_para$t.value <- round(morph_para$t.value, digits = 2)</pre>
mh1_0_smooth <- summary(mh1_0)$s.table</pre>
mh1_1_smooth <- summary(mh1_1)$s.table</pre>
mh1_2_smooth <- summary(mh1_2)$s.table</pre>
morph_smooth <- rbind(mh1_0_smooth, mh1_1_smooth, mh1_2_smooth)</pre>
morph_smooth <- data.frame(morph_smooth)</pre>
```

morph_smooth\$q <- c("0", "0", "1", "1", "2", "2")</pre>

Model	q	Parametric Coefficient	Estimate	Std. Error	t.value	p
Genera $s(Age, by = size) + size + Frag$	0	Intercept	12.40	0.63	19.80	0.00
Genera $s(Age, by = size) + size + Frag$	0	Size:180	-2.64	0.46	-5.75	0.00
Genera $s(Age, by = size) + size + Frag$	0	Fragmentation	-0.12	0.04	-2.91	0.01
Genera $s(Age, by = size) + size + Frag$	1	Intercept	1.93	0.08	23.56	0.00
Genera $s(Age, by = size) + size + Frag$	1	Size:180	-0.58	0.07	-8.75	0.00
Genera $s(Age, by = size) + size + Frag$	1	Fragmentation	-0.01	0.01	-1.40	0.17
Genera $s(Age, by = size) + size + Frag$	2	Intercept	1.68	0.09	19.09	0.00
Genera $s(Age, by = size) + size + Frag$	2	Size:180	-0.67	0.07	-9.42	0.00
Genera $s(Age, by = size) + size + Frag$	2	Fragmentation	-0.01	0.01	-1.20	0.23
Morphogroup $s(Age, by = size) + size + Frag$	0	Intercept	7.49	0.37	20.04	0.00
Morphogroup $s(Age, by = size) + size + Frag$	0	Size:180	-1.73	0.28	-6.23	0.00
Morphogroup $s(Age, by = size) + size + Frag$	0	Fragmentation	-0.03	0.03	-1.02	0.31
Morphogroup $s(Age, by = size) + size + Frag$	1	Intercept	1.57	0.06	24.56	0.00
Morphogroup $s(Age, by = size) + size + Frag$	1	Size:180	-0.61	0.05	-11.61	0.00
Morphogroup $s(Age, by = size) + size + Frag$	1	Fragmentation	-0.01	0.00	-2.74	0.01
Morphogroup $s(Age, by = size) + size + Frag$	2	Intercept	0.77	0.03	25.96	0.00
Morphogroup $s(Age, by = size) + size + Frag$	2	Size:180	-0.28	0.02	-11.62	0.00
Morphogroup $s(Age, by = size) + size + Frag$	2	Fragmentation	-0.01	0.00	-3.07	0.00

Supplementary Table 19: Parametric coefficients for best fitting GAM models based on AIC difference compared to next best fitting model being more than 2

```
morph_smooth$model <- c("Morphogroup ~ s(Age, by = size) + size + Frag")
morph_smooth$Smooth_term <- rep(c("s(Age):Size = 63", "s(Age):Size = 180"), times = 3)
morph_smooth <- morph_smooth[, c(6, 5, 7, 1, 3, 4)]
row.names(morph_smooth) <- NULL
morph_smooth$p.value <- round(morph_smooth$p.value, digits = 2)
morph_smooth$edf <- round(morph_smooth$edf, digits = 2)
morph_smooth$F <- round(morph_smooth$F, digits = 2)</pre>
```

```
para_tab <- rbind(genera_para, morph_para)
kbl(para_tab,
    col.names = c(
        "Model", "\\textit{q}", "Parametric Coefficient",
        "Estimate", "Std. Error", "t.value",
        "\\textit{p}"
    ),
    escape = FALSE, caption = "Parametric coefficients for best fitting GAM models based on
        AIC difference compared to next best fitting model being more than 2"
) %>%
        kable_styling(latex_options = "scale_down")
```

```
smooth_tab <- rbind(genera_smooth, morph_smooth)
kbl(smooth_tab,
    col.names = c(
        "Model", "\\textit{q}", "Smooth Term", "Estimated d.f
        "F statistics", "\\textit{p}"
    ),
    escape = FALSE,
    caption = "Smooth terms for best fitting GAM models"
)</pre>
```

q	Smooth Term	Estimated d.f	F statistics	p
0	s(Age):Size=63	8.60	3.18	0.00
0	s(Age):Size=180	2.40	3.80	0.01
1	s(Age):Size=63	2.18	2.78	0.05
1	s(Age):Size=180	3.02	11.68	0.00
2	s(Age):Size=63	2.20	3.73	0.02
2	s(Age):Size=180	3.35	10.34	0.00
0	s(Age):Size = 63	8.26	2.16	0.03
0	s(Age):Size = 180	2.38	3.08	0.03
1	s(Age):Size = 63	1.62	2.28	0.11
1	s(Age):Size = 180	3.47	13.68	0.00
2	s(Age):Size = 63	1.06	2.23	0.12
2	s(Age):Size = 180	3.64	17.96	0.00
	$\begin{array}{c} q \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Supplementary Table 20: Smooth terms for best fitting GAM models

Supplementary Table 21: AICc Comparison between models of depth habitat richness

		df	AIC	ΔAIC	AICweight	$\Delta AICc$
Depth Habitat	s(Age, by = size) + Frag	7.40	-93.38	-91.22	0.5645456	0.00
Depth Habitat	s(Age, by = size) + size + Frag	8.42	-92.76	-89.96	0.2993750	1.27
Depth Habitat	s(Age)	3.97	-88.48	-87.83	0.1034386	3.39
Depth Habitat	s(Age) + Frag	4.94	-86.50	-85.52	0.0326408	5.70

2.3 Depth Habitat

These results are not discussed in the manuscript but are included here for completeness.

2.3.1 Richness

```
eh_Onull <- gam(Eco_Hill ~ s(Age), data = full %>% filter(Q == 0))
eh0_0 <- gam(Eco_Hill ~ s(Age) + frag, data = full %>% filter(Q == 0))
eh1_0 <- update(eh0_0, Eco_Hill ~ s(Age, by = size) + size + frag)
eh2_0 <- update(eh0_0, Eco_Hill ~ s(Age, by = size) + frag)</pre>
```

```
##
                 Optimizer: magic
## Method: GCV
## Smoothing parameter selection converged after 9 iterations.
## The RMS GCV score gradient at convergence was 8.004899e-08 .
## The Hessian was positive definite.
## Model rank = 20 / 20
##
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
                   k' edf k-index p-value
##
## s(Age):size63 9.0 1.0
                             1.03
                                     0.73
## s(Age):size180 9.0 3.4
                             1.03
                                     0.68
```

Resids vs. linear pred.

Supplementary Figure 9: Diagnostoc plots for best fitting GAM for depth habitat richness

	df	AIC	ΔAIC	AICweight	$\Delta AICc$
Depth Habitat $s(Age, by = size) + Frag$	7.59	-108.01	-105.74	7.843871e-01	0.00
Depth Habitat $s(Age, by = size) + size + Frag$	8.54	-106.01	-103.12	2.118117e-01	2.62
Depth Habitat $s(Age) + Frag$	6.21	-96.60	-95.08	3.801111e-03	10.66
Depth Habitat s(Age)	5.05	13.93	14.95	4.859187e-27	120.69

Supplementary Table 22: AICc Comparison between models of depth habitat Shannon's index

2.3.2 Shannon's index

```
eh_1null <- gam(Eco_Hill ~ s(Age), data = full %>% filter(Q == 1))
eh0_1 <- update(eh0_0, shan(Eco_Hill) ~ s(Age) + frag, data = full %>%
filter(Q == 1))
eh1_1 <- update(eh1_0, shan(Eco_Hill) ~ s(Age, by = size) + size + frag, data = full %>%
filter(Q == 1))
eh2_1 <- update(eh2_0, shan(Eco_Hill) ~ s(Age, by = size) + frag, data = full %>%
filter(Q == 1))
```

Method: GCV Optimizer: magic ## Smoothing parameter selection converged after 4 iterations. ## The RMS GCV score gradient at convergence was 5.380348e-07 . ## The Hessian was positive definite. ## Model rank = 20 / 20 ## ## Basis dimension (k) checking results. Low p-value (k-index<1) may ## indicate that k is too low, especially if edf is close to k'. ## ## k' edf k-index p-value ## s(Age):size63 9.00 1.51 0.97 0.4 ## s(Age):size180 9.00 3.08 0.97 0.3 ## null device ## 1

deviance residuals 0 O residuals 0 0.0 0.0 တ 0 -0.3 -0.3 С -0.2 0.0 0.2 0.5 0.7 0.9 theoretical quantiles linear predictor Histogram of residuals **Response vs. Fitted Values** Frequency Response 15 0.8 0 0 Ф 0 0 S 0.4 0 -0.3 0.1 0.5 0.7 0.9 -0.1 Residuals **Fitted Values**

Resids vs. linear pred.

Supplementary Figure 10: Diagnostoc plots for best fitting GAM for Depth habitat Shannon's index

		df	AIC	ΔAIC	AICweight	$\Delta AICc$
Depth Habitat	s(Age, by = size) + Frag	7.52	-160.60	-158.37	7.441301e-01	0.00
Depth Habitat	s(Age, by = size) + size + Frag	8.61	-159.17	-156.23	2.550421e-01	2.14
Depth Habitat	s(Age) + Frag	6.00	-146.19	-144.77	8.277223e-04	13.60
Depth Habitat	s(Age)	4.79	33.54	34.46	9.965258e-43	192.83

Supplementary Table 23: AICc Comparison between models of depth habitat Simpson's index

2.3.3 Simpson's index

```
eh_2null <- gam(Eco_Hill ~ s(Age), data = full %>% filter(Q == 2))
eh0_2 <- update(eh0_0, simps(Eco_Hill) ~ s(Age) + frag, data = full %>%
filter(Q == 2))
eh1_2 <- update(eh1_0, simps(Eco_Hill) ~ s(Age, by = size) + size + frag, data = full %>%
filter(Q == 2))
eh2_2 <- update(eh2_0, simps(Eco_Hill) ~ s(Age, by = size) + frag, data = full %>%
filter(Q == 2))
```

Optimizer: magic ## Method: GCV ## Smoothing parameter selection converged after 4 iterations. ## The RMS GCV score gradient at convergence was 2.928622e-06 . ## The Hessian was positive definite. ## Model rank = 20 / 20 ## ## Basis dimension (k) checking results. Low p-value (k-index<1) may ## indicate that k is too low, especially if edf is close to k'. ## ## k' edf k-index p-value ## s(Age):size63 9.00 1.50 1.02 0.58 ## s(Age):size180 9.00 3.03 1.02 0.46 ## null device ## 1

Resids vs. linear pred.

Supplementary Figure 11: Diagnostoc plots for best fitting GAM for Depth habitat Simpson's

2.4 Predicting GAMs

```
e_0_plot <- ggplot(predicted_eh2_0, aes(Age, fit, group = size)) +</pre>
  geom_line(aes(col = size)) +
  geom_ribbon(aes(ymax = upper, ymin = lower), col = "darkgrey", alpha = 0.4) +
  geom_point(data = full %>% filter(Q == 0), aes(Age, Eco_Hill, col = size)) +
  scale_colour_manual(values = c("purple", "seagreen")) +
  scale_x_continuous(expand = c(0, 0), breaks = seq(from = 38, to = 45, by = 1)) +
  labs(x = "Sample Age (Ma)", y = "Depth habitat richness", col = "Size fraction", tag = "A")
e 1 plot <- ggplot(predicted eh2 1, aes(Age, fit, group = size)) +
  geom_line(aes(col = size)) +
  geom_ribbon(aes(ymax = upper, ymin = lower), col = "darkgrey", alpha = 0.4) +
  geom_point(data = full %>% filter(Q == 1), aes(Age, shan(Eco_Hill), col = size)) +
  scale_colour_manual(values = c("purple", "seagreen")) +
  scale_x_continuous(expand = c(0, 0), breaks = seq(from = 38, to = 45, by = 1)) +
  labs(x = "Sample Age (Ma)", y = "Shannon's index", col = "Size fraction", tag = "B")
e_2_plot <- ggplot(predicted_eh2_2, aes(Age, fit, group = size)) +</pre>
  geom_line(aes(col = size)) +
  geom_ribbon(aes(ymax = upper, ymin = lower), col = "darkgrey", alpha = 0.4) +
  geom_point(data = full %>% filter(Q == 2), aes(Age, simps(Eco_Hill), col = size)) +
  scale_colour_manual(values = c("purple", "seagreen")) +
  scale_x_continuous(expand = c(0, 0), breaks = seq(from = 38, to = 45, by = 1)) +
  labs(x = "Sample Age (Ma)", y = "Simpson's index", col = "Size fraction", tag = "C")
```


Supplementary Figure 12: Depth habitat diversity at integers of q. A - Richness, B - Shannon's index, C - Simpsons index

3 Hill Numbers

3.1 Kruskal Test

```
full <- read_csv("Data/Hill_Emperical_All_Frag_2021.csv")
full$interval <- rep(
    c("postMECO", "MECO", "preMECO", "postMECO", "MECO", "preMECO"),
    c(403, 155, 465, 403, 155, 465)
)
full$interval <- as.factor(full$interval)</pre>
```

```
k1 <- tidy(kruskal.test(Genus_Hill ~ interval,
 data = full %>% filter(Q < 1) %>% filter(size == 63)
k2 <- tidy(kruskal.test(Genus Hill ~ interval,
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63)
k3 <- tidy(kruskal.test(Genus_Hill ~ interval,
  data = full %>% filter(Q < 1) %>% filter(size == 180)
k4 <- tidy(kruskal.test(Genus_Hill ~ interval,
 data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180)
k5 <- tidy(kruskal.test(Morph_Hill ~ interval,</pre>
 data = full %>% filter(Q < 1) %>% filter(size == 63)
k6 <- tidy(kruskal.test(Morph_Hill ~ interval,
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63)
k7 <- tidy(kruskal.test(Morph_Hill ~ interval,
  data = full %>% filter(Q < 1) %>% filter(size == 180)
k8 <- tidy(kruskal.test(Morph_Hill ~ interval,</pre>
 data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180)
k9 <- tidy(kruskal.test(Eco_Hill ~ interval,
 data = full %>% filter(Q < 1) %>% filter(size == 63)
k10 <- tidy(kruskal.test(Eco_Hill ~ interval,
 data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63)
k11 <- tidy(kruskal.test(Eco_Hill ~ interval,
  data = full %>% filter(Q < 1) %>% filter(size == 180)
k12 <- tidy(kruskal.test(Eco_Hill ~ interval,
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180)
```

```
e1 <- kruskal_effsize(
  data = full %>% filter(Q < 1) %>%
    filter(size == 63), Genus_Hill ~ interval, ci = FALSE,
    conf.level = 0.95, ci.type =
```

```
"perc", nboot = 1000
)
e2 <- kruskal_effsize(
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63),
  Genus_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e3 <- kruskal effsize(
  data = full %>% filter(Q < 1) %>% filter(size == 180),
  Genus Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e4 <- kruskal_effsize(
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
  Genus_Hill ~ interval,
  ci = FALSE,
  ci.type = "perc",
  nboot = 1000
e5 <- kruskal_effsize(
  data = full %>% filter(Q < 1) %>% filter(size == 63),
  Morph_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e6 <- kruskal_effsize(</pre>
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63),
  Morph_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e7 <- kruskal effsize(
  data = full \%\% filter(Q < 1) \%\% filter(size == 180),
  Morph Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e8 <- kruskal_effsize(</pre>
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
```

```
Morph_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e9 <- kruskal_effsize(
  data = full %>% filter(Q < 1) %>% filter(size == 63),
  Eco_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e10 <- kruskal_effsize(
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63),
  Eco_Hill ~ interval,
  <u>ci</u> = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e11 <- kruskal_effsize(
  data = full %>% filter(Q < 1) %>% filter(size == 180),
  Eco_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
e12 <- kruskal_effsize(
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
  Eco_Hill ~ interval,
  ci = FALSE,
  conf.level = 0.95,
  ci.type = "perc",
  nboot = 1000
```

Supplementary Table 24: Results from Kruskal test, bold and italic p values show those models that indicate significant differences between intervals. Effect size was calculated using the eta squared based on the H-statistic (eta2[H]), A large effect size is classified as a value > 0.14, whilst a small effect size is a value < 0.06, with a moderate effect size values in between 0.06 and 0.14

Model formula	Size fraction	q	Z-score	p	Effect Size	Magnitude	
Genera Interval	63	<1	55.783	0.000	0.1644754	large	
Genera Interval	63	1-2	10.647	0.005	0.1372551	moderate	
Genera Interval	180	<1	21.303	0.000	0.0590297	small	
Genera Interval	180	1-2	16.472	0.000	0.2297179	large	
Morphogroup Interval	63	<1	44.825	0.000	0.1309620	moderate	
Morphogroup Interval	63	1-2	14.146	0.001	0.1927881	large	
Morphogroup Interval	180	<1	62.655	0.000	0.1854895	large	
Morphogroup Interval	180	1-2	34.307	0.000	0.5128037	large	
Depth Habitat Interval	63	<1	6.753	0.034	0.0145352	small	
Depth Habitat Interval	63	1-2	2.375	0.305	0.0059556	small	
Depth Habitat Interval	180	<1	15.845	0.000	0.0423392	small	
Depth Habitat Interval	180	1-2	13.611	0.001	0.1842991	large	

3.2 Post-hoc Dunn Test

```
d1 <- dunnTest(Genus_Hill ~ interval,</pre>
  data = full \% filter(Q < 1) \% filter(size == 63),
  method = "none"
d2 <- dunnTest(Genus_Hill ~ interval,</pre>
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63),
  method = "none"
d3 <- dunnTest(Genus_Hill ~ interval,
  data = full \%\% filter(Q < 1) \%\% filter(size == 180),
  method = "none"
d4 <- dunnTest(Genus Hill ~ interval,
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
  method = "none"
d5 <- dunnTest(Morph_Hill ~ interval,
  data = full \%\% filter(Q < 1) \%\% filter(size == 63),
  method = "none"
d6 <- dunnTest(Morph_Hill ~ interval,
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 63),
  method = "none"
d7 <- dunnTest(Morph_Hill ~ interval,
  data = full %>% filter(Q < 1) %>% filter(size == 180),
  method = "none"
d8 <- dunnTest(Morph_Hill ~ interval,</pre>
  data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
```

Model	Size fraction	q	Interval Comparison	Z-score	p
Genera Interval	63	<1	MECO - postMECO	6.01	0.00
Genera Interval	63	<1	MECO - preMECO	1.43	0.15
Genera Interval	63	<1	postMECO - preMECO	-6.41	0.00
Genera Interval	63	1-2	MECO - postMECO	1.71	0.09
Genera Interval	63	1-2	MECO - preMECO	-0.63	0.53
Genera Interval	63	1-2	postMECO - $preMECO$	-3.22	0.00
Genera Interval	180	<1	MECO - postMECO	2.76	0.01
Genera Interval	180	<1	MECO - preMECO	-0.48	0.63
Genera Interval	180	<1	postMECO - preMECO	-4.48	0.00
Genera Interval	180	1-2	MECO - $postMECO$	2.09	0.04
Genera Interval	180	1 - 2	MECO - preMECO	-0.81	0.42
Genera Interval	180	1 - 2	postMECO - preMECO	-4.02	0.00
Morphogroup Interval	63	<1	MECO - postMECO	3.25	0.00
Morphogroup Interval	63	<1	MECO - preMECO	-1.57	0.12
Morphogroup Interval	63	<1	postMECO - preMECO	-6.65	0.00
Morphogroup Interval	63	1-2	MECO - postMECO	-0.08	0.94
Morphogroup Interval	63	1 - 2	MECO - preMECO	-2.60	0.01
Morphogroup Interval	63	1 - 2	postMECO - preMECO	-3.44	0.00
Morphogroup Interval	180	<1	MECO - postMECO	2.92	0.00
Morphogroup Interval	180	<1	MECO - preMECO	-2.84	0.00
Morphogroup Interval	180	<1	postMECO - preMECO	-7.91	0.00
Morphogroup Interval	180	1-2	MECO - postMECO	2.31	0.02
Morphogroup Interval	180	1-2	MECO - preMECO	-1.94	0.05
Morphogroup Interval	180	1 - 2	postMECO - preMECO	-5.86	0.00
Depth Habitat Interval	180	<1	MECO - $postMECO$	3.98	0.00
Depth Habitat Interval	180	<1	MECO - preMECO	2.98	0.00
Depth Habitat Interval	180	<1	postMECO - preMECO	-1.47	0.14
Depth Habitat Interval	180	1 - 2	MECO - postMECO	3.26	0.00
Depth Habitat Interval	180	1 - 2	MECO - $preMECO$	1.23	0.22
Depth Habitat Interval	180	1 - 2	postMECO - preMECO	-2.85	0.00

Supplementary Table 25: Results from *post-hoc* Dunn test showing differences between paleoclimatic intervals, bold and italic p values show significantly different intervals

```
method = "none"
)
d11 <- dunnTest(Eco_Hill ~ interval,
    data = full %>% filter(Q < 1) %>% filter(size == 180),
    method = "none"
)
d12 <- dunnTest(Eco_Hill ~ interval,
    data = full %>% filter(Q %in% (1:2)) %>% filter(size == 180),
    method = "none"
```

)

Supplementary Figure 13: Best fitting GAM model as shown in main text in Figure 2 with fragmentation at 5% instead of the mean fragmentation we observed at 10%. A-C show genus diversity indices; D-F show morphological diversity indices. Raw data is shown in filled circles. Black shaded area represents 95% confidence intervals around the central predicted response. The light grey box represents the MECO interval.

Supplementary Figure 14: Best fitting GAM model as shown in main text in Figure 2 with fragmentation at 20% instead of the mean fragmentation we observed at 10%. A-C show genus diversity indices; D-F show morphological diversity indices. Raw data is shown in filled circles. Black shaded area represents 95% confidence intervals around the central predicted response. The light grey box represents the MECO interval.

Bibliography

- Aze, Tracy, Thomas H.G. G Ezard, Andy Purvis, Helen K. Coxall, R M Stewart, Bridget S. Wade, Paul N. Pearson, et al. 2011. "A Phylogeny of Cenozoic Macroperforate Planktonic Foraminifera from Fossil Data." *Biological Reviews* 86 (4): 900–927. https://doi.org/10.1111/j.1469-185X.2011.00178.x.
- Cappelli, C., P. R. Bown, Thomas Westerhold, S. M. Bohaty, M. de Riu, V. Lobba, Y. Yamamoto, and C. Agnini. 2019. "The Early to Middle Eocene Transition: An Integrated Calcareous Nannofossil and Stable Isotope Record From the Northwest Atlantic Ocean (Integrated Ocean Drilling Program Site U1410)." Paleoceanography and Paleoclimatology 34 (12): 1913–30. https://doi.org/10.1029/2019PA003686.
- Chao, Anne, and Lou Jost. 2015. "Estimating Diversity and Entropy Profiles via Discovery Rates of New Species." Methods in Ecology and Evolution 6 (8): 873–82. https://doi.org/10.1111/2041-210X.12349.
- Gradstein, Felix M, James George Ogg, Mark D Schmitz, and Gabi M Ogg. 2012. The Geologic Time Scale 2012. elsevier.
- Ogg, James G., Linda A. Hinnov, and Chunju Huang. 2012. "Cretaceous." In, 1-2:793–853. Elsevier B.V. https://doi.org/10.1016/B978-0-444-59425-9.00027-5.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley. 2019. Tidyverse: Easily Install and Load the 'Tidyverse'. https://CRAN.R-project.org/ package=tidyverse.
- Wickham, Hadley, and Jennifer Bryan. 2019. *Readxl: Read Excel Files.* https://CRAN.R-project.org/package=readxl.
- Wood, Simon N. 2017. Generalized Additive Models: An Introduction with R, Second Edition. 2nd edition. Chapman; Hall/CRC. https://www.routledge.com/Generalized-Additive-Models-An-Introduction-with-R-Second-Edition/Wood/p/book/9781498728331.
- Xie, Yihui. 2020. Knitr: A General-Purpose Package for Dynamic Report Generation in r. https://CRAN. R-project.org/package=knitr.
- Yamamoto, Y., H. Fukami, W. Taniguchi, and P.C. Lippert. 2018. "Data Report: Updated Magnetostratigraphy for IODP Sites U1403, U1408, U1409, and U1410." Proceedings of the Integrated Ocean Drilling Program,. 342: College Station, TX (Integrated Ocean Drilling Program). https://doi.org/10.2204/iodp. proc.342.2014.
- Zhu, Hao. 2019. kableExtra: Construct Complex Table with 'Kable' and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.