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Abstract: Human detection in images using deep learning has been a popular research topic in recent
years and has achieved remarkable performance. Training a human detection network is useful for
first responders to search for trapped victims in debris after a disaster. In this paper, we focus on
the detection of such victims using deep learning, and we find that state-of-the-art detection models
pre-trained on the well-known COCO dataset fail to detect victims. This is because all the people
in the training set are shown in photos of daily life or sports activities, while people in the debris
after a disaster usually only have parts of their bodies exposed. In addition, because of the dust, the
colors of their clothes or body parts are similar to those of the surrounding debris. Compared with
collecting images of common objects, images of disaster victims are extremely difficult to obtain for
training. Therefore, we propose a framework to generate harmonious composite images for training.
We first paste body parts onto a debris background to generate composite victim images and then
use a deep harmonization network to make the composite images look more harmonious. We select
YOLOv5l as the most suitable model, and experiments show that using composite images for training
improves the AP (average precision) by 19.4% (15.3%→ 34.7%). Furthermore, using the harmonious
images is of great benefit to training a better victim detector, and the AP is further improved by 10.2%
(34.7%→ 44.9%). This research is part of the EU project INGENIOUS. Our composite images and
code are publicly available on our website.

Keywords: victim detection; deep learning; unsupervised learning; generative adversarial network;
image harmonization; emergency rescue; disaster management; UAV

1. Introduction

The object detection task finds predefined categories of objects in an image and
generates bounding boxes. It is a popular research topic and has practical value in many
fields, such as anomaly detection in surveillance videos [1], wildfire detection [2], and
plant diseases detection [3]. Benefiting from advanced deep learning (DL) technology and
many available datasets for training, detection model performance has improved greatly
compared to traditional detection methods [4].

In this paper, we focus on the detection of victims in debris, which can help save lives
after disasters such as earthquakes and building collapses. Human detection based on
deep learning has been used in many fields, such as security monitoring and intelligent
transportation [5–8]. However, we find that existing human detectors fail to detect real
victims because these models only use photographs of people’s daily lives for training,
which normally contain complete bodies. However, in real disaster scenes, a victim is
usually partially buried by debris and only part of the body is visible. In addition, the colors
of the victim’s skin and clothes are often close to the colors of the surrounding dust and
soil. These differences lead to the fact that the human detection models trained on normal
datasets such as COCO [9] can not achieve satisfactory results in the detection of disaster
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victims. Considering that it is extremely difficult to obtain real victim images we propose
a novel framework to generate sufficient composite images to train the victim detector.
We start by generating a composite image by pasting human body parts into images of
debris background. Since the body parts and the background are from two different image
sources, their color, texture, and illumination characteristics are inconsistent. Therefore,
we design an unsupervised harmonization network to make the composite image look
harmonious. Finally, we use these images to fine-tune a pre-trained detector. The algorithm
runs in real time and can be deployed on unmanned aerial vehicles (UAVs) for autonomous
searching in post-disaster scenarios. The contributions of this work can be summarized
as follows.

• We propose to generate composite images for training a visual victim detector. Specif-
ically, we focus on the detection of human body parts in debris, which is useful for
UAV search and rescue in post-disaster scenarios.

• We propose a deep harmonization network to make composite images more realistic
and further improve the detection accuracy.

We organize the remainder of the paper as follows. We first review relevant recent
research in Section 2. The pipeline of the proposed method is presented in Section 3. The
experimental results and discussion are elaborated in Section 4. We conclude this paper in
Section 5.

2. Related Work

This section reviews some recent relevant work on object detection and image harmonization.

2.1. Object Detection Based on Deep Learning

Traditional methods usually detect objects in three steps. They first select some regions
that may contain objects and then extract features from them. Finally, the features are fed
into a classifier to yield the detection. HOG [10] and SIFT [11] features are commonly used,
and the classifier is mostly SVM (support vector machine) or Adaboost [12]. These methods
are computationally expensive, slow in operation, and low in accuracy. With the rise of
deep learning DL-based detection methods have predominated the object detection field,
and they can be divided into two categories: anchor-based and anchor-free methods.

Anchor-based methods can be further divided into two-stage and one-stage meth-
ods [4]. They use a set of predefined bounding boxes, predict categories through training
and regress the positions of the bounding boxes. R-CNN, proposed by the authors of [13],
was the first DL-based two-stage detector. The authors first used a selective-search method
to extract about 2000 region proposals and then extracted features of these regions using
a convolutional neural network (CNN). They finally used an SVM to generate the classi-
fication result. R-CNN achieved a great improvement and increased the mean average
precision (mAP) to 58.5% on the VOC-2007 dataset [14], but its processing speed is slow.
Later work such as Fast R-CNN [15] and Faster R-CNN [16] both focused on improving the
way of selecting regions and reducing the reference time. Feature pyramid networks (FPN)
proposed by the authors of [17] further improved Faster R-CNN by using a top-down archi-
tecture and building high-level semantic information at multiple scales. Two-stage methods
can achieve higher accuracy than one-stage methods, but one-stage methods are faster
because they skip the step of region proposal. YOLOv1 was the first DL-based one-stage
detector [18]. It took the whole image as input and divided it into S× S grids. Each grid
was responsible for predicting two bounding boxes and their corresponding class-specific
confidence score. Every grid could only have one label, which made YOLOv1 not good at
detecting small objects, although its speed was surprising (155 FPS on VOC-2007). With the
integration of the latest deep learning technologies, subsequent YOLOv2 [19], YOLOv3 [20],
YOLOv4 [21], and YOLOv5 [22] continuously improved the detection speed and accuracy,
and have been applied in industry.

In recent years many anchor-free methods, which do not rely on pre-defined anchor
boxes, have been to reduce the computational effort, and have achieved comparable
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accuracy to that of anchor-based methods. FCOS is a one-stage fully convolutional detector
that regresses bounding boxes at each location on the feature map [23]. It regards a location
falling in a bounding box as a positive sample, resulting in a network with more positive
samples for training. TTFNet was proposed to pursue a better balance between speed and
accuracy [24]. It uses Gaussian kernels in both object localization and size regression, which
allows the network to encode more training samples and accelerate the training process.
PAFNet [25] extended TTFNet by using a better pre-trained model and combining several
existing tricks, such as exponential moving average [26] and CutMix [27].

2.2. Object Detection in Emergency Scenarios

DL-based object detection approaches have been used in emergency scenarios, such
as building damage detection. The authors of [28] presented a large dataset and trained a
CNN to detect structural building damage after earthquakes. The authors of [29] trained
and validated a building damage detector using aerial images of Hurricane Sandy and
Hurricane Irma. Smoke or fire detection is another useful research topic in emergency
scenarios because early warning of fire enables people to take prompt actions to reduce
damages. Many datasets have been built to train fire or smoke detectors [30–33].

Image-based disaster victim detection is useful and can be integrated into advanced
low-altitude UAVs for automatic victim search [34,35]. However, due to the lack of real
victim datasets, existing victim detection systems [36–38] used common datasets such as
INRIA person [39] and PASCAL VOC [14,40] for training. Moreover, these methods were
tested on extremely small real datasets. The authors of [34] only used 19 images for testing.
The authors of [36] tested their method using 50 images from the INRIA person dataset,
which does not contain victim images. In this paper, we verify that detectors trained on the
large popular dataset COCO [9] can not effectively detect real disaster victims because it
contains regular human photos, which are quite different from the photos of victims in real
disasters. Real victims of disasters are usually buried under highly cluttered rubble, with
only part of their bodies exposed.

2.3. Using Unreal Data for Training

When real training data are hard to collect or annotate, researchers have verified that
it is feasible to train the DL model with composite or rendered data. For example, rendered
datasets are widely used in training semantic segmentation networks, because advanced
computer graphics technologies allow to easily render a large number of RGB images
and corresponding segmentation ground-truth [41–45]. Detection tasks also benefit from
using composite or rendered data for training. The authors of [46] proposed a method to
synthesize drones, planes, and cars in arbitrary poses, using these images to better train
detectors. The authors of [47] used 3D CAD models to augment the training data of the
few-shot learning detection task. A simple cut-and-paste method was proposed in [48]
to generate large training data for indoor object instance detection. The authors of [49]
generated synthetic wires for pre-training, and fine-tuned their wire detection network on
real data. Similarly, the authors of [50] presented a rendered dataset for household objects
detection and post estimation. To solve the shortage of training data, the authors of [51]
inserted smoke effects into forest backgrounds to generate synthetic forest fire images,
and trained a forest fire detector. The authors of [52] generated synthetic 3D faces with
different poses, backgrounds, and occlusions, so as to train more robust face detectors.
Inspired by [48], we present a composite victim-in-debris dataset for training a disaster
victim detector. Because the foreground and background images used for composition
are different in color and illumination characteristics, we further propose to harmonize
composite images in a novel self-supervised framework.

2.4. Image Harmonization

Image harmonization improves composite images by reducing appearance differences
between foreground and background images, such as color, illumination, and contrast.
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Existing work mainly focuses on training a fully supervised deep harmonization network
using annotated datasets. The authors of [53] proposed to incorporate semantic information
during harmonization. Their network had an additional decoding branch to learn seman-
tic segmentation and concatenated semantic features to the harmonization branch. The
authors of [54] addressed painting harmonization, and proposed an algorithm to transfer
the local statistics of paintings. The authors of [55] also focused on stylized image harmo-
nization, and designed the Poisson blending loss. The authors of [56] collected iHarmony4
datasets and proposed the domain verification in their generative adversarial network
(GAN) framework to harmonize images. The authors of [57] proposed a harmonization
framework, which integrated the spatial-separated attention module. These supervised
learning methods require input images and corresponding ground-truth for training. Re-
cently, the authors of [58] designed a self-supervised framework for image harmonization.
Their method extracted an image’s content and appearance features from different im-
age crops and then used these features to reconstruct the image. In the present paper,
we propose an unsupervised learning framework that uses the GAN to harmonize our
composite victim images. Our purpose is to use these harmonious images to train a better
victim detector.

3. VictimDet: Training a Disaster Victim Detector Using Harmonious
Composite Images

In this section, we introduce the proposed pipeline of victim detection in detail. As
shown in Figure 1 our pipeline consists of three steps. First, we collect some background
pictures of earthquakes and building collapses. We randomly cut out body parts from
a character image and paste them on a background image to obtain a composite image.
Then, the composite image is fed into our proposed network for deep harmonization.
These harmonious images are finally used to fine-tune a victim detector. In the following
sub-sections, we introduce the details of the three steps respectively.

1. Image Composition

Select a random background image Select a random foreground image Random body parts selection & data augmentation Paste into the background image

2. Image Harmonization 3. Fine-tune a pre-trained detector

DetectorDetector

Figure 1. Our proposed framework consists of three steps: (1) image composition, (2) image harmo-
nization, and (3) fine-tune a pre-trained detector.
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3.1. Victim Image Composition

In this step, we start by collecting real background and foreground images for image
composition. Because we focus on detecting victims that are partially buried in debris, we
collect images of real earthquakes and collapsed buildings on the internet as background
images. To obtain real foreground images of people we use the Look Into Person (LIP)
dataset [59], which was collected for the human parsing task. In the LIP dataset, 50K
character images were selected from the COCO [9] dataset, and each image was labeled
using 19 pre-defined semantic classes such as left/right arm, left/right leg, and torso. Some
sample images in the LIP dataset are shown in Figure 2. We manually check and delete
many low-resolution, blurred, monochrome, and non-exposed body part images, as they
are not suitable for composite victim images. Figure 2f–i are some good images that we can
use to generate victim images.

(d)(c)(a) (e)

(i)(h)(g)(f)

(b)

Figure 2. Some images in the LIP data set are not suitable to be used as the foreground, such as
(a) black-and-white image; (b) blurred image; (c) low resolution image; (d) severe occlusion image,
and (e) an image with no body parts exposed. (f–i) are good image samples we keep to generate
composite images. We blur faces for privacy reasons.

Although the LIP dataset was not designed for image composition, we can leverage it
to composite various victim images. Different from previous papers that copy and paste
a complete object instance [48,60], we choose to paste human body parts. By selecting
specific body parts we are able to simulate victims partially buried by debris. For example,
if we only select and paste the lower part of a person into a background image, we can
imagine that the victim’s upper body was buried in the rubble, and only their lower body
was exposed.

We merge all classes into five body parts, which are upper limbs, upper limbs + torso,
lower limbs, lower limbs + torso, and full body. Classes such as dress, skirt, pants, etc. are
merged into these five body part classes. We do not use the class head because this paper
focuses on the detection of body parts, not face or head. What is more, including heads
may cause potential privacy issues. Given a background image Ib, a foreground image
I f , and the binary mask M f of the body parts corresponding to the foreground image, we
generate the composite image Ic using the following equation:

Ic = Ib × (1−M f ) + I f ×M f . (1)
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The positions where we paste the body parts are randomly generated. We also use im-
age augmentation techniques, such as resizing, cropping, flipping, and adjusting contrast.

3.2. Unsupervised Image Harmonization

A composite image usually does not look harmonious because the background and
the foreground have large differences in illumination, color, and texture characteristics.
We want to reduce these appearance differences, so that the composite image looks as
harmonious as possible. Therefore, we propose a novel deep victim harmonization network
utilizing a self-attention mechanism. Figure 3 shows the structure of the proposed network,
which is based on the adversarial training. The generator G aims at generating harmonious
images, while the global discriminator Dglobal and the local discriminator Dlocal try to
distinguish whether an image is composite or real at the global and local levels, respectively.

Generator

Global Discriminator Local Discriminator

Real

or

Composite

Real

or

Composite

𝐼𝑐  𝐼ℎ  

𝐼ℎ  

𝐼𝑏  

𝒫 𝐼ℎ  

𝒫 𝐼𝑏  

Feature map Feature copy CAM enhanced feature

Feature map Output

PAM enhanced featurePAM CAMConv

Conv

Figure 3. Our framework has a generator G and two five-layers discriminators Dglobal and Dlocal .
The generator takes a composite image Ic as input, and generates a harmonious image Ih. Two
discriminators discriminate the real images and the generated harmonious images globally and
locally, respectively.

3.2.1. Self-Attention Enhanced Generator

The generator G is a U-Net with self-attention layers. It takes a composite image
Ic as input and outputs the harmonious image Ih. We use two self-attention modules to
enhance the generator. One is the pixel attention module (PAM) which tries to increase the
receptive field of the encoder and enhance the deepest features extracted by the encoder.
The generator uses a long-skip to concatenate features from the encoder to the decoder,
so the channels of features are increased. We use the channel attention module (CAM)
in the last layer of the decoder to explore the inter-dependencies between channels. The
self-attention mechanism can be illustrated as mapping a query and key-value pairs to an
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output [61]. The output is weighted by the value, which is computed with the query and
the corresponding key. As shown in Figure 4a we take the output of the deepest layer of
the encoder as input X and construct the same-shaped query Q, key K, and value V using
three convolutional layers, respectively. We transpose the matrix K to get KT, and multiply
it by Q. Applying a softmax function to the result QKT we obtain the pixel attention matrix
APj,i that can be expressed as:

APj,i =
exp(pij)

∑J
i=1 ∑J

j=1 exp(pij)
, (2)

where pij ∈ QKT, and APj,i denotes the influence of the ith feature on the jth feature. We
multiply the attention matrix by the value matrix V and add X to get the enhanced output:

Xp = α
J

∑
i=1

APj,iVi + Xj, (3)

where α is a learnable scale parameter to weight features.

K

V

× A

× 

Q

+

w·h

w
·h

w
·h

c

c

w
·h

w
·h

c

transpose
c

w

h

c

w
h

c

w
h

1x1 conv reshapereshape

input output

c

w

h

c

w

h

(a)

K

V

× A

× 

Q

+

transpose

c

c

w
·h

c

c

w
·h

c

w
·h

reshapereshape

input output
c

w

h

c

w

h

(b)

Figure 4. The details of two self-attention modules used in the generator. (a) Pixel attention module.
(b) Channel attention module.
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Figure 4b shows the channel attention module using the self-attention mechanism. It
is similar to the pixel attention module we use, but we do not use convolution operations
to construct query, key, and value. Instead, we directly reshape the features of the decoder
layer, because we want to keep the channel information from the decoder. We can get a
channel attention matrix ACj,i:

ACj,i =
exp(pij)

∑J
i=1 ∑J

j=1 exp(pij)
. (4)

The enhanced feature maps can be obtained by:

Xp = β
J

∑
i=1

ACj,iVi + Xj, (5)

where β is a learnable scale parameter.

3.2.2. Global and Local Discriminators

A global discriminator Dglobal is used to discriminate if a complete image is real or
composite. A background image Ib used to generate the corresponding composite image
is harmonious and can be used as the ground truth of training. Our discriminators are
based on the PatchGAN [62], and we define the adversarial loss function of the global
discriminator as:

LDglobal = E[log Dglobal(Ib)] +E[log(1− Dglobal(Ih))],

LGglobal = E[log (1− Dglobal(Ih))].
(6)

The foreground areas of some composite images are relatively small, which makes
it impossible for the global discriminator to pay attention to local consistency effectively.
Therefore, we propose to use another local discriminator Dlocal to mainly focus on the
foreground areas. We extend the bounding box of the foreground image by 60 pixels
and use this image patch P(Ih) as the input of the local discriminator. We define the loss
function of the local discriminator as:

LDlocal = E[log Dlocal(P(Ib))] +E[log(1− Dlocal(P(Ih)))],

LGlocal = E[log (1− Dlocal(P(Ih)))],
(7)

where P(Ib) is the corresponding patch on the background image.

3.2.3. Loss Functions

The background part of the harmonious image should remain unchanged, while the
foreground part should have similar color, illumination, and texture characteristics as the
background image without changing the content. To keep the background we compute the
masked smooth L1 loss on each pixel i, whose value is in the range of [0, 1]:

L1,i =


1
2 (Ic

i − Ih
i )

2 × (1−M f
i )

∣∣∣Ic
i − Ih

i

∣∣∣ < 1,

(
∣∣∣Ic

i − Ih
i

∣∣∣− 1
2 )× (1−M f

i ) otherwise.
(8)

The total loss over all pixels is:

L1 =
I

∑
i

L1,i. (9)

To harmonize the foreground body parts while keeping the semantic information we
take inspiration from [63] and propose the locally constrained perceptual (LCP) loss, which
consists of a locally constrained content (LCC) loss LLCC and a locally constrained style
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(LCS) loss LLCS. The former keeps the content information and the latter constrains the
style (color, illumination, texture, etc.) between two images. Different from the common
practice of computing the perceptual loss over a whole image, our proposed loss constrains
features extracted from image patches. This is based on our intention to make the body
parts harmonious with the background. We define the proposed locally constrained content
loss as:

LLCC =
1

Cj MjNj
‖φj(P(Ih))− φj(P(Ic)))‖2

2, (10)

whereP(·) denotes a cropped image patch as we use in the local discriminator. Cj ×Mj × Nj
is the dimension of the feature map, and φj represents the feature map of the j-th convolu-
tional layer of a pretrained VGG16 model. The loss uses l2-norm to measure the distance
between two features. Similarly, our locally constrained style loss is defined as:

LLCS =
1

Cj MjNj
‖(G(φj(P(Ih)))− G(φj(P(Ib))))‖2

2, (11)

where G denotes the Gram matrix [30]. The shallow layers of the VGG model extract
low-level features such as texture and color, while the deeper layers capture high-level
semantics. We set j = 8, 11 in Equation (10), and set j = 3, 5 in Equation (11).

In addition, we use the total variation loss to suppress noises on the local patch [41]. It
is defined as LTV :

LTV = ∑
m,n

∣∣∣P(Ih)m,n −P(Ih)m+1,n

∣∣∣
+
∣∣∣P(Ih)m,n −P(Ih)m,n+1

∣∣∣, (12)

Combining the adversarial losses defined in Equations (6) and (7) the loss function for
training the generator G is expresses as:

LG =λ1L1 + λ2LLCC + λ3LLCS

+ λ4LGglobal + λ5LGlocal + λ6LTV ,
(13)

where λ1 ∼ λ6 are weight coefficients.

4. Experiments

In this section, we evaluate the results of training a victim detector with composite
images and testing on real images. We first present the dataset we use to train the vic-
tim detector, then we introduce details of the implementation of training the harmonization
network and fine-tuning the detectors. We show both qualitative and quantitative results.

4.1. Dataset

Training set: We use 85 background images and 1500 foreground images to generate
a total of 3000 composite images with the size of 512× 512, using random background and
foreground combinations. We apply separate data augmentation to the foreground and
background, such as (1) flip horizontally, (2) change contrast, (3) brighten/darken, (4) rotate,
(5) resize, and (6) crop, to increase the diversity of the composite images. Although
manually controlling the size of a foreground image can yield a more reasonable foreground-
background ratio, it is very time-consuming. Moreover, with different camera heights
or focal lengths, the relative sizes of the foreground body parts and the background are
different. Therefore, the scales of the body parts should not be fixed. By carefully controlling
the scaling factors of different body parts we are able to easily generate composite images
with acceptable foreground-background ratios. At the same time, we generate the bounding
boxes of the body parts on each image and use them as ground truth when training a
victim detector. We use the proposed harmonization network to output corresponding
3000 harmonious images for training the detector.
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Validation set and test set: To test our victim detector we collect and annotate
250 real victim images. Most of these images are acquired from the internet using searching
keywords such as earthquake victim, and building collapse victim. We also capture some
images by ourselves. Many victims in the images are buried by collapsed buildings, and
only part of their bodies or limbs are visible. Their clothes and limbs are dirty and covered
with dirt or dust. And some victims lay prone or curled up. Due to copyright and privacy
reasons, we are not able to show real victim images in the paper.

When fine-tuning a victim detector we need a validation set to evaluate the result of
each training epoch and determine the hyper-parameters. In most deep learning tasks we
construct the validation set from the training data, that is, we divide all training data into
two disjoint subsets, which are the training set and the validation set, respectively [64].
However, this is not applicable in our case, because we cannot guarantee that the training
data and the test data have similar feature distributions. If our validation set comes
from training data one possible result is that the training achieves good accuracy on the
validation set, but the performance on the test set is poor. Therefore, it is meaningless to use
composite images as the validation set. In view of the above consideration, we construct
the validation set using real victim images. Specifically, we randomly divide the test data
into three disjoint subsets. In each training, we use one subset as the validation set and
the other two subsets as the test set. Therefore, we train, evaluate, and test our model in a
three-fold cross-validation manner. The final result of each model is obtained by calculating
the average accuracy of three independent trainings.

4.2. Implementation Details

We run experiments on an Ubuntu 18.04 system with a Nvidia Titan XP graphics card.
We implement the deep harmonization network using PyTorch. We do not have a metric
to explicitly measure the “quality" of the composite images, so it is difficult to adjust the
coefficients according to the generated images. Instead, we carefully observed the loss
curves of training, and adjusted the coefficients according to their scale and convergence
speed. We set coefficients in Equation (13) as: λ1 = 100, λ2 = 2, λ3 = 0.2, λ4 = 1, λ5 = 1,
λ6 = 10−5, to make each loss part have a close scale. We train the network for 10 epochs
with batchsize = 1.

Since we use the victim detector in real-time scenarios, we hope that the network can
have a good trade-off between efficiency and accuracy. Therefore, we select and evaluate
four state-of-the-art detectors pre-trained on the COCO dataset, including FCOS, TTFNet,
PAFNet, and YOLOv5. They are all one-stage detectors with fast inference speed, and only
YOLOv5 is an anchor-based model. For the first three anchor-free networks we use the
implementations provided by PaddleDetection [65], which is an open-source development
kit for object detection. We use the official YOLOv5 [22] implementation and evaluate three
different YOLOv5 models, namely YOLOV5s, YOLOV5m, and YOLOV5l, with increasing
depth and width of structures.

4.3. Qualitative Analysis of Harmonized Images

We show some images from the training set in Figure 5. Some of the composite images
in the first and third rows do not look real because their foreground and background
have large differences in color, illumination, and texture. For instance, the appearance of
the “victim” lying in the third image of the first row is bright, which is out of harmony
with the earthy background, while the harmonization network generates a more realistic
image. In addition, the proposed harmonization method is different from the simple way of
smoothing foreground edges used by Dwibedi et al. [48]. Our deep harmonization network
can not only produce smooth foreground edges but also transfer the background style to
the foreground while maintaining its semantics.
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ddd

(b)

(a)

Figure 5. Sample images from our dataset. The images in the first and third rows are composite
images obtained using the method illustrated in Section 3.1. The second and fourth rows are the
corresponding harmonized images generated by the harmonization network introduced in Section 3.2.

4.4. Quantitative Analysis of Victim Detection

In this experiment we evaluate the average precision (AP) of detecting real victims,
using both existing detectors trained on the COCO dataset and fine-tuned using our har-
monized composite images. We list results of different models in Table 1. We can see from
the fourth and fifth columns of the table that the existing state-of-the-art models trained
on the COCO dataset perform poorly in the task of detecting real disaster victims. The
FCOS model is slightly improved (17.0%→18.3%) by the use of the deformable convolution
(DCN) [66]. TTFNet with a Darknet-53 backbone performs worse than the FCOS model
without using DCN. Although the YOLOv5 series models are substantially fast, the results
on real images are extremely poor. PAFNet performs the best but the result (AP = 23.1%)
is still poor. The poor results are in line with our expectations, because there are great
differences in appearance and posture between the photos of people in the COCO dataset
and the photos of real victims. These detectors cannot directly apply learned features from
the COCO dataset to real disaster victim images.
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Table 1. Comparison of state-of-the-art models on real victim images. The best results are highlighted
in bold.

Model Params (M) Speed (FPS)
Trained on COCO Harmonized Images

AP AP50 AP AP50

FCOS-R50-FPN 32.2 14 17.0 28.1 (+13.1) 30.1 (+20.5) 48.6
FCOS-DCN-R50-FPN 33.7 11 18.3 30.1 (+18.6) 36.9 (+26.6) 56.7

TTFNet-darknet53 45.8 23 16.5 26.0 (+9.2) 25.7 (+13.1) 39.1

PAFNet 33.8 21 23.1 36.8 (+22.5) 45.6 (+28.2) 65.0

YOLOv5s 7.2 212 9.2 14.5 (+15.5) 24.7 (+28.4) 42.9
YOLOv5m 21.2 123 11.8 17.4 (+27.9) 39.7 (+42.6) 60.0
YOLOv5l 46.5 89 15.3 21.4 (+29.6) 44.9 (+44.0) 65.4

From the last two columns of the table, we can find that fine-tuning the pre-trained
detectors by fixing their backbones using our harmonized images improves the results by a
large margin. The AP of TTFNet increases by 9.2%, and the AP of all other models increase
by at least 13.1%. PAFNet increases by 22.5% and achieves the best result. It is particularly
noteworthy that the results of YOLOv5 series models have increased substantially, espe-
cially YOLOv5m (11.8%→27.9%) and YOLOv5l (15.3%→44.9%). The improvement of the
results verifies that our harmonized images are useful in training a victim detector. We also
notice that YOLOv5 models outperform the other models in speed, and the largest model,
YOLOv5l, has an outstanding balance between efficiency and effectiveness. Therefore, we
select YOLOv5 models as our baseline and carry out additional evaluations based on them
in the following sections. Figure 6 shows some detection results using YOLOv5l.

4.5. Ablation Study

In this section, we gradually evaluate how different parts of the proposed deep
harmonization network affect the detection performance. We copy the results of the
baseline models (YOLOv5) to the first row (Exp. A) of Table 2 for clear comparison.

Exp. B First of all, we fine-tune the models using composite images that are not
harmonized by our proposed deep harmonization network. These composite images have
disharmonious foreground and background, but they still show effectiveness in fine-tuning
victim detectors. The improved APs compared with the baseline models are displayed in
blue color. The great improvement demonstrates that the victim detection task benefits
from using our composite victim images even if the background and the foreground are
not harmonious in styles. The effectiveness of composite images is attributed to the fact
that we use body parts instead of whole human instances to make the composite images.
The semantic information of our composite images is consistent with that in photos of real
victims whose body parts are buried and partially visible in real disasters.

Exp. C We start training the proposed deep harmonization network that only has the
global discriminator, and generating harmonious images for fine-tuning. The adversarial
training makes the style (color, illumination, texture, etc.) of the body parts similar to that
of the background image. The introduction of the harmonization network increases the
AP of YOLOv5l by 4.5%. We show the improved APs compared with Exp. B in magenta
color. As shown in Figure 7, we observe some green artifacts in the foreground when
only using the global discriminator, and these artifacts can be removed if we use the local
discriminator together (Exp. E).
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(c) (e)(d)(a) (b)

Figure 6. Visualization of victim detection. Five samples (a–e) are shown with red rectangles
denoting detected victims. The first row is the ground-truth, and the second row is the default
COCO pre-trained YOLOv5l model. The third row and the fourth row are the models fine-tuned on
our composite images and harmonious images, respectively. Due to copyright and privacy issues we
only show our own images.

Table 2. Ablation study of our deep harmonization network modules. The best results are highlighted
in bold.

Exp. Method
YOLOv5s YOLOv5m YOLOv5l

AP AP50 AP AP50 AP AP50

A w/o Fine-Tuning 9.2 14.5 11.8 17.4 15.3 21.4
B Composite Images (+12.4) 21.6 (+23.8) 38.3 (+19.6) 31.4 (+33.2) 50.6 (+19.4) 34.7 (+32.1) 53.5

C B + Dglobal (+0.5) 22.1 (+1.8) 40.1 (+2.8) 34.2 (+2.6) 53.2 (+3.1) 37.8 (+5.4) 58.9
D C + Attention (+1.3) 22.9 (+1.6) 39.9 (+3.8) 35.2 (+5.8) 56.4 (+3.5) 38.2 (+7.0) 60.5
E C + Dlocal (+0.9) 22.5 (+1.9) 40.2 (+6.2) 37.6 (+6.7) 57.3 (+6.1) 40.8 (+9.6) 63.1
F D + Dlocal (+3.1) 24.7 (+4.6) 42.9 (+8.3) 39.7 (+9.4) 60.0 (+10.2) 44.9 (+11.9) 65.4

G B + Blending [48] (−0.5) 21.1 (+0.1) 38.4 (+1.4) 32.8 (+2.3) 52.9 (+1.2) 35.9 (+3.1) 56.6

Exp. D We add the attention modules, which are the pixel attention module and the
channel attention module. We expect the pixel attention layer to enhance the features of the
last encoder layer, and the channel attention module to strengthen the inter-dependencies
between feature channels. Compared with Exp. C, the AP of YOLOv5l increased slightly
(0.4%). However, we find some checkerboard artifacts as shown in Figure 8. Both the green
artifacts mentioned earlier and the checkerboard artifacts here appear in the foreground
body parts. The reason is that the global discriminator focuses on discriminating the global
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features of the whole image, but the features of local areas are also important for the image
composition task of this paper, so it is not enough to use only one global discriminator.

Exp. E We add the local discriminator to the network. It focuses on distinguishing
the regions around the foreground body parts, so the green artifacts in Figure 7 can be
removed. The AP of YOLOv5l increases by 3.0% compared with Exp. C.

Exp. F This experiment is based upon the full harmonization network. We get the
AP of 44.9% on YOLOv5l, which is 10.2% higher than using disharmonious composite
images in Exp. B. The AP on YOLOv5s and YOLOv5m also increased by 3.1% and 8.3%,
respectively. Moreover, if we compare the results with Exp. E we can find that the attention
modules improve the results more when the network has a local discriminator. At the same
time, the full model can eliminate the checkerboard artifacts shown in Figure 8.

Exp. G We also test the Gaussian blending method used by [48]. We concur with the
authors of [60] that the smooth edges of foregrounds have a negligible impact on AP. This
blending method cannot change the color, texture, or illumination of the foreground, which
are important in generating useful victim images in this paper.

ddd (b)

(a)

Figure 7. Visual comparison of only using the global discriminator and adding the local discriminator.
The first column shows images harmonized by the network that only has the global discriminator,
and we can see some green artifacts in the foreground. The second column shows the corresponding
images generated by the network with both the global discriminator and the local discriminator.
These artifacts are eliminated by introducing the local discriminators. We zoom in on some image
areas for better comparison.
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ddd (b)

(a)

Figure 8. Visual comparison of using the global discriminator + attention modules and the full model.
The first column shows images harmonized by the network without the local discriminator, on which
some checkerboard artifacts are observed. The second column shows the corresponding images
generated by the full harmonization network. We zoom in on some image areas for better comparison.

4.6. Study on Freezing Layers in Fine-Tuning

Our fine-tuning of the pre-trained models utilizes the ability of transfer learning so
that the models can quickly apply what they have learned from the large-scale COCO
dataset to relevant new datasets or new tasks. In this experiment, we evaluate the influence
of fine-tuning YOLOv5 models by freezing different layers on the results. The structure of a
YOLOv5 model consists of three parts. It has the CSP bottleneck [67] to extract features and
uses PANet [68] as the neck to aggregate features from the backbone. The final prediction
results are outputted by a head. Table 3 shows three different fine-tuning settings and
their results.

Freeze the backbone We first only freeze the backbone, so the weights of the neck
and the head can update during training. We also use this setting in other experiments
in this paper, and it achieves the highest APs. The backbones pre-trained on the COCO
dataset have a good ability for feature extraction, so freezing the backbones allows the
networks to extract effective features for learning the victim detection task. We compare
other fine-tuning strategies with this one, and the differences of APs are shown in teal color.

Freeze the backbone and the neck We fine-tune the prediction head by freezing both
the backbone and the neck, which means only the last layers responsible for generating
the final detection are able to update weights. This fine-tuning strategy is usually effective
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when the pre-training data and the new data have great similarities, which is not applicable
to our case. We get the AP of 22.5% on YOLOv5l, which is 22.4% lower compared with only
freezing the backbone. The results on YOLOv5s and YOLOv5m also decrease substantially.

No frozen layer We also evaluate when there is no frozen layer in the pre-trained
models. That is, all the layers of the models can update their pre-trained weights during
training. The AP of YOLOv5l is 29.2%, which is better than that of freezing the backbone
and the neck together, but worse than that of only freezing the backbone.

Table 3. Study on fine-tuning pre-trained models.

Frozen Layers
YOLOv5s YOLOv5m YOLOv5l

AP AP50 AP AP50 AP AP50

Backbone 24.7 42.9 39.7 60.0 44.9 65.4

Backbone + Neck (−12.3) 11.8 (−20.2) 22.7 (−20.8) 18.9 (−25.9) 34.1 (−22.4) 22.5 (−24.6) 40.8

No Frozen Layer (−6.4) 18.3 (−3.5) 39.4 (−15.5) 24.2 (−14.3) 45.7 (−15.7) 29.2 (−9.9) 55.5

4.7. Discussion on Failure Cases

We observe some failed detection on the victim images because not enough body parts
were exposed, or the photos were low-light. For example, in one image, the victim was
fully stuck in the debris, without any body parts exposed, and only the side of his trousers
could be seen. In this case, the trained detector fails to detect the victim. In another image,
the victim lies in the triangle structure formed by the collapse, with low brightness, only
showing his back and half of his right upper arm. The victim’s skin is covered with dust,
showing a white-gray color. Another point worth discussing is that false detection has been
found in very few pictures. We can reduce false detection by increasing the confidence
when inferring the model, but at the same time, it may also make the detector miss some
victims with low confidence. Considering this real victim detection task we believe that
false detection is more acceptable than missed detection.

In a real emergency scenario, a successful detection might not achieve high IoU, but
we regard it as a successful detection as long as it can detect (part of) a victim. This also
brings an open question: is there a more reasonable evaluation metric than the average
precision in this specific victim detection task?

5. Conclusions

In this paper, we have explored the use of composite images to fine-tune an effective
victim detector. Our motivation comes from the fact that the existing state-of-the-art detec-
tors trained on the COCO dataset cannot successfully detect disaster victims, and the real
victim images for training are hard to obtain. Therefore, we propose to generate composite
victim images by copying and pasting human body parts onto a debris background. Our
method especially considers that the real victims are often buried in the debris, and only
part of their bodies are visible. Therefore, unlike previous methods that copied and pasted
a whole object instance, we choose to randomly paste the body parts. We have tested some
state-of-the-art detectors and the experimental results demonstrate that fine-tuning the
detectors using our composite images can largely improve the AP. Additionally, we verify
the effectiveness of our unsupervised deep harmonization network, which can produce
harmonious composite images for training, and helps to enhance the detectors further.
Our image composition and harmonization methods can also be used for other tasks that
lack training images, such as aircraft detection using remote sensing images. As part of
the INGENIOUS project (https://ingenious-first-responders.eu, accessed on 17 May 2022)
we have integrated the algorithm into a platform, which uses a customized autonomous
unmanned aerial vehicle (UAV) for victim detection in post-disaster scenarios. The UAV
captures images and sends them to a ground control station (GCS) for victim detection.
Although we have not tested them, the YOLOv5 series algorithms themselves can run on
embedded computing boards, such as Nvidia Jetson, at a satisfactory speed. In follow-

https://ingenious-first-responders.eu
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up research, we will focus on victim detection in low-light environments because many
post-disaster rescues occur at night or in low-light environments.
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