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Abstract

Human-shared landscapes cover much of Earth, yet their conservation value is
contested. This controversy may persist because previous studies have examined
species diversity, rather than the processes through which such diversity is
maintained. For example, a site exhibiting high diversity may not actually bolster
populations if the diversity is only maintained through net immigration. Recent
research has begun to isolate the processes that maintain metacommunities and
develop functional trait methods to identify these processes. However, the processes
underlying bird communities remain obscure. Here, we leverage metacommunity
theory, functional trait partitioning, and a Bayesian multispecies abundance model to
assess whether a shared landscape—woody perennial polyculture farms—bolsters bird
diversity. Such farms grow multiple species of food-producing woody perennials
together with vegetative groundcover. We surveyed birds and their in situ functional
traits across the US Midwest in traditional agriculture, woody perennial polyculture,
prairie, and woods. We found that woody perennial polycultures exhibited the
highest bird diversity and were the most preferred by many species (including
threatened ones). Moreover, our functional trait analysis suggests that this diversity
is maintained through habitat filtering and competition, rather than merely
immigration. Thus, shared landscapes can likely conserve birds by providing a
distinct habitat. These results suggest that woody perennial polyculture farms offer
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substantial potential to support bird populations in the US Midwest. Our study
demonstrates the utility of in situ functional trait partitioning within a Bayesian
framework to unmask ecological processes and help assess the conservation value of
landscapes.

Keywords: bird conservation, functional traits, perennial polyculture, human shared
landscape, Bayesian multispecies abundance model, metacommunity process.

1 Introduction

Over one million species are threatened with extinction (Purvis et al., 2019), and even
abundant and widespread species are declining precipitously (Inger et al., 2014; Stepanian
et al., 2020). These declines are part of the interlinked global climate and ecological crises
(Balvanera et al., 2019). Moderate to intense anthropogenic management now occurs on
about 80% of the world’s ice-free land (Erb et al., 2017). Debate exists about the
conservation value of these managed landscapes. Some have argued that these landscapes
are key to conservation (Bawa, 2004; Koh & Gardner, 2010; Palmer, 2004). However,
others have cautioned that shared landscapes provide scant conservation value (Phalan
et al., 2011). There is evidence to support both claims: some studies have found that
diversity is relatively high in human-shared systems (e.g., Bhagwat et al., 2008) while
others have found it to be low (e.g., Koh, 2008; Phalan et al., 2011), particularly for
habitat specialists due to edge effects Guthery1992. Despite their varying outcomes, such
studies typically rely on taxonomic diversity to measure the landscapes for conservation.
However, observed diversity may not reveal whether shared landscapes can actually sustain
species (i.e., maintain stable or increasing populations) (Daily et al., 2001).

Determining the conservation value of shared landscapes requires understanding how
diversity is maintained. For example, even if two sites exhibit the same diversity, one site
may actually be inferior and only exhibit equivalent diversity because species are
constantly flowing into it from superior surrounding habitats (i.e., ‘source-sink dynamics’
or ‘mass effects;’ Brawn & Robinson, 1996; Leibold & Chase, 2017b). Therefore,
understanding the mechanisms that maintain biodiversity is important for assessing a site’s
conservation value.

The sheer number of mechanisms that plausibly maintain biodiversity can be overwhelming
(Palmer, 1994). Metacommunity theory synthesizes the many patterns and processes in
ecology and therefore provides a useful framework for understanding how communities are
maintained (Leibold & Chase, 2017b). Metacommunity theory posits that species can
occupy habitats 1) by outcompeting other species (hereafter ‘competition’); 2) because the
habitat complements their niche (habitat filtering); 3) because the habitat is near a source
of dispersing individuals or propagules (dispersal); or 4) through chance events of
colonization and persistence (stochasticity; Thompson et al., 2020). These three processes
(viz. competition, habitat filtering, and dispersal) plus stochasticity are theorized to
maintain species diversity across scales (Thompson et al., 2020).

Recent advances have shown that these maintenance processes can be identified by
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analyzing variation in functional traits (i.e., ecologically-relevant attributes such as diet
and body size) of species in communities along environmental gradients (e.g., Jung et al.,
2010; Le Provost et al., 2017). Specifically, if the functional trait gradient matches the
environmental gradient (trait convergence assembly pattern), then habitat filtering may be
important (Ackerly & Cornwell, 2007; Ingram & Shurin, 2009; Pillar & d. S. Duarte, 2010;
Pillar et al., 2009). Conversely, if functional traits become more different across an
environmental gradient (trait divergence assembly pattern), then competition may be
important (because competition drives niche partitioning; MacArthur, 1958; Pillar &
d. S. Duarte, 2010; Stubs & Wilson, 2004). Finally, if functional traits are not associated
with the environmental gradient, then dispersal or stochasticity may be more important
(Leibold & Chase, 2017a). Process identification is enhanced when functional traits are
measured in situ (at least in plants: Ackerly & Cornwell, 2007; Jung et al., 2010) and
when functional trait–environmental associations are analyzed separately for each trait
(e.g., in fish Ingram & Shurin, 2009). However, despite the success of these methods across
various taxa (most especially plants), they have not been tested on birds in shared
landscapes.

Here, we apply functional trait analysis in a metacommunity framework to assess the value
of a shared landscape—woody perennial polyculture farms in the US Midwest. The US
Midwest is dominated by monoculture crops of corn and soy (i.e., entire fields planted with
just corn or just soy) (USDA, 2012), interspersed with woods and natural
prairie/grassland. Recently, woody perennial polyculture farms have been planted within
this matrix (Lovell et al., 2017; Shepard, 2013; Wolz et al., 2017). These farm systems are
designed to grow multiple species of perennial shrubs and trees together above a vegetative
groundcover (Kreitzman, 2020; Kreitzman et al., 2022), which creates substantial habitat
heterogeneity. Ecological theory and agroecological studies show that heterogeneous
habitats (Benton et al., 2003; Kremen & Miles, 2012; MacArthur & MacArthur, 1961;
Nájera & Simonetti, 2010; Tscharntke et al., 2005) in tree systems (Beckmann et al., 2019)
are most likely to support biodiversity in shared landscapes (Scherr & McNeely, 2007).
Moreover, woody perennial polyculture farms are designed to bolster biodiversity
(Ferguson & Lovell, 2014; Mollison, 1988; Shepard, 2013), unlike the shared landscapes
typically studied, which are merely less intensively managed (Phalan et al., 2011).
Ecological theory and farm designs suggest that perennial polyculture farms might reveal
the potential for shared landscapes to conserve biodiversity.

We hypothesize that local bird diversity in the woody perennial polyculture farms is
maintained by a mixture of competition and habitat filtering, rather than just stochasticity
or dispersal, implying that shared landscapes can bolster bird diversity. We expect that the
woody perennial polyculture farms will therefore support substantially more bird diversity
than the hay, corn, or soy fields, and will approach the diversity of the prairie and woods.
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2 Materials and methods

2.1 Overview

We gathered data from the field, from literature, and from satellites. From the field, we
collected data on bird abundance and behavioral functional traits across six habitat types
and 13 site clusters in the US Midwest. From the literature, we aggregated additional
functional trait data. From satellites, we downloaded MODIS data to measure greenness
across site clusters. We used a Bayesian multispecies abundance model and the field data
to estimate the true abundance and affinities of bird species for each habitat and site
cluster. We used principal component analysis (PCA), a bootstrap procedure, and
functional trait data to determine key functional trait dimensions. We then combined these
results into a metacommunity process analysis. Finally, we modeled the degree to which
functional traits predicted affinities of each species for each habitat.

2.2 Study sites

Our study took place in the US Midwest (across four states: Illinois, Iowa, Wisconsin,
Minnesota), a region with abundant maize (corn) and soybean monocultures (USDA,
2012), interspersed with secondary woods, marshes, and natural prairie/grassland. See
Supporting Information for ecological details about these habitats. This region also
contains a small but growing number of woody perennial polyculture farms (Keefe Keeley,
pers. comm.; Shepard, 2013). Although quite variable, these farms typically include nut- or
fruit-producing trees and shrubs, such as chestnut (Castanea), hazel (Corylus), black
currant (Ribes), and apple (Malus domestica) (for details, see Table S1 and Kreitzman
et al., 2022).

We sampled from 13 site clusters within the Midwest (see Figure 1). Each site cluster
contained up to four habitat types, including: 1) woody perennial polyculture, 2)
traditional high-intensity farm optimized for maximum yield (either corn, soybeans, or
hay-like crop), 3) woods, and 4) prairie, (if a prairie was nearby; see Figure 1). All of these
habitat types were within a few hundred meters of each other, and typically adjacent.
Many of the woody perennial polyculture sites were previously corn, soy, or hay fields, and
all shared similar topographic features with the other agricultural lands. For further site
details, see Table S1 and Kreitzman et al. (2022). Due to the regional dominance of
traditional agricultural fields, such fields were typically larger than woody perennial
polyculture fields.

2.3 Site characteristics

We used satellite-derived greenness indices to quantify environmental variation across the
13 clusters (variation within clusters was classified according to habitat type; see Figure
1B). Coops et al. (2009) showed that three measures of greenness—minimum, average, and
seasonal variation—were good predictors of bird diversity across the US. Greenness
accurately portrays primary productivity (Monteith, 1972) and reveals availability of food
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resources (Berry et al., 2007). Greenness is measured as the dimensionless fraction of
incident photosynthetically active radiation (400–700 nm) absorbed by vegetation (FPAR).
This data is collected by MODIS Terra + Aqua satellites at a 500-m, 8-day resolution. To
quantify the generalized environment surrounding each site cluster, we downloaded 2018
FPAR data for the US Midwest (Myneni et al., 2015) and created ∼ 50 km buffers around
each site cluster (also tested with 30km and 70km, with similar results). pixel for each set
of four consecutive FPAR images (because each image is taken 8 days apart, each set of
four images covers a 32-day period) (Coops et al., 2009, after removing metadata values).
To represent variation in winter length and harshness, we calculated the minimum FPAR
value for each buffer. To represent overall productive capacity, we calculated the average
FPAR value for each buffer (first averaging across time, then space). To represent
seasonality, we calculated the coefficient of variation (σ

µ
) for each pixel, and then averaged

across each buffer. We used these three greenness indices to represent the regional
environmental variation in our functional trait analysis.

2.4 Functional traits

We gathered data on 34 functional traits, including behavioral, morphological, and life
history traits. We collected most behavioral functional traits and some life history traits in
situ, and gathered the rest from published sources (see Table 1). While most modern avian
functional trait studies use behavioral functional trait data from global trait databases
(e.g., Bregman et al., 2016; cf. Yahner, 1982), such global databases obscure intraspecific
trait variation and plasticity, which can be large in birds (e.g., Castellanos &
Ortega-Rubio, 1995). Studies on plants have shown that in situ trait measurement is
essential for capturing the realized traits in a given habitat (Ackerly & Cornwell, 2007;
Jung et al., 2010). Moreover, the standard behavioral functional traits—diet and foraging
strata (Wilman et al., 2014)—do not represent how birds interact with their habitat via
their singing behavior. Species may use one microhabitat for foraging, but a different one
for singing (preliminary observations suggested that this may be true across our habitats).
Ignoring singing strata could functionally conflate two species that forage in similar strata
(i.e., sing at different parts of the vertical habitat) but sing in different strata. Singing
strata may be typically ignored because early trait studies focused on forest birds
(MacArthur & MacArthur, 1961), which show highly correlated foraging and singing
heights (Holmes, 1986). Thus, we gathered in situ behavioral trait data, and included
singing strata. This in situ behavioral trait data was augmented with data from
EltonTraits (Wilman et al., 2014), Tobias and Pigot (2019) and Billerman et al. (2021) for
species that were rarely encountered (we were unable to collect any in situ behavioral trait
data for 4% of study species). Foraging strata and singing strata were the easiest
functional traits to observe and measure, and so these in situ traits are treated in more
depth in this manuscript. Diet and other behavioral traits were less frequently observed,
and so drew more from literature sources.

In contrast to behavioral traits, studies have shown that morphological bird traits typically
show only small intraspecific variation (Pigot et al., 2016). We thus reconstructed
morphological traits (see Table 1) from the principal component scores and eigenvectors
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reported in Pigot et al. (2020) by multiplying the matrix of principal component scores by
the transpose of the eigenvector matrix (amoeba, n.d.). These morphotraits represent mean
measurements from museum specimens (which typically differ from live birds by <4%;
Winker, 1993). Of the life history traits, nest placement (i.e., in what substrate a nest is
located) was measured in situ for the most common 13% of the species (if no nests were not
found, then data was gathered from Tobias & Pigot, 2019). All other life history traits were
taken from Tobias and Pigot (2019)(except for Brown-headed Cowbird Molothrus ater ; see
Supporting Information). Morphological traits and clutch size were log-transformed,
centered, and scaled (to achieve unit variance; Pigot et al., 2020). Behavioral traits
expressed as percentages were rank-transformed, centered, and scaled (to achieve unit
variance; Céréghino et al., 2018). To account for collinearity among traits we conducted
principal component analysis (PCA), followed by a bootstrap resampling analysis to select
significant dimensions (Pillar, 1999, see Supporting Information for details). This
bootstrap analysis produced two ecologically interpretable trait dimensions (see Figure 3).

2.5 Bird surveys

We conducted point counts between late June and early August 2018 to capture breeding
bird abundance. Within each habitat type, sampling points were selected to maximize
distance between points and to habitat edge. Points were at least 100 m from habitat edges
and 150 m from each other. Thus, larger habitats contained more sampling points (up to
five) than smaller habitats (minimum of 1). Due to irregular habitat shapes, points were
selected by hand using Google Earth. Sampling points were located using a hand-held GPS
unit (accuracy=5–10 m). We recorded birds within a 50-m radius of each point (Hutto
et al., 1986). To enable disambiguation of non-detection and non-occurrence, each point
was surveyed twice (Dorazio et al., 2006). To control for time of day, the survey order was
reversed on the second visit. Following Sorace et al. (2000), each visit lasted 10-minutes.
Point counts were only conducted in fair weather (no rain, Beaufort wind less than 3;
Robbins, 1981) and within four hours of sunrise. Along with a count of each bird species,
for all observed individuals we recorded date, time of day, GPS location, weather, whether
a bird was a non-foraging fly-over, bird height above ground, and substrate (including
plant species, substrate type, and relative position). Substrate types included ground,
grass, sedge, small forb, large grass, large forb, fence, post, vine, shrub, small tree, utility
pole, utility wire, tree, evergreen tree, and air (for example, see Figure S4). Morning counts
were complemented with evening observations of bird behavior (Weber, 1972), including
behavior type (e.g., foraging, singing), duration, diet, height, substrate, and nest height,
where applicable. These bird surveys, as well as the motivating questions and subsequent
analyses, reflect the positionalities of the authors.

2.6 Positionality statement

Biological research is a social process (Latour & Woolgar, 1979; Levins & Lewontin, 1985),
and so researcher values, experiences, positions, power, and identity (i.e., positionality),
can shape knowledge production (Monk et al., 2019; Montana et al., 2020). Comprehensive
research methods therefore require the inclusion of researcher positionalities and
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self-reflection about how positionalities can affect what knowledge is produced (i.e.,
reflexivity; Montana et al., 2020; Pascual et al., 2021). We thus include the following
statement. Surveys were conducted by the first author, who is a White settler and scholar
who grew up in SE Michigan. He has been avidly birding in the US Midwest for nearly two
decades, and is intuitively familiar with the relationships between various habitats and bird
communities. This intuitive sense motivated the hypothesis that in situ functional traits
may differ in human-modified landscapes and may be important for understanding the
mechanisms that maintain metacommunities.

2.7 Bayesian N-mixture multispecies abundance model

N-mixture models account for individuals that were present but not detected by ‘mixing’
two data-generating processes: ecological process (abundance or occupancy) and
observation process (detection), thereby enabling us to estimate probabilities that birds
were present even if they were not detected. (Kery & Schaub, 2011). Bayesian N-mixture
multispecies abundance models (MSAM; Chandler et al., 2013; Iknayan et al., 2014; Kéry
& Royle, 2016; Yamaura et al., 2012) were used to estimate the true abundance of each
species across habitat types and site clusters. We used the resultant parameter estimates to
understand the affinity of each species for each habitat and to simulate communities that
only reflected either effects of habitat type or site cluster. These simulated communities
enabled us to test for community process signals separately at each environmental scale,
while also accounting for uncertainty (Marion et al., 2018; Zhang et al., 2014). We modeled
the observed abundance y of species i at cluster j at time k in habitat type l at sample
point m with a Binomial error distribution (Williams et al., 2002) of the form:

yijklm ∼ Binomial(Nijlm, Pi) (1)

where Nijlm is the latent true abundance of species i at cluster j in habitat l at sample
point m, and Pi is the probability of detecting species i.

We used a Poisson error distribution with log link function to model true abundance
because Poisson and zero-inflated Poisson models exhibit higher identifiability than
negative binomial models (Kéry, 2018) and yield more ecologically-realistic results (Joseph
et al., 2009). We allowed abundance to vary across site clusters to account for varying
environmental conditions and species pool (with species as a random effect drawn from a
normal distribution).

Woody perennial polyculture farms varied substantially by age: older farms had mature
trees and were forest-like, while younger farms had only small trees and shrubs and were
more field-like. Thus, we dichotomized the perennial farms into young and mature
(threshold age = 20 years). Our study thus included seven habitat types: corn, soy,
hay-like crop, prairie, woods, young polyculture, and mature polyculture. To account for
different species affinities for each habitat type, we treated species as a random effect. Both
cluster and habitat were modeled as index variables to ease computation (McElreath,
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2020). Our abundance model was of the form,

Nijlm ∼Poisson(λijl) (2)

log(λijl) =αij + βil (3)

αij ∼Normal(0, σi) (4)

βil ∼Normal(µl, τl) (5)

where λijl is the mean abundance of species i occurring in cluster j and habitat l, αij is the
affinity of species i for cluster j, σi is the standard deviation that represents how much the
affinity of species i for each cluster varies across all the clusters, βil is the affinity of species
i for habitat l, µl is the mean affinity for habitat l, and τl is the standard deviation that
represents how much the affinity for habitat l varies across all the species.

Detection probability varied across species and was treated as a random effect drawn from
a logistic distribution because normal distributions in logit-transformed space can produce
high density in the tails in prior distributions (Northrup & Gerber, 2018), suggesting that
normal distributions may also lead to spurious results when used for hyper priors.

logit(Pi) ∼Logistic(ω, η) (6)

where Pi is the probability of detecting species i given that it is present, ω is the mean
probability of detecting any species, and η is the standard deviation that represents how
much detection probabilities vary between species. We fit the model in Stan using RStan

version 2.19.3 (Stan Development Team, 2020) in R version 3.6.3. We fit the model with
four chains, each with 1000 warmup (discarded) and 1000 sampling iterations. We
validated the model using simulated data, and prior and posterior predictive checks (Figure
S1) (Gelman et al., 2004), and R̂ (Vehtari et al., 2019). See Supporting Information and
(Eyster, 2021) for further details.

2.8 Alpha diversity estimation

We used our model to predict the true abundance of each species at each sampling point
(leading to 4000 ‘posterior communities’) according to the equation for true abundance (see
Equation 2, above). Shannon Diversity Index was calculated for each posterior community
using the vegan package (Dixon, 2003; Oksanen et al., 2020). Fifty-percent credible
intervals (CrI) measured by highest density (HDI; McElreath, 2020) were calculated using
the bayestestR package version 0.8.2 (Makowski et al., 2019).

2.9 Metacommunity process analysis

To identify the importance of trait convergence assembly patterns (indicating abiotic
filtering) vs. trait divergence assembly patterns (indicating competition), we computed
partial correlations between environment and functional trait variation across communities
(Leibold & Chase, 2017a; Pillar & d. S. Duarte, 2010; Pillar et al., 2009; Stubs & Wilson,
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2004). However, because abiotic filtering and competition can create opposing patterns,
one can mask the signal of the other (which can be exacerbated when traits are analyzed
simultaneously; Leibold & Chase, 2017a). Thus, we separately quantified associations
between each functional trait axis and each environmental scale (i.e., local-scale variation
across habitats/farms and regional-scale variation across site clusters; see Supporting
Information for details). To separate the effects of scale, we used our Bayesian model to
simulate communities (Marion et al., 2018) that only reflected either the local-scale (across
habitat types) or regional-scale (across site clusters) variation. Thus, our assembly analyses
are not constrained by the idiosyncrasies of our sampling points. Furthermore, by
propagating the uncertainty contained in the Bayesian posterior, we could compute credible
intervals for our assembly pattern estimates without resorting to null model testing (Zhang
et al., 2014). We used the SYNCSA package (Debastiani & Pillar, 2012) in R to conduct this
convergence vs. divergence analysis (see Supporting Information for details).

2.10 Predicting habitat affinity

To assess how well functional traits predict affinity for different habitats, we regressed the
affinity βil of species i for habitat l (as estimated in Equation 5) on both functional trait
dimensions:

βil ∼ Normal(γl + θ1l ∗ functional trait1 + θ2l ∗ functional trait2, ψ) (7)

where γ, θ1, θ2 and ψ are estimated by the regression model, and are unrelated to
parameters in other equations. We computed the regression in Equation 7 using frequentist
methods (because of the simplicity and large number of models needed) for each posterior
sample (after again randomly removing half the posterior samples to ease computation
time), and then compared the 50% credible interval of the resulting fitted values to the
50% credible interval of the original habitat affinity parameters from the Bayesian model.
Note that while fitted value credible interval reflects uncertainty in our multispecies
abundance model, it does not account for uncertainty stemming from the habitat affinity
model (Equation 7). To quantify the relative functional trait structure/predictability of
each habitat, we measured how accurately functional traits predicted the affinities of each
species that most preferred each habitat. Specifically, we squared the residuals from
Equation 7 for each species that most preferred each habitat, calculated the mean across
species, and then computed 50% credible intervals.

3 Results

We observed a total of 78 diurnal bird species in our surveys (i.e., exclusive of species that
are primarily active at night, such as owls). Bird diversity was highest in mature woody
perennial polyculture farms, and lowest in traditional agricultural crops (corn, soy, hay-like
crops; see Figure S3). Woods and young woody perennial polyculture also supported high
diversity, while prairies supported intermediate diversity. No species most preferred corn or
soy monocultures (Figures S6, S7). However, prairie, woods, young polyculture, and
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mature polyculture were the most preferred habitat for many species—see Figure 2 for
examples. The habitat affinity of bird species was more variable for woods than for woody
perennial polycultures (Figure 2).

All but five species observed in our surveys had Least Concern conservation status
according to the IUCN (International Union for the Conservation of Nature) 2016 Red
List. The remaining five species had Near Threatened status (IUCN, 2016). Two of these
species preferred mature perennials: Bell’s Vireo and Northern Bobwhite. One preferred
prairie: Henslow’s Sparrow. The final two species preferred both woods and, to a lesser
extent, mature perennials: Red-headed Woodpecker and Wood Thrush (Figures S6, S7; see
Table S2 for scientific names).

3.1 Functional traits

We found that singing strata often differed substantially from foraging strata (see Figure
S4). This difference affected behavior: in soy fields, birds were forced to fly to a utility pole
or wire in order to sing from a high location, whereas in heterogeneous woody perennial
polyculture crops, birds could easily oscillate between foraging and singing by simply
moving within a bush or tree. We also found many differences between the behavioral traits
reported in trait databases and the behaviors we observed in situ. For example, Wilman
et al. (2014) lists Dickcissels (Spiza americana) as foraging exclusively on the ground.
However, we typically observed this species foraging on tall grasses and forbs (Figure S4).

Our principal component analysis showed that size, diet, foraging strata, singing strata,
and ground nesting status were most important for representing variation across our 34
traits. The first two axes explained 36% of the trait variation, and were interpretable and
relatively stable. Dimension 1 explained 26.5% of the trait variation and chiefly
represented size, while dimension 2 explained 10% of the trait variation and chiefly
represented foraging strata, with bark and upper-strata birds loading positively, and
seedeaters, understory singers, ground foragers, and ground nesters loading negatively (see
Figure 3). Note, too, the deviation between understory singers and understory foragers:
only understory singers were represented on dimension 2.

3.2 Trait–environment convergence and divergence

Bird communities exhibited both patterns of trait–environment convergence and
divergence, where environment was measured using greenness at the regional scale, and
habitat type at the local scale. However, trait divergence patterns were masked when both
trait dimensions were considered simultaneously (see low trait–env. divergence value when
both traits are analyzed together in Figure 4). Nevertheless, trait partitioning—analyzing
each trait dimension separately—showed that trait divergence was more pronounced in
trait dimension 1 at the regional scale, but more pronounced in trait dimension 2 at the
local scale (see Figure 4). Convergence patterns were slightly stronger than divergence
patterns across both the local scale (habitat types) and regional scale (site clusters across
the Midwest; see Figure 4). Overall, patterns of convergence and divergence were
marginally stronger at the regional scale than the local scale.
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3.3 Habitat affinity predictions

Functional traits predicted the affinities of the species that most preferred prairie, woods,
and young and mature polyculture, but not those that most preferred hay (Figures 5 and
S8). Species that preferred young polycultures were the most predictable (Figure 5).

4 Discussion

Understanding which landscapes support biodiversity is a key challenge for conservation.
Our study demonstrated how a suite of innovations can assess the potential value of shared
landscapes for conserving bird diversity. Specifically, we harnessed 1) bird abundance data
from a range of habitats, including intensive agriculture, natural woods and prairie, and
woody perennial polyculture farms, which have been designed to be biodiversity-friendly;
2) a Bayesian multilevel multispecies abundance model, which enabled us to account for
non-detection and propagate uncertainty for downstream analyses; and 3) functional traits
collected both in-field and from literature. We combined these three elements into a
metacommunity process analysis that enabled us to characterize the metacommunity
processes that likely maintain bird diversity in human modified landscapes and show that
woody perennial polyculture farms likely boost bird diversity. Our inclusion of
locally-collected in-field functional traits may be of particular interest to ecologists
studying human-modified systems, since trait values taken from literature sources typically
represent observations from “natural” systems, which may differ from those in more
“unnatural” systems. This suite of methods enabled us to characterize the metacommunity
processes that likely maintain bird diversity across human-modified habitats.

We found that soy and corn monocultures exhibit negligible diversity, hay-like fields
exhibited low diversity, and woody perennial polycultures exhibited high diversity. These
findings are consistent with studies showing that polycultures are more bird-diverse than
monocultures (Yahya et al., 2017). However, our results extend beyond this
intra-agricultural comparison to show that woody perennial polycultures support bird
diversity roughly equivalent to non-agricultural woods, and greater than prairie. While a
recent study suggested that diversified agricultural landscapes may lose species over 18
years (Hendershot et al., 2020), our results showed that mature woody perennial
polycultures (> 20 years old) actually contained the highest diversity of any sampled
habitat (though other habitats may still have species that are not found in mature
perennials).

Woody perennial polycultures likely support bird diversity through deterministic ecological
processes. As described below, functional trait model predictions and
convergence/divergence patterns between habitat types suggest that these communities are
structured by both competition and habitat filtering (rather than surfeit or stochastic
dispersal, or stochastic drift). Woody perennial polycultures thus likely increase bird
populations and provide a target for bird conservation. Given the prevalence of shared
landscapes across the globe (Erb et al., 2017) and the deepening ecological crisis (Dı́az
et al., 2019; IPBES, 2019), shared landscapes should play a role in bird conservation.
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4.1 Functional traits reveal metacommunity processes

Habitat filtering and competition maintain bird communities. We found strong patterns of
trait–environment convergence (indicating that traits are clumped along an environmental
gradient) and divergence (indicating that trait dispersion increases along an environmental
gradient) (Figure 4). While inferring process from pattern is contentious (Cadotte &
Tucker, 2017; Leibold & Chase, 2017a), the strength of these patterns suggests that bird
communities are partially structured through deterministic ecological processes of habitat
filtering (consistent with trait–environment convergence) and competition (consistent with
trait–environment divergence) (Ackerly & Cornwell, 2007; Pillar & d. S. Duarte, 2010;
Pillar et al., 2009; Stubs & Wilson, 2004). Different processes are likely important at
different scales. We found that bird size was slightly more important at the regional scale,
while strata/diet was slightly more important at the local scale. Given the large variation
in strata and available food between fields, prairies, and woods, it makes sense that
strata/diet is more important between habitat types. Similarly, the relationship between
body size and latitude has long been recognized (Bergmann, 1848). This finding appears
inconsistent with the assumption made by Gomez et al. (2010) that habitat filtering at
regional scales (beta-niche traits) is unrelated to morphological size; more research is
needed to understand the relevance of size for habitat filtering at regional scales.

Trait partitioning unmasks metacommunity processes. Analyzing each trait axis separately
prevented the effect of one trait from masking the effect of the other, and thus revealed the
effect of competition (Figure 4). Trait partitioning has been widely used to disentangle
assembly processes for many different ecological communities (e.g., Ackerly & Cornwell,
2007; Ingram & Shurin, 2009; Leibold & Chase, 2017a), but despite a long history of
guild-based analyses of bird communities (Holmes et al., 1979; Ricklefs, 2012; Wiens, 1992)
the use of trait convergence vs. divergence methods have yet to be extensively used for
birds (but see Gomez et al., 2010). We echo Lopez et al. (2016) in calling for future studies
to test each trait axis separately to prevent assembly pattern signals related to one trait
canceling out signals from another.

4.2 Woody Perennial polycultures bolster bird diversity

Woody Perennial polycultures, woods, and prairie complement each other to bolster bird
diversity. While our metacommunity process analysis is limited to inferring patterns among
the six habitat types, we suspect that habitat filtering and competition structure specific
habitats, including prairie, woods, and woody perennial polyculture communities because
a) functional traits are predictive of abundance in these habitats (Figures 5, S8) and b)
these habitats were the most preferred by many bird species (Figures2, S6). Prairie, woods,
and mature polyculture were also the most preferred habitats for species on the IUCN Red
List. Of these habitats, mature perennials provided habitat for the greatest number
threatened species, though prairie and woods were more preferred by three of these species.
These findings suggest that, in concert with prairie and woods, woody perennial polyculture
farms can help to conserve bird diversity in the US Midwest, including threatened species.

By contrast, corn and soy monocultures appeared to show little value for birds. We found
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few species in these habitats, and no species most preferred them, suggesting that these
habitats are suboptimal for all species and may act as ecological sinks (at least during the
breeding season). Surfeit dispersal is likely more important for maintaining diversity in
intensive monoculture systems than in the more structured polyculture, woods, and prairie.
This appraisal is consistent with other studies in agricultural systems (Batary et al., 2011;
Gámez-Virués et al., 2015; Kleijn et al., 2011; Yachi & Loreau, 1999). Our findings
corroborate this literature and suggest that corn and soy monocultures do not contribute
to the diversity of the metacommunity (at least during the breeding season).

Hay fields may provide important habitat for a handful of species. However, haying can
lead to declining bird abundance (Bollinger et al., 1990), though Gruntorad et al. (2021)
found that most farmers were willing to delay haying in order to benefit birds. Unlike corn
and soy fields, hay fields were most preferred by several bird species (see Figure S6). Yet
functional traits were poor predictors of these species in hay (Figure 5), suggesting that
surfeit or stochastic dispersal may drive their abundance, rather than deterministic
processes. Furthermore, the few species that were found in hay are not threatened,
suggesting that prairie, woods, and woody perennial polyculture are more valuable for bird
conservation.

4.3 Shared landscapes are not all the same

Our findings echo Scherr and McNeely (2007): shared landscapes are more likely to
support biodiversity when they are specifically designed for wildlife. The movements
behind US Midwest perennial polyculture farms—including the international
‘permaculture’ movement—explicitly focuses on decreasing the environmental footprint of
food production (Ferguson & Lovell, 2014; Mollison, 1988). Though such social movements
have received relatively little ecological investigation to date, our results show the utility of
studying such efforts. While perennial polyculture farms are not yet numerous in
temperate climates, they nonetheless offer an important glimpse at what a biodiverse
shared landscape could look like. This choice of shared landscape contrasts with other
studies, which have focused on the most common shared landscapes (Phalan et al., 2011),
and found them lacking in diversity. Our results may differ from those of Phalan et al.
(2011) because our shared landscape that was designed to be wildlife friendly, rather than
a landscape that merely produces less food. Advancing conservation requires examining
novel systems that may provide a vision for conservation research and practice.

Woody perennial polycultures may have the potential to reduce food scarcity and stabilize
yields in the face of climate change. A concurrent study suggests that these farms do not
yet provide high yields (Kreitzman, 2020; Kreitzman et al., 2022). However, the land
sparing/sharing framework’s preoccupation with yield rather than land or food scarcity has
been rightly criticized (Fischer et al., 2014). Indeed, traditional agriculture in the US
Midwest mostly produces fuel and animal feed, rather than human food that reduces food
scarcity (e.g., dent corn: USDA, 2021). Thus, reducing human energy consumption and
trophic level may compensate for decreased yield (Feeley & Machovina, 2014), particularly
when replaced by crops meant for human consumption, such as fruits and nuts. The high
crop diversity in woody perennial polycultures also has the potential to stabilize food
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production amidst climate change (Renard & Tilman, 2019). Furthermore, these
polycultures may become more productive over time. For example, US corn production has
increased by a factor of six in the last century despite acreage remaining constant (USDA,
2021). A number of United States Department of Agriculture policies and programs can
support woody perennial polycultures, but further policy changes are needed to overcome
mismatches between perennial agriculture and programs (Kreitzman et al., 2021)

4.4 Bayesian models advance ecological understanding

A Bayesian modeling framework was essential for isolating the effect of environmental
gradients across multiple scales. Although trait partitioning is only beginning to be
recognized, scale has long been regarded as essential for understanding ecological
communities (Chase et al., 2019; Levin, 1992). While previous studies have employed
models to predict true community matrices (i.e., posterior communities) and then used
these matrices for further analysis (e.g., Iknayan & Beissinger, 2020; Karp et al., 2018;
Tingley & Beissinger, 2013), we instead leveraged the structure of our model to simulate
communities that expressed either one scale or the other. This exploitation of model
structure enabled us to decipher the processes important at each scale, including the
associated uncertainty (Zhang et al., 2014) without relying on traditional null models.

Indeed, using the structure of Bayesian multispecies abundance models instead of
traditional null models offers several advantages for tackling an ongoing question in
ecology: is a pattern due to chance, or to an ecological process of interest? Most methods
address this problem by simulating many null communities, and comparing these null
simulations to an observed community (de Bello, 2011; Gotelli, 2000; Iknayan & Beissinger,
2020; Ponisio et al., 2016). However, no community is truly ‘null,’ and choosing which
features (e.g., number of species per community) to hold constant and which to let vary
randomly (e.g., number of communities containing each species) is both subtle (Gotelli,
2000) and contentious (de Bello, 2011). These choices affect ecological interpretations
(de Bello, 2011). Bayesian abundance/occupancy models offer a different approach:
Ecologists can use structure and uncertainty within the Bayesian posterior to estimate the
uncertainty of downstream analyses (such as divergent/convergent assembly patterns;
Marion et al., 2018; Zhang et al., 2014). Our results support the utility of this approach for
identifying community assembly processes. Furthermore, rapid advances in computing
power and algorithms have made Bayesian modeling fast, flexible, and approachable
(Betancourt & Girolami, 2015; Monnahan et al., 2017). More research is needed to
understand best practices for propagating uncertainty in Bayesian ecological models.

4.5 Towards unnatural history

Measuring functional traits in situ aids inference. Collecting in situ trait data prompted us
to consider which trait metrics are needed to represent observed behavioral variation. Our
in situ measurements showed that singing strata was an important feature of trait
variability in our system, even though this metric is absent from most trait databases (e.g.,
Pigot et al., 2016; Wilman et al., 2014). Our results further suggest that traits are not
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intrinsic properties of birds, but emergent properties of the relationships between birds and
ecosystems (Eyster, 2021); we echo Ross et al. (2017) in calling for greater recognition of
bird trait variation across landscapes. Gathering this local, relational data may be
especially important in novel ecosystems, such as agricultural systems, which likely
engender functional traits that differ from historical trait measurements (Bonnet-Lebrun
et al., 2020; Lapiedra et al., 2018; Thompson et al., 2016; Weinrich et al., 1992). This focus
on local observational data is consistent with the larger push for “unnatural history”—
observation and description of individual birds in the context of a changing world
(Callaghan et al., 2018). Such an unnatural history may help ecologists understand and
conserve birds in the face of rapid environmental change.
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Figure 1: Sampling design. Map of the 13 site clusters (A) in the US Midwest states of
Illinois, Iowa, Minnesota, and Wisconsin and schematic (B) showing sampling design of
habitat types at each site cluster. We conducted 50-m radius point counts in adjacent
traditional agricultural fields (corn, soy, or hay), woods, woody perennial polycultures, and
prairies (B). Number of point counts in each habitat type varied by size of habitat. Basemap
is from Kahle and Wickham (2013).
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Figure 2: Model estimates of each species’ affinity for each habitat type (on a log scale).
More positive values indicate higher affinity for that habitat. Unlike in Figure S3, these
estimates control for the effect of site cluster, in order to show only the effect of habitat
type. Each point is a species. Five example species that most prefer different habitats are
identified (see Table S2 for scientific names). Bars represent 50% credible intervals. For 89%
credible intervals, see Figure S2.
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Figure 3: Principal components analysis (PCA) ordination of bird species by their (A) qual-
itative and (B) quantitative functional traits. Dimension 1 is primarily related to bird size,
while dimension 2 is related to foraging and singing height above ground. For functional trait
abbreviations, see Table 1. See Figure S5 for how each species maps onto these dimensions.
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Figure 4: Trait–environment convergence and divergence assembly patterns for each set of
functional trait axes and at two scales (regional scale across site clusters and local scale
across habitat types). These patterns are estimated as ρ between the trait and environment
matrices, where 0 indicates no convergence/divergence, and 1 indicates complete conver-
gence/divergence. When traits were analyzed together (“both traits”), trait–environment
divergence was masked—at both scales. Shaded regions represent 50% credible intervals,
while line extents represent 89% credible intervals (McElreath, 2020).
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Figure 5: Accuracy of functional traits for predicting the affinities of species, based on the
habitat most preferred by each species. Residuals calculated by Equation 7. Lower values on
the y-axis indicate more accurate predictions. No species most preferred corn or soy. Bars
represent 50% credible intervals.
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Table 1: Functional traits used in this study.

Trait type Functional trait Abbreviation Variable type Source

Morphological Beak length from tip to skull along the culmen beak length cul Numerical, continuous Pigot et al. (2020)
Morphological Beak length to the nares beak length nare Numerical, continuous Pigot et al. (2020)
Morphological Beak width at the nares beak width Numerical, continuous Pigot et al. (2020)
Morphological Beak depth at the nares beak depth Numerical, continuous Pigot et al. (2020)
Morphological Length of the tarsus tarsus length Numerical, continuous Pigot et al. (2020)

Morphological
Wing length, measured from the carpal joint to
the tip of the longest primary feather

wing length Numerical, continuous Pigot et al. (2020)

Morphological Tail length tail length Numerical, continuous Pigot et al. (2020)

Morphological
Secondary length, measured from the carpal
joint to the tip of the first secondary feather

secondary length Numerical, continuous Pigot et al. (2020)

Morphological Body mass body mass Numerical, continuous Pigot et al. (2020)

Life history Migratory behavior Migration Categorical
Tobias and Pigot (2019)
amended by Lowther (2020)

Life history Cooperative vs. noncooperative mating system MatingSystem Binary
Tobias and Pigot (2019)
amended by Lowther (2020)

Life history Nest placement NestPlacement Categorical
This work and Tobias and Pigot
(2019), amended by Lowther
(2020)

Life history Territoriality Territoriality Binary
Tobias and Pigot (2019)
amended by Lowther (2020)

Life history Clutch size LogClutchSize Numerical, continuous
Tobias and Pigot (2019)
amended by Lowther (2020)

Behavioral Foraging place and method Foraging Categorical
Tobias and Pigot (2019)
amended by Lowther (2020)

Behavioral Percent of diet from invertebrates Diet.Inv Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from vertebrate endotherms Diet.Vend Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from vertebrate ectotherms Diet.Vect Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet fom fish Diet.Vfish Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet scavanged Diet.Scav Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from fruit Diet.Fruit Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from nectar Diet.Nect Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from seeds Diet.Seed Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of diet from other plant matter Diet.PlantO Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of time spent foraging on ground ForStrat.ground Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral
Percent of time spent foraging in
understory/grass/forbs/small shrubs

ForStrat.understory Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral
Percent of time spent foraging in large medium
high canopy/tall shrubs/small trees

ForStrat.midhigh Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of time spent foraging in canopy ForStrat.canopy Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percentage of time spent foraging in air above ForStrat.aerial Numerical, percentage
This work, Wilman et al.
(2014), and Billerman et al.
(2021)

Behavioral Percent of time spent singing from ground SingStrat.ground Numerical, percentage This work

Behavioral
Percent of time spent singing from
understory/grass/forbs/small shrubs

SingStrat.understory Numerical, percentage This work

Behavioral
Percent of time spent singing from large medium
high canopy/tall shrubs/small trees

SingStrat.midhigh Numerical, percentage This work

Behavioral Percent of time spent singing from canopy SingStrat.canopy Numerical, percentage This work
Behavioral Percentage of time spent singing in air above SingStrat.aerial Numerical, percentage This work
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