

Jet measurements in CMS

Daniel Savoiu on behalf of the CMS Collaboration *LP2021, Manchester, 12 January 2022*

www.kit.edu

Jets at hadron colliders

Direct measurements

determination of fundamental QCD parameters (α_s) and PDFs

 $xf(x, Q^2)$

Fit

0.8

0.6

0.2

0.0

 10^{-4}

10-3

10-2

 10^{-1}

jets produced in large numbers → high statistical precision

precision measurements *LHC*: jet cross sections at \sqrt{s} = 13 TeV

> fixed-order theory state of the art: NNLO pQCD

Insights beyond pure QCD

- exploit precision of jet observables to probe rare processes, or to constrain extensions to the Standard Model
- improve experimental methods (pileup, reconstruction, resolution) effects) & theoretical models (parton shower, underlying event, hadronization, MPI)

double-differential cross section in jet p_{T} and rapidity y anti- $k_{\rm T}$ jets with R = 0.4 and 0.7 (shown here: R = 0.7) comparison to pQCD theory at NLO+NLL and NNLO + non-perturbative (NP) and electroweak (EW) corrections 33.5 fb⁻¹ (13 TeV) CMS o to NLO+NLL CT14⊗NP⊗EW |v| < 0.50.5 < |y| < 1.01.0 < |y| < 1.51.5 < |y| < 2.01.4 NLO+NLL .2 0.8 Anti- k_{τ} (R = 0.7) -- NLO PDF unc. HERAPDF2.0 Tot. exp. unc. -ABMP16 • Data (stat unc.) -NNPDF3.1 ___MMHT2014 NLO scale unc. 0.6 CMS 33.5 fb⁻¹ (13 TeV) Ratio to NNLO CT14®NP®EW |y| < 0.50.5 < |y| < 1.01.0 < |y| < 1.51.5 < |y| < 2.01.4 **NNLO** .2 - 3 - 4 - 4 - 4 - 4 - 4 0.8 Anti- k_{T} (R = 0.7) Tot. exp. unc. -- NNLO PDF unc. - H_T scale Data (stat unc.) NNLO scale unc. 0.6 100 200 1000 100 200 1000 100 200 1000 100 200 1000 Jet p_ (GeV)

however, predictions differ between PDFs, theory uncertainties remain large

D. Savoiu

 $\begin{aligned} - x g(x) &= A_g x^{B_g} (1 - x)^{C_g} (1 + D_g x + E_g x^2) \\ x u(x) &= A_u x^{B_u} (1 - x)^{C_u} (1 + E_u x^2) \\ x d(x) &= A_d x^{B_d} (1 - x)^{C_d} \\ x \bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1 - x)^{C_{\bar{U}}} (1 + D_{\bar{U}} x) \\ x \bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1 - x)^{C_{\bar{D}}} (1 + E_{\bar{U}} x^2) \end{aligned}$

strong coupling in good agreement with world average and previous CMS results

[1] CMS-SMP-20-011

arXiv:2111.10431

α_s(*m*_z) = 0.1170 ± 0.0014 (fit) ± 0.0007 (model) ± 0.0008 (scale) ± 0.0001 (parametrization)

		HERA-only	HERA+CMS	
Data sets		Partial χ^2/N_{dp}	Partial χ^2/N_{dp}	
HERA I+II neutral current	e^+p , $E_p = 920 \text{GeV}$	378/332	375/332	
HERA I+II neutral current	e^+p , $E_p = 820 \text{GeV}$	60/63	60/63	
HERA I+II neutral current	e^+p , $E_p = 575 \text{GeV}$	201/234	201/234	
HERA I+II neutral current	e^+p , $E_p = 460 \text{GeV}$	208/187	209/187	
HERA I+II neutral current	$e^{-}p, E_{p} = 920 \text{GeV}$	223/159	227/159	
HERA I+II charged current	e^+p , $E_p = 920 \text{GeV}$	46/39	46/39	
HERA I+II charged current	e^-p , $E_p = 920 \text{GeV}$	55/42	56/42	
CMS inclusive jets 13 TeV	0.0 < y < 0.5	_	13/22	
	0.5 < y < 1.0	_	31/21	
	1.0 < y < 1.5		18/19	
	1.5 < y < 2.0	_	14/16	
Correlated χ^2		66	83	good fit quality
Global $\chi^2/N_{\rm dof}$		1231/1043	1321/1118	$\rightarrow \chi^2/N_{\rm dof} \sim 1.18$

PDF + $\alpha_s(m_z)$ fit at NNLO

determine PDFs and QCD parameters in a fit to the present CMS jet data together with data from HERA and using a HERAPDF-like PDF parametrization

PDF + $\alpha_{s}(m_{Z})$ + $m_{t}^{(pole)}$ fit at NLO

fit inclusive jet and tt data simultaneously to benefit from constraining power of inclusive jet data on PDFs & strong coupling constant

constrain EFT extensions to the Standard Model involving four-quark contact interactions (CI)

top quark mass in good agreement with previous CMS results using only tī data

```
m_{t}^{(pole)} [GeV] = 170.4 ± 0.6 (fit)
± 0.1 (model)
± 0.1 (scale)
± 0.1 (parametrization)
```

strong coupling in good agreement with world average and previous CMS results

α_s(*m*_z) = 0.1188 ± 0.0017 (fit) ± 0.0004 (model) ± 0.0025 (scale) ± 0.0001 (parametrization)

energy scale Λ of the new CI

- \rightarrow investigated range from 5 to 50 TeV
- → exclusion limit on CI model: $\Lambda > 24$ TeV (95% CL for left-handed CI with $c_1 = -1$)

Cl couplings \rightarrow three scenarios, fix relationship between Wilson coefficients:

 $\begin{array}{l} \textbf{axial} \rightarrow c_3 = -2c_1, \, c_5 = c_1 \\ \textbf{vector} \rightarrow c_3 = 2c_1, \, c_5 = c_1 \\ \textbf{left-handed} \rightarrow c_3 = c_5 = 0 \end{array}$

complementary measurement at lower center-ofmass energy using anti- $k_{\rm T}$ jets with R = 0.4

[2] CMS-SMP-21-009

study of data/theory agreement at NLO and NNLO for different PDF sets and central scale choices for $\mu_{\rm R}$ & $\mu_{\rm F}$

sensitivity to strong coupling constant

among NNLO predictions obtained with NNPDF31nnlo PDFs closest agreement with data observed for $\alpha_s(m_z) = 0.120$

Multijet measurements

 $p_{\rm T}$ spectra of first four $p_{\rm T}$ -leading jets are measured in multijet events

benchmark for SM calculations, in particular parton showers for higher jet multiplicities

conventional parton shower + collinear PDFs are compared to newer models using <u>parton branching (PB)</u> approach with transverse-momentum-dependent PDFs (TMDs)

Table 1: Description of the simulated samples used in the analysis.

generator	PDF	matrix element	tune	
PYTHIA 8 [21]	NNPDF 2.3 (LO)	$\text{LO 2} \rightarrow 2$	CUETP8M1	
MadGraph+Py8 [4]	NNPDF 2.3 (LO)	$LO 2 \rightarrow 2, 3, 4$	CUETP8M1	
HERWIG++ [24]	CTEQ6L1 (LO)	$\text{LO 2} \rightarrow 2$	CUETHppS1	
MG5_AMC+PY8 (<i>jj</i>)	NNPDF 3.0 (NLO)	NLO $2 \rightarrow 2$	CUETP8M1	
MG5_AMC+CA3 (jj)	PB set 2 (NLO)	NLO 2 \rightarrow 2		
MG5_AMC+CA3 (jjj)	PB set 2 (NLO)	NLO $2 \rightarrow 3$	-	

disagreement between LO models at high p_T , NLO models perform better conventional and PB-TMD approaches yield comparable results

30th Symposium on Lepton-Photon interactions (LP2021), 12 Jan 2022

[3] CMS-SMP-21-006

[5, 6]

Jet substructure measurements

useful tool for distinguishing between quark and gluon jets and evaluating the performance of MC simulations

dijet (gluon-jet-enriched) VS. **Z+Jet** (quark-jet-enriched)

Variants Dimension Region Z+jet vs. central dijet vs. forward dijet × 3 Observable $\lambda_{\beta}^{\kappa} \times 5$ LHA, width, thrust, multiplicity, $(p_T^D)^2 =$ $50 < p_T < 65 \,\text{GeV}, \dots, p_T > 1000 \,\text{GeV}$ Jet $p_{\rm T}$ Jet radius parameter $R \times 2$ 0.4 vs. 0.8Constituents $\times 2$ Charged+neutral vs. charged — Grooming × 2 Ungroomed vs. groomed CMS Simulation 13 TeV gluon jets 8.0 8.0 AK4 Central dijet region Forward dijet region 0.7 Z+jet region 9.0 1 9.0 0.0 9.0 0.0 0.4 0.3 0.2 0.1 2000 60 1000 100 200 p_r^{jet} [GeV]

large number of measurements performed

[4] CMS-SMP-20-010 arXiv:2109.03340

generalized angularities

weighted sums of jet constituents by momentum fraction z and angular distance ΔR to jet axis

D. Savoiu

Jet substructure measurements

predictions of jet substructure observables from MC generators at NLO are compared to the measurements (5 representative configurations shown)

Summary – recent jet-related results from CMS

inclusive jet cross section measured across a large phase space, compared to NNLO pQCD predictions

- reference results at 13 TeV for R = 0.4 and 0.7, complemented by R = 0.4 measurement at 5.02 TeV
- improved description of data by NNLO theory compared to NLO(+NLL)

detailed QCD analyses using latest theory predictions and tests of EFT extensions to the Standard Model

- simultaneous fit of PDFs and $\alpha_s(m_z)$: CMS jet data result in smaller uncertainties, esp. for gluon PDF at high *x*,
 - reduction in scale uncertainty on $\alpha_s(m_Z)$
- inclusive jet data provide additional constraints leading to improvements on top quark mass from tt data
- study of four-quark contact interactions (CI) with different coupling structures at several energy scales

multijet observables \rightarrow jet multiplicities, p_T spectra of first four p_T -leading jets

 comparison of parton branching (PB) parton shower model with transverse-momentum-dependent PDFs (TMDs) to conventional parton shower models with collinear PDFs → similar description of data

extensive investigation of jet substructure observables in data and MC simulation at LO and NLO

MC modeling of substructure still in need of improvement

Thank you for your attention!

D. Savoiu

References

- [1] CMS Collaboration, "Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ ", 2021, arXiv:2111.10431, CMS-SMP-20-011, CERN-EP-2021-221, http://cds.cern.ch/record/2791017, INSPIRE ID 1972986. Accepted by *JHEP*. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-20-011 (CMS Public Pages);
- [2] CMS Collaboration, "Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $\sqrt{s} = 5.02 \text{ TeV}$ ", 2021, CMS-PAS-SMP-21-009, http://cds.cern.ch/record/2777126. INSPIRE ID 1920674;
- [3] CMS Collaboration, "Cross section measurements of jet multiplicity and jet transverse momenta in multijet events at $\sqrt{s} = 13 \text{ TeV}$ ", 2021, CMS-PAS-SMP-21-006, http://cds.cern.ch/record/2776772. INSPIRE ID 1920696;
- [4] CMS Collaboration, "Study of quark and gluon jet substructure in Z+jet and dijet events from pp collisions", 2021, arXiv:2109.03340, CMS-SMP-20-010, CERN-EP-2021-161, http://cds.cern.ch/record/2780472, INSPIRE ID 1920187. Accepted by JHEP. All figures and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/ publications/SMP-20-010 (CMS Public Pages);
- [5] F. Hautmann et al., "Collinear and TMD quark and gluon densities from parton branching solution of QCD Evolution Equations", JHEP **01** (2018) 070, doi:10.1007/JHEP01(2018)070, arXiv:1708.03279;
- [6] A. Bermudez Martinez et al., "Collinear and TMD parton densities from fits to precision DIS measurements in the parton branching method", Phys. Rev. D 99 (2019), no. 7, 074008, doi:10.1103/PhysRevD.99.074008, arXiv:1804.11152

Backup

double-differential cross section in jet $p_{\rm T}$ and rapidity y

shown here: anti- k_T jets with R = 0.4

comparison to pQCD theory at NLO+NLL and NNLO, + non-perturbative (NP) and electroweak (EW) corrections

Non-perturbative and electroweak corrections

corrections for non-perturbative (NP) effects: hadronization, multi-parton interactions (MPI)

derived from particle-level MC simulations effect size depends strongly on jet radius electroweak (EW) corrections

largest at high p_T at central rapidities little dependence on jet radius

Inclusive jets at $\sqrt{s} = 13 \text{ TeV} - \text{unfolding}$

full 2D unfolding across jet p_T and |y|

response matrix depicts event migrations between the particle and detector levels

statistical correlations on particle-level spectra induced by the unfolding procedure

profiling analysis of **PDFs** evaluate impact of new data with CT14 PDFs as a starting point

- theory at NLO and NNLO
- inclusive jet and tt data

overall reduction of PDF uncertainty inclusion of $t\bar{t}$ data beneficial at high x

profiling analysis of α_s(m_z)

strong coupling constant is varied consistently with α_s series PDFs

slightly lower $\alpha_s(m_z)$ value at NNLO uncertainty due to missing higher orders (scale uncertainty) is reduced

PDF profiling – impact of CMS jet data at NLO & NNLO

Full PDF fit - impact of CMS jet data & uncertainties

Full PDF fit -- inclusion of tt data & SMEFT fit

CI model fit – energy scales and Wilson coefficients

Table 7: The values and uncertainties of the fitted Wilson coefficients c_1 for various scales Λ . The fit uncertainties are obtained by using the Hessian method.

Scale	CI model	c_1	Fit	Model	Scale	Param.
	Left-handed	-0.017	0.0047	0.0001	0.004	0.002
$\Lambda = 5 {\rm TeV}$	Vector-like	-0.009	0.0026	0.0001	0.002	0.001
	Axial vector-like	-0.009	0.0025	0.0001	0.002	0.001
	Left-handed	-0.068	0.019	0.003	0.016	0.009
$\Lambda = 10\text{TeV}$	Vector-like	-0.037	0.011	0.002	0.008	0.006
	Axial vector-like	-0.036	0.011	0.003	0.008	0.005
	Left-handed	-0.116	0.033	0.006	0.026	0.015
$\Lambda = 13 {\rm TeV}$	Vector-like	-0.063	0.018	0.004	0.015	0.008
	Axial vector-like	-0.062	0.018	0.003	0.014	0.008
	Left-handed	-0.28	0.08	0.01	0.06	0.04
$\Lambda = 20 {\rm TeV}$	Vector-like	-0.15	0.04	0.01	0.04	0.02
	Axial vector-like	-0.15	0.04	0.01	0.04	0.02
	Left-handed	-1.8	0.53	0.08	0.42	0.23
$\Lambda = 50 \text{TeV}$	Vector-like	-1.0	0.28	0.05	0.23	0.13
	Axial vector-like	-1.0	0.29	0.04	0.23	0.13

Inclusive jets $\sqrt{s} = 5.02 \text{ TeV} - \text{comparison to NLO theory}$

D. Savoiu

Inclusive jets $\sqrt{s} = 5.02 \text{ TeV} - \text{comparison to NNLO theory}$

Inclusive jets $\sqrt{s} = 5.02 \text{ TeV} - \text{sensitivity to } \alpha_s(m_z)$

Multijet measurements – jet p_T spectra at LO & NLO

Multijet measurements – jet multiplicities (lower *p*_T range)

Multijet measurements – jet multiplicities (medium *p*_T range)

Multijet measurements – jet multiplicities (higher *p*_T range)

