

A Safe by Design Approach for the Synthesis of a TiO₂-based Paint for the Photocatalytic Degradation of Pollutants under Visible Light

E. Koutsoumpari^{1,2}, K. Mavronasou¹, A. Grigoropoulos¹ and Ioanna Deligkiozi¹

¹Creative Nano PC, 4 Leventi Street, Peristeri, 12132 Athens, Greece ²Department of Material Science, School of Natural Sciences, University of Patras, 26504 Rio, Patras, Greece e-mail: <u>Efthimia.k@outlook.com.gr; a.grigoropoulos@creativenano.gr</u>

INTRODUCTION

TiO₂ nanoparticles (NPs) are excellent photocatalysts for the photocatalytic degradation of indoor pollutants via the generation of surface Reactive Oxygen Species (ROS) due to light absorption.¹ However, pristine TiO₂ can only absorb the UV fraction of solar light. In addition, TiO₂ NPs were recently classified as a suspected carcinogen.² To address these challenges, Creative Nano is currently developing waterborne paints containing sulfur doped TiO₂ NPs to enable photocatalytic activity under visible light. Moreover, the S-doped TiO₂ NPs are entrained in a silica layer to produce S-TiO₂/SiO₂ multicomponent NPs, following a "safe-by-design" (SbD) strategy to restrict release of NPs into the environment.³

DISCUSSION

The S(5)-TiO₂/SiO₂ nanopowder with a nominal S/Ti molar ratio of x = 5 showed the highest activity in MO photocatalytic degradation. All S-doped samples achieved higher MO removal under visible light irradiation compared to TiO₂ and TiO₂/SiO₂ (Fig.1). The particle size decreased and the band gap increased with increasing Si content (Fig.2). The introduction of SiO₂ led to significantly more porous NPs. TEM images suggested the formation of an external SiO₂ layer (Fig.3). This resulted in a 4-fold enhancement of MeCHO photocatalytic degradation under visible light (Fig.4) compared to S-TiO2 (no SiO₂ modification). Finally, the synthesis of S(5)-TiO₂/SiO₂ was scaled up to 50 g to produce 1 Kg of a waterborne

Scheme 1. ROS generation by TiO₂-based NPs and photocatalytic degradation of pollutants.

METHODOLOGY

Four different S(x)-TiO₂/SiO₂ NPs were prepared by sol-gel synthesis, followed by calcination at 500 °C and high-energy ball milling. The nominal S/Ti molar ratio was varied (x = 0, 2, 5, 7) to investigate the effect of sulfur-doping, using thiourea as the sulfur precursor. After an optimal sulfur-doping level was identified (x = 5), the nominal Si content (wt% Si = 0, 3, 4, 6) was varied, using TEOS as the silica precursor. The photocatalytic activity was evaluated in the degradation of Methyl Orange (MO) and MeCHO under visible light irradiation. Finally, the best performing nanopowder was incorporated in a waterborne paint formulation.⁴

paint that is active in the photocatalytic degradation of pollutants (Fig.5).

Figure 3. N₂ uptake for different SiO₂ content (left) and TEM images for 4 wt% Si (right).

RESULTS

MO removal (%) after 5h visible light irradiation

— t = 0 h

— t = 1 h — t = 3 h — t = 5 h 0.1 500 300 400 600 Wavelength (nm)

Figure 1. MO photocatalytic degradation in water under visible light, $[MO]_0 = 2$ ppm.

Figure 4. MO (t=5h) and aldehyde (t=1h) photocatalytic degradation under visible light.

Figure 2. Hydrodynamic diameter (left) and Tauc plots (right) of S(5)-TiO₂/SiO₂-wt% Si NPs.

Figure 5. MO degradation under visible light over waterborne photocatalytic paint.

CONCLUSIONS

- 1) A series of S(x)-TiO₂/SiO₂-wt% Si NPs were synthesized and evaluated for the photocatalytic degradation of MO in solution.
- An optimal S/Ti molar ratio (x = 5) and SiO₂ modification (4 wt% Si) was found. The introduction of SiO₂ restricts TiO₂ particle growth and increases porosity, 3) therefore enabling the photocatalytic degradation of MeCHO. The best performing nanopowder S(5)-TiO₂/SiO₂ was incorporated in a 4) photocatalytically active waterborne paint.

REFERENCES

1) S. Banerjee et al. J. Phys. Chem. Lett. 2014, 5, 2543 2) Commission Delegated Regulation (EU) 2020/217 3) R. Bengalli et al. Nanomaterials, 2019, 9, 1041 4) T. Kalampaliki et al., Nanomaterials, 2021, 11, 2543

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862195, "SbD4Nano".

