
ST VISIONS: A Python Library for Interactive
Visualization of Spatio-temporal Data

Andreas Tritsarolis1, Christos Doulkeridis2, Nikos Pelekis3, and Yannis Theodoridis1
1Department of Informatics, 2Department of Digital Systems, 3Department of Statistics & Insurance Science

University of Piraeus, Piraeus, Greece
{andrewt,cdoulk,npelekis,ytheod}@unipi.gr

Abstract—In this demo paper we present ST VISIONS, an easy-
to-use Python library for interactive visualizations of spatial and
spatio-temporal datasets. By automating the low-level details of
the underlying visualization library (Bokeh), ST VISIONS allows
data scientists to create interactive, map-based visualizations, by
writing Python code at a higher level of abstraction. Conse-
quently, we accelerate the task of visualization from different
sources, while we support interactive filtering, colorization, as
well as multiple graphs, for various types of spatial and spatio-
temporal data.

I. INTRODUCTION

Modern applications generate massive volumes of spatio-
temporal trajectory data daily that need to be collected, pro-
cessed and analyzed, in order to extract useful knowledge in
terms of mobility patterns. The spectrum of applications is
wide [1], [2]: fleet monitoring systems, vessel and aircraft
tracking services, ride-sharing apps, traffic control manage-
ment, and so on. In all these domains, a common need is
to provide easy support for visualizations in order to quickly
perform visual analytics (VA) [3], so that data analysts and
domain experts can easily obtain an overview.

However, the task of visualizing a spatio-temporal dataset
is still far from trivial nowadays. Existing general-purpose
visual analysis tools (such as Tableau) do not provide full
support for spatio-temporal or mobility data. GIS software
or specialized tools, such as V-Analytics, provide a rich
palette of functions, however they cannot be easily integrated
with (iPython) Notebooks, which has become the de-facto
standard for ad-hoc data analytics. On the other hand, data
scientists that typically work with Python need to learn and
use visualization libraries (e.g., Bokeh) that although they
provide rich visualizations, they require a steep learning curve.
In consequence, this introduces obstacles and delays the data
analysis process.

Motivated by this limitation, we propose a simple, easy-
to-learn and use Python library – called ST VISIONS – for
interactive visualization of spatio-temporal datasets. The main
objective of ST VISIONS is to empower data analysts by
offering advanced visualizations with only a few lines of
code. Perhaps more importantly, the necessary code consists
of methods that encapsulate the entire visualization logic
and respective elements, thus simplifying the task of visual
analysis. Internally, ST VISIONS uses an underlying library
(in our case, Bokeh), but essentially provides wrapper func-
tionality that facilitates and speeds up development. Compared

ST_VISIONS
Instance

Load Data
CSV File

(Geo)Pandas DataFrame
PostGIS Database

Kafka Stream

Instance Data
GeoPandas

GeoDataFrame

Canvas
Bokeh Figure

Create Canvas
Graphs, Polygons, Polylines
(Temporal, Numerical) Filters

Colormaps

Render Canvas
iPython (Jupyter) Notebook

Python Server

Fig. 1: ST VISIONS architecture overview

to other Python libraries that focus on management of trajec-
tory data and their visualization, such as MovingPandas [4],
ST VISIONS is more generally applicable to spatial and
spatio-temporal data of different types (points, polygons, and
polylines).

The rest of this paper is structured as follows: in Section II,
we present the system design of ST VISIONS, its function-
ality and we discuss some technical details. In Section III,
we describe the demonstration scenarios that showcase the
functionality of ST VISIONS. Finally, we conclude the paper
in Section IV.

II. THE ST-VISIONS LIBRARY

In this section, we present the system architecture of
ST VISIONS and its main functionality, so as to provide a
comprehensive view of its offerings for developers and data
analysts.

A. System Architecture

Fig. 1 presents the high-level architecture of our system
prototype. Three main activities appear there: (a) data loading,
(b) canvas creation, and (c) rendering. ST VISIONS supports
various data sources that are typically encountered in data
analysis workflows, such as CSV files, relational database
(PostGIS), as well as streams (Kafka), which can be easily
loaded using a single command. The input data is of spatial
or spatio-temporal nature and different types are supported,
including points, polygons, and polylines. Also, other non-
spatial attributes (object type, object ID, etc.), either categor-
ical or numerical, are also supported.

https://bokeh.org/


(a) Choropleth map

(b) Multiple datasets on canvas

Fig. 2: Examples of visualizations obtained by ST VISIONS

After data loading, the abstraction of a GeoPandas
DataFrame is adopted for internal data representation. In
turn, this offers a unified view on data, regardless of the
original data source. Then, a canvas1 object is created which
is associated with an underlying visualization library (in our
case Bokeh), and it is populated with data from the DataFrame.
The canvas is subject to parameterization regarding the visual
elements (e.g., glyphs, colours, etc.), and filters can be added
to the fields of the DataFrame in order to provide interactive
visualization. It should be noted that in this step ST VISIONS
exploits the features offered by Bokeh, by encapsulating its
functionality in customized methods that have been imple-
mented with main goal to expose to developers en easy-to-use
and straightforward interface.

Finally, the rendering of the canvas takes place.
ST VISIONS supports rendering either via iPython (Jupyter)
Notebooks or via Browser. The former is quite straightforward,

1bokeh.plotting.figure, Bokeh Documentation

as it involves setting a couple of parameters in code. The latter,
however, is a more involved process, as a Python webserver
(via the “python -m bokeh serve” command) must be created,
thus deploying an application, which can be consumed by
desktop and mobile devices as well. In both cases, the render-
ing process must be quick, without any redundant overhead,
in order to avoid any performance throttling phenomena, as
we discussed in Section II-C.

B. Functionality

ST VISIONS offers a wide palette of features to the data
analyst. First, different types of data filtering (i.e., record selec-
tion) are supported, including temporal filtering and filtering
of categorical/numerical attributes. Also, the visualized objects
can be rendered in different colors based on the value of a
categorical attribute. For numerical attributes, a heatmap is
used to associate similar numerical values to nearby colors
in the palette. Moreover, different records that correspond to
the same object, such as sequences of positions of a moving
object, can be grouped together and visualized as trajectories.

With regards to the input geometries, ST VISIONS provides
methods that automatically extract their corresponding coor-
dinates in order to be suitable for the canvas’ plot, allowing
the visualization of not only simple, but also quite complex
geometries, like polygons with holes. The aforementioned
module also provides methods for data transformation, for
instance, creating trajectories from point geometries, and clas-
sifying proximity, with respect to another (polygon geometry)
dataset.

Thanks to the aforementioned methods, more complex
visualizations are easily supported. For instance, Fig. 2a il-
lustrates the creation of an interactive Choropleth map, in
combination with a categorical filtering based on the vehicle
type. Also, multiple datasets can be visualized on the same
canvas, which allows comparative inspection. A nice example
of this functionality is the visualization of raw and compressed
trajectories of moving objects on the same canvas (Fig. 2b).
Furthermore, we can arrange multiple canvases in a grid, for
comparative inspection and interactive visualization of two (or
more) datasets.

C. Technical Aspects

1 # Create an ST VISIONS instance
2 plot = st visions()
3 # Load a csv dataset
4 plot.get data csv(. . .)
5 # Plot points on the map
6 viz express.plot points on map(plot)
7 # Add some data filters
8 plot.add temporal filter(. . .)
9 plot.add numerical filter(. . .)

10 # Render geometries on iPython notebook
11 plot.show figures()

The above code snippet shows the basic use of
ST VISIONS. First, an instance of the library is created (line

https://docs.bokeh.org/en/latest/docs/reference/plotting.html#bokeh.plotting.figure


2), and it is used to load the data (line 4). In the case of
point data, the appropriate method is invoked for plotting,
using a module, called viz express that encapsulates initialized
parameters for ease (line 6). In addition, interactive filters are
added, in our example, a temporal and a numerical filter (lines
8 and 9, respectively). Finally, the visualization is generated
(line 11).

While the underlying API (Bokeh) is quite popular for
interactive dashboards and visualizations, an issue arises when
multiple filters (i.e., widgets such as Sliders, DropDown
menus, etc.) are introduced. Because each filter is essentially
autonomous, they cannot be synchronized automatically, thus
may result in data loss, if they are not controlled properly.

A baseline workaround for that problem, is using a shared
callback for all introduced widgets, that will take into account
the value of each filter simultaneously. While this solution is
quite useful, it cannot be generalized for multiple dynamically
introduced widgets. Thus, in order to address this issue, we
propose a solution that can effectively account for multiple
widgets while avoiding performance throttling phenomena.

Algorithm 1: FILTER CALLBACK. The core structure
of the filters’ callback.

Input: Callback Policy attr, Old Value old, New
Value new

1 callback filter data(filter.id)
2 filtered data = get data()
3 filtered data =

widget filter data(filtered data, new)
4 callback prepare data(filtered data, filter.id ==

this.lock)

Algorithm 1 describes the core structure of a filter’s callback
method in order to co-exist harmonously with the previously
introduced widgets. More specifically, given a change in the
value of a filter, its respective callback method must:

1) Iterate all other introduced widgets and execute their
callbacks in order to filter the data (line 1);

2) Fetch the newly filtered data and apply the widgets’
corresponding filter method (lines 2–3);

3) Finally, pass the data to the instance’s ColumnData-
Source (CDS)2 and render the remaining geometries on
the canvas (line 4).

Algorithm 2, which is in charge for the first step of Algo-
rithm 1, iteratively traverses the instance’s introduced widgets
and triggers their respective callback methods, in order to
apply their respective filter to the dataset at hand. To avoid any
deadlocks (i.e., recursive calls to the same callback function),
a (private) lock attribute is introduced, which (if None) is
assigned with the widgets identifier3.

After our dataset is properly (i.e., according to specification)
filtered, it is passed as input to Algorithm 3. This algorithm is

2ColumnDataSource, Bokeh Documentation
3According to Bokeh Documentation each model/widget/filter is assigned

with its own unique identifier.

in charge of preparing the input data for output (i.e., passing
the data to the instance’s CDS). Because the aforementioned
method exists in each callback method (as part of its core
structure), in order to avoid flickering, as well as performance
throttling phenomena, rendering to the canvas is done only by
the widget the lock is assigned to. Finally, our data is rendered,
and the lock is released (i.e., reverted to None).

Algorithm 2: CALLBACK FILTER DATA. Callback
corpus for synchronized data filtering.

Input: Widget Identifier id
1 if this.lock = None then
2 this.lock ← id
3 foreach widget ∈ this.widgets do
4 if widget.id 6= id then
5 widget.trigger callback(attr =

“value”, old = None, new =
widget.value)

6 end
7 end

Algorithm 3: CALLBACK PREPARE DATA. Preparing
filtered dataset for rendering.

Input: Filtered Dataset data, Output Flag flag
1 this.CDS data← data
/* Q : Am I Ready to Render? */

2 if flag then
3 this.renderToCanvas(this.CDS data)
4 this.lock ← None // Releasing Lock...
5 this.CDS data← None

// Emptying Intermediate Storage...

All the above algorithms are integrated into the BokehFilters
class located at the callbacks module of ST VISIONS, allow-
ing for custom synchronized callbacks. In order to create a
custom callback, after inheriting the BokehFilters class, one
must implement, as baseline, the callback method, according
to Algorithm 1.

III. DEMONSTRATION SCENARIO

For the demonstration scenarios we envisage, we use
iPython (Jupyter) Notebooks for easier interaction. During
the demo session, the participants will be able to perform
the following steps on two different datasets from the urban
and maritime domain, namely, the “GeoLife”4 [5]–[7] and the
“Piraeus” Dataset [8], respectively.

The accompanying video shows the following functionality.
• Data loading: The user can load data from a locally stored

CSV file, by specifying a set of tooltips that associate
field names with descriptive labels, and produce the
visualization by a simple method (plot points on map)
invocation. Additional features, such as selecting a subset

4The dataset is publicly available at research.microsoft.com

https://docs.bokeh.org/en/latest/docs/reference/models/sources.html#bokeh.models.sources.ColumnDataSource
https://docs.bokeh.org/en/latest/docs/reference/model.html#bokeh.model.Model.struct
https://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/


(a) Colorization and filtering

(b) Streaming data

Fig. 3: ST VISIONS demonstration scenarios

of the records for visualization, adding a title, etc., are
also supported. Moreover, various data sources and types
are supported.

• Colorization and data filtering: After loading a set of
points on the map, we select an attribute (e.g., speed) for
colorization. Furthermore, we equip the visualization with
a slidebar enabling filtering by time. Moreover, we add a
filter on another attribute (e.g., heading or acceleration) to
filter trajectories using both filters interactively (Fig. 3a).

• Streaming data: Having a data stream that continuously
stores current locations to a (PostGIS) database, we
obtain the latest positions per moving object by getting
a view from it at fixed intervals (e.g., every 5 sec).
For instance, Fig. 3b depicts the latest vessel positions
within the coverage of an AIS antenna located at the
University of Piraeus5, and they are colorized according
to their mobility status (stopped – red, moving – green),

5The stream is accessible at http://datastories.org/unipi-ais

as illustrated in the corresponding legend. The depicted
information is updated based on the synchronization used
by ST VISIONS. Due to ST VISIONS’ synchronization
mechanisms, the points’ attributes are updated accord-
ingly, with the legend always reflecting the current view.

The code of ST VISIONS, as well as code for demonstrating
more scenarios both on Python Notebook and Server are
available at: https://github.com/DataStories-UniPi/ST-Visions.

IV. CONCLUSIONS

In this paper, we demonstrated ST VISIONS, an easy-to-
use Python library for interactive visualizations of spatial
and spatio-temporal datasets. ST VISIONS offers a developer-
friendly way to visualize geographical data, by hiding many
of the details of the underlying visualization library (in our
case Bokeh). This speeds up a cumbersome task that many
data analysts need to confront, namely the creation of interac-
tive visualizations. ST VISIONS has several salient features:
support for complex geometry types, advanced filtering mech-
anisms using multiple filters, data acquisition from streams
(Kafka), complex visualizations (such as Choropleth maps),
and support for multiple datasets either on the same canvas or
by arrangement in a grid-like structure.

ACKNOWLEDGMENT

This work was supported by EU project VesselAI (Grant
Agreement No 957237), by the Hellenic Foundation for Re-
search and Innovation (HFRI) and the General Secretariat
for Research and Innovation (GSRI) under Grant Agreement
No 1667, by project i4Sea (grant T1EDK-03268) funded by
the European Regional Development Fund of the EU and
Greek national funds (through the Operational Program Com-
petitiveness, Entrepreneurship and Innovation, under the call
Research-Create-Innovate), and by the 2018 National Funds
Programme of the GSRT.

REFERENCES

[1] G. A. Vouros et al., Eds., Big Data Analytics for Time-Critical Mobility
Forecasting, From Raw Data to Trajectory-Oriented Mobility Analytics
in the Aviation and Maritime Domains. Springer, 2020.

[2] N. Pelekis and Y. Theodoridis, Mobility Data Management and Explo-
ration. Springer, 2014.

[3] N. V. Andrienko and G. L. Andrienko, “Spatio-temporal visual analytics:
A vision for 2020s,” J. Spatial Inf. Sci., vol. 20, no. 1, pp. 87–95, 2020.

[4] A. Graser, “MovingPandas: Efficient structures for movement data in
python,” GI Forum – Journal of Geographic Information Science, vol. 7,
no. 1, pp. 54–68, 2019.

[5] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Ma, “Understanding mobility
based on GPS data,” in UbiComp, vol. 344. ACM, 2008, pp. 312–321.

[6] Y. Zheng, L. Zhang, X. Xie, and W. Ma, “Mining interesting locations
and travel sequences from GPS trajectories,” in WWW. ACM, 2009, pp.
791–800.

[7] Y. Zheng, X. Xie, and W. Ma, “Geolife: A collaborative social networking
service among user, location and trajectory,” IEEE Data Engineering
Bulletin, vol. 33, no. 2, pp. 32–39, 2010.

[8] Y. Kontoulis, A. Tritsarolis, and Y. Theodoridis, “UniPi AIS data 2018,”
Feb. 2021. [Online]. Available: https://doi.org/10.5281/zenodo.4498410

http://datastories.org/unipi-ais
https://github.com/DataStories-UniPi/ST-Visions
https://doi.org/10.5281/zenodo.4498410

	Introduction
	The ST-Visions Library
	System Architecture
	Functionality
	Technical Aspects

	Demonstration Scenario
	Conclusions
	References

