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Communication Models for Reconfigurable
Intelligent Surfaces: From Surface Electromagnetics

to Wireless Networks Optimization
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Abstract—A reconfigurable intelligent surface (RIS) is a planar
structure that is engineered to dynamically control the electro-
magnetic waves. In wireless communications, RISs have recently
emerged as a promising technology for realizing programmable
and reconfigurable wireless propagation environments through
nearly passive signal transformations. With the aid of RISs,
a wireless environment becomes part of the network design
parameters that are subject to optimization.

In this tutorial paper, we focus our attention on communication
models for RISs. First, we review the communication models
that are most often employed in wireless communications and
networks for analyzing and optimizing RISs, and elaborate on
their advantages and limitations. Then, we concentrate on models
for RISs that are based on inhomogeneous sheets of surface
impedance, and offer a step-by-step tutorial on formulating
electromagnetically-consistent analytical models for optimizing
the surface impedance. The differences between local and global
designs are discussed and analytically formulated in terms of
surface power efficiency and reradiated power flux through
the Poynting vector. Finally, with the aid of numerical results,
we discuss how approximate global designs can be realized
by using locally passive RISs with zero electrical resistance
(i.e., inhomogeneous reactance boundaries with no local power
amplification), even for large angles of reflection and at high
power efficiency.

I. INTRODUCTION

The history of wireless communications started with the
understanding of fundamental electric and magnetic phenom-
ena, as well as with the related experiments and inventions
that were carried out during the last half of the eighteenth
century and the first decades of the nineteenth century [1].
Wireless communications (often, just wireless) are defined as
and are characterized by the transfer of information between
two or more points without the need of using an electrical
conductor as the medium to perform the transfer. The most
common wireless technologies use electromagnetic waves.
Thanks to the development and wide adoption of five wireless
telecommunication standards and the recently started activities
on the sixth generation of wireless systems and networks, we
do live in a world of electromagnetic waves.
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In our daily life, we observe plenty of concrete examples
of electromagnetic phenomena, especially in the visible spec-
trum. For example, the visible light that is specularly reflected
when it hits a smooth surface, so that we can see ourselves
in a mirror; the visible light that changes its route when
traveling from one medium to another, which causes, e.g., the
virtual distortion of objects in water; or the visible light that
creates complicated rainbow effects formed as a combination
of reflection, refraction, and dispersion phenomena. These
electromagnetic effects are governed by fundamental laws of
physics and are, therefore, ultimately dictated by nature. More
precisely, these examples of electromagnetic effects in the
visible spectrum are determined by the interactions between
the electromagnetic waves and the materials that are hit by
them. When an arbitrary electromagnetic wave illuminates a
material object, more precisely, it excites oscillations of the
charged particles that constitute the material. These oscillating
particles act, in turn, as secondary sources that radiate electro-
magnetic waves into the space, thus producing different wave
phenomena. During hundreds of years of research in the field
of electromagnetics, today we can not only understand these
phenomena, but we can control the electromagnetic waves,
and we can even create new wave effects that go beyond those
governed solely by nature [2].

The development of electromagnetics, which is often de-
fined as the theory of electromagnetic fields and waves, has
greatly helped us to qualitatively and quantitatively compre-
hend how the waves propagate and how they interact with ma-
terial objects [3]. This understanding has inspired researchers
to engineer and manufacture artificial electromagnetic ma-
terials with controllable material parameters, which, when
illuminated by appropriate electromagnetic waves, are capable
of realizing wave effects (or transformations) that do not
exist in nature. Engineered materials of this kind are referred
to as metamaterials, which are often broadly defined as an
effective homogeneous material formed by an arrangement of
engineered structural elements that are designed to achieve
specified and unusual electromagnetic properties [4]. A typical
example is constituted by a material that does not reflect
the light in agreement with the law of reflection, i.e., the
angle of reflection coincides with the angle at which the light
illuminates the material, but according to the generalized law
of reflection, i.e., the engineered material is capable of bending
the light towards specified directions of reradiation that are
different from the angle of incidence [2].

Metamaterials are three-dimensional artificial (engineered)
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materials, which are usually bulky, heavy, and often difficult
to be fabricated. Due to the inevitable material losses, meta-
materials may strongly attenuate the electromagnetic waves
that penetrate through them. One possible alternative to over-
come the inherent limitations of metamaterials is the use of
metasurfaces, which are electrically thin artificial layers with
sub-wavelength inclusions [3]. Metasurfaces are often referred
to as the bi-dimensional version of metamaterials, which, by
virtue of the surface equivalence theorem, have the same
capabilities of shaping the propagation of the electromagnetic
waves that interact with them, while being less bulky, lossier,
and easier to be fabricated and to be deployed than metama-
terials.

A. Programmable Wireless Environments

In current wireless telecommunication standards, different
kinds of electromagnetic waves constitute the vehicle for en-
abling the transmission of information and for allowing users
and devices to communicate. Therefore, equipping current
wireless telecommunication standards or even designing a
new wireless telecommunication standard with the inherent
capability of controlling and shaping how the electromagnetic
waves propagate in a complex wireless environment and how
they interact with the material objects (walls, buildings, etc.)
would be beneficial [5]. Indeed, the potential application of
metasurfaces in the context of wireless communication sys-
tems and networks has recently attracted the interest of wire-
less researchers and engineers. Examples of papers include
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21]. A short technology note that summarizes
recent developments and ongoing pre-standardization activities
is available in [22].

Current wireless systems utilize a variety of transmission
technologies, communication protocols, and network deploy-
ment strategies. They include millimeter-wave communica-
tions, massive multi-input multi-output systems (MIMO), and
ultra-dense heterogeneous networks. Currently available solu-
tions are often based on the deployment, design, and opti-
mization of transmitters, receivers, and network infrastructure
elements with power amplification and digital signal process-
ing capabilities, as well as backhaul and power grid avail-
ability. Communication engineers usually design transmitters,
receivers, network elements, and transmission protocols by
assuming not to be able to control how the electromagnetic
waves propagate through a wireless environment and how they
interact with the material objects that exist in the considered
environment. When an electromagnetic wave impinges, for
example, upon a metallic wall or upon a glass window, the
reflected and refracted waves are not directly controlled by
the network operator but are determined by the properties
of the electromagnetic waves and the constitutive elements
of the material objects that interact with the electromagnetic
waves. If the material objects in the wireless environment were
coated with or were even made of metamaterials (engineered
materials), we could control their interactions with the im-
pinging electromagnetic waves and we could appropriately
shape them as desired. This would enable us to co-design

Fig. 1: Illustration of a wireless environment and a smart (pro-
grammable) radio environment.

and jointly optimize the electromagnetic waves emitted by the
transmitters, how they interact with the surrounding material
objects, and how they are decoded by the receivers.

Metamaterial-coated wireless networks are an emerging
design paradigm that is often referred to as programmable
wireless environment or smart radio environment (SRE) [11].
An example of SRE is illustrated in Fig. 1. In a conventional
wireless environment, the electromagnetic waves that are re-
flected or refracted by material objects are out of the control
of the system designer. As shown in Fig. 1, the reflected
electromagnetic waves reach the intended receiver with dif-
ferent phases that may partially cancel out. This phenomenon
can be alleviated by equipping, whenever possible, the trans-
mitters and receivers with multiple antennas or by deploying
additional infrastructure elements with signal processing units,
power amplifiers, and multiple radio frequency chains. In
an SRE, on the other hand, the same material objects are
coated with metamaterial sheets (i.e., metasurfaces) that shape
the reradiated electromagnetic waves so that they reach the
intended receiver with approximately the same phase. By co-
designing the metamaterial sheets, the transmitters, and the
receivers, the performance of wireless networks may be further
improved.

B. Reconfigurable Intelligent Surfaces

In the context of wireless communication systems and net-
works, as exemplified in Fig. 1, the use of planar metamaterial
structures or metasurfaces is receiving major attention from
the wireless community, see, e.g., [17], [21]. The reason lies,
as mentioned, in the reduced losses and less complex design
of two-dimensional (either planar or conformal) metasurfaces
as compared with three-dimensional metamaterials. Broadly
speaking, a metasurface is a metamaterial sheet of sub-
wavelength thickness. Despite their negligible thickness com-
pared with the wavelength of the electromagnetic waves, meta-
surfaces can be as powerful as metamaterials in terms of wave
manipulations while avoiding some of their drawbacks. This
is ensured by the surface equivalence theorem, which states
that the electromagnetic fields excited by arbitrary sources
located in a volumetric material sample can be equivalently
created by surface currents enclosing the volume. Therefore,
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any metamaterial sample can be replaced by electrically thin
metasurfaces that are engineered to produce the same scattered
electromagnetic waves [3].

In wireless communications, the metasurfaces need to be
reconfigurable so as to ensure that they can shape the elec-
tromagnetic waves based on the network conditions. Wireless
researchers have adopted different names to refer to a recon-
figurable metasurface [22]. In the present tutorial paper, we
adopt the term reconfigurable intelligent surface (RIS), since
it is adopted by a recently established industry specification
group (ISG) within the European telecommunications stan-
dards institute (ETSI) [23]. Broadly speaking, an RIS is an
engineered surface that is intelligent (or smart) because it is
capable of (i) applying wave transformations that go beyond
those governed solely by nature and (ii) being configured any
time that the propagation and network conditions require it.

Compared with other technologies, RISs have advantages
and limitations, as recently summarized in [22, Table 1].
Within the recently established ETSI-ISG on RISs, an RIS is
usually defined as a nearly-passive reconfigurable engineered
surface that (i) is implemented by using passive scattering
elements, (ii) does not require high-cost active components,
such as power amplifiers, (iii) does not possess sophisticated
signal processing capabilities, but only the necessary low-
power electronic circuits for enabling its reconfigurability, and
(iv) is not equipped with multiple radio frequency chains for
data transmission, but requires a simple front-end to receive
and send control signals. These characteristics suggest that an
RIS may be considered as a sustainable and environmentally
friendly technology solution. The absence of power ampli-
fiers and digital signal processing capabilities naturally pose,
however, important design and deployment challenges to be
solved. This includes the impossibility of on-board channel
estimation, signal regeneration, and amplification, which are
currently being tackled by wireless researchers and engineers
[17], [21].

In wireless communications, an RIS has many potential
applications, which go beyond its use to turn the environmental
objects into digitally controllable smart scatterers, as shown in
Fig. 1. Other applications include the design of multi-stream
multi-antenna transmitters with a single radio frequency chain
(often called holographic surfaces and holographic MIMO)
[24] and reconfigurable ambient backscatterers [25]. In gen-
eral terms, an RIS is a candidate future wireless technology
for controlling and shaping the electromagnetic waves in a
dynamic and goal-oriented way, possibly turning the wireless
environment into a service, and for realizing new transceiver
designs and network elements at a lower complexity and power
consumption.

The conceptual structure of an RIS is sketched in Fig. 2.
As illustrated, an RIS is a planar surface that consists of
an array of passive scattering elements, each of which can
independently impose the required phase shift, and possibly
an amplitude gain, on the incident electromagnetic waves. By
carefully adjusting the phase shifts (and the amplitudes) of all
the scattering elements, the reradiated electromagnetic waves
can be shaped to propagate towards specified directions. Each
RIS element may consist of multiple constitutive elements,

Fig. 2: Conceptual architecture of a reconfigurable intelligent surface.

Fig. 3: Example of manufactured reconfigurable intelligent surface
made of 196 identical elements (unit cells) and 4 voltage-controlled

varactors for each cell [26].

Fig. 4: Example of manufactured engineered surface whose elements
are made of 10 appropriately engineered unit cells [27].

which are usually referred to as unit cells. The unit cells that
constitute each single RIS element have, in general, different
shapes and sizes. If the RIS elements are made of the same
unit cells and if they are arranged on a spatially periodic array,
the resulting RIS is a quasi-periodic structure and the inter-
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distance between the RIS elements is usually referred to as
the period of the metasurface. Once the unit cells of each RIS
element are designed, the wave transformation that the RIS
applies to the incident signals is fixed. The reconfigurability
of the RIS is ensured by a network of tuning circuits and
a biasing line that control the unit cells. For example, the
tuning circuits in Fig. 2 may be positive-intrinsic negative
(PIN) diodes or voltage-controlled varactors. Depending on
the control voltage applied throughout the biasing line, the
scattering properties of the RIS are adapted to the channel and
network conditions, making it a digitally controllable scatterer.
The tuning circuit and the biasing line may either control
each individual unit cell, or each RIS element individually,
or even multiple RIS elements together. Making each unit cell
reconfigurable through an independent tuning circuit offers a
finer control of the electromagnetic waves at the cost of a
higher implementation complexity and power consumption.
Two examples of manufactured engineered metasurfaces are
illustrated in Figs. 3 [26] and 4 [27]. The metasurface in Fig.
3 is an RIS made of 196 identical unit cells. Each unit cell
is digitally controlled by four varactors, which determine the
reflection properties of the unit cell. The metasurface in Fig.
4 is a non-reconfigurable engineered surface, whose elements
comprise ten different unit cells. The sizes and arrangements
of the ten unit cells are jointly designed to realize a perfect
anomalous reflector towards a fixed angle of reradiation with
high power efficiency.

There exist multiple methods for designing an RIS. Inter-
ested readers may consult [2], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39], [40] for further information.
Two typical design methods are the following.

• The first method is a one-step approach, which departs
from the design of an individual RIS element, which
may or may not be made of multiple unit cells. In this
method, the constitutive RIS element is designed in order
to realize some predefined phase shifts (and possibly
amplitude gains and losses) when a given electromagnetic
wave impinges upon it. The RIS element may realize a
discrete set of phase shifts or the phase shift may be
continuously controlled (as for the RIS in Fig. 3). The
scattering properties, e.g., the phase and the amplitude
of the reflection coefficient for reflecting surfaces, are
usually characterized with the aid of full-wave numerical
simulations. The outcome of this phase consists of defin-
ing the size, geometry, thickness, composite material, and
the control circuitry to realize the desired set of phases
and gains. In wireless communications, this is referred
to as the RIS codebook. This characterization is usually
performed by applying locally (at the level of the RIS
element) periodic boundary conditions, which mimic an
infinite homogeneous surface whose constitutive elements
are all identical. If the RIS element is made of a single
unit cell, the periodic boundary conditions are applied at
unit cell level. If the RIS element is made of multiple
unit cells, the scattering response of all the unit cells
is jointly characterized. Further information on using
periodic boundary conditions for designing an RIS and

their inherent advantages and limitations are elaborated
in Section II (see Fig. 5). Once the electromagnetic
characterization of the RIS element is complete, the RIS
operates by joint optimizing the scattering response of
the RIS elements in order to realize the desired wave
transformations.

• The second method is a two-step approach, whose first
step consists of engineering the entire RIS surface as
a whole. This first phase is a macroscopic design in
which the surface position-dependent properties of the
RIS are formulated in terms of the specific function-
ality (e.g., reflection, refraction, beam splitting) or set
of functionalities (e.g., joint reflection and refraction or
dynamic switching between reflection and refraction) that
the RIS needs to realize. The RIS is usually modeled as
a location-dependent continuous sheet of electric surface
impedance and magnetic surface admittance. This design
method is further elaborated in Section II and it is
embraced in Section III to illustrate the design and anal-
ysis of RISs in a step-by-step and tutorial-like manner.
Once the electric surface impedance and magnetic surface
admittance are determined, the second step consists of
identifying the physical microscopic implementation of
the unit cells for the entire RIS and the associated
tuning circuits for realizing the electric surface impedance
and magnetic surface admittance in practice. During this
phase, typically, one departs from a unit cell design of
a given shape and optimizes the sizes, inter-distances,
material, and control circuits of the entire RIS to obtain
the target surface impedance and admittance (surface
modulation). If the surface impedance and admittance are
periodic functions in space, one can jointly optimize only
the unit cells that constitute a single period.

The first design approach is inherently local (at the granular-
ity of either the RIS element or the unit cell), while the second
design is inherently global (the entire RIS is optimized). The
second method has usually a higher complexity but typically
results in superior performance. If correctly implemented,
the second method better models the interactions (mutual
coupling) among unit cells that are characterized by a sub-
wavelength size and inter-distance. In the next sections, the
advantages and limitations of these methods are further dis-
cussed. For the avoidance of doubt, for the rest of this tutorial
paper we utilize the term local design to refer to designs of
RISs in which each unit cell is optimized individually. On the
other hand, we utilize the term global design to refer to designs
of RISs in which groups of unit cells are jointly optimized.
With reference to Fig. 2, the local design may correspond to
an RIS in which each RIS element comprises a single unit
cell. The global design may correspond, on the other hand,
to an RIS in which each RIS element comprises several unit
cells that are jointly optimized.

C. Research Opportunities and Challenges

RIS-empowered SREs are an emerging field of research in
wireless communications with several open research issues to
be tackled, in order to quantify the gains that can be expected
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in realistic wireless network deployments. The major open re-
search challenges have been addressed in many recent papers,
e.g., [17], [20], [21], and they encompass how to efficiently
perform channel estimation, how to enable the control of the
RIS, where to best deploy RISs, how to efficiently integrate
RISs in system-level and ray tracing simulators, etc. A ma-
jor open research issue, in addition, consists of developing
models for RISs that are electromagnetically consistent and
sufficiently tractable for evaluating the performance and for
optimizing RIS-assisted wireless networks from a signal-level
and system-level perspective. A summary and comparison of
currently available research efforts can be found in [41, Table
1]. The focus of the present tutorial paper is on this latter
open research issue. More precisely, we aim to overview, in a
tutorial manner, electromagnetically consistent communication
models for RISs that are represented as thin sheets of electro-
magnetic material. Specifically, the focus of the present tutorial
paper is on the differences and similarities between local
and global design criteria for realizing anomalous reflectors,
and how, departing from Maxwell’s equations, optimization
problems for designing RISs with unitary power efficiency
can be formulated and numerically solved.

D. Paper Organization
The remainder of the present tutorial paper is organized

as follows. In Section II, we overview the most widely used
communication models for RISs. In Section III, we depart
from models for RISs that fulfill Maxwell’s equations, and
discuss and compare local and global designs for RISs. Also,
we formulate optimization problems for designing RISs that
are globally optimal and can be realized with purely reactive
impedance sheets. In Section IV, numerical results are illus-
trated in order to quantitatively compare the different designs
for RISs that are presented in the previous sections. Finally,
Section V concludes this tutorial paper.

Disclaimer: Since the present paper is a tutorial and not
a survey paper, we limit ourselves to report only examples
of research works that can guide the readers to retrieve
further information on modeling, analyzing, and optimizing
metasurfaces in general and RISs for wireless applications in
particular. A more comprehensive reference list can be found
in, e.g., [17], [20].

II. MODELS FOR RISS WIDELY USED IN WIRELESS
COMMUNICATIONS

In this section, we overview three communication models
for RISs that have recently been proposed in the literature. The
considered communication models are given as examples, in
order to clarify the modeling assumptions and the conditions
under which they can be applied. The third model introduced
in this section is further elaborated in Section III with the aid
of step-by-step examples and is utilized to formulate optimiza-
tion problems for designing RISs. In order to keep the focus
on the key aspects of the communication models for ensuring
their electromagnetic consistency and validity, we assume that
the RIS is deployed in a free-space propagation environment.
Multipath propagation can be added to the considered channel
model as described in [42], [43], [44].

A. Locally-Periodic Discrete Model

As mentioned in the previous section, a widely used model
for RISs is based on a locally periodic design, in which
periodic boundary conditions are applied at the unit cell level,
see, e.g., [31], [32], [37]. In general, each RIS element is
assumed to be comprised of several identical unit cells for rea-
sons that are elaborated next. To illustrate this communication
model, which is widely utilized in wireless communications,
we consider the analytical formulation in [45], which has
been experimentally validated by the authors with the aid of
measurements in an indoor environment. An early version of
the same communication model is available in [46].

The RIS is modeled as illustrated in Fig. 2. For ease of
description, we assume that (i) each RIS element is constituted
by a single unit cell, (ii) all the unit cells have the same size
and shape, and (iii) the inter-distance between adjacent unit
cells is the same. Therefore, the RIS is modeled as a periodic
arrangement of identical unit cells. The scattering response of
each unit cell is configured thanks to the tuning circuit and
the biasing line, as illustrated in Fig. 2. We assume that there
exist M unit cells in each row and N unit cell in each column
of the surface. Therefore, the total number of reconfigurable
unit cells is MN . The surface area of each unit cell is dxdy ,
with dx and dx being the horizontal and vertical sizes of each
unit cell, respectively.

The RISs considered in [45] operate as a reflecting surface
and, therefore, each unit cell is characterized by a complex
reflection coefficient, which is defined as the ratio between
the reflected electric field and the incident electric field. We
denote the reflection coefficient of the (m,n)th unit cell as
Γm,n. In particular, the RISs in [45] comprise unit cells that
can apply two phase shifts (binary cells) depending on the
configuration of the tuning circuit. For illustrative purposes,
the values of the reflection coefficients are reported in Table I.
In Table I and Table II, for completeness, we report two other
examples of RISs that are modeled based on the same principle
as the RISs considered in [45]. One of the examples reported
in Table I considers the RIS introduced in [47], which can
simultaneously reflect and refract the incident electromagnetic
waves. For this reason, it is characterized by a reflection
coefficient and by a transmission coefficient, Tm,n, which is
defined as the ratio between the refracted electric field and the
incident electric field. Similar to the RISs in [45], the unit cells
of the RIS in [47] can be configured in two different states
that are characterized by the pairs (Γ1, T1) and (Γ2, T2). The
other example reported in Table I is the RIS introduced in
[48], which operates as a reflecting surface but its unit cells
can be configured in four different states. The RIS in Table II
is modeled as a periodic array of unit cells, similar to the RISs
in [45], [47] and [48]. Similar to [45] and [48], in addition, it
operates only in reflection mode and is characterized by the
reflection coefficient Γm,n. However, the reflection coefficient
of each unit cell can be varied continuously as a function of a
control voltage. Therefore, the phase shift applied by each unit
cell can be tuned more finely. In the five examples of RISs
reported in Table I and Table II, we note that the amplitude
and the phase of the reflection (and transmission) coefficient
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TABLE I: Examples of reflection and transmission coefficients for RISs with discrete-valued phase shifts (two-state and four-state control).

Reference Reflection Coefficient Transmission Coefficient

[45] (f = 27 GHz) |Γ1| = 0.9, ∠Γ1 = 165◦

|Γ2| = 0.7, ∠Γ2 = 0◦
–

[45] (f = 33 GHz) |Γ1| = 0.8, ∠Γ1 = 150◦

|Γ2| = 0.8, ∠Γ2 = 0◦
–

[47] (f = 3.6 GHz) |Γ1| = 0.46, ∠Γ1 = 20◦

|Γ2| = 0.55, ∠Γ2 = 215◦
|T1| = 0.58, ∠T1 = 300◦

|T2| = 0.81, ∠T2 = 123◦

[48] (f = 2.3 GHz)

|Γ1| = −1.2 dB, ∠Γ1 = −205.5◦

|Γ2| = −1.2 dB, ∠Γ2 = −383.2◦

|Γ3| = −0.8 dB, ∠Γ3 = −290.2◦

|Γ4| = −0.7 dB, ∠Γ4 = −110.3◦

–

TABLE II: Example of reflection coefficient for an RIS with
continuous-valued phase shifts [26].

Voltage Reflection coefficient
amplitude ( |Γ| )

Reflection coefficient
phase (∠Γ)

0 V -1.517 dB 32.798◦

0.25 V -1.807 dB 40.854◦

0.5 V -3.156 dB 46.807◦

0.75 V -5.59 dB 53.543◦

1 V -9.576 dB 70.32◦

1.25 V -20.563 dB -167.158◦

1.5 V -6.615 dB -73.171◦

1.75 V -3.029 dB -49.627◦

2 V -1.959 dB -35.908◦

2.5 V -0.874 dB -23.263◦

3 V -0.749 dB -16.087◦

3.5 V -0.469 dB -12.663◦

4 V -0.528 dB -9.925◦

5 V -0.439 dB -6.906◦

are not independent of each other. Also, the amplitude of the
reflection coefficient is not unitary and it is not independent
of the phase shift. In general, in addition, the reflection and
transmission coefficients reported in Table I and Table II
depend on the angle of incidence of the electromagnetic wave,
as shown in [26, Fig. 2] and [29, Fig. 4]. The examples
reported in the two tables are referred to the canonical case
of normal incidence.

Assuming that the set of possible reflection coefficients
(the RIS codebook), as a function of the tuning circuit, of
a single unit cell of the RIS is given, the authors of [45]
have introduced an analytical model for computing the power
observed at a given location of an RIS-assisted communication
link. The RIS is assumed to be centered at the origin and to
lie in the xy plane (i.e., z = 0). The received power can be
formulated as follows:

P (Rx)

P (Tx)
=

G(Tx)G(Rx)

16π2(dxdy)
2

∗

∣∣∣∣∣
M∑
m=1

N∑
n=1

√
Fm,nΓm,n

r
(Tx)
m,n r

(Rx)
m,n

e−j
2π
λ (r(Tx)

m,n+r(Rx)
m,n )

∣∣∣∣∣
2

(1)
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
(
d

(Tx)
0

)2

+
(
r

(Tx)
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)2

− (dm,n)
2

2d
(Tx)
0 r

(Tx)
m,n


−1+G(Tx)/2

∗

(
z(Tx)

r
(Tx)
m,n

)(
z(Rx)

r
(Rx)
m,n

)
(2)

∗


(
d

(Rx)
0

)2

+
(
r

(Rx)
m,n

)2

− (dm,n)
2

2d
(Rx)
0 r

(Rx)
m,n


−1+G(Rx)/2

and the following notation is used:
• P (Tx) and P (Rx) are the transmitted and received powers,

respectively;
• G(Tx) and G(Rx) are the antenna gains of the transmitter

and receiver, respectively;
• λ is the wavelength of the electromagnetic wave and j =√
−1 is the imaginary unit;

• r
(Tx)
m,n is the distance between the transmitter and the

center point of the (m,n)th unit cell, and r
(Rx)
m,n is the

distance between the center point of the (m,n)th unit
cell and the receiver;

• dm,n is the distance between the center point of the
(m,n)th unit cell and the center point of the RIS (i.e.,
the origin);

• d
(Tx)
0 is the distance between the transmitter and the

center point of the RIS, and d(Rx)
0 is the distance between

the center point of the RIS and the receiver;
• z(Tx) and z(Rx) are the Cartesian coordinates of the

transmitter and receiver on the z-axis, respectively.
By using (1), it is possible to formulate the received power

for any locations of the transmitter and receiver as a function
of the location of the RIS and of the configuration of the unit
cells. Therefore, the optimal configuration of the MN unit
cells of the RIS can be identified in order to, e.g., maximize
the received power depending on the location of the receiver.
More precisely, let Γ denote the M ×N matrix of reflection
coefficients Γm,n and let Γm,n ∈ {Γ1,Γ2, . . . ,ΓΣ} be the Σ
possible reflection coefficients of each unit cell of the RIS. In
Tables I and II, we have Σ = 2 or Σ = 4 and Σ = 14. With
this notation, a typical problem formulation reads as follows:

max
Γ

P (Rx) (Γ) (3)

s.t. Γm,n ∈ {Γ1,Γ2, . . . ,ΓΣ} ∀m,n (3a)



7

Fig. 5: Illustration of the concept of (locally) periodic boundary conditions.

As mentioned, the set of Σ states in (3), i.e., the RIS
codebook, is determined by characterizing the electromagnetic
response of the constituent unit cell of the RIS by employing
a local design. In order to understand the applicability and
accuracy of the received power model in (1), based on the
solution of the optimization problem in (3), it is instructive
to analyze in detail the meaning of local design at the unit
cell level and the concept of periodic boundary conditions
mentioned in Section II. To this end, we consider, as an
example, a binary unit cell that can take only two states, i.e.,
Σ = 2 and Γm,n ∈ {Γ1,Γ2}.

The reflection coefficients Γ1 and Γ2 are obtained by
utilizing the procedure sketched in Fig. 5. The reflection
coefficient Γ1 is estimated by considering an infinite-size
RIS whose unit cells are all identical and the tuning circuits
are set to the same configuration. Therefore, the RIS is
effectively turned into an infinite and spatially homogeneous
sheet with no phase variation along the entire surface. In
this configuration, the reflection coefficient is well defined as
the ratio between the reflected electric field and the incident
electric field [49, Chapter 7]. Since the surface is spatially
homogeneous and of infinite extent, only specular reflection
is allowed. The obtained structure is usually analyzed with
the aid of full-wave electromagnetic simulators, which model
the infinite size of the surface and the periodic repetition of
the elementary unit cell by applying the so-called periodic
boundary conditions (see, e.g., [29, Fig. 4]). Thanks to this
procedure, the reradiation characteristics of the unit cell in the
first possible state are characterized by taking into account that
it is immersed into a neighbourhood of identical unit cells.
This implies that the mutual coupling and the interactions
among all the identical unit cells in the homogeneous sheet
are inherently taken into account when characterizing Γ1.
The same procedure is repeated for estimating Γ2, with the
only difference being that the tuning circuits are set to the
configuration that results in the reflection coefficient Γ2.

Having characterized the reflection coefficients Γ1 and Γ2, if
necessary as a function of the angle of incidence of the electro-

magnetic wave, the communication model in (1) stipulates that
we may configure the state (either Γ1 and Γ2 in the example
of Fig. 5) of each unit cell independently of the others and
regardless of the states of the neighboring cells. An example
is given in the right-hand side illustration of Fig. 5, in which
the unit cells are configured to realize beam splitting [31, Fig.
4]. However, caution needs to be paid when (1) is utilized and
the reflection coefficients Γ1 or Γ2 are obtained by applying
locally periodic boundary conditions at the unit cell level.
The reflection coefficients Γ1 and Γ2 are, in fact, determined
by assuming that a unit cell configured in a given state is
immersed in an infinite homogeneous repetition of identical
unit cells. When the RIS is configured to operate in practice,
as sketched in the right-hand side illustration of Fig. 5, each
unit cell is, however, immersed in a spatially inhomogeneous
array whose neighboring unit cells can be all different from
each other. This implies that the spatial symmetry imposed
by the periodic boundary conditions does not hold anymore
and the interactions (mutual coupling) among nearby unit cells
are taken into account only in an approximate manner. In
addition, the RIS is not of infinite extent but has a finite size.
This implies that the notion of reflection coefficient is only an
approximation and it holds only under the limit of physical
optics [50]. For these reasons, the unit cells are not typically
optimized individually and independently of each other, but
they are optimized in groups, so as to ensure that the periodic
boundary conditions utilized when characterizing each unit
cell individually are approximately fulfilled during the normal
operation of the RIS as well [37], [51]. The right-hand side
illustration of Fig. 5 is a typical example in which the unit
cells are split in groups, each containing 24 unit cells, and
the groups are optimized such that the states (Γ1 or Γ2) of all
the unit cells in a group are the same. The minimum required
size of the group of unit cells for ensuring that (1) is accurate
enough for wireless applications is usually characterized with
the aid of full-wave simulations.



8

Fig. 6: Communication model of a reconfigurable intelligent surface
based on mutually coupled impedances.

B. Mutually Coupled Tiny Antennas Elements

The communication model for RISs introduced in the pre-
vious sub-section is widely employed in wireless commu-
nications and several optimization frameworks, under some
simplifying assumptions, have been proposed based on it
[17], [20]. The local design at the unit cell level is a widely
used method for characterizing the reflection and transmission
characteristics of an RIS. As mentioned, however, the mutual
coupling among the unit cells is only approximately taken into
account, since the possible reflection coefficients of each unit
cell (i.e., the RIS codebook) are typically characterized by
applying periodic boundary conditions at the unit cell level
[51]. The accuracy of the model in (1) can be improved by,
e.g., not characterizing the reradiation properties of each unit
cell individually but by analyzing, with full-wave simulations,
the reradiation of groups of unit cells as a function of all the
possible combinations of their states [52]. In this case, periodic
boundary conditions may be applied at the granularity of a
group of unit cells in lieu of a single unit cell. The optimization
accuracy of the model usually increases at the expenses of the
modeling and optimization complexity.

In [53], the authors have recently introduced a communi-
cation model for RIS that explicitly accounts for the mutual
coupling among the RIS elements and for the control circuit
of the unit cells. The communication model in [53] is based
on the theory of mutually coupled tiny antennas and is directly
applicable in multiple-antenna communication systems, since
it resembles a MIMO communication channel. In [54] and
[43], it has recently been shown that the model is suitable
for formulating optimization problems in general wireless
networks, such as the MIMO interference channel, and that
it can be utilized to optimize an RIS by explicitly taking into
account the mutual coupling among the RIS elements. In this
sub-section, we first introduce the communication model in
[53] and then elaborate on the conditions under which it can
be utilized.

The RIS-assisted communication model introduced in [53]
is illustrated in Fig. 6. The model resembles a conventional
single transmitter-receiver pair MIMO communication link
in the presence of an RIS. The transmitter and the receiver
are equipped with M0 and L0 ≤ M0 antenna elements,

respectively. The antenna elements are assumed to be thin wire
dipoles of perfectly conducting material. The model can be
generalized for application to radiating elements different from
thin wire dipoles, which are considered in [53] for analytical
tractability. Each thin wire dipole at the transmitter is driven
by a voltage generator that models the transmit feed line, and
each thin wire dipole at the receiver is connected to a load
impedance that mimics the receive electric circuit. For sim-
plicity, we assume that the number of symbols (streams) sent
by the transmitter is equal to the number of receive antennas.
The transmission between the transmitter and the receiver is
assisted by an RIS, which comprises P nearly passive thin wire
dipoles that are independently configurable (by an external
controller) through tunable impedances. Compared with the
illustration of the RIS in Fig. 2, a thin wire dipole in Fig. 6 can
be viewed as an approximation for a unit cell. The model can
be generalized to different physical structures for the unit cells,
e.g., patch antennas. The physical model based on dipoles is
considered in [53] since relatively simple analytical or integral
expressions for the current distribution of closely spaced thin
wire dipoles are available in the literature [49, Chapter 25].

Based on the system model in Fig. 6, the RIS-assisted
channel is optimized by appropriately setting the tunable
impedances connected to the thin wire dipoles. More specif-
ically, the authors of [53] have introduced an L0 ×M0 end-
to-end channel matrix that formulates the voltage measured at
the ports of the receive antennas as a function of the voltage
generators connected to the ports of the transmit antennas, i.e.,
vRx = HvTx, where vTx is the M0 × 1 vector that collects
the driving voltages at the transmitter, vRx is the L0×1 vector
that collects the voltages measured at the ports of the antennas
at the receiver, and H is the L0 × M0 channel matrix that
accounts for the radiating elements (the thin wire dipoles)
and the propagation of the electromagnetic waves. From [53,
Theorem 1], H can be formulated as follows:

H =
(
IL0

+ Ψr,rZ
−1
r −Ψr,t(Ψt,t + Zt)

−1
Ψt,rZ

−1
r

)−1

∗Ψr,t(Ψt,t + Zt)
−1 (4)

where IL0 is the L0 × L0 identity matrix, and Zt and Zr are
the M0 ×M0 and L0 × L0 diagonal matrices that comprise
the internal impedances of the transmit generators and the load
impedances of the receive antennas, respectively. Furthermore,
the following shorthand notation is introduced:

Ψt,t = Zt,t − Zt,s(Zs,s + Ztun)
−1

Zs,t (5)

Ψt,r = Zt,r − Zt,s(Zs,s + Ztun)
−1

Zs,r (6)

Ψr,t = Zr,t − Zr,s(Zs,s + Ztun)
−1

Zs,t (7)

Ψr,r = Zr,r − Zr,s(Zs,s + Ztun)
−1

Zs,r (8)

where Zx,y , for x, y ∈ {t, s, r} with t, s, and r identifying
the transmitter, the RIS, and the receiver, respectively, is the
matrix of mutual (or self if x = y) impedances between
the thin dipoles of y and those of x, which characterizes
the signal propagation and the mutual coupling between x

and y, and Z
(k)
tun is the P × P diagonal matrix of tunable

impedances of the RIS. The matrices Zx,y for x, y ∈ {t, s, r}
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account for the microscopic structure of the RIS and the
locations of the transmitter, RIS, and receiver. They can be
either computed with the aid of full-wave simulators or can
be computed analytically by relying on some approximations.
For example, the authors of [53] have used the induced
electromagnetic field method for computing the mutual and
self impedances, as well as a sinusoidal approximation for
the current distribution on the thin wire dipoles. Given the
RIS microstructure and the system topology, the impedances
in Zx,y for x, y ∈ {t, s, r} need to be computed only once,
and are not usually considered optimization variables in the
context of wireless communication systems of networks.

On the other hand, the matrix Ztun, which allows the
reconfigurability of the RIS, is the matrix to be optimized
for steering the electromagnetic wave that is emitted by the
transmitter and impinges upon the RIS towards the location of
the receiver. Let us consider, for example, that the transmitter
and the receiver are equipped with a single antenna, i.e.,
M0 = L0 = 1, and that the objective is to maximize the
power at the location of the receiver. Then, the matrix H is a
scalar, i.e., vRx = HvTx, and the optimization problem as a
function of Ztun can be formulated as follows:

max
Ztun

|H (Ztun)| (9)

s.t. Ztun,p ∈ {Z1,Z2, . . . ,ZΞ} ∀p = 1, 2, . . . , P (9a)

where Ztun,p is the pth element of Ztun and {Z1,Z2, . . . ,ZΞ}
is the set of Ξ possible discrete values of the tuning
impedances that can be implemented.

In [54], the authors have recently solved the optimization
problem in (9) under the assumption that the real part of the
tunable impedances is fixed and greater than zero, and that
its imaginary part can take any real value. The constraint that
the real part of the impedances is greater than zero ensures
that the RIS does not amplify the incident electromagnetic
wave and, therefore, no power amplifiers are needed. Indeed,
a negative resistance is equivalent to the need of using a power
amplifier. In [43], the authors have formulated a more complex
optimization problem that maximizes the rate of a MIMO
interference channel.

The matrices defined in (5)-(8) have a physical meaning
and interpretation as well. For example, Ψr,t represents the
transfer matrix (the channel) between the transmitter and the
receiver, which accounts for the direct link (Zr,t) and the RIS-
reradiated link Zr,s(Zs,s + Ztun)

−1
Zs,t. This latter term is the

product of three factors: Zs,t represents the transfer function
from the transmitter to the RIS; Zr,s represents the transfer
function from the RIS to the receiver; and (Zs,s + Ztun)

−1

models the reradiation from the RIS. The matrix Zs,s is, in
general, a full matrix and reduces to an almost diagonal matrix,
i.e., the amplitudes of the elements in the main diagonal are
much larger than the off-diagonal elements, diagonal matrix,
if the mutual coupling between any pair of thin wire dipoles
is negligible.

The channel matrix in (4) can be simplified in several sce-
narios of practical relevance. If, for example, the transmitter,
the receiver, and the RIS are in the far-field of each other,
(4) can be simplified without ignoring the mutual coupling

among the thin dipoles of each RIS. The self impedances
Zx,x are, in fact, independent of the transmission distances
of the transmitter-receiver, transmitter-RIS, and RIS-receiver
links, and they depend only on the inter-distances between
the thin wire dipoles that comprise the transmitter, the RIS,
and the receiver. In the far-field region, therefore, the following
simplifications can be applied:

Ψt,t ≈ Zt,t (10)
Ψr,r ≈ Zr,r (11)

Ψr,rZ
−1
r −Ψr,t(Ψt,t + Zt)

−1
Ψt,rZ

−1
r ≈ Ψr,rZ

−1
r (12)

In the far-field region, therefore, H in (4) can be approxi-
mated as follows:

Hr,t ≈
(
IL0

+ Zr,rZ
−1
r

)−1
Zr,t(Zt,t + Zt)

−1 (13)

−
(
IL0 + Zr,rZ

−1
r

)−1

∗ Zr,s(Zs,s + Ztun)
−1

Zs,t

∗ (Zt,t + Zt)
−1

In (13), it is not difficult to recognize that the first addend
on the right-hand side corresponds to the direct link between
the transmitter and the receiver, and that the second addend on
the right-hand side corresponds to the RIS-reradiated link that
accounts for the internal impedances of the voltage generator
at the transmitter, the load at the receiver, the transfer matrices
Zs,t and Zr,s that characterize the propagation of the electro-
magnetic wave from the transmitter to the RIS and from the
RIS to the receiver, respectively, and the term (Zs,s + Ztun)

−1

that accounts for the mutual coupling and the tuning circuits
of the RIS.

The communication model in (4), and especially the sim-
plified version in (13), are relatively simple to use in wireless
communication systems and networks due to the resemblance
of H with a typical MIMO channel model. It is necessary
to understand, however, the assumptions and the conditions
under which (4) can be applied. Besides the computation of
the matrix Zs,s that, if done analytically, usually requires
some approximations, the main assumption made to obtain
H in (4) is that the tiny antenna elements are assumed to be
minimum scattering antennas. In simple terms, this assumption
implies that a radiating element (a thin wire dipole in Fig.
6) does not radiate if it is open circuited, and, therefore, it
is like if it is not present (it is “invisible”) in the network
[55]. Concretely, this implies that the pth thin wire dipole
that constitutes the RIS in Fig. 6 does not reradiate in the
presence of an electromagnetic wave if Ztun,p → ∞ and,
therefore, it can be removed from the system model. This is,
of course, an approximation, since the presence of the thin
wire dipole always perturbs the electromagnetic field. This
assumption is usually acceptable for scattering elements that
are much smaller than the wavelength, as the elements of an
RIS are usually assumed to be. Nevertheless, caution needs
to be paid when applying the communication model in (4)
for ensuring that the approximation of minimum scattering
antennas is fulfilled.



10

C. Inhomogeneous Sheets of Surface Impedance

In this sub-section, we consider models for RISs that
abstract their microscopic structure and are focused on the
specific wave transformations that the metasurface, as a whole,
is intended to realize. More precisely, a metamaterial-based
RIS whose unit cells have sizes and inter-distances much
smaller than the wavelength is homogenizable and can be
modeled as a continuous surface sheet through appropriate
surface functions, e.g., surface impedances [17], [29], [36],
[38], [39], [40], [41], [51], [52], [56], [57]. This modeling
approach is not dissimilar from the characterization of bulk
(three-dimensional) metamaterials, which are usually repre-
sented through effective permittivity and permeability func-
tions that determine the wave phenomena based on Maxwell’s
equations. The only difference is that a metasurface is bet-
ter modeled by effective surface parameters, which manifest
themselves in electromagnetic problems that are formulated
as effective boundary conditions. These boundary conditions
can be expressed in terms of surface polarizabilities, surface
susceptibilities, or surface impedances (or admittances) [3]. In
the present tutorial paper, we focus our attention on modeling
an RIS through surface impedances.

The adopted modeling approach is, specifically, referred to
as macroscopic [17], [41], [56]. Classical wave phenomena
in materials or metamaterials are determined by the collective
effects of a very large number of atoms that interact with
the incident electromagnetic waves. The electromagnetic fields
around individual atoms can be described by microscopic
Maxwell’s equations. If the sizes of the atoms that constitute
the material and the distances between them are much smaller
than the wavelength, the electromagnetic fields and the sources
in the material can be spatially averaged, thus effectively trans-
forming microscopic Maxwell’s equations into macroscopic
Maxwell’s equations. For a metasurface-based RIS, the same
principle applies: If the RIS is electrically large and is made of
sub-wavelength reconfigurable scattering elements (unit cells)
whose inter-distances are much smaller than the wavelength,
it is homogenizable and can be modeled through continuous
surface averaged (macroscopic) surface impedances. More
specifically, two conditions need to be fulfilled to make an RIS
homogenizable [39, Section 2.1]: (i) the first homogenization
condition requires that the incident field varies little over one
spatial period (the largest inter-distance among the unit cells)
of the RIS, i.e., max {dx, dy} � λ; and (ii) the second
homogenization condition requires that the evanescent field
scattered by the RIS is negligible at the observation point,
i.e., |z| > max {dx, dy} for the RIS in Fig. 7, where λ is
the wavelength of the electromagnetic wave, and dx and dy
are the horizontal and vertical sizes of its unit cells (assuming
that the unit cells are identical in size). The second condition
is typically fulfilled in the far-field of the RIS microstructure
[17, Fig. 29].

Under these assumptions, an RIS can be modeled as an
inhomogeneous sheet of polarizable particles (the unit cells)
that is characterized by an electric surface impedance and a
magnetic surface admittance, which, for general wave trans-
formations, are dyadic tensors. These two dyadic tensors

Fig. 7: System model: An RIS as an inhomogeneous sheet (inhomo-
geneous boundary if the RIS is impenetrable) of surface impedance

constitute the macroscopic homogenized model of the RIS.
The average total electric and magnetic fields that illuminate
the RIS induce electric and magnetic currents that introduce
a discontinuity between the electromagnetic fields on the two
sides of the RIS (below and above the surface), which provides
the means for manipulating the wavefront of the incident
electromagnetic waves. Once the homogenized and continuous
electric surface impedance and magnetic surface admittance
are obtained based on the desired wave transformations, the
microscopic structure and physical implementation of the RIS
in terms of unit cells is obtained, by using, e.g., the method
described in [17], [36]. Generally speaking, once the macro-
scopic surface impedance and admittance are determined,
appropriate geometric arrangements of sub-wavelength unit
cells and the associated tuning circuits that exhibit the corre-
sponding electric and magnetic response are characterized by,
typically, using full-wave electromagnetic simulations [29].

Based on this modeling approach, an RIS is characterized by
a set of algebraic equations that results in boundary conditions
for the electromagnetic fields at the two sides of the surface.
This set of equations is referred to as generalized sheet
transition conditions [58], [59]. Under the assumption that
only the tangential components of the electric and magnetic
polarization densities are induced in the metasurface and that
the RIS lies in the xy-plane (i.e., z = 0) as illustrated in Fig. 7,
the generalized sheet transition conditions can be formulated
as follows [29]:

Et
tot

(
x, y, z = 0+

)
+ Et

tot

(
x, y, z = 0−

)
(14)

= 2Zse (x, y)
(
ẑ×Htot

(
x, y, z = 0+

))
− 2Zse (x, y)

(
ẑ×Htot

(
x, y, z = 0−

))
Ht

tot

(
x, y, z = 0+

)
+ Ht

tot

(
x, y, z = 0−

)
(15)

= −2Ysm (x, y)
(
ẑ×Etot

(
x, y, z = 0+

))
+ 2Ysm (x, y)

(
ẑ×Etot

(
x, y, z = 0−

))
where Zse (x, y) and Ysm (x, y) are the electric surface
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impedance and the magnetic surface admittance dyadic tensors
that constitute the homogenized macroscopic model of the
RIS. In addition, the following definitions for the electric and
magnetic fields in (14) and (15) hold:

Ftot

(
x, y, z = 0+

)
= Finc

(
x, y, z = 0+

)
+ Fref

(
x, y, z = 0+

)
(16)

Ftot

(
x, y, z = 0−

)
= Ftra

(
x, y, z = 0−

)
(17)

Fttot

(
x, y, z = 0±

)
=
(
ẑ× Ftot

(
x, y, z = 0±

))
× ẑ (18)

where ẑ is the unit norm vector that is normal to the RIS as il-
lustrated in Fig. 7, and Finc (x, y, z = 0+), Fref (x, y, z = 0+)
and Ftra (x, y, z = 0−) with F = {E,H} are the incident,
reflected, and transmitted (refracted) electric and magnetic
fields evaluated on the two sides of the RIS, respectively.

The equations in (14) and (15) completely characterize the
RIS in terms of wave transformations and can be utilized
for the analysis and synthesis of an RIS. As far as the
analysis is concerned, it is usually assumed that Zse (x, y)

and Ysm (x, y) are known, and one is interested in solving
(14) and (15) for obtaining the surface electric and magnetic
fields in the close vicinity of the RIS, but at distances at
which the homogenized model can be applied (as detailed in
further text). As far as the synthesis is concerned, it is usually
assumed that either the surface electric and magnetic fields in
the close vicinity of the RIS are explicitly known or that an
objective function that depend on them is known, and one is
interested in identifying the corresponding functions Zse (x, y)

and Ysm (x, y) that provide the desired electromagnetic fields
or that maximize the objective function of interest. These tech-
niques are referred to as direct and inverse source problems,
respectively [60]. In Section III, we present some examples
to understand the optimization of RISs as a function of the
surface impedance and for different design criteria.

One of the main advantages of modeling an RIS through
inhomogeneous sheets of impedance and admittance dyadic
tensors lies in the possibility of incorporating them into
Maxwell’s equations by leveraging the equivalence principle
and the radiation integrals, which allow us to express the
electric and magnetic fields anywhere in the volume of interest
directly as a function of Zse (x, y) and Ysm (x, y) [49, Chap-
ter 18]. The main assumption for using this approach consists
of resorting to the physical optics approximation [50, Chatper
8]. Even though some approximations are usually needed
to obtain the reradiated electromagnetic field, the resulting
analytical framework is electromagnetically consistent and
accounts for the physical implementation of the RIS. This
procedure is elaborated in Section III through some specific
examples, and the resulting analytical formulation is utilized
for analyzing the radiated electromagnetic field. Another main
advantage of the model for RISs based on inhomogeneous
sheets of impedance and admittance dyadic tensors is that the
mutual coupling among all the constitutive elements of the RIS
(the unit cells) is inherently taken into account, since the model
inherently abstracts the physical implementation of the RIS.

The subsequent discretization of the RIS in unit cells based
on the functions Zse (x, y) and Ysm (x, y) implicitly accounts
for the local interactions and for the mutual coupling among
the unit cell themselves [17], [52].

When modeling an RIS as an inhomogeneous sheet of
impedance and admittance dyadic tensors, caution needs to
be paid, however, to some implicit assumptions that are made.
One of these assumptions is that the RIS is modeled as a device
with zero thickness. In practice, however, an RIS has a finite
thickness and is made of discrete and finite-size unit cells. In
order for the homogenized (continuous) version of the RIS,
which is utilized at the design stage, to accurately represent
the reradiation properties of the manufactured metasurface,
it is necessary that the thickness of the RIS and the cross
section of the unit cells are much smaller than the wavelength
of the electromagnetic waves. If these conditions are met,
the components of the surface fields that are related to the
discretization of the RIS in unit cells can be ignored, provided
that the observation point is not too close to the surface of the
RIS. As a rule of thumb, the observation point should be at
least at a distance |z| > t/2 + max {dx, dy}, where t is the
thickness of the RIS and dx and dy are the horizontal and
vertical sizes of its unit cells (assuming that the unit cells
are identical in size) [29]. In practice, this condition does not
pose any constraints in the context of wireless communication
systems and networks, since we are not usually interested in
observation points that are so close to the RIS.

Due to these positive features, representing an RIS as
an inhomogeneous sheet of surface impedance constitutes a
suitable abstraction model for understanding the achievable
performance limits of RISs in wireless networks and for their
optimization as a function of different design criteria. In the
next section, we utilize this modeling approach and elaborate
how it can be leveraged for obtaining electromagnetically
consistent analytical frameworks for RISs that are suitable
for performance evaluation and for wireless networks opti-
mization. In the next section, more specifically, we focus
our attention on an RIS that operates in reflection mode and
that is impenetrable, i.e., the electric and magnetic fields at
z = 0− are equal to zero in (17). In this case, the RIS is an
inhomogeneous boundary of surface impedance.

III. RIS AS AN INHOMOGENEOUS IMPEDANCE
BOUNDARY: ELECTROMAGNETICALLY CONSISTENT

MODELING AND OPTIMIZATION

In this section, we concentrate on RISs that are modeled as
an impenetrable inhomogeneous sheet of surface impedance,
i.e., an inhomogeneous impedance boundary. The objective of
this section is to provide the readers with a detailed tutorial-
style, step-by-step, example on how to formulate electromag-
netically consistent analytical models for RISs and how to
use them for evaluating the performance of RISs in wireless
networks, as well as for optimizing their surface impedance in
order to fulfill specific design requirements. To this end, this
section is structured in three interlinked macro parts.
• First, we introduce the system and signal models de-

parting from Maxwell’s equations, and elaborate on the
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conditions that need to be fulfilled for ensuring that the
RIS model is electromagnetically consistent.

• Then, we overview the concepts of local and global
designs by departing from the considered electromagnet-
ically consistent model for the RIS. We discuss the cor-
responding design criteria in terms of surface impedance
and the implications associated with the practical imple-
mentation of specified surface impedances.

• Finally, we formulate optimization problems for design-
ing the surface impedance of the RIS based on local
and global designs, and we discuss the associated design
constraints that determine the surface power efficiency,
the reradiated power flux at some specified locations, the
amount of reradiated power towards spurious directions,
and the realization of RISs made of purely reactive sur-
face boundaries that require no local power amplification.

A. Electromagnetically Consistent Modeling of RISs

Throughout the present tutorial paper, we adopt the notation
in [49]. In particular, we assume the universal time dependency
ejωt, where j is the imaginary unit and ω is the angular
frequency. Also, ∇ξ denotes the gradient computed with
respect to the vector ξ = ax̂+bŷ+cẑ, and · and × denote the
scalar and vector products between vectors, respectively, <(·)
and =(·) denote the real and imaginary parts of a complex
function, respectively, and ‖ξ1 − ξ2‖ denotes the Euclidean
distance between the points ξ1 and ξ2.

1) System Model: We consider a system model in a three-
dimensional space, which includes a transmitter (Tx), a re-
ceiver (Rx), and an RIS (a flat surface S) that is modeled
as an inhomogeneous boundary of surface impedance with
negligible thickness with respect to the wavelength of the
electromagnetic waves. A sketched representation of the con-
sidered system model is given in Fig. 7.

The RIS S is a rectangle that lies in the xy-plane (i.e.,
z = 0) whose center is located at the origin. The sides of S
are parallel to the x-axis and y-axis, and they have length 2Lx
and 2Ly , respectively. Hence, S is defined as follows:

S = {s = xx̂ + yŷ : |x| ≤ Lx, |y| ≤ Ly} (19)

We consider a reflecting RIS, i.e., Tx and Rx are located
in the same side of S. The transmitter, Tx, emits an elec-
tromagnetic wave that propagates through the vacuum whose
permittivity and permeability are ε0 and µ0, respectively. The
electromagnetic wave emitted by Tx travels at the speed of
light c = 1/

√
ε0µ0 and the free-space impedance is defined

as η0 =
√
µ0/ε0. The carrier frequency, the wavelength, and

the wavenumber of the electromagnetic wave are denoted by
f , λ = c/f , k = 2π/λ, respectively, and ω = 2πf .

We denote the center location of Tx and Rx as rTx = xTxx̂+
yTxŷ + zTxẑ and rRx = xRxx̂ + yRxŷ + zRxẑ, respectively. The
transmitter is characterized by a charge density ρ(·) and a
current density J(·) that fulfill the continuity equation [49] and
are non-zero only in a small volume VTx centered at rTx. For
ease of exposition but without loss of generality, we assume
that the transmitter Tx is in the far field region of the RIS and
the receiver Rx. Thus, we assume that the incident signal is

a plane wave, while the reflected signal is not necessarily a
plane wave. We consider only the signal reflected by the RIS
and assume that the Tx-Rx direct signal can be ignored due
to the presence of blocking objects.

2) Electric and Magnetic Fields: More precisely, we as-
sume that the incident plane wave emitted by the transmitter
Tx impinges upon the RIS at an elevation angle θi(rTx) and at
an azimuth angle ϕi(rTx), and that it is reflected (reradiated),
not necessarily as a plane wave, towards the receiver Rx,
whose location is specified by the elevation angle θr(rRx) and
the azimuth angle ϕr(rRx). For ease of analysis, we assume
ϕi(rTx) = ϕr(rRx) = π/2, i.e., the incident and reflected fields
propagate in the yz-plane.

Let ki(rTx) and kr(rRx) be the wavevectors of the incident
and reflected electromagnetic waves, respectively, whose am-
plitudes are equal to the wavenumber k. In particular, kr(rRx)
identifies the desired direction of reflection, i.e., the direction
towards which the RIS is intended to maximize the reradiated
power. The wavevectors are defined as follows:

ki(rTx) = k sin θi(rTx) cosϕi(rTx)x̂

+ k sin θi(rTx) sinϕi(rTx)ŷ − k cos θi(rTx)ẑ

= k (sin θi(rTx)ŷ − cos θi(rTx)ẑ) (20)
kr(rRx) = k sin θr(rRx) cosϕr(rRx)x̂

+ k sin θr(rRx) sinϕr(rRx)ŷ + k cos θr(rRx)ẑ

= k (sin θr(rRx)ŷ + cos θr(rRx)ẑ) (21)

The electric field transmitted by the transmitter Tx is
assumed to be x-polarized and to propagate in free-space.
To formulate the incident and reflected fields in the close
proximity of the surface S located at z = 0, we introduce
the general vector r = xx̂ + yŷ + zẑ in the reflection half
plane (i.e., z ≥ 0) with τm < z < τM , where τm and τM
are positive constant that are very small but τm is sufficiently
big for the impedance boundary model to be applicable, as
elaborated in Section II-C. The condition z < τM is necessary
to validate the electromagnetic consistency of the reflected
electric and magnetic fields, as detailed next. The reradiated
field for z > τM , which encompasses the near-field and
far-field regions of the RIS, is defined and detailed next by
utilizing the radiation integrals. With this notation, the incident
electric field is formulated as follows:

Einc(r, rTx) = Eix,0e
−jki(rTx)·rx̂

= Eix,0e
−jk(sin θi(rTx)y−cos θi(rTx)z)x̂ (22)

where Eix,0 is a constant (independent of r) complex amplitude
as dictated by the plane wave assumption.

The corresponding incident magnetic field evaluated at r is
obtained from Maxwell’s equations, as follows:

Hinc(r, rTx) = − 1

jωµ0
∇r ×Einc(r, rTx)

= − 1

η0
Eix,0e

−jk(sin θi(rTx)y−cos θi(rTx)z)

∗
[

cos θi(rTx)ŷ + sin θi(rTx)ẑ

]
(23)

where the identity k/(ωµ0) = 1/η0 is used.
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In order to model the field reradiated by the RIS in the close
proximity of S, we utilize the physical optics approximation
method [50], [57]. Accordingly, the field reflected by the
RIS is assumed to be radiated by secondary currents that are
induced on the surface S by the incident electromagnetic wave.
These currents determine, in turn, the surface (at z = 0+)
electric and magnetic fields. Since the surface electric and
magnetic fields are not known in advance, the physical optics
approximation substitutes them with their geometrical optics
approximation [50]. In particular, it is assumed that the sec-
ondary currents (and the corresponding surface fields) that are
induced on the finite-size surface S are the same as those
that would be induced on an infinite-size (i.e., Lx → ∞ and
Ly → ∞) RIS. This implies that the perturbations of the
induced currents near the edges of the surface S are neglected.
Even though approximated, the physical optics method is a
suitable approach to guide the design and optimization of RISs
and to shed light on their achievable performance, without
using numerically-intensive techniques, such as the method
of moments. In this section, we concentrate on the reradiated
electric and magnetic fields in the close proximity of the RIS,
i.e., evaluated at r for τm < z < τM .

Based on the physical optics method and assuming that the
RIS does not change the polarization of the incident field, the
reflected electric field at r for τm < z < τM can be formulated
as:

Eref(rRx, r, rTx) ≈ Γref(rRx, r, rTx)Einc(r, rTx) (24)

where Γref(rRx, s, rTx) is a complex-valued function, which is
usually referred to as the field reflection coefficient.

In general, Γref(rRx, r, rTx) is an arbitrary function provided
that the reflected field in (24) fulfills Maxwell’s equations. For
ease of analysis, but without loss of generality, we assume that
Γref(rRx, r, rTx) is formulated as follows:

Γref(rRx, r, rTx) = Γ(rRx, s, rTx)ejΦ(rRx,r,rTx) (25)

where the following definitions hold:

Φ(rRx, r, rTx) =− k (sin θr(rRx)− sin θi(rTx)) y

− k (cos θr(rRx) + cos θi(rTx)) z (26)

Γ(rRx, s, rTx) = R(rRx, s, rTx)ejφ(rRx,s,rTx) (27)

where R(rRx, s, rTx) = |Γ(rRx, s, rTx)| and φ(rRx, s, rTx) =
∠Γ(rRx, s, rTx) denote the amplitude and the phase of
Γ(rRx, s, rTx), respectively.

In the considered case study, the incident electric and
magnetic fields in (22) and (23), respectively, and the
corresponding reradiated electric and magnetic fields are
assumed to be independent of x. Hence, we obtain the
simplified expressions Φ(rRx, r, rTx) = Φ(rRx, (y, z), rTx),
Γ(rRx, s, rTx) = Γ(rRx, y, rTx), R(rRx, s, rTx) =
R(rRx, y, rTx), and φ(rRx, s, rTx) = φ(rRx, y, rTx). If
more general formulations for the incident and reradiated
electromagnetic fields are considered, the approach described
in this paper applies mutatis mutandis.

The function Γref(rRx, r = s, rTx) for s = xx̂ + yŷ ∈ S
is the field reflection coefficient evaluated on the surface

S (i.e., at z = 0+), which is usually referred to as the
surface reflection coefficient and characterizes the reradiation
properties of the RIS. With a slight abuse of terminology, we
refer to Γ(rRx, s, rTx) as the surface reflection coefficient as
well, since Γref(rRx, r = s, rTx) and Γ(rRx, s, rTx) differ by a
linear phase shift, i.e., Φ(rRx, (y, z = 0+), rTx).

The analytical formulation in (25) is not only analytically
convenient, as it will be apparent next, but it has a useful phys-
ical interpretation. The function Φ(rRx, r, rTx) corresponds to
the phase shift that needs to be applied by the RIS, based
on the geometrical optics approximation, in order to steer
(reradiate) an electromagnetic wave the impinges upon S
from the direction identified by ki(rTx) towards the direc-
tion identified by kr(rRx) [2]. The complex-valued function
Γ(rRx, s, rTx) models the amplitude (R(rRx, s, rTx)) and phase
(φ(rRx, s, rTx)) correction terms that are necessary for optimiz-
ing an RIS based on more advanced criteria than the canonical
geometrical optics method. By setting Γ(rRx, s, rTx) = 1,
the solution based on the geometrical optics approximation
is retrieved. The function R(rRx, s, rTx) accounts for designs
of RISs that may need a non-uniform amplitude control along
the surface S. In general, as elaborated next, the amplitude
correction function R(rRx, s, rTx) and the phase correction
function φ(rRx, s, rTx) may not be independent of each other
for some optimization criteria for the RIS.

As mentioned, Γref(rRx, r, rTx) is an arbitrary function
provided that the reflected field in (24) fulfills Maxwell’s
equations. This implies that Eref(rRx, r, rTx) in (24) needs
to satisfy Helmholtz’s equation in the source-free region
[49]. Since the analytical formulation of the reflected field
in (24) is an approximation, it is customary to ensure that
Helmholtz’s equation is fulfilled approximately as well. By
defining Eref,x(rRx, r, rTx) = x̂ ·Eref(rRx, r, rTx), Helmholtz’s
equation on the surface S (i.e., at z = 0+) reads as follows:

∇r · ∇r (Eref,x (rRx, r, rTx))|z=0+

≈ −k2Eref,x (rRx, s, rTx) (28)

By inserting (24) in (28) and by taking into account that
Γ(rRx, s, rTx) = Γ(rRx, y, rTx), i.e., it depends only on y, we
obtain the following condition:∣∣∣∣ d2

dy2
Γ(rRx, y, rTx)− 2jk sin θr(rRx)

d

dy
Γ(rRx, y, rTx)

∣∣∣∣
� k2 |Γ(rRx, y, rTx)| (29)

In order to obtain an electromagnetically consistent design
for the RIS, it is necessary to add the condition in (29) as a
constraint when optimizing Γref(rRx, s, rTx). This is elaborated
in the following text. It is worth mentioning that Helmholtz’s
equation in (29) is exactly satisfied if Γ(rRx, y, rTx) is inde-
pendent of y, i.e., it is a constant function along the entire
surface S.

Besides (28), it is necessary that the reflected electric field
in (24) fulfills the zero-divergence condition in the source-
free region, i.e., ∇r · Eref (rRx, r, rTx) = 0, for being a
consistent electric field. This imposes an additional constraint
on the design and optimization of Γref(rRx, r, rTx). The zero-
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divergence condition is always fulfilled, as shown as follows:

∇r ·Eref (rRx, r, rTx) (30)
≈ ∇r · (Γref (rRx, r, rTx) Einc (r, rTx))

= (∇rΓref (rRx, r, rTx)) ·Einc (r, rTx)

+ Γref (rRx, r, rTx)∇r ·Einc (r, rTx)

= Einc,x ((y, z) , rTx)

(
∂

∂y
Γref (rRx, (y, z) , rTx)

)
ŷ · x̂

+ Einc,x ((y, z) , rTx)

(
∂

∂z
Γref (rRx, (y, z) , rTx)

)
ẑ · x̂

+ Γref (rRx, r, rTx)

(
∂

∂x
Einc,x ((y, z) , rTx)

)
= 0

where Einc,x(r, rTx) = x̂ · Einc(r, rTx), and the identities are
obtained by taking into account that neither the incident field
nor the field reflection coefficient depend on x.

Given the reflected electric field in (24) that fulfills (29),
the final step for ensuring that the reradiated field in the
close proximity of the RIS is electromagnetically consistent
lies in calculating the reflected magnetic field. Similar to (23),
Href(rRx, r, rTx) is obtained from Maxwell’s equations:

Href(rRx, r, rTx) = − 1

jωµ0
∇r ×Eref(rRx, r, rTx) (31)

= −
Eix,0
jωµ0

∇r ×
[
Γ(rRx, r, rTx)g(y, z)x̂

]
(a)
=
−Eix,0
jωµ0

[(
− d

dy
Γ(rRx, y, rTx)

)
g(y, z)ẑ

− jk cos θr(rRx)Γ(rRx, y, rTx)g(y, z)ŷ

+ jk sin θr(rRx)Γ(rRx, y, rTx)g(y, z)ẑ

]
where g(y, z) = e−jk(sin θr(rRx)y+cos θr(rRx)z), (a) follows from
∇r (Γ (rRx, r, rTx)) = ŷ (dΓ (rRx, y, rTx)/dy), and ŷ × x̂ =
−ẑ.

The electromagnetic fields in (22), (23), (24), and (31)
with the constraint (29) constitute a set of electromagnetically
consistent equations for analyzing and optimizing RIS-assisted
communications under the assumption of physical optics ap-
proximation.

Plane Wave Spectrum and Floquet’s Expansion. Before
proceeding, it is instructive to note that the electric field
reradiated from an RIS may be formulated in different terms.
For example, (i) according to the plane-wave representation
of an electromagnetic field [49], the reflected electric field
may be represented as the sum of plane waves with different
wavevectors; and (ii) according to Floquet’s theorem for
periodic structures [61, Section 7.1], the reflected electric field
may be represented as the sum of multiple diffracted modes
with different wavevectors, similar to a diffraction grating.
In general terms, the following expression for the reradiated
electric field (in the close proximity of the surface S) can be

considered:

Eref (rRx, r, rTx) ≈
∑
n

rn (kn (rTx))E0,ne
−jkn(rTx)·rx̂

(32)

where rn (kn (rTx)) = Γref,n (rRx, r, rTx; kn (rTx)) denotes
the field reflection coefficient of the nth reradiated mode for
a given incident electromagnetic wave [56].

In general, rn (kn (rTx)) depends on the direction of the
incident electromagnetic wave, i.e., it depends on kn (rTx),
which is determined by the location of the transmitter. Each
term of Floquet’s expansion in (32) is a plane wave that propa-
gates towards a specific direction. The corresponding magnetic
fields can be calculated by using wave impedances that depend
on the propagation angles of each plane wave component,
which can be obtained from (31). Based on Floquet’s model,
the Helmholtz equation is satisfied with equality and there
is no need of imposing (29), which ensures that the surface
parameters are slowly varying.

In the present tutorial paper, we consider the approximated
formulation of the reflected electric field in (24) subject to the
constraint in (29), since it is the most widely used definition
for the reflected electric field in wireless communications. The
definition and methods described in the present tutorial paper
apply, mutatis mutandis, to (32). Before proceeding, however,
it is instructive to study whether the analytical formulation
in (32) can be retrieved from (24). To this end, we can
leverage Floquet’s theorem under the assumption that the RIS
is a periodic structure. This is elaborated in further text, after
introducing the notion of surface impedance.

3) Surface Impedance: In the previous sub-section, the
electromagnetic fields are formulated in terms of the field
reflection coefficient Γref(rRx, r, rTx). We have adopted this
formulation because it is widely used in wireless communica-
tions. In order to get insights for system design, however, it is
more convenient to design an RIS as a function of the surface
impedance, which depends on the tangential components of
the incident and reradiated electric and magnetic fields on
the surface S, i.e., at z = 0+. By direct inspection of
the surface impedance, it is relatively simple to identify the
structural properties of the RIS and the corresponding options
for its practical implementation. For example, it is possible to
understand whether an RIS is lossless and whether it can be
realized without using active components. This is elaborated
next.

Before introducing the definition of surface impedance, we
summarize the tangential components (evaluated at z = 0+)
of the incident and reflected electric and magnetic fields. Let
F (rRx, r, rTx) be a generic vector field. The component of
the vector field that is tangential to the plane occupied by S
and is evaluated at z = 0+ is defined as follows:

Ft (rRx, (x, y) , rTx) = (ẑ× F (rRx, r, rTx))× ẑ|z=0+ (33)

From (22), (23), (24), and (31), the tangential components
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of the incident and reflected electric and magnetic fields are:

Et
inc(y, rTx) = E i (y, rTx) x̂ (34)

Ht
inc(y, rTx) = −cos θi(rTx)

η0
E i (y, rTx) ŷ (35)

Et
ref(rRx, y, rTx) = ΓS(rRx, y, rTx)E i (y, rTx) x̂ (36)

Ht
ref(rRx, y, rTx) =

cos θr(rRx)

η0
ΓS(rRx, y, rTx)E i (y, rTx) ŷ

(37)

where ΓS(rRx, y, rTx) = Γref(rRx, (y, z = 0+), rTx) and
E i (y, rTx) = Eix,0e

−jk sin θi(rTx)y . Similarly, we use the
notation ΦS(rRx, y, rTx) = Φ(rRx, (y, z = 0+), rTx). The
electromagnetic fields in (34)-(37) are referred to as surface
electromagnetic fields, and ΓS(rRx, y, rTx) is the surface re-
flection coefficient.

As mentioned, (36) and (37) are applicable under the
assumption that the inequality constraint in (29) is satisfied,
i.e., the surface reflection coefficient is slowly varying, at the
wavelength scale, along the surface S. We note, in addition,
that the reflected electric field and the reflected magnetic field
are related as for a plane wave that propagates towards the
direction θr(rRx). This is due to the assumption of plane wave
for the incident electromagnetic wave and to the definition of
field reflection coefficient in (25), which result in the term
cos θr(rRx) in (37). In general, based on (31), this latter term
depends on the specific expression of the function g(y, z)
according to (25).

By assuming that the RIS does not alter the polarization of
the incident signal, the surface impedance, Z(rRx, y, rTx) is
defined as follows [3, Sec. 2.4.3]:

Et
tot(rRx, y, rTx) = Z(rRx, y, rTx)

(
ẑ×Ht

tot(rRx, y, rTx)

)
(38)

where the following total surface fields are introduced:

Et
tot(rRx, y, rTx) = Et

inc(y, rTx) + Et
ref(rRx, y, rTx) (39)

Ht
tot(rRx, y, rTx) = Ht

inc(y, rTx) + Ht
ref(rRx, y, rTx) (40)

Therefore, Z(rRx, y, rTx) can be formulated as follows:

Z(rRx, y, rTx) = η0
1 + ΓS(rRx, y, rTx)

cos θi(rTx)− ΓS(rRx, y, rTx) cos θr(rRx)
(41)

The analytical formulation of the surface impedance
Z(rRx, y, rTx) in (41) is consistent with the general definition
of RIS as an inhomogeneous sheet given in (14) and (15),
which fulfills the generalized sheet transition conditions. The
only difference is that the transmitted fields are assumed to
be equal to zero in the considered example, i.e., the RIS is
assumed to be impenetrable and is a purely reflecting surface.
In this case, the RIS can be described only through an electric
surface impedance boundary (i.e., (41)) and the magnetic
surface admittance is redundant.

By the direct inspection and analysis of Z(rRx, y, rTx), it is
possible to draw important conclusions on the inherent features
of an RIS and on the associated implementation requirements
for realizing specified wave transformations. For example:

• An RIS is locally passive if <(Z(rRx, y, rTx)) > 0;
• An RIS is locally active if <(Z(rRx, y, rTx)) < 0;
• An RIS is locally capacitive if =(Z(rRx, y, rTx)) < 0;
• An RIS is locally inductive if =(Z(rRx, y, rTx)) > 0.
In the next sub-sections, we formally introduce the criteria

for the locally-optimum and the globally-optimum designs of
an RIS as a function of (41), and formulate the corresponding
optimization problems in order to obtain the optimal surface
impedance. Therefore, it is convenient to reformulate the
Helmholtz constraint in (29) in terms of the surface impedance
Z(rRx, y, rTx). To this end, we first express Z(rRx, y, rTx) in
terms of ΓS(rRx, y, rTx). By inverting (41), we obtain:

ΓS(rRx, y, rTx) =
Z(rRx, y, rTx) cos θi(rTx)− η0

Z(rRx, y, rTx) cos θr(rRx) + η0
(42)

By using (41) and (25), Γ(rRx, y, rTx) can be formulated as
a function of Z(rRx, y, rTx), and the Helmholtz constraint in
(29) can be equivalently rewritten as follows:∣∣∣∣cη0

[
Z ′′ (y)Z+ (y)− 2 cos θr (rRx) (Z ′ (y))

2
]

− 2cjkη0 sin θi (rTx)Z ′ (y)Z+ (y)

∣∣∣∣
� k2

∣∣∣Z− (y)
(
Z+ (y)

)2∣∣∣ (43)

where the following auxiliary functions are defined:

c = cos θi(rTx) + cos θr(rRx)

Z+(y) = Z(rRx, y, rTx) cos θr(rRx) + η0

Z−(y) = Z(rRx, y, rTx) cos θi(rRx)− η0

Z ′(y) = dZ(rRx, y, rTx)/dy

Z ′′(y) = d2Z(rRx, y, rTx)/dy2 (44)

Similar to (29), the inequality in (43) implies that the surface
impedance is slowly varying, at the wavelength scale, along
the surface S.

Field vs. Load Reflection Coefficient. Before proceeding,
it is instructive to analyze the difference between the surface
reflection coefficient ΓS(rRx, y, rTx) and the so-called load
reflection coefficient, Γload(rRx, y, rTx), that it is often con-
sidered when designing an RIS [17], [56]. The load reflection
coefficient is defined as follows:

Γload(rRx, y, rTx) =
Z(rRx, y, rTx) cos θi(rTx)− η0

Z(rRx, y, rTx) cos θi(rRx) + η0
(45)

The two reflection coefficients ΓS(rRx, y, rTx) in (42) and
Γload(rRx, y, rTx) in (45) are not independent of each other, but
they are not exactly the same. The difference is apparent by
comparing their denominators and by noting that cos θi(rRx) is
present in (42) and cos θr(rRx) is present in (45). Notably, the
field and load reflection coefficients are identical if specular
reflection, i.e., θr(rRx) = θi(rRx), is considered. The minor
difference in the denominators of (42) and (45) results in major
differences in the properties of the two reflection coefficients.
Let us assume, for example, that the real part of the surface
impedance is positive, i.e., <(Z(rRx, y, rTx)) > 0. In this case,
|Γload(rRx, y, rTx)| < 1. In particular, |Γload(rRx, y, rTx)| = 1 if
and only if <(Z(rRx, y, rTx)) = 0. In other words, the load
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reflection coefficient has an amplitude that is locally equal to
one if and only if the surface impedance is locally reactive,
i.e., the RIS is lossless. This is, however, not necessarily true
for ΓS(rRx, y, rTx), since its amplitude depends on the relation
between the angles of incidence and reflection.

By direct inspection of (41), specifically, we obtain that
|ΓS(rRx, y, rTx)| ≤ 1 if and only if the following condition is
fulfilled:

|ΓS(rRx, y, rTx)| ≤ 1 ⇐⇒
cos θi(rTx)− cos θr(rRx)

2η0
≤ < (Z(rRx, y, rTx))

|Z(rRx, y, rTx)|2
(46)

From (46), therefore, we evince that the condition
<(Z(rRx, y, rTx)) > 0 is not sufficient for ensuring
|ΓS(rRx, y, rTx)| ≤ 1. The angle of incidence and the de-
sired angle of reflection cannot be ignored. If the angle of
incidence is zero, i.e., θi(rTx) = 0, as is often assumed,
the condition <(Z(rRx, y, rTx)) > 0 is sufficient for ensuring
|ΓS(rRx, y, rTx)| ≤ 1.

More specifically, let us analyze the design constraints to be
imposed on the surface impedance Z(rRx, y, rTx) for ensuring
|ΓS(rRx, y, rTx)| = 1. In this case, the inequalities in (46) are
replaced by equalities. Therefore, by direct inspection of (46),
the following design guidelines are drawn:
• If θi(rTx) = θr(rRx), we obtain < (Z(rRx, y, rTx)) = 0.

This implies that the surface impedance is purely reactive
and that the RIS is lossless.

• If θi(rTx) > θr(rRx), we obtain < (Z(rRx, y, rTx)) < 0.
This implies that the RIS is locally active.

• If θi(rTx) < θr(rRx), we obtain < (Z(rRx, y, rTx)) > 0.
This implies that the RIS is locally passive.

In order to have a unit amplitude field reflection coefficient
at a given point y on the surface S, the obtained findings allow
us to conclude that the real part of the surface impedance
of the RIS may be negative or positive depending on the
angles of incidence and reflection. This implies that the RIS
needs to introduce local power amplifications (a negative
resistance is equivalent to an amplification) or local power
losses along the surface S, depending on the desired angle of
reflection for a given angle of incidence. By assuming, e.g.,
normal incidence (i.e., θi(rTx) = 0), we evince that a unit
amplitude reflection coefficient corresponds to an engineered
surface S with a positive surface impedance, which implies
that no power amplifiers or other sophisticated methods for
creating virtual power amplifications through the use of, e.g.,
surface waves [27], [62], [63], are needed to realize the RIS.
The design constraints to be imposed on Z(rRx, y, rTx)) for
ensuring that the RIS has a high power efficiency for any pair
(θi(rTx), θr(rRx)) are discussed in the next sub-sections.

In the rest of this sub-section, we discuss the structural
properties of an RIS and optimize its operation as a function
of the surface impedance Z(rRx, y, rTx), which allow us to
avoid the ambiguity between the two definitions of reflection
coefficients. Whenever necessary to gain engineering insights
onto the design of RISs, we will refer to ΓS(rRx, y, rTx) in (42)
as the surface reflection coefficient as well, since it is directly
related to the electric and magnetic fields defined in (24) and,

therefore, to Maxwell’s equations. Also, ΓS(rRx, y, rTx) is the
most commonly utilized representation for an RIS in wireless
communications [17], [20].

Surface Reflection Coefficient and Floquet’s Theorem
As mentioned, it is instructive to analyze whether and how
the analytical formulation in (32) can be retrieved from (24).
We illustrate whether this is possible with an example. Let
us assume that the RIS is a periodic structure of infinite
size. The periodicity is usually determined by the surface re-
flection coefficient ΓS(rRx, y, rTx) and the surface impedance
Z(rRx, y, rTx). Specifically, an RIS is periodic with period P
if ΓS(rRx, y, rTx) = ΓS(rRx, y + P, rTx) ∀y or, equivalently,
Z(rRx, y, rTx) = Z(rRx, y + P, rTx) ∀y. For simplicity, we
limit ourselves to analyze ΓS(rRx, y, rTx).

First of all, let us analyze whether the reflected electric field
in (36) is an electromagnetically consistent solution for an
electric field in a generic periodic RIS structure. Floquet’s
theorem states that any electromagnetic field evaluated at
a point y in an infinite periodic structure with period P
differs from the field evaluated one period P away from it
only by a complex constant [61, Section 7.1]. The reflected
electric field in (36) fulfills this condition if ΓS(rRx, y, rTx) =
ΓS(rRx, y + P, rTx) ∀y. Specifically, we have the following:

Etref,x (rRx, y + P, rTx) (47)

= ΓS (rRx, y + P, rTx)Eix,0e
−jk sin θi(rTx)(y+P)

(a)
= ΓS (rRx, y, rTx)Eix,0e

−jk sin θi(rTx)ye−jk sin θi(rTx)P

(b)
= Etref,x (rRx, y, rTx) e−jk sin θi(rTx)P

where (a) follows from ΓS(rRx, y, rTx) = ΓS(rRx, y+P, rTx)
∀y and (b) follows from (24).

From (47), it follows that the reflected electric field fulfills
the condition imposed by Floquet’s theorem. In particular, the
difference between the electric field evaluated at two points
that differ of one period is equal to e−jk sin θi(rTx)P .

If ΓS(rRx, y, rTx) is a periodic function, it can be expressed
in terms of Fourier series. Specifically, we can write:

ΓS (rRx, y, rTx) =
∑
n

µne
−j 2πn

P y (48)

where µn for n = . . . ,−2,−1, 0, 1, 2, . . . are the coefficients
of the Fourier series, which depend on the desired angle of
incidence of the electromagnetic wave and on the desired
angle of reflection, i.e., they depend on the specific wave
transformation that the RIS needs to realize.

With the aid of (48), the reflected electric field in (36) can
be rewritten as follows:

Etref,x (rRx, y, rTx) (49)

= ΓS (rRx, y, rTx)Eix,0e
−jk sin θi(rTx)y

= Eix,0
∑
n

µne
−jk(sin θi(rTx)+

λ
P n)y

which unveils that the reflected electric field is expressed as
a summation of plane waves, similar to (32). This confirms
that the analytical formulation in (24) allows us to retrieve
results that are consistent with infinite periodic structures in
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agreement with Floquet’s theorem.
It is worth mentioning that the analytical formulation in (49)

holds true for an arbitrary angle of incidence, even though
the RIS is designed and optimized for the specific angle
of incidence θi (rTx), which depends on the location of the
transmitter of interest and determines the period P of the
RIS. In other words, (49) can be written, in its most general
formulation, as follows:

Etref,x (rRx, y, rTx) (50)

= Eix,0
∑
n

µne
−jk

(
sin θi+

λ
P(θi(rTx),θr(rRx))

n

)
y

where θi denotes a generic angle of incidence and, for the
avoidance of doubt, we have made explicit that the period of
the RIS depends on the angles of design θi (rTx) and θr (rRx),
i.e., P = P (θi (rTx) , θr (rRx)).

Departing from the surface electric field in (50), it is pos-
sible to obtain, with similar analytical steps, the field electric
field for τm < z < τM and, by using (31), the corresponding
magnetic field that fulfills Maxwell’s equations. This would
provide a complete representation of the electric and magnetic
fields reradiated by an RIS according to Floquet’s theorem
[56].

The general analytical formulation in (50) is useful to char-
acterize the electromagnetic field reradiated by the RIS when
it is illuminated by an electromagnetic wave that originates
from the direction θi (rTx), as well as the electromagnetic field
reradiated by the RIS when it is illuminated by an interfering
electromagnetic wave (including the multipath generated by
scatterers that are not digitally controllable) that originates
from any direction θi 6= θi (rTx). Therefore, (50) is a relatively
general formula that can be applied to any RIS of infinite size
that has a periodic structure.

In particular, (50) unveils that the reflected electric field is
given by the summation of plane waves whose tangential wave
numbers are:

ky,n = k

(
sin θi +

λ

P
n

)
, n = . . . ,−2,−1, 0, 1, 2, . . . (51)

Among the infinite number of plane waves (diffracted
modes) in (51), only those that fulfill the condition k ≥ |ky,n|
are propagating modes, while the others are evanescent modes,
i.e., they are not observed in the far field region of the RIS
microstructure [17, Fig. 29]. As far as the propagating modes
are concerned, specifically, their corresponding direction of
reradiation is:

θr,n = arctan

 ky,n√
k2 − k2

y,n

 (52)

To get further insights, let us analyze the case study
θi = θi (rTx) = 0, i.e., the RIS is designed for reflecting
a normally incident electromagnetic wave and the actual
incident electromagnetic wave illuminates the RIS from the
normal direction as well. Based on (51), the condition that the
propagating modes needs to fulfill reduces to:

|n| ≤ P/λ (53)

Fig. 8: Illustration of the reradiated modes for periodic RISs based
on Floquet’s theorem.

Therefore, two case studies are worth of analysis.
• P > λ: In this case, the RIS is characterized by multiple

reflected modes.
• P < λ: In this case, the RIS is characterized by one

single reflected mode, which corresponds to n = 0.
If λ < P < 2λ, in addition, the RIS is characterized by

three main reflected modes, which correspond to n = −1, 0, 1.
This is a typical case study that has been observed through
experiments and full-wave simulations in several research
works, e.g., [27], [41], [56]. Further comments will be given
in Section IV when illustrating the numerical results.

For all the considered case studies, the amount of power that
is reflected towards the direction of each propagating mode
is determined by the complex coefficient µn of the Fourier
series expansion of the surface reflection coefficient in (50). By
taking into account that the total reradiated power is distributed
among the reradiated modes, a qualitative illustration of the
typical reradiation conditions for a periodic RIS is given in Fig.
8. As a concrete case study, let us consider that the surface
reflection coefficient is chosen as follows:

ΓS (rRx, y, rTx) = e−jk(sin θr(rRx)−sin θi(rTx))y (54)

In further text, we will see that this choice corresponds to
an RIS that operates as an anomalous reflector that steers an
electromagnetic wave that impinges upon it from the direction
θi (rTx) towards the direction θr (rRx), where the intended
transmitter and receiver are located, respectively (see (94)). By
direct inspection, we evince that ΓS (rRx, y, rTx) is a periodic
function with period P equal to:

P =
λ

|sin θi (rTx)− sin θr (rRx)|
=

λ

sin θr (rRx)
≥ λ (55)

where the second equality holds under the assumption
θi (rTx) = 0.

In this case, (53) simplifies to:

|n| ≤ 1

sin θr (rRx)
(56)

From (56), we evince that at most three modes (i.e., n =
−1, 0, 1) are expected to be reradiated from the RIS if θr (rRx)
is close to 90◦, which corresponds to the case study in which
the desired angle of reradiation is very different from the angle
of incidence that is assumed when designing the RIS. From
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(52), in particular, the possible angles of reradiation are:

θr,n=−1 = −θr (rRx)

θr,n=0 = 0 (57)
θr,n=+1 = θr (rRx)

From (57), we conclude that, besides the desired angle
of reradiation, we can expect two additional radiated modes
towards the specular direction and towards the direction sym-
metric to the desired direction of reradiation. The amount of
power that is radiated towards these three modes depends,
however, on the specific design of the surface reflection
coefficient and surface impedance. In fact, different functions
may have the same period, but their corresponding Fourier
series are usually different. This point is further clarified in
Section IV with the aid of numerical results, where it is shown
that surface impedances with almost identical periods results
in different reradiated electromagnetic fields.

From (51), we observe, as mentioned, that the possible
modes reradiated by an RIS depend on the actual angle of
incidence of the electromagnetic waves, regardless of the
angles of incidence and reflection for which the RIS is
designed, which, however, determine the period P of the
RIS. If the RIS operates in the presence of other (interfering)
electromagnetic waves, this implies that these latter waves
are reradiated towards directions that are specified by (52).
Therefore, the model for the reflected electric field considered
in (32) is not only consistent with Floquet’s theory if the RIS
is periodic but it can be used to analyze both intended and
interfering electromagnetic waves.

B. Power Efficiency and Reradiated Power Flux

In this sub-section, we introduce the concepts of power
efficiency and reradiated power flux of an RIS as a function
of the surface impedance Z(rRx, y, rTx). For application to
wireless communications and for completeness, we discuss the
implications in terms of field reflection coefficient as well. For
this analysis, we utilize the notion of Poynting vector [49].
In particular, we consider two designs for the RIS that are
referred to as (i) local design with unitary power efficiency
according to a local power conservation principle, and (ii)
global design with unitary power efficiency according to an
average or global power conservation principle.

1) Power Efficiency – Surface Poynting Vector: The power
efficiency characterizes the amount of power that is reradiated
towards the desired direction by an RIS, given the amount
of incident power. The power efficiency can be deduced by
analyzing the net power flow of an RIS in the close vicinity
of the surface S (i.e., at z = 0+). A typical design objective
when optimizing an RIS is to engineer the surface impedance
Z(rRx, y, rTx) so that the power efficiency is unitary [38]. For
a lossless RIS, this design criterion implies that the amount of
power that is reradiated towards a specified direction of reflec-
tion coincides with the amount of incident power, i.e., the net
power flow is equal to zero. In the present tutorial paper, we
consider only lossless RISs. The net power flow of a lossless
RIS can be defined either locally, i.e., for each individual point

s ∈ S , or globally, i.e., for the entire surface S . In this sub-
section, we overview the local and global designs for lossless
RISs, and discuss their properties, advantages, and limitations
from theoretical and implementation points of view.

The departing point to formulate the local and global
designs of a lossless RIS is the notion of surface Poynting
vector. By definition, the normal (to the surface S) component
of the surface Poynting vector evaluated at a point s ∈ S is
defined as follows [49]:

PS(rRx, s, rTx) =
1

2
<
(
Et

tot(rRx, s, rTx)×
(
Ht

tot(rRx, s, rTx)
)∗)

(58)

where (·)∗ denotes the complex conjugate operation. Similar
to the preceding text, the total surface electric and magnetic
field in (58) are macroscopic electromagnetic fields that are
averaged over the area of a unit cell.

The surface Poynting vector accounts for the interaction
between the incident and the reradiated electromagnetic fields
in the close vicinity of the surface S, since the total surface
electric and magnetic fields defined in (39) and (40) are
utilized in (58). This is true regardless of whether the direct
link is available or is blocked at the receiver Rx.

a) Local Design: Based on PS(rRx, s, rTx) in (58), a
lossless RIS is defined to be locally passive if the following
condition holds true:

PS(rRx, s, rTx) = |PS(rRx, s, rTx)| ≤ 0 ∀s ∈ S (59)

By inserting the total surface electric and magnetic fields
in (39) and (40) into (59), and by using (34)-(37), the
surface Poynting vector evaluated at a point y ∈ [−Ly, Ly]
is formulated as follows:

PS(rRx, y, rTx) = ẑ
1

2η0
|Eix,0|2S(rRx, y, rTx) (60)

where S(rRx, y, rTx) for y ∈ [−Ly, Ly] is defined as:

S(rRx, y, rTx) = |ΓS(rRx, y, rTx)|2 cos θr(rRx)− cos θi(rTx)

+ < (ΓS(rRx, y, rTx)) (cos θr(rRx)− cos θi(rTx)) (61)

Therefore, PS(rRx, s, rTx) in (59) can be written as follows:

PS(rRx, y, rTx) =
1

2η0
|Eix,0|2S(rRx, y, rTx) (62)

By using (42), PS(rRx, s, rTx) can be (equivalently) for-
mulated, in terms of the surface impedance Z(rRx, y, rTx), as
PS(rRx, y, rTx) = ẑPS(rRx, y, rTx), where:

PS(rRx, y, rTx) = −
∣∣Eix,0∣∣2

2

∣∣∣∣ cos θi(rTx) + cos θr(rRx)

Z(rRx, y, rTx) cos θr(rRx) + η0

∣∣∣∣2
∗ < (Z(rRx, y, rTx)) (63)

By definition of locally passive design according to (59),
we evince from (63) that a lossless RIS is locally passive if
and only if < (Z(rRx, y, rTx)) ≥ 0 ∀y ∈ [−Ly, Ly]. This is
consistent with the engineering insights that can be gained
from the surface impedance introduced in the previous sub-
section (see (41) and related comments). Notably, a lossless
RIS has a locally unitary power efficiency if and only if
< (Z(rRx, y, rTx)) = 0 ∀y ∈ [−Ly, Ly]. Accordingly, the sur-
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face S needs to be realized by using only reactive components,
without using resistive elements. It is worth mentioning that
the Helmholtz constraint in (43) needs to be always fulfilled
and then taken into consideration. A simple example of local
design for a lossless RIS with unit power efficiency that
satisfies Helmholtz’s equation with equality is the geometrical
optics solution for a uniform reflector, which corresponds
to |Γ(rRx, y, rTx)| = 1 ∀y ∈ [−Ly, Ly] and a position-
independent phase, i.e., cos θr(rRx) = cos θi(rTx). In general,
an infinite number of surface impedances whose real part is
equal to zero and that fulfill the Helmholtz constraint in (43)
can be found, and each of them leads to a different observed
power at the receiver Rx. This is further elaborated in the next
sub-section.

To reap further engineering insights, especially in the
context of wireless communication systems, it is instructive
to analyze the design constraints that the surface reflection
coefficient ΓS(rRx, y, rTx) needs to fulfill in order for an RIS
to be locally passive, and, in particular, for a lossless RIS
to have unitary power efficiency. By utilizing the definition
of the surface reflection coefficient in (27) as a function of
the amplitude R(rRx, s, rTx) and the phases φ(rRx, s, rTx) and
ΦS(rRx, y, rTx), S(rRx, y, rTx) in (61) can be reformulated as:

S(rRx, y, rTx) = (R(rRx, y, rTx))
2

cos θr(rRx)− cos θi(rTx)

+R(rRx, y, rTx)(cos θr(rRx)− cos θi(rTx))

∗ (cos(φ(rRx, y, rTx) + ΦS(rRx, y, rTx))) (64)

Equation (64) indicates that S(rRx, y, rTx) is a quadratic
polynomial in the amplitude R(rRx, s, rTx) of the field (and
surface) reflection coefficient. Therefore, it can be readily
analyzed. By definition, as mentioned, a locally lossless
RIS has a locally unitary power efficiency if and only if
S(rRx, y, rTx) = 0 ∀y ∈ [−Ly, Ly]. Based on (64), and subject
to Helmholtz’s condition in (29), this leads to the design
constraint:

R (rRx, y, rTx) =
1

2
cos (Ψ (y)) (Fi,r − 1) (65)

+
1

2

√
cos2 (Ψ (y)) (Fi,r − 1)

2
+ 4Fi,r

where the following shorthand notation is introduced:

Fi,r = F (rRx, rTx) =
cos θi (rTx)

cos θr (rRx)
(66)

Ψ (y) = Ψ (rRx, y, rTx) = φ (rRx, y, rTx) + ΦS (rRx, y, rTx)
(67)

From (65), we conclude that the amplitude R (rRx, y, rTx)
and the total phase Ψ (rRx, y, rTx) of the surface reflection
coefficient are intertwined, and they are not, in general,
independent of each other if a lossless RIS needs to have a
locally unitary power efficiency. By definition, (63) and (65)
are equivalent. Therefore, imposing < (Z(rRx, y, rTx)) = 0
∀y ∈ [−Ly, Ly] is equivalent to imposing a well-defined
relation between the amplitude and the phase of the field
reflection coefficient, as obtained in (65). From (46), notably,
we know that the condition < (Z(rRx, y, rTx)) = 0 does not
necessarily imply |ΓS(rRx, y, rTx)| = R(rRx, y, rTx) ≤ 1.

Indeed, whether the amplitude R(rRx, y, rTx) of the reflection
coefficient is smaller or greater than unity depends on the an-
gles of incidence and reflection. If we consider the special case
of specular reflection, i.e., θi (rTx) = θr (rRx), then Fi,r = 1
in (65) and we obtain R(rRx, y, rTx) = 1 ∀y ∈ [−Ly, Ly].
If θi (rTx) 6= θr (rRx), on the other hand, the amplitude
R(rRx, y, rTx) of the reflection coefficient is, in general, not
unitary.

In wireless communications, the constraint R(rRx, y, rTx) =
1 is typically assumed when optimizing an RIS [20]. Also, the
total phase Ψ (rRx, y, rTx) is often optimized by assuming that
it is independent of R(rRx, y, rTx). This is not in agreement
with the the condition obtained in (65) for designing loss-
less RISs with a locally unitary power efficiency. By letting
R(rRx, y, rTx) = |ΓS(rRx, y, rTx)| = 1 in (46), specifically, the
real part of the surface impedance can only be equal to:

< (Z(rRx, y, rTx)) =
|Z(rRx, y, rTx)|2

2η0

∗ (cos θi(rTx)− cos θr(rRx)) (68)

Therefore, the condition < (Z(rRx, y, rTx)) = 0, i.e., unitary
power efficiency, can only be ensured for specular reflection. If
θi (rTx) 6= θr (rRx), on the other hand, < (Z(rRx, y, rTx)) can
be either positive or negative, which results in a locally passive
or locally active RIS, respectively, as dictated by (64). Interest
readers are invited to consult [27], [38], [40] for examples and
discussions.

These remarks that originate from (46) and (65) allow
us to conclude that the optimization problems typically for-
mulated in wireless communications result in RISs whose
power efficiency is not necessarily unitary. Let us analyze
in further detail the case study for which the constraint
R(rRx, y, rTx) = 1 ∀y ∈ [−Ly, Ly] is imposed by design.
In this case, S(rRx, y, rTx) in (61) simplifies to:

S (rRx, y, rTx) = (cos θr (rRx)− cos θi (rTx))

∗ (1 + cos (Ψ (rRx, y, rTx))) (69)

From (69), we retrieve, in agreement with (68), that, for
phase-gradient reflectors, a unitary power efficiency is ob-
tained only for specular reflection (i.e., θi (rTx) = θr (rRx)).
If the angle of incidence is normal to the surface S (i.e.,
θi (rTx) = 0), as is often assumed or implied in the literature,
we evince that the net power flow in (69) is negative, i.e.,
S(rRx, y, rTx) < 0, for any angle of reflection. This implies
that it is possible to steer a normally incident wave towards
any directions of reflection while ensuring R(rRx, y, rTx) = 1
and without necessitating any local power amplification and
active components. This is in agreement with (46), which
yields < (Z(rRx, y, rTx)) > 0 in this considered case study.
The power efficiency, however, highly depends on the angle
of reflection and it typically decreases as the angle of reflection
increases. If the specified angle of reflection is smaller than
the angle of incidence (i.e., cos θi (rTx) < cos θr (rRx)),
(69) unveils that the net power flow is locally positive, i.e.,
S(rRx, y, rTx) > 0, which implies that the corresponding
wave transformation, with the constraint R(rRx, y, rTx) = 1,
cannot be realized without local power amplification or active
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components. This is in agreement with (46), i.e., the real part
of the surface impedance needs to be negative, and, thus, the
RIS needs to locally amplify the incident wave. In practice,
this implies that, to realize this wave transformation without
active components, the amplitude of the reflection coefficient
cannot be equal to one, i.e., R(rRx, y, rTx) 6= 1 and the
total phase Ψ (rRx, y, rTx) of the surface reflection coefficient
needs to be carefully engineered. Based on (64), specifically,
S(rRx, y, rTx) ≤ 0 if and only if:

0 ≤ R (rRx, y, rTx) ≤ 1

2
cos (Ψ (y)) (Fi,r − 1) (70)

+
1

2

√
cos2 (Ψ (y)) (Fi,r − 1)

2
+ 4Fi,r

The condition S(rRx, y, rTx) ≤ 0 implies, however, that a
smaller amount of power is reradiated towards the specified
direction of reflection and, consequently, a smaller amount of
power is available at the receiver Rx. This is discussed in the
next sub-section.

b) Global Design: According to the local design crite-
rion, a lossless RIS has locally unitary unit power efficiency
if and only if S(rRx, y, rTx) = 0 ∀y ∈ [−Ly, Ly]. According
to this definition, the real part of the surface impedance
needs to be identically equal to zero along the entire surface
S, i.e., < (Z(rRx, y, rTx)) = 0 ∀y ∈ [−Ly, Ly]. The main
advantage of this design criterion is the relatively simple
structure of lossless RISs, which can be implemented without
using resistive components while ensuring a unitary power
efficiency. The main disadvantages are, on the other hand,
the limited feasible set of possible implementation options
that the constraint < (Z(rRx, y, rTx)) = 0 ∀y ∈ [−Ly, Ly]
offers, the possibly low reradiated power at the location of
the receiver Rx, and the impossibility of realizing some wave
transformations. To elucidate this latter point, let us analyze
the canonical example of anomalous reflection [38].

Let us consider the design of a lossless RIS for which
R(rRx, y, rTx) = R0, φ(rRx, y, rTx) = 0, and Φ(rRx, y, rTx)
is given in (26) ∀y ∈ [−Ly, Ly]. This corresponds to an
anomalous reflector [38] for which Helmholtz’s condition
in (29) is fulfilled with equality. If R0 = 1 and R0 =√

cos θi (rTx)/cos θr (rRx), we retrieve the geometrical optics
solution and the perfect anomalous reflector, respectively, [38],
[40]. In this case, the surface impedance Z(rRx, y, rTx) in (41)
simplifies as follows:

Z (rRx, y, rTx) =
η0

cos θr (rRx)

1 +R0W (y)

C0 −R0W (y)
(71)

where the following notation is introduced:

W (y) = ejΦS(rRx,y,rTx) (72)
C0 = cos θi (rTx)/cos θr (rRx) (73)

Then, the real part of Z (rRx, y, rTx) in (71) is:

< (Z (rRx, y, rTx)) =
η0

cos θr (rRx)

NZ (y)

DZ (y)
(74)

where the following shorthand notation is introduced:

NZ (y) = C0 −R2
0 + (C0 − 1)R0 cos (ΦS (rRx, y, rTx))

(75)

DZ (y) = C2
0 +R2

0 − 2C0R0 cos (ΦS (rRx, y, rTx)) (76)

By direct inspection of (74), it follows that
< (Z (rRx, y, rTx)) = 0 if and only if NZ (y) = 0
∀y ∈ [−Ly, Ly]. However, this condition cannot be
ensured ∀y ∈ [−Ly, Ly] either for R0 = 1 or for
R0 =

√
cos θi (rTx)/cos θr (rRx) =

√
C0. In fact,

< (Z (rRx, y, rTx)) is, in general, an oscillatory function in
y, since DZ (y) ≥ 0 ∀y ∈ [−Ly, Ly] and NZ (y) is positive
or negative in [−Ly, Ly]. To gain further insights and for
illustrative purposes, let us assume C0 ≥ 1. This is always
true if, e.g., cos θi (rTx) = 1, which corresponds to normal
incidence. Then, we have the following findings for R0 = 1
and R0 =

√
C0, respectively.

• R0 = 1: In this case, DZ (y) ≥ 0 and NZ (y) ≥ 0
∀y ∈ [−Ly, Ly]. This implies that a lossless RIS can be
implemented without any power amplification, and the
surface power flow in (63) is negative and can be very
different from zero.

• R0 =
√
C0. In this case, DZ (y) ≥ 0 ∀y ∈ [−Ly, Ly]

and NZ (y) = C0 (C0 − 1) cos (ΦS (rRx, y, rTx)), which
is an oscillating function in [−Ly, Ly], i.e., it can take
positive and negative values. This implies that this wave
transformation cannot be realized without utilizing any
sort of power amplification. The power amplification can
be virtual, e.g., by using surface waves, or can be realized
through actual power amplifiers [27]. The corresponding
power flow in (63) is oscillatory in [−Ly, Ly] as well.

This simple example that corresponds to the design of a
canonical anomalous reflector allows us to understand that
the constraint < (Z (rRx, y, rTx)) = 0 may be too restrictive
for enabling the realization of some wave transformations and
other design criteria may be more appropriate to this end. The
global design criterion falls in this category, since it allows
us to relax the inherent constraints of the local design and
to enlarge the feasible set of wave transformations that can
be realized at a high power efficiency. The main essence
of the global design is to relax the constraint of the local
power efficiency, i.e., for each point of the surface S, with an
average power efficiency constraint, i.e., by considering the
entire surface S.

Specifically, based on the definition of surface Poynting
vector PS(rRx, s, rTx) in (58), a lossless RIS is defined to
be globally passive if the following condition holds true:

PS (rRx, rTx) =

∫
s∈S
|PS (rRx, s, rTx)| ds ≤ 0 (77)

By utilizing the same notation as for the local design, the
average power flow PS (rRx, rTx) in (77) can be explicitly
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written as follows:

PS (rRx, rTx) =

∫ +Lx

−Lx

∫ +Ly

−Ly
PS (rRx, y, rTx) dydx

= 2Lx

∫ +Ly

−Ly
PS (rRx, y, rTx) dy (78)

where PS (rRx, y, rTx) is given in (63).
Based on (77), therefore, a lossless RIS has, on average,

unitary power efficiency if and only if PS (rRx, rTx) = 0.
In other words, the power flow does not need to be equal to
zero for each point of the surface but only the power flow
integrated along the surface S needs to be equal to zero. This
implies that the global design accounts for solutions that may
correspond to practical implementations that require positive
and negative values of the surface impedance Z (rRx, y, rTx).
Then, the design constraint is milder: The integral of the local
power flow along the surface is equal to zero. In a global
design, in particular, the electromagnetic field reradiated by
the RIS is not obtained as the local contribution of each RIS
element but as the collective action of all the RIS elements as
a whole.

Let us consider again the case study of perfect anomalous
reflection already analyzed from the point of view of the
local design. The wave transformation for which R0 =√

cos θi (rTx)/cos θr (rRx) corresponds to the globally opti-
mum design with unitary power efficiency, i.e., R0 is obtained
by setting PS (rRx, rTx) = 0 in (78). Therefore, a global
design offers a greater flexibility than a local design.

c) Local Design vs. Global Design: In general, a locally
optimal solution with unitary power efficiency is a globally
optimal solution with unitary power efficiency as well. The
opposite is, however, not true in general. This implies that a
global design enlarges the set of feasible solutions that can be
found when considering a local design. However, there exist
inherent performance and implementation tradeoffs between
the local and global designs.

The solutions found according to a local design result
in implementations of RISs whose real part of the surface
impedance is identically equal to zero. This implies that the
corresponding RISs can be realized without utilizing resistive
components and by utilizing only capacitive and inductive
elements. In general, this simplifies the implementation of the
surface S. However, the set of feasible solutions that fulfill
the local design paradigm may be limited and some wave
transformations may not be allowed by the design constraint.

A global design allows, on the other hand, for solutions for
which the real part of the surface impedance is not necessarily
equal to zero. This enlarges the set of feasible solutions.
Also, wave transformations that may require positive and
negative values of the surface impedance are allowed. How-
ever, RISs with resistive elements and with active elements,
which correspond to negative values of the surface impedance,
are difficult to design and to implement. The need of active
elements can be avoided by realizing virtual power losses and
virtual power gains along the surface S through carefully
engineered evanescent Floquet’s harmonics (surface waves)
that are excited at the metasurface [27], [62]–[64].

Therefore, it would be convenient to identify designs for
RIS that have a unitary power efficiency, that allow the same
feasible set of solutions as the global design, and that have the
same implementation simplicity as the local design, i.e., they
can be realized by using purely reactive components. With this
in mind, it is convenient to depart from the global design with
unitary power efficiency as the starting point for designing an
RIS, in order to have a large set of feasible solutions. Once
the corresponding optimal solution is found, one can find an
approximate solution that corresponds to an implementation of
the RIS with a surface impedance whose real part is equal to
zero. This would make the implementation of the RIS easier
while ensuring a high power efficiency. Examples of similar
design methods do exist in the recent scientific literature, e.g.,
[51]. In the next sub-section, we illustrate examples of this
design paradigm with application to wireless communications
and with focus on how approximated solutions can be found.
We anticipate that the approximated solutions can be imple-
mented by utilizing only reactive components, but they may
result in slightly lower beam pattern gains and higher side
lobes that need to be accurately controlled when formulating
the problem. This is elaborated in the next sub-section.

2) Reradiated Power Flux – Poynting Vector: The surface
power flow introduced in preceding text allows us to char-
acterize the efficiency of an RIS as a device that realizes
specific wave transformations. It does not offer, however, any
information on the amount of power that is available at the
receiver Rx, which ultimately determines the performance of
a communication link. The surface power efficiency provides
information only on the difference between the incident and
reradiated powers in the close vicinity of the surface S. If a
lossless RIS has a unit power efficiency, the total reradiated
power is equal to the total incident power. The power effi-
ciency is, therefore, an important key performance indicator to
characterize a communication link in the presence of an RIS.
However, it is not sufficient. It is necessary to characterize the
power observed at the location of the intended receiver Rx as
well. This is possible by introducing the notion of reradiated
power flux.

The reradiated power flux characterizes the amount of power
that is reradiated by an RIS at an arbitrary point of observation,
which can be located in the radiative (Fresnel) near-field and
the (Fraunhofer) far-field regions of the surface S [17], [57].
Therefore, the reradiated power flux is not defined only in the
close proximity of the surface S , i.e., at z = 0+. The reradiated
power flux provides information on the angular response of the
RIS and, in particular, how the incident power is reflected as
a function of the angle of observation. In the far-field region
of the RIS, the reradiated power flux is proportional to the
radiation pattern (or array factor) of the RIS. The reradiated
power flux allows us to characterize the amount of power
that is reradiated towards the specified direction of design
and towards undesired (spurious) directions of observation.
Therefore, both the main lobe and the side lobes of the RIS
are characterized. The reradiated power flux is an essential
performance indicator in wireless communications, since it
determines the amount of received power and, therefore, the
signal-to-noise and the signal-to-interference ratios.
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The reradiated power flux is defined from the Poynting vec-
tor evaluated at any observation point in a three-dimensional
volume, V , of interest. Let robs = xobsx̂ + yobsŷ + zobsẑ ∈ V
denote a generic observation point in V . For simplicity, we
assume that robs is located outside the volume VTx occupied
by the transmitter Tx. Therefore, the canonical source-free
scenario is considered. For generality, we assume that robs is
located at a distance Robs from the center of the surface S (the
origin of the reference system) and that the elevation angle
and the azimuth angle are equal to θo and ϕo, respectively,
with respect to the origin. Thus, robs = Robs(sin θo cosϕox̂ +
sin θo sinϕoŷ + cos θoẑ) with Robs = ‖robs‖.

As mentioned in previous sections, we assume, for simplic-
ity but without loss of generality, that the direct link is blocked
at the observation point robs. This is known to be the most
useful case study when deploying an RIS [65] and, in addition,
the focus of the present tutorial paper is on the electromagnetic
field reradiated by the RIS. The direct link can be readily taken
into account as described in [57]. By definition, the Poynting
vector evaluated at robs = xobsx̂ + yobsŷ + zobsẑ is formulated
as follows [49]:

Pobs(rRx, robs, rTx) (79)

=
1

2
< (Eref(rRx, robs, rTx)×H∗ref(rRx, robs, rTx))

where Eref(rRx, robs, rTx) and Href(rRx, robs, rTx) denote the
reradiated electric and magnetic fields evaluated at robs, re-
spectively.

It is worth emphasizing that Eref(rRx, robs, rTx) and
Href(rRx, robs, rTx) in (79) are different from the electric and
magnetic fields in the close vicinity of the surface S, as
defined in (24), since the latter fields are defined only for
τm < z = zobs < τM . The electric and magnetic fields
Eref(rRx, robs, rTx) and Href(rRx, robs, rTx) in (79) are, how-
ever, uniquely determined by the surface electromagnetic fields
in (34)-(37). By using Franz’s formula [49, Eq. 18.10.11],
specifically, Eref(rRx, robs, rTx) and Href(rRx, robs, rTx) can be
formulated as follows:

Eref(rRx, robs, rTx)

=
1

jωε0µ0
(∇robs × (∇robs ×As(rRx, robs, rTx)))

− 1

ε0
∇robs ×Ams(rRx, robs, rTx) (80)

Href(rRx, robs, rTx) = − 1

jωµ0
∇robs ×Eref(rRx, robs, rTx)

(81)

where the following shorthand notation is introduced:

As(rRx, robs, rTx) (82)

= µ0

∫
S

(n̂out ×Ht
ref(rRx, y, rTx))G(robs, s)ds

Ams(rRx, robs, rTx) (83)

= −ε0
∫
S

(n̂out ×Et
ref(rRx, y, rTx))G(robs, s)ds

and n̂out = −ẑ is the unit norm vector that is perpendicular
to the RIS and points towards the transmission side of S,

Et
ref(rRx, y, rTx) and Ht

ref(rRx, y, rTx) are the surface electric
and magnetic fields defined in (36) and (37), respectively, and
G(robs, s) is the scalar Green function that corresponds to a
point source located at s = xx̂ + yŷ ∈ S and that is observed
at robs:

G (robs, s) =
e−jk‖robs−s‖

4π ‖robs − s‖
(84)

with ‖robs − s‖ =
√

(xobs − x)
2

+ (yobs − y)
2

+ z2
obs.

Therefore, the reradiated electromagnetic field in the near
field and far field regions of the RIS are uniquely determined
by the surface fields in the close proximity of the surface S,
as dictated by the principles of surface electromagnetics [3].
From the obtained integral expression of Eref(rRx, robs, rTx)
and Href(rRx, robs, rTx), the Poynting vector in (79) can be
readily computed for any observation point robs in the far field
of the array microstructure, i.e., a few wavelengths far away
from S or zobs � λ [17, Fig. 29]. This constraint is usually
fulfilled for typical wireless applications.

The main assumptions for the validity of (80) and (81)
lie in the approximations made for applying (24), i.e., the
physical optics approximation [50]. More specifically, J(y) =
n̂out ×Ht

ref(rRx, y, rTx) and M(y) = −n̂out ×Et
ref(rRx, y, rTx)

can be interpreted as equivalent electric and magnetic surface
currents, respectively, that produce the electromagnetic fields
reradiated by the RIS. These equivalent surface currents are
obtained under the assumption that the RIS has an infinite
size and no edge effects are accounted for in the currents
distribution along the surface S. Even though the physical
optics method yields an approximated solution, it allows us to
obtain analytical expressions that are suitable for performance
evaluation, for optimizing RISs based on relevant key perfor-
mance criteria, and to get engineering insights for network
design. The limitations of the physical optics approximation
method may be overcome by resorting to numerical methods,
e.g., the method of moments, which, however, offer limited
design insights and have limited applicability for optimization.

Under the physical optics approximation, the reradiation
integrals in (80) and (81) have general applicability. In the
present tutorial paper, for ease of illustration, we focus our
attention on networks setups in which robs lie in the Fraun-
hofer far field region of the RIS, i.e., Robs ≥ zobs ≥
8
(
L2
x + L2

y

)/
λ. In this case, the electric and magnetic fields

in (80) and (81), respectively, can be simplified.
More precisely, for ease of writing, let us introduce the

following shorthand notation:

Etref,x (rRx, y, rTx) = x̂ ·Et
ref (rRx, y, rTx) (85)

Ht
ref,y (rRx, y, rTx) = ŷ ·Ht

ref (rRx, y, rTx) (86)

r̂obs(s) =
(xobs − x)x̂ + (yobs − y)ŷ + zobsẑ

‖robs − s‖
(87)

where r̂obs(s) is a unit norm vector that is directed from s to
robs. Also, Etref,x (rRx, y, rTx) and Ht

ref,y (rRx, y, rTx) are, by
definition, independent of robs.

Based on this notation and considerations, we evince that
the operator ∇robs can be moved inside the integrals in (82)
and (83), and that it operates only on the Green function.
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Under the mild assumption Robs ≥ zobs � λ, the following
approximations can be applied to the integrand functions in
(82) and (83):

∇robs ×
(
∇robs ×

(
Etref,x (rRx, y, rTx)G(robs, s)x̂

))
(88)

≈ −k2Etref,x (rRx, y, rTx)G(robs, s)(r̂obs(s)× (r̂obs(s)× x̂))

∇robs ×
(
∇robs ×

(
Ht

ref,y (rRx, y, rTx)G(robs, s)ŷ
))

(89)

≈ −k2Ht
ref,y (rRx, y, rTx)G(robs, s)(r̂obs(s)× (r̂obs(s)× ŷ))

The approximations in (88) and (89) avoid the explicit
computation of the derivatives of the electric and magnetic
surface fields and, therefore, they make the computation of the
power flux relatively simple. In addition, these approximations
are applicable to the Fresnel and Fraunhofer regions of the
RIS. In the Fraunhofer region of the RIS, (80) and (81) can
be further simplified, and, for illustrative purposes, we focus
our attention on this regime for the rest of the present tutorial
paper.

If Robs ≥ zobs ≥ 8
(
L2
x + L2

y

)/
λ, specifically, the Poynting

vector in (79) can be formulated as follows:

Pobs(rRx, robs, rTx) ≈ k2

2η0
|Eix,0|2Θ(θr(rRx), θo, ϕo)

∗ |A(rRx, robs, rTx)|2 r̂obs,0 (90)

where the following functions are defined:

A(rRx, robs, rTx) =
e−jkRobs

4πRobs
(91)

∗
∫
S

ΓS(rRx, y, rTx)e−jk sin θi(rTx)ywo(x, y)dxdy

Θ(θr(rRx), θo, ϕo) =
(
1− sin2 θo cos2 ϕo

)
cos2 θr(rRx)

+ 2 cos θo cos θr(rRx) + 1− sin2 θo sin2 ϕo (92)

r̂obs,0 = r̂obs(s = (0, 0)) =
robs

‖robs‖
= (sin θo cosϕox̂ + sin θo sinϕoŷ + cos θoẑ) (93)

where wo(x, y) = ejk(x sin θo cosϕo+y sin θo sinϕo).
The analytical expression of the power flux evaluated at robs

in (90) explicitly depends on the surface reflection coefficient
ΓS(rRx, y, rTx), it is electromagnetically consistent, and it is
simple enough for computing the power reradiated from an
RIS as a function of the angle of observation. In the next sub-
section, (90) is utilized for evaluating the performance of an
RIS as a function of the surface impedance.

C. Electromagnetically Consistent Optimization of the Surface
Impedance

In this sub-section, we overview the optimization of
RISs for fulfilling the optimization criteria introduced in
the previous sub-sections and we evaluate their perfor-
mance in terms of power flux, i.e., Pobs (rRx, robs, rTx) =
|Pobs (rRx, robs, rTx)|, as a function of the observation point.
This allows us to characterize the angular response (the
reradiation pattern) of an RIS. We ensure, in particular, that

the resulting solution is electromagnetically consistent, which
includes the fulfillment of Helmholtz’s condition. As case
studies for the optimization criteria, we consider the local
design, the global design, and an approximated solution of
the global design that is realized by utilizing purely reactive
surface impedances. We illustrate how some designs of RISs
may lead to a large amount of reradiated power towards
directions that are different from the direction of design,
i.e., where the receiver Rx is. This is in agreement with
Floquet’s theorem applied to periodic structures. In light of the
power conservation principle, these spurious reflections result
in a lower amount of reradiated power towards the intended
direction. We discuss how these spurious reflections can be
kept under control at the design stage as well.

For ease of writing and to facilitate the implementation
of the numerical algorithms and the computation of the cor-
responding numerical solutions, we summarize in Table III
the main functions utilized in this sub-section. The functions
reported in Table III are, specifically, discretized into unit cells
of length ∆y , which denotes the spatial resolution at which the
amplitude and phase of the incident wave are controlled and
shaped by the RIS. The variable of optimization is the surface
impedance, as it provides direct information on how an RIS
is implemented. Since the surface impedance has variations
only along the y-axis in the considered case study, the surface
impedance is sampled at the center-point of each unit cell,
i.e., yn = −Ly − ∆y/2 + n∆y for n = 1, 2, . . . , N and
∆y = 2Ly/N . The resulting N samples are collected in a
vector Z of size N , as defined in Table III. For simplicity,
similar to the incident and reradiated electromagnetic waves,
we assume ϕo = π/2, i.e., the observation point lies in the
yz-plane. The RIS is optimized based on specified locations of
the transmitter Tx (rTx) and the receiver Rx (rRx), while robs

characterizes the location at which the power flux is observed.
In general, robs 6= rRx 6= rTx. For simplicity, similar to Table
III, we use the notation θi = θi (rTx) and θr = θr (rRx).

1) Benchmark Solution – Generalized Geometrical Optics:
As a benchmark solution for the considered system designs,
we consider the canonical linear phase-gradient design, which
we refer to as the generalized geometrical optics solution,
since it leads to the so-called generalized law of reflection
[2]. The generalized geometrical optics solution is a typical
local design, which, however, does not necessarily guarantee
a locally unitary power efficiency. It corresponds to the fol-
lowing surface reflection coefficient and surface impedance:

ΓS (rRx, y, rTx) = ΓGO (y) = e−jk(sin θr−sin θi)y (94)

ZS (rRx, y, rTx) = ZGO (y) = η0
1 + ΓGO (y)

cos θi − ΓGO (y) cos θr
(95)

The difference between the generalized and the conventional
geometrical optics solutions is that in the former case the
reflected rays are assumed to propagate towards a direction
that is different from that dictated by the conventional law
of reflection. In conventional geometrical optics, on the other
hand, the rays at every point of the surface S are reflected
specularly, i.e., the angle of reflection is equal to the angle
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TABLE III: Summary of the functions utilized for optimization (θi = θi (rTx), θr = θr (rRx)).

Original Equation Discretization
Surface impedance (vector) in (38) Z = [Z1, Z2, . . . , ZN ] , Zn = Z(yn), n = 1, 2, . . . , N

Surface reflection coefficient (vector) in (42) ΓS (Z) = [Γ1,Γ2, . . . ,ΓN ] , Γn (Zn) = Zn cos θi−η0
Zn cos θr+η0

OS(Z) = PS (rRx, rTx) in (78) OS (Z) =

∣∣∣Eix,0∣∣∣2Lx
η0

(
−2Ly cos θi + ∆y

N∑
n=1

[
|Γn (Zn)|2 cos θr + < (Γn (Zn)) (cos θr − cos θi)

])

Helmholtz’s condition in (43)
Hn (Z) = η0c

k2

∣∣∣∣∣Zn′′Z+
n−

(
Z
′
n

)2
2 cos θr−Z

′
nZ

+
n 2jk sin θi

Z−n
(
Z+
n

)2

∣∣∣∣∣
Z+
n = Z+ (yn) , Z−n = Z− (yn) , Z

′
n =

Zn+1−Zn
∆y

, Z
′′
n =

Z
′
n+1−Z

′
n

∆y

Power flow at robs (ϕo = π/2) in (90)
Pobs (Z) = k2

η0

∣∣∣Eix,0∣∣∣2L2
x

8π2R2
obs

∣∣∣Ã (Z)
∣∣∣2 (cos2 θr + cos2 θo + 2 cos θr cos θo

)
Ã (Z) = ∆y

N∑
n=1

Γn (Zn) e−jk(sin θi−sin θo)yn

Power flow at robs = rRx in (90)
PRx (Z) = k2

η0

∣∣∣Eix,0∣∣∣2L2
x

8π2|rRx|2

∣∣∣Ã (Z)
∣∣∣24 cos2 θr

Ã (Z) = ∆y

N∑
n=1

Γn (Zn) e−jk(sin θi−sin θr)yn

Fig. 9: Generalized geometrical optics approximation.

of incidence, and the surface impedance depends only on
the angle of incidence. In mathematical terms, the surface
impedance that corresponds to the conventional geometrical
optics solution is obtained by replacing θr → θi in the
denominator of (95), while keeping unchanged the definition
of the surface reflection coefficient in (94).

For completeness, it is instructive to review the basic
analytical steps that allow us to retrieve the geometrical
optics solution of the surface reflection coefficient in (94).
Geometrical optics, or ray optics, is a model for describing the
propagation of the electromagnetic waves in terms of rays. A
ray in geometrical optics is an abstraction that is useful for ap-
proximating the paths along which the electromagnetic waves
propagate under certain circumstances. Generally speaking,
the definition of ray follows from Fermat’s principle, which
states that the path taken between two points by a ray is the
path that is traversed in the least time. As far as the present
tutorial paper is concerned, the main properties of the rays
that we need are that they propagate in straight-line paths as
they travel in a homogeneous medium and that they bend at
the interface between two dissimilar media.

According to this definition, let us consider the setup
illustrated in Fig. 9. According to the geometrical optics
approximation, an RIS is modeled as a device that is capable
of introducing a phase modulation or phase shift, Φ (y),

to the incident electromagnetic wave. A regular surface is
characterized by a constant phase modulation, i.e., Φ (y) = Φ0

∀y. The RIS is assumed to be of infinite extend without
edges. Also, the geometrical optics approximation does not
allow us to model the power of the incident and reflected
electromagnetic waves, therefore the reflection coefficient has
a unit amplitude by definition. According to the geometrical
optics approximation, the problem formulation consists of
finding the phase modulation Φ (y) so that an electromagnetic
wave that impinges upon the RIS from the direction θi is
reflected towards the direction θr, where the incident and
reflected electromagnetic waves are modeled as the two rays
illustrated in Fig. 9. This problem formulation amounts to
identifying the position y according to Fermat’s principle: The
path taken between two points by a ray is the path that is
traversed in the least time. Since the time and the phase shift
of a monochromatic electromagnetic wave at the frequency f
are proportional to each other, i.e., ϕ (y) = 2πfτ (y), where
ϕ (y) and τ (y) are the phase shift and the time, respectively,
Fermat’s principle can be equivalently stated as: The path
taken between two points by a ray is the path that is traversed
by minimizing the phase shift.

Based on Fig. 9, the total accumulated phase of the ray that
is emitted by the transmitter, that is bent by the RIS when it
impinges upon it, and that reaches the receiver depends on y
as follows:

ϕ (y) = 2πf

(
m
√
y2 + h2

i

c

)

+ 2πf

m
√

(d− y)
2

+ h2
r

c


+ Φ (y) (96)

where m denotes the index of refraction of the medium where
the RIS is deployed and c is the speed of light.

The trajectory of the ray according to Fermat’s theorem is
obtained by computing the first-order derivative of ϕ (y) and
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equating it to zero, which yields:

mk sin θi −mk sin θr +
dΦ (y)

dy
= 0 (97)

where θi and θr are the angles of incidence and reflection,
respectively. Notably, the expression in (97) is the main
criterion for designing conventional reflectarray antennas. In
the modern physics literature, (97) is often referred to as the
generalized law of reflection [2].

It is apparent from (97) that, given the angle of incidence,
the angle of reflection can be appropriately configured by
optimizing the first-order derivative of the phase modulation
introduced by the RIS. This is the reason why an RIS is often
referred to as, according to the (generalized) geometrical optics
approximation, a phase-gradient metasurface. If, for example,
we set Φ (y) = mk (sin θdesired − sin θi) y, which corresponds
to the phase modulation of the reflection coefficient in (94), we
obtain, as desired, θr = θdesired. Therefore, the geometrical
optics solution for the surface reflection coefficient and the
surface impedance in (95) is a direct consequence of Fermat’s
principle under the assumption that the RIS applies a linear
modulation to the incident electromagnetic wave.

The corresponding discretized versions of the surface reflec-
tion coefficient and surface impedance are ΓGO,n = ΓGO (yn)
and ZGO,n = ZGO (yn) for n = 1, 2, . . . , N , respectively. In
this case, no optimization problem needs to be solved, and
the power flux evaluated at robs is equal to Pobs (ZGO), as
defined in Table III.

2) Global Design – Unitary Power Efficiency: As elabo-
rated in the previous sub-section, an RIS designed based on
a global design with unitary power efficiency is a solution of
the following constrained optimization problem:

min
Z
|OS (Z)| (98)

s.t. Hn (Z) ≤ ε ∀n = 1, 2, . . . , N − 2 (98a)

where ε is a small positive constant and the constraint in
(98a) ensures that the obtained surface impedance fulfills
Helmholtz’s condition.

Given the problem formulation, the solution of the opti-
mization problem in (98) is not necessarily unique. In terms
of system implementation, this can be considered as an ad-
vantage. In fact, additional optimization constraints may be
added in order to find a solution that has some desired or
desirable implementation features. The surface impedance that
is solution to the optimization problem in (98) is denoted
by Zglo0, since it is globally optimal and the surface power
flow is zero by design (i.e., unitary power efficiency). The
corresponding power flux evaluated at robs is Pobs (Zglo0), as
defined in Table III.

3) Approximated Global Design – Purely Reactive
Impedance Boundary: The surface impedance Zglo0 solution
of the optimization problem in (98) is usually characterized
by a non-zero real part. As mentioned in the previous
sub-section, this is not always a suitable design from the
implementation point of view, since local power gains
and local power losses are present along the surface S. A
convenient solution from the implementation point of view

is, on the other hand, a purely reactive surface impedance,
i.e., <(Zn) = 0 ∀n = 1, 2, . . . , N , which is, by definition,
both locally and globally optimal and has a unitary power
efficiency. Inspired by [51], a suitable approach in the
context of wireless communications consists of finding a
purely reactive surface impedance that provides almost the
same power flux evaluated at rRx, which is the location of
interest, as the power flux obtained with Zglo0. By denoting
with Zreactive

glo0 such a purely reactive surface impedance,
the mentioned design criterion corresponds to the condition
PRx

(
Zreactive

glo0

)
≈ PRx (Zglo0).

The corresponding optimization problem is, therefore, for-
mulated as follows:

min
Z
|PRx (Z)− PRx (Zglo0)| (99)

s.t. Hn (Z) ≤ ε ∀n = 1, 2, . . . , N − 2 (99a)

< (Zn) = 0 ∀n = 1, 2, . . . , N (99b)

where PRx (Zglo0) is the power flux evaluated at the receiver
Rx by using the surface impedance solution of the optimization
problem in (98), and the constraint in (99b) ensures that the
real part of the impedance is equal to zero. As mentioned,
the corresponding power flux evaluated at robs is equal to
Pobs

(
Zreactive

glo0

)
.

4) Optimization Constraints on Spurious Reflections: By
definition, the optimization problems formulated in (98) and
(99) specify the power efficiency and the power flux only in
correspondence with the location of the receiver Rx, while
they do not explicitly account, in the problem formulation, for
the power reradiated towards directions different from that of
the receiver Rx. In general, this implies that a large amount
of power may be reradiated towards undesired directions,
i.e., directions are are different from the target direction of
reflection (where the receiver Rx is). This is apparent by direct
inspection of, e.g., (99) and is consistent with Floquet’s theory
applied to periodic RISs, as discussed in the previous sub-
sections. The problem formulation imposes that the power
fluxes PRx

(
Zreactive

glo0

)
and PRx (Zglo0) are approximately the

same at the receiver Rx, but they may be different at locations
robs 6= rRx. For example, strong reflections towards some
directions may emerge since they are not controlled at the
design stage. The same comment applies to (98), since a
large amount of power may be reradiated towards directions
different from rRx, as no specific constraint is added in the
formulation of the optimization problem. Several research
works have reported that spurious reflections are often and
usually observed [41], [56].

In order to make sure that an optimized RIS does not
produce undesired reflections by design, the optimization prob-
lems in (98) and (99) need to be modified by adding specified
constrains to the radiation pattern of the RIS. Specifically, the
optimization problems in (98) and (99) can be reformulated,
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TABLE IV: Parameters setup.

Parameter Value
f 28 GHz

λ = c/f 10.7 mm
θi(rTx) 0◦

θr(rRx) {30◦, 75◦}
‖rRx‖ = Robs 100 m

η0 377 Ω
P0 1 Watt/m2

|Eix,0| =
√

2P0η0 27.45 V/m
Lx 0.5 m
Ly 0.25 m
∆y λ/32
ε 10−2

δ 10−4

[θ1l, θ1u] {0◦, 1◦}, step = 0.1◦

respectively, as follows:

min
Z
|OS (Z)| (100)

s.t. Hn (Z) ≤ ε ∀n = 1, 2, . . . , N − 2 (100a)
Pobs (Z) ≤ δ θo ∈ [θ1l, θ1u] , [θ2l, θ2u] , . . . (100b)

min
Z
|PRx (Z)− PRx (Zglo0)| (101)

s.t. Hn (Z) ≤ ε ∀n = 1, 2, . . . , N − 2 (101a)

< (Zn) = 0 ∀n = 1, 2, . . . , N (101b)
Pobs (Z) ≤ δ θo ∈ [θ1l, θ1u] , [θ2l, θ2u] , . . . (101c)

where [θi,min, θi,max] for i = 1, 2, . . . are specified angular
sectors where the reradiation of the RIS needs to be kept under
some maximum power reradiation constraints and δ is a small
positive constant that quantifies the reradiated power that is
allowed towards the specified angular sectors.

IV. NUMERICAL EXAMPLES

In this section, we provide some numerical examples in
order to compare and discuss the optimal designs for RISs
that are obtained as solutions of the optimization problems
formulated in (98), (99), (100), and (101). The aim of this
section is to showcase, with the aid of numerical results and
illustrations, the properties of the obtained surface impedances
and reradiated power flux in a tutorial fashion.

The simulation setup is given in Table IV. As examples,
we assume that the incident signal impinges upon the RIS
from the normal direction, i.e., θi (rTx) = 0◦. Two desired
angles of reradiation are considered: θr (rRx) = 30◦ and
θr (rRx) = 75◦. This choice is made in order to highlight
the differences, in terms of surface impedance, between a
relatively small and a relatively large angle of reflection with
respect to the angle of incidence. As far as the nullification
of possible spurious reflections is concerned, we focus our at-
tention on the reradiation towards the specular direction, since
this is one of the most important undesired reradiated modes
in the considered case study. This is also in agreement with
Floquet’s theory that was reviewed in Section III. According
to Floquet’s theory, we may expect, in general, the existence
of more than one spurious reflection, while parasitic specular
reflection is always possible. We focus our attention on the

reradiation towards the specular direction as an example, and
elaborate this point in further text.

The optimization problems are solved by using the
fmincon function in Matlab, which is a gradient-based
algorithm that is designed to work on problems where the
objective function and the constraint functions are continuous
and have continuous first-order derivatives. The fmincon
function is designed to find the minimum of constrained
nonlinear multivariable functions. As far the optimization
problems in (98) and (100) are concerned, the fmincon
function is initialized with the geometrical optics solution
Z0 = ZGO in (95). As far the optimization problems in (99)
and (101) are concerned, the fmincon function is initialized
with the imaginary part of the solution of the optimization
problems in (98) and (100), i.e., Z0 = j= (Zglo0).

In Figs. 10 and 11, we illustrate the surface impedance and
the reradiated power flux that correspond to the solution of
the optimization problems in (98) and (99) for θr(rRx) = 30◦

and θr(rRx) = 75◦, respectively. For ease of visualization, the
sub-figures that show the surface impedance and the Helmholtz
constraint illustrate a single period of the corresponding func-
tion. The numerical results confirm the general considerations
made in the previous sub-sections. In both figures, we observe
that the Helmholtz constraint is fulfilled and that the main lobe
of the reradiation pattern of the RIS is steered towards the
desired direction of reflection. The surface impedance obtained
as solution of the optimization problem in (99) is, as desired,
purely reactive. By comparing the reradiated power flux (in
dB scale and in the polar representation), the performance vs.
implementation tradeoff between the two surface impedances
obtained as solutions of the optimization problems in (98) and
(99) is apparent, especially for θr(rRx) = 75◦. The surface
impedance that is solution of the optimization problem in (99)
offers a good approximation of the main lobe of the reradiation
pattern at the cost of slightly higher side lobes. The difference
between the main lobe and the side lobes is, however, large and
can be controlled by adding additional optimization constraints
to the optimization problems, as discussed next for suppressing
the specular reflection. As for the case study θr(rRx) = 75◦ in
Fig. 11, we observe that the real part of the surface impedance
obtained by solving the optimization problem in (98) varies
along the surface and can take positive and negative values.
Finally, the geometrical optics solution results in worse rera-
diation performance as compared with the optimized solutions
obtained from the optimization problems in (98) and (99).

In Figs. 10 and 11, we observe a strong reflection towards
the specular direction, i.e., θr = 0, and towards the direction
that is symmetric with respect to the desired direction of
reradiation, i.e., θr = −θr(rRx). This is in agreement with
Floquet’s theory in (53). In fact, the figures illustrate that the
surface impedance is a periodic function and the period P is
slightly larger than the wavelength λ. Therefore, we expect
three main reradiation propagating modes towards the desired
direction of reflection, the specular direction, and the direction
that is symmetric with respect to desired direction of reflection.
This is an undesired effect and is particularly pronounced in
Fig. 11, in which the difference between the angle of incidence
and the angle of reflection is larger.
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(a) Real part of surface impedance < (Zn).

700 720 740 760 780 800

Index of the unit cells

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

Im
a

g
in

a
ry

 p
a

rt
 o

f 
th

e
 s

u
rf

a
c
e

 i
m

p
e

d
a

n
c
e

 (
 {

Z
n
})

Geometrical optics

Global design

Reactive sheet

(b) Imaginary part of surface impedance = (Zn).
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(d) Power flux vs. angle of observation Pobs (Z) (dB plot).
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(e) Power flux vs. angle of observation Pobs (Z) (polar plot).

Fig. 10: Surface impedance in (95) and solution of the optimization problems in (98) and (99) (θr(rRx) = 30◦).
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(b) Imaginary part of surface impedance = (Zn).
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(d) Power flux vs. angle of observation Pobs (Z) (dB plot).
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(e) Power flux vs. angle of observation Pobs (Z) (polar plot).

Fig. 11: Surface impedance in (95) and solution of the optimization problems in (98) and (99) (θr(rRx) = 75◦).

The presence of the spurious reflections has two negative
consequences: (i) some power that could be directed towards

the desired direction of reflection is steered towards other
directions and (ii) the surface generates interference towards
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(b) Imaginary part of surface impedance = (Zn).
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(d) Power flux vs. angle of observation Pobs (Z) (dB plot).
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(e) Power flux vs. angle of observation Pobs (Z) (polar plot).

Fig. 12: Surface impedance in (95) and solution of the optimization problems in (100) and (101) (θr(rRx) = 30◦).
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(b) Imaginary part of surface impedance = (Zn).
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(d) Power flux vs. angle of observation Pobs (Z) (dB plot).
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(e) Power flux vs. angle of observation Pobs (Z) (polar plot).

Fig. 13: Surface impedance in (95) and solution of the optimization problems in (100) and (101) (θr(rRx) = 75◦).

uncontrolled directions and this may increase the interference
towards other devices. Therefore, it is necessary to keep under

control these possible spurious reflections by design. The
corresponding results are illustrated in Figs. 12 and 13, which
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(b) Imaginary part of surface impedance = (Zn).
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(d) Power flux vs. angle of observation Pobs (Z) (dB plot).
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(e) Power flux vs. angle of observation Pobs (Z) (polar plot).

Fig. 14: Surface impedance in (95) and solution of the optimization problems in (100) and (101) (θr(rRx) = 75◦). An additional constraint
on the spurious reflection towards θr = −75◦ is added.

are obtained by solving the optimization problems formulated
in (100), and (101) for θr(rRx) = 30◦ and θr(rRx) = 75◦,
respectively, under the assumption that only the reradiation
mode towards the specular direction is minimized by design,
while no optimization constrain is added to the second spu-
rious reradiation. In this case, we observe that the specular
reflection is below the predefined maximum level and, overall,
the side lobes of the reradiation pattern are well below the
main lobe. In spite of the additional design constraint that is
added in the optimization problems formulated in (100), and
(101), a purely reactive solution for the surface impedance
exists and can be computed.

The reradiation efficiency of the considered RIS may be
further enhanced by adding a design constraint that accounts
for the spurious reradiation towards θr = −θr(rRx), besides
the reradiation constraint towards θr = 0◦. An illustrative
example is reported in Fig. 14, which corresponds to the same
setup and optimization problem as for Fig. 13, with the only
addition that the intensity of the reradiated (undesired) mode
towards θr = −75◦ needs to be smaller than δ = 10−4.
We observe that a feasible solution for the surface impedance
exists, and that the intensity of both spurious directions of
reradiation can be made smaller than the predefined intensity
threshold (i.e., δ). This example shows that, by adding ap-
propriate optimization constraints to the problem formulation,
the reradiation towards the desired direction and the dominant
undesired directions can be appropriately engineered through
purely reactive surface impedances.

In Tables V, VI, and VII, we analyze, in a more quantitative

manner, the solutions obtained by solving the optimization
problems in (98), (99), (100), and (101).

In Table V, we compare the power flux at the location
of the receiver Rx. We evince that the geometrical optics
solution usually results in a power loss of a few decibels,
as compared with the globally optimum design with unitary
power efficiency. In the considered case study, the power
difference can be of the order of 4.8 dB for θr (rRx) = 75◦.
On the other hand, we see that an RIS realized with a purely
reactive impedance boundary results in a much smaller power
loss, as compared with the globally optimum design with
unitary power efficiency. In the considered case study, the
power loss is about 0.27 dB for θr (rRx) = 75◦. The results
reported in Table V provide a quantitative assessment of the
implementation complexity versus the achievable performance
of RISs that are implemented with purely reactive components.

In Table VI, we analyze the steering accuracy of the
considered designs for the surface impedance. More precisely,
we compare the peak value of the power flux as a function of
the angle of observation with the power flux evaluated at the
location of the receiver Rx. If θr (rRx) = 30◦, the considered
designs result in perfect beamsteering capabilities. In fact, the
maximum of the radiation pattern coincides with the desired
direction of reradiation. If θr (rRx) = 75◦, on the other hand,
we observe some pointing errors. In the considered case study,
the pointing error is relatively small and is about 0.2◦, which
results in a power loss of only a fraction of decibels.

In Table VII, we analyze the reradiation properties of the
considered designs for RISs in terms of power flux towards the
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TABLE V: Comparison of the power flux at the location of the receiver Rx.

Without nullification of the specular reflection θr(rRx) = 30◦ θr(rRx) = 75◦

PRx (Zglo0) /PRx (ZGO) 0.572 dB 3.392 dB

PRx (Zglo0) /PRx

(
Zreactive

glo0

)
1.84 · 10−12 dB 3.19 · 10−11 dB

With nullification of the specular reflection θr(rRx) = 30◦ θr(rRx) = 75◦

PRx (Zglo0) /PRx (ZGO) 0.589 dB 4.822 dB

PRx (Zglo0) /PRx

(
Zreactive

glo0

)
2.99 · 10−13 dB 0.269 dB

TABLE VI: Comparison of the power flux at the location of the receiver Rx and the peak of the radiation pattern.

θr (rRx) = 30◦ Pmax(Z) = max
θo

(Pobs (Z)) Pmax (Z) /PRx (Z)

(95) – Geometrical optics 30◦ 0 dB
(98) – Global design 30◦ 0 dB
(99) – Reactive boundary 30◦ 0 dB
(100) – Global design with nullification of the specular reflection 30◦ 0 dB
(101) – Reactive boundary with nullification of the specular reflection 30◦ 0 dB

θr (rRx) = 75◦ Pmax(Z) = max
θo

(Pobs (Z)) Pmax (Z) /PRx (Z)

(95) – Geometrical optics 74.8◦ 0.0306 dB
(98) – Global design 74.8◦ 0.0325 dB
(99) – Reactive boundary 74.8◦ 0.0331 dB
(100) – Global design with nullification of the specular reflection 74.8◦ 0.05082 dB
(101) – Reactive boundary with nullification of the specular reflection 74.8◦ 0.0142 dB

TABLE VII: Comparison of the power flux towards the direction of the receiver Rx and the direction of specular reflection.

θr (rRx) = 30◦ PRx (Z) Pspecular (Z) PRx (Z) /Pspecular (Z)
(95) – Geometrical optics −7.871 dB −45.854 dB +37.983 dB
(98) – Global design −7.300 dB −31.628 dB +24.328 dB
(99) – Reactive boundary −7.300 dB −42.830 dB +35.533 dB
(100) – Global design with nullification of the specular reflection −7.282 dB −40.003 dB +32.721 dB
(101) – Reactive boundary with nullification of the specular reflection −7.282 dB −47.532 dB +40.250 dB

θr (rRx) = 75◦ PRx (Z) Pspecular (Z) PRx (Z) /Pspecular (Z)
(95) – Geometrical optics −18.362 dB −67.317 dB +48.955 dB
(98) – Global design −14.970 dB −17.151 dB +2.181 dB
(100) – Reactive boundary −14.970 dB −37.186 dB +22.216 dB
(100) – Global design with nullification of the specular reflection −13.540 dB −40.001 dB +26.462 dB
(101) – Reactive boundary with nullification of the specular reflection −13.809 dB −40.000 dB +26.191 dB

direction of the desired receiver Rx and towards the direction
of specular reflection. In general, the received power decreases
with the desired angle of reflection. This is due to the so-called
obliquity factor in the Poynting vector, i.e., the cos θr (rRx)
multiplication factor in the power flux in correspondence of
the location of the receiver Rx. This is apparent from PRx (Z)
in Table III. Due to the obliquity factor, for example, the power
loss between θr (rRx) = 30◦ and θr (rRx) = 75◦ is about 6–11
dB in the considered case studies. In Table VII, in addition,
we see that, by taking into account the nullification of the
specular reflection at the design stage, we can, at the same
time, reduce the amount of power lost towards the specular
direction and increase the amount of power steered towards
the location of the receiver Rx. This is due to the total power
conservation principle.

V. CONCLUDING REMARKS

In this tutorial paper, we have overviewed three commu-
nication models for RISs that are widely utilized in the
context of performance evaluation and optimization of wireless
communication systems and networks. We have focused our
attention on models for RISs based on inhomogeneous surface
impedance boundaries, in light of their ease of integration
into Maxwell’s equations and their inherent electromagnetic
consistency under typical and practically relevant approxima-
tion regimes, e.g., physical optics. With the aid of examples,
we have illustrated design criteria for RISs that are based on
local and global optimality criteria, as well as an approximated
design criterion that results in purely reactive impedance
boundaries. We have discussed their inherent advantages and
limitations, with the aid of mathematical analysis and numer-
ical simulations.

As far as the considered optimization problems are con-
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cerned, we have focused our attention on problem formulations
in which the objective function is given by the surface power
efficiency, since it characterizes locally and globally optimal
designs, and the power flux is utilized as a key performance
indicator to showcase the steering capabilities of the RISs.
Similar optimization problems can be formulated by consid-
ering the power flux as the objective function and the surface
power efficiency as a design constraint.

The considered optimization problems and methods are
applicable to RISs whose surface impedance is slowly varying
at the wavelength scale and the physical optics approximation
is applicable. More advanced designs, which can lead to RISs
that realize theoretically perfect anomalous reflections with
complete suppression of parasitic scattering, require either an
accurate control of the fast-varying surface modes excited
at the surface S or a careful design of the scattering from
diffraction gratings, i.e., metagratings.
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