
D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

Deliverable D3.2

NetApp Certification Tools and

Marketplace

development(intermediate)

Editor Alejandro Molina (TID)

Contributors (ATOS, FOGUS, MAG, INTRA)

Version 1.0

Date June 30th, 2022

Distribution PUBLIC (PU)

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

DISCLAIMER
This document contains confidential information reserved for the partners of the

EVOLVED-5G ("Experimentation and Validation Openness for Longterm evolution of

VErtical inDustries in 5G era and beyond) Consortium and is subject to the

confidentiality obligations set out in the Grant Agreement 101016608 and to the

EVOLVED-5G Consortium Agreement.

This document contains information, which is proprietary to the EVOLVED-5G

Consortium that is subject to the rights and obligations and the terms and conditions

applicable to the Grant Agreement. The action of the EVOLVED-5G Consortium is

funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied,

duplicated, reproduced, modified, or communicated by any means to any third party, in

whole or in parts, except with prior written consent of the EVOLVED-5G Consortium.

In such case, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced. In the event of infringement,

the consortium reserves the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view

of the European Commission. Neither the EVOLVED-5G Consortium as a whole, nor a

certain party of the EVOLVED-5G Consortium warrant that the information contained

in this document is suitable for use, nor that the use of the information is accurate or

free from risk and accepts no liability for loss or damage suffered by any person using

this information.

The information in this document is provided as is and no guarantee or warranty is

given that the information is fit for any particular purpose. The user thereof uses the

information at its sole risk and liability.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

REVISION HISTORY

Revision Date Responsible Comment

0.1 March 7th, 2022 Alejandro Molina

(TID)

Edit ToC

0.2 April 30 th,2022 Alejandro

Molina, David

Artuñedo (TID)

TID inputs

0.3 April 30 th,2022 Yiannis

Karadimas

(MAG)

MAG inputs

0.4 April 30 th,2022 Angela Dimitriou

(INTRA)

INTRA inputs

0.7 May 30 th,2022 Alejandro

Molina, David

Artuñedo

(INTRA)

TID Review

0.8 May 30 th,2022 Ricardo Marco,

Paula Encinar,

Sonia Castro

(ATOS)

ATOS Review

0.9 May 30 th,2022 Yiannis

Karadimas

(MAG)

MAG Review

1.0 June 30 th,2022 Alejandro

Molina, David

Artuñedo (TID)

Final Version

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

LIST OF AUTHORS

Partner

ACRONYM

Partner FULL NAME Name & Surname

TID TELEFONICA INVESTIGACIÓN Y

DESARROLLO

Javier Garcia

David Artuñedo

Alejandro Molina

MAG MAGGIOLI Yiannis Karadimas

INTRA INTRASOFT INTERNATIONAL SA Angela Dimitriou

ATOS ATOS IT SOLUTIONS ANDSERVICES

IBERIA SL

Ricardo Marco

Paula Encinar

 Sonia Castro

FOGUS FOGUS INNOVATIONS & SERVICES

P.C

Dimitris Tsolkas

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

GLOSSARY

Abbreviations/Acronym Description

3GPP 3rd Generation Partnership Project

5GC 5G Core

AI Artificial Intelligence

API Application Programming Interface

CAPIF Common API Framework

CI/CD Continuous Integration / Continuous Development

CLI Command Line Interface

COTS Commercial off-the-shelf

CPE Customer Premises Equipment

EC European Commission

ELCM Experiment Life-Cycle Manager

FoF Factories of the Future

gNodeB / gNB Next Generation (5G) Base Station

GUI Graphical User Interface

HAT Hardware Attached on Top

HTTP Hypertext Transfer Protocol

IIoT Industrial Internet of Things

JSON JavaScript Object Notation

JWT JSON Web Token

KPI Key Performance Indicator

LDAP Lightweight Directory Access Protocol

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

LTE-M Long Term Evolution for Machines

MAC Mandatory Access Control

MANO Management and Orchestration

NB-IoT Narrow Band – Internet of Things

NEF Network Exposure Function

NetApp Network Application

NFV Network Function Virtualization

NSA Non StandAlone

NSD Network Service Descriptor

OAuth Open Authorization

OEM Original Equipment Manufacturer

ONAP Open Network Automation Platform

OSM Open Source MANO

PoP Platform to Platform

PR Pull request

QoS Quality of Service

R&D Research and Development

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

REST Representational State Transfer

SA StandAlone

SDK Software Development Kit

SLA Service Level Agreement

SME Small Medium Companies

SSH Secure Shell

SSL Secure Sockets Layer

SSM Service Specific Manager

TSL Transport Layer Security

UE User Equipment

UI User Interface

vAPP Vertical Application

VDU Virtual Display Unit

VNF Virtual Network Function

VulnDB Vulnerability Database

WiFi Wireless Fidelity

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

EXECUTIVE SUMMARY
EVOLVED-5G responds to the 5G PPP ICT-41-2020 5G innovations for verticals with

third party services call, whose main goal is to deliver enhanced experimentation facilities

on top of which third party experimenters (e.g., SMEs or any service provider and target

vertical users) will have the opportunity to test their applications.

The EVOLVED-5G project realises this vision by encouraging the creation of a NetApp

ecosystem revolving around a 5G facility which will provide the tools and processes for

the development, verification, validation, and certification of NetApps as well as their

smooth running on top of actual 5G network infrastructures, and mechanisms for market

releasing.

The primary objective of this deliverable is to present the implementation status of the

tools, activities and methodologies that are materializing for EVOLVED-5G Certification

Process and Environment, targeting implementation, efficiency, and security aspects of

its architectural components that define NetApp certification Process and the Marketplace

to release the certified NetApps.

This document describes the results of task ”T3.4-NetApp Certification Tools and

Marketplace development” for first period of the project, providing a first description of

the selected tools for the design of the automated Certification Process, the Test engine

for running certification tests, and the description of tests that will be part of the

Certification process. Commercial on the shelf tools have been selected, when possible,

to cover the Certification requirements.

First section of the document describes the Deliverable target audience, objectives and

structure.

Sections 2, 3 and 4 focus on Certification Environment, including the description of the

CICD toolset selected, the Certification Tools selected to fulfill certification

requirements, and provides an overview of the Certification Process design.

Finally, Sections 5 and 6 focus on Marketplace, describing the development approach and

the designed integration of the Marketplace with the Open Repository.

There will be an updated version of this deliverable, to be released towards the end of the

Project, with the final implementation details carried out during the rest of the Project.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

TABLE OF CONTENTS

1 Introduction.. 1

1.1 Scope... 1

1.2 Objectives ... 1

1.3 Structure ... 2

2 Certification Environment .. 3

2.1 CICD Support for Certification process ... 3

2.2 Open Repository ... 4

2.2.1 Image Management ... 5

2.3 Automation tool .. 7

2.4 Infrastructure Deployment Tool ... 12

2.5 Robot Framework Testing Engine ... 13

2.6 Container Execution Platforms ... 14

2.6.1 OpenShift 4.0 .. 14

2.6.2 Malaga Platform Kubernetes .. 15

2.6.3 Athens Platform Kubernetes .. 16

3 Certification Tools .. 17

3.1 Software Quality Tools .. 17

3.1.1 NEF Services.. 17

3.1.2 CAPIF Services ... 17

3.2 Security Certification ... 24

3.2.1 Static Code Analysis .. 24

3.2.2 Vulnerability Scanning .. 24

3.3 Marketplace Certification ... 26

3.3.1 Use Policy/Terms of service/ License files/ Open SourceScan Report 26

3.3.2 Valid Container Image and/or End-point details .. 27

4 Certification Process ... 28

4.1 Certification Process Overview ... 28

4.2 Certification Pipeline ... 30

4.2.1 NetApp Steps .. 30

4.2.2 Certification Environment Steps ... 32

5 Marketplace ... 34

5.1 Marketplace Overview/Intro ... 34

5.2 Marketplace Design .. 35

5.2.1 Phase 1 - Finalization of the requirements ... 35

5.2.2 Phase 2 - Mockups creation ... 37

5.3 Marketplace Implementation ... 38

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

5.3.1 Marketplace web application ... 39

5.3.2 Marketplace forum ... 40

5.3.3 ETH Transaction Sender / Blockchain integration .. 41

5.3.4 How it works ... 42

5.3.5 TM forum integration ... 43

5.4 Marketplace deployment .. 44

5.5 NetApp Release to Marketplace ... 44

6 Marketplace and Open Repository Integration .. 54

6.1 Integration design ... 54

6.2 Implementation .. 55

7 Conclusion and next steps .. 56

References .. 57

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

LIST OF FIGURES
Figure 1 CICD overview .. 3
Figure 2 CICD Toolset used in EVOLVED-5G... 4
Figure 3 EVOLVED-5G Github repository ... 5
Figure 4 Dockerfile located in NetApp repository ... 6
Figure 5 JFrog Artifactory screenshot .. 7
Figure 6 AWS Elastic Container Registry .. 7
Figure 7 Evolved5G Jenkins Dashboard ... 8
Figure 8 Jenkins Flow for NetApps ... 9
Figure 9 Groovy language example.. 11
Figure 10 Jenkins Master/Slave architecture... 12
Figure 11 Terraform Provider concept .. 12
Figure 12 Terraform Providers catalogue screenshot ... 13
Figure 13 Jenkins slave for OpenShift 4.0 .. 14
Figure 14 OpenShift architecture [14] ... 15
Figure 15 OpenShift Console screenshot ... 15
Figure 16 Malaga K8s setup ... 16
Figure 17 Athens K8s setup .. 16
Figure 18. Functional entities and Reference points of CAPIF architecture (3GPP TS 23.222) ... 18
Figure 19 Tools used in the Capif Core Function (CCF) Implementation 21
Figure 20 Result of Robot framework CAPIF Functional Tests .. 22
Figure 21 Sonarqube report screenshot .. 24
Figure 22 Trivy scanning results ... 25
Figure 23 Trivy Code Vulnerabilities example.. 25
Figure 24 Trivy secret leaked analysis example ... 25
Figure 25 Trivy Vulnerabilities detected example ... 26
Figure 26 Debriked License Analysis .. 27
Figure 27 Certification Process elements .. 28
Figure 28 Artifactory Validation Folder.. 29
Figure 29 Jenkins Certification Pipeline execution .. 29
Figure 30 Artifactory Certification Folder .. 29
Figure 31 Certification Process Pipeline Steps Overview .. 30
Figure 32 Debriked Compliance Tool License report ... 32
Figure 33 Part of the Evolved-5G user interface flow chart .. 37
Figure 34 Examples of mockups that have been created in the online prototyping tool 38
Figure 35 Example of mockup that demonstrates the Welcome screen that the user sees after

login or register .. 38
Figure 36 High level architecture of the Marketplace ... 39
Figure 37 Marketplace entry page ... 40
Figure 37 Forum and accelerator entry page .. 41
Figure 39 High level overview of the blockchain integration .. 41
Figure 40 Blockchain transaction ... 42
Figure 41 Digital signature is saved as Input Data in the Etherscan .. 43
Figure 42 TMF620 API - Product Catalogue Management API .. 43
Figure 43 High level architecture of the TM Forum integration .. 44
Figure 44 Welcome screen - The NetApp creator is invited to start the wizard 45
Figure 45 Step 1: Net app creator adds basic information .. 46

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

Figure 46 Step 2: Net app creator agrees to the privacy policy .. 47
Figure 47 Step 3 - NetApp creator inserts the Docker image url and the certification/validation

report URL .. 48
Figure 48 Step 4 - NetApp creator adds a tutorial of how one can use the NetApp 49
Figure 49 Step 5 - NetApp creator add pricing information - Once off scenario 50
Figure 50 Step 5 - NetApp creator add pricing information - Flexible pricing scenario 51
Figure 51 Step 5 - Change status to release to the marketplace ... 51
Figure 52 NetApp is now available in the Product Catalogue .. 52
Figure 53 A single public page exists for the NetApp .. 53
Figure 54 Mapping a NetApp with its certificate ... 54
Figure 55 NetApp creation wizard - Step 3 asks the user for a valid Open Repository URL that

contains the docker image ... 55

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

1

1 INTRODUCTION

1.1 SCOPE
The scope of this deliverable is to expose implementation details for both the Evolved-

5G Certification Environment and Tools and the Marketplace. Its intention is to be

accessible to a broad variety of research individuals and communities.

The target audiences are described below:

• Project Consortium: To validate that all objectives and proposed

technological advancements have been analysed and to ensure that,

through the proposed implementations, further work can be derived.

Furthermore, the deliverable sets a common understanding among the consortium

with regards to:

o The implementation details of the Certification Environment related to the

NetApp lifecycle in the context of the EVOLVED-5G project, including

tools and technologies to be used.

o The implementation details of the Marketplace, the final step of the

NetApp lifecycle in the context of the EVOLVED-5G project.

• Industry 4.0/Industry 4.0 developers and Factories of the Future (FoF)

vertical groups: To set a common understanding of the technologies and the

design principles that underline the Certification Process design and its

implementation, along with the Marketplace release process.

• Other vertical industries and groups: To seek impact on other 5G-enabled

vertical industries and groups in the long run. Indeed, all the architectural

components of the facility are being designed to secure interoperability beyond

vendor-specific implementation and across multiple domains. The same

categorization can be applicable beyond the Industry 4.0 domain.

• The scientific audience, general public, and the funding EC Organisation: To

document the work performed by the project and justify the effort reported for

all relevant activities. The scientific audience can also get an insight of the design

approach and underlying components behind the Evloved-5G Certification

Process and Marketplace implementation.

1.2 OBJECTIVES
This deliverable is the second of a series of four WP3 reports to be delivered by the project

consortium during its 36-month work plan. The primary objective of this second report,

entitled “D3.2 NetApp Certification Tools and Marketplace development (Intermediate)”,

is to present the implementation status of the tools, activities and methodologies that are

materializing for EVOLVED-5G Certification Process and Environment, targeting

implementation, efficiency, and security aspects of its architectural components that

define NetApp certification Process and the Marketplace to release the certified NetApps.

This document describes the initial results of task ”T3.4-NetApp Certification Tools and

Marketplace development”, providing a first description of the selected tools for the

design of the automated Certification Process, the Test engine for running certification

tests, and the description of tests that will be part of the Certification process. Commercial

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

2

on the shelf tools, such as Sonaqube, Trivy or Debriked have been selected, when

possible, to cover the Certification requirements listed in D2.1 [1].

There will be an updated version of this deliverable, Deliverable 3.4 [2] to be released

towards the end of the Project, with the final implementation details carried out during

the rest of the Project.

1.3 STRUCTURE
The deliverable is organized in the following manner:

• Section 1. Introduction: This section describes the Deliverable target audience,

objectives and structure.

• Section 2. Certification Environment: This section describes the Certification

Environment focusing on the CICD toolset with a collection of software industry

leading tools for automation.

• Section 3. Certification : This section describes the specific tools that have been

developed by Evolved-5G project for NetApp Certification, namely the CAPIF

(Common API Framework) Core Function and NEF (Network Exposure

Function) Emulator, and commercial of the shelf tools selected to cover

certification requirements, such as SonarQube, Trivy and Debriked.

• Section 4. Certification Process: This section provides a high-level description of

the Certification process, including the multiple steps that are being implemented

in the Certification Pipeline to automate the Certification Process.

• Section 5. Marketplace: This section describes the EVOLVED-5G Marketplace,

developed specifically for this project. This platform is used to publish NetApps

after Certification takes place.

• Section 6. Marketplace and Open Repository Integration: This section describes

the approach adopted for the integration of the Open Repository and the

Marketplace, so that the Certified NetApps can be published in the Marketplace.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

3

2 CERTIFICATION ENVIRONMENT

This section enumerates the tools selected for building the certification environment. This

environment enables the construction of the certification process described in section 4.

The environment is built following software industry best practises, as NetApps as

fundamentally software components. TID has contributed its own CICD system and tools

to create an Evolved-5G area where all the tools are being integrated to build the

certification process and execute the NetApp certifications.

This section introduces CICD TID´s solution and describes CICD principles, to then

describe the main tools that articulate the CICD system: the Open Repository to store

artifacts, Jenkins for Automation, Terraform to manage the Infrastructure as Code, Robot

Framework to build automated test and finally, it describes the execution platforms where

NetApps will be deployed, and tests will be executed.

2.1 CICD SUPPORT FOR CERTIFICATION PROCESS

CICD (Continuous Integration/Continuous Delivery)[4] is a method for delivering

applications frequently. For this, automation is applied in the stages of application

development. The key concepts attributed to this method are continuous integration,

delivery and deployment.

Continuous delivery represents changes made by the developer in an application, which

are automatically tested and loaded into a repository such as GitHub. In this repository,

the operations team can deploy these changes in an active production environment. This

solves the problem of poor visibility and communication between business and

development teams. For this, the purpose of continuous delivery is to ensure minimal

effort in the deployment of new code.

Figure 1 CICD overview

These are some benefits associated to the use of this methodology:

• Automation of procedures: Automating software delivery process procedures

reduces the need for knowledgeable resources in the use of various tools,

significantly decreases the likelihood of human failure, enables continuous

execution of such procedures, and improves the overall maturity of the process.

• Quality Anticipation: Strengthen the culture of early quality practice by

increasing the level of test execution by following the logic of the test pyramid

application (more unit, integration, and automated tests performed earlier in the

project) to reduce leaks of the test phase.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

4

• Team Performance Improvement: Applying CICD practices help to reduce

effort in repetitive activities, and also the need for rework due to failures, making

the process more orderly and predictable.

EVOLVED-5G has adopted this methodology for the development of NetApps, and also

for tools developed inside the project to support Certification, such as CAPIF Core

Function, NEF Services and Marketplace.

The NetApp lifecycle in EVOLVED-5G has three phases: Verification, Validation and

Certification. Each of these phases will have a separate process supported by CICD tools.

The following component stack is used for EVOLVED-5G CICD, to support the testing

processes mentioned above.

Figure 2 CICD Toolset used in EVOLVED-5G

2.2 OPEN REPOSITORY

EVOLVED-5G uses GitHub [4] as control version tool, along with git well-known best

practices. GitHub is a cloud-managed code version control platform using Git. GitHub is

widely used by programmers to publicize their work or for other programmers to

contribute to projects, as well as to promote easy communication through features that

report issues or merge remote repositories (issues, pull request, etc.).

This is an actual GitHub screenshot of the repositories of the project:

Pipeline Automation

NetApp
Version Control

NetApp Image
Repository

Vulnerability
Scan

Infrastructure
Deployment

Automated
Testing

Container
Infrastructure

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

5

Figure 3 EVOLVED-5G Github repository

EVOLVED5G project uses a GitFlow-like workflow approach, defining a branching

model and providing a robust structure to manage the code repositories. GitFlow is an

abstract idea of a Git workflow; this means that it determines what types of branches are

configured and how to combine them.

2.2.1 Image Management

Evolved5G uses Docker [5] as its Container image builder tool. We use Docker to create

the binary images of the NetApps based in the Dockerfile information published in the

NetApp repository.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

6

Figure 4 Dockerfile located in NetApp repository

For storing the binary images of the NetApps, two solutions will be used simultaneously:

Artifactory and AWS Elastic Container Registry ECR [6]. Artifactory is the repository

inside CICD environment and therefore is not accessible from Internet. To enable

deploying NetApps in Athens and Malaga platforms, a private repository has been

replicated in AWS with public IP access.

JFrog Artifactory [8] is a repository manager that supports all available software package

types, enabling automated continuous integration, deployment and delivery. Artifactory

is used to store and manage all the NetApps docker container images and all generated

artefacts. Artifactory usually stores individual application components that can be put

together at a later stage, thus allowing to break bigger apps in smaller chunks, getting

more efficient building processes and tracking building errors with ease.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

7

Figure 5 JFrog Artifactory screenshot

AWS ECR is an AWS solution to easily store and share container images. AWS ECR has

numerous advantages, but the most important one, in our case, is that we can push and

pull images from anywhere as it is available in the Public Cloud.

Figure 6 AWS Elastic Container Registry

2.3 AUTOMATION TOOL

Evolved5G uses Jenkins [7] as its pipeline automation tool. Jenkins is a free and open-

source automation server, which helps to automate continuous integration and facilitating

continuous delivery. It supports version control tools, including Git. Builds can be

triggered by various means, for example by commit in a version control system, by

scheduling via a cron-like mechanism and by requesting a specific build URL. It can also

be triggered after the other builds in the queue have completed. Jenkins can be extended

with plugins in order to improve or add new functionalities to the Jenkins’ instance. In

Evolved5G, for example, we have added SonarQube and Roboframework plugins to

enhance their cross-functions with Jenkins and generate reports inside of each execution.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

8

Figure 7 Evolved5G Jenkins Dashboard

Pipeline configuration in Jenkins enables to define the whole NetApp lifecycle defined in

Evolved5G. The pipeline plugin was built with requirements for a flexible, extensible,

and script based Continuous Deployment workflow capability in mind. Accordingly,

pipeline functionality is:

• Durable: Pipelines can survive both planned and unplanned restarts of your

Jenkins master.

• Pausable: Pipelines can optionally stop and wait for human input or approval

before completing the jobs for which they were built.

• Versatile: Pipelines support complex real-world CD requirements, including the

ability to fork or join, loop, and work in parallel with each other.

• Efficient: Pipelines can restart from any of several saved checkpoints.

• Extensible: The Pipeline plugin supports custom extensions to its DSL (domain

scripting language) and multiple options for integration with other plugins.

Below is an example of one continuous delivery scenario enabled by the pipeline plugin:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

9

Figure 8 Jenkins Flow for NetApps

Pipelines are Jenkins jobs, typically built with simple text scripts that use a Pipeline DSL

(Domain-Specific Language) based on the Groovy programming language. Pipelines

leverage the power of multiple steps to execute both simple and complex tasks according

to parameters established. Once created, pipelines can build code and orchestrate the work

required to drive applications from commit to delivery.

Pipeline terms such a “step,” “node,” and “stage” are a subset of the vocabulary used for

Jenkins in general.

• Step: A “step” (often called a “build step”) is a single task that is part of a

sequence. Steps tell Jenkins what to do.

• Node: In Jenkins generally, a “node” means any computer that is part of your

Jenkins installation, whether that computer is used as a master or as an agent. In

pipeline coding contexts, as opposed to Jenkins generally, a “node” is a step that

does two things, typically by enlisting help from available executors on agents:

o Schedules the steps contained within it to run by adding them to the

Jenkins build queue (so that as soon as a slot is free on a node, the

appropriate steps run).

o Creates a workspace, meaning a file directory specific to a particular job,

where resource-intensive processing can occur without negatively

impacting your pipeline performance. Workspaces last for the duration of

the tasks assigned to them.

• Stage: A “stage” is a step that calls supported APIs. Pipeline syntax is comprised

of stages. Each stage can have one or more build steps within it.

Familiarity with Jenkins terms such as “master,” “agent,” and “executor” also helps with

understanding how pipelines work. These terms are not specific to pipelines:

Jenkins Workflow

NetApp
Developmnet

NetApp Ready

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

10

• Master - A “master” is the basic installation of Jenkins on a computer; it handles

tasks for your build system. Pipeline scripts are parsed on masters, and steps

wrapped in node blocks are performed on available executors.

• Agent - An “agent” (formerly "slave") is a computer set up to offload particular

projects from the master. Your configuration determines the number and scope of

operations that an agent can perform. Operations are performed by executors.

• Executor - An “executor” is a computational resource for compiling code. It can

run on master or agent machines, either by itself or in parallel with other

executors. Jenkins assigns a (Java) thread to each executor.

A multi-branch pipeline project type enables you to configure different jobs for different

branches of the same project. In a multi-branch pipeline configuration, Jenkins

automatically discovers, manages, and executes jobs for multiple source repositories and

branches. This eliminates the need for manual job creation and management, as would

otherwise be necessary when, for example, a developer adds a new feature to an existing

product. Multi-branch pipelines also enable you to stop or suspend jobs automatically if

circumstances make that appropriate.

A multi-branch pipeline project always includes a Jenkins-file in its repository root.

Jenkins automatically creates a sub-project for each branch that it finds in a repository

with a Jenkins-file. Multi-branch pipelines use the same version control as the rest of your

software development process. This “pipeline as code” approach has the following

advantages:

• You can modify pipeline code without special editing permissions.

• Finding out who changed what and why no longer depends on whether developers

remember to comment their code changes in configuration files.

• Version control makes the history of changes to code readily apparent.

Complex pipelines would be cumbersome to write and maintain if you could only do that

in the text area provided by the Jenkins job configuration page. Accordingly, there is an

option, called “Pipeline Script from SCM”, to load those scripts into Jenkins, enabled by

the workflow-scm-step plugin, which is one of the plugins that the Pipeline plugin

depends on and automatically installs.

Loading pipeline scripts from another source leverages the idea of “pipeline as code,” and

allow developers to maintain that source using version control and standalone Groovy

editors. When the designated repository is updated, a new build will be triggered, as long

as the job is configured with an SCM polling trigger.

A Groovy pipeline configuration example is shown below:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

11

Figure 9 Groovy language example

When a Jenkins job runs, workload of the single-node Jenkins will take master resources

and wait for the queued process to finish. This is time-consuming and sometimes, bigger

build task may break the Jenkins server. Even in some cases, a single build job needs a

different environment for different tasks. To overcome this issue, Jenkins has a feature

called “Distributed Build” and followed by the Jenkins Master-Slave Setup. Typically,

the machine where the complete Jenkins installation is located will be Jenkins master. On

the slave machine, a runtime program called “Agent” will be installed. Installing Agent

will not install Jenkins completely, but this agent will run on Java Virtual Machine (JVM)

[9]. It is capable enough to run the subtask or main task of the Jenkins in a dedicated

executor.

A Jenkins system like the aforementioned would be like the one illustrated below:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

12

Figure 10 Jenkins Master/Slave architecture

Any number of agent nodes can be configured, and master node can be configured to

decide which task or job should run which agent and how many executors the agents can

have. The communication between master and Jenkins slave nodes is bi-directional and

it is happening with TCP/IP connection protocol.

2.4 INFRASTRUCTURE DEPLOYMENT TOOL

Terraform is an open-source infrastructure as code software tool created by HashiCorp.

Users define and provide data center infrastructure using a declarative configuration

language known as HashiCorp Configuration Language (HCL), or optionally JSON.

Using infrastructure as code enables the automation of the provisioning of NetApp

infrastructure including servers and containers, databases, networking policies and almost

any other aspect. This is critical to make the certification process repeatable and

deterministic, as all the required infrastructure for Certification will be deployed and set

up from scratch for every certification cycle.

Terraform abstract the cloud provider using Terraform Providers. The infrastructure as

code written in declarative language is translated to a specific cloud provider (target APIs)

using the provider for this cloud provider.

Figure 11 Terraform Provider concept

Terraform offers a large catalogue of cloud providers as shown in the following picture:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

13

Figure 12 Terraform Providers catalogue screenshot

Evolved5G uses Terraform to create, build and deploy the infrastructure required for

NetApp certification every time a Certification process is launched by using the

Certification Pipeline. As explained later in section 2.6, Evolved5G uses three different

environments for deploying NetApps, and Terraform let us abstract the underlying

infrastructure of each of the environments, meaning, we use the same declarative

infrastructure as code description to deploy NetApps in all the environments.

2.5 ROBOT FRAMEWORK TESTING ENGINE

Robot Framework [10] as a generic open-source automation framework. It can be used

for test automation and robotic process automation (RPA). Robot Framework is supported

by Robot Framework Foundation.

Robot Framework is open and extensible. Robot Framework can be virtually integrated

with any other tool (e.g., Jenkins) to create powerful and flexible automation solutions.

Robot Framework is free to use without licensing costs.

Robot Framework has an easy syntax, utilizing human-readable keywords. Its capabilities

can be extended by libraries implemented with Python, Java or many other programming

languages. It has a rich ecosystem around it, consisting of libraries and tools that are

developed as separate projects.

Evolved5G uses Robot Framework to automate some of the tests required for

Certification (see Figure 20 Result of Robot framework CAPIF Functional Tests).

Evolved5G packs all components required to execute Robot Framework tests in a Docker

image that Evolved5G CICD deploys and executes using Jenkins to collect tests results.

These tests results are integrated into Jenkins pipelines flow.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

14

Examples of these tests are the CAPIF Core Function Functional tests and NEF

Functional tests used in Certification as described in section 4.2.

2.6 CONTAINER EXECUTION PLATFORMS

Evolved5G uses several Container execution platforms to verify, validate and certify

NetApps. Evolved5G CICD Environment incorporates OpenShift container platform to

allow CICD to deploy and execute tests internally in the CICD platform.

Additionally, Evolved5G CICD platform connects to two other container execution

environments embedded in 5G Platforms in Athens and Málaga.

2.6.1 OpenShift 4.0

Evoled5G CICD Platform integrates OpenShift 4.0 [11] container solution. Evolved5G

CICD Platform includes a Jenkins slave to interact with Open Shift infrastructure. Thus,

Jenkins using Terraform can deploy, manage and destroy containers in Open Shift

execution platform.

Following the master-slave Jenkins design pattern, the architecture of this scenario with

OpenShift is the following:

Figure 13 Jenkins slave for OpenShift 4.0

As we can see in Figure 13 , there is direct connectivity between the Jenkins slave and

OpenShift.

OpenShift architecture is displayed in the following figure:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

15

Figure 14 OpenShift architecture [14]

The reason for using version 4.0 of OpenShift is mainly for the simplicity to expose

services and assign them to public URLs.

Figure 15 OpenShift Console screenshot displays the user interface that appears with all

the information about deployments in OpenShift 4.0.

Figure 15 OpenShift Console screenshot

2.6.2 Malaga Platform Kubernetes

Malaga uses Kubernetes in a multi-master architecture with multiple workers. In this

configuration and set up there will not be service exposition to public IPs in this platform.

Access to deployed containers will be done using VPN access.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

16

Figure 16 Malaga K8s setup

2.6.3 Athens Platform Kubernetes

Athens’ platform, displayed in Figure 17, uses similar solution to Malaga and OpenShift

deployments explained, with two main differences:

- VPN Technology. In this case the technology for the VPN access is the

OpenConnect [12] (based almost entirely on the standard HTTPS and DTLS [13]

protocols).

- Kubernetes architecture: Athens’ platform is composed of one master node and

two worker nodes.

Figure 17 Athens K8s setup

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

17

3 CERTIFICATION TOOLS

This section outlines the tools developed to fulfil Certification requirements specified in

Deliverable 2.2 [15]. This document groups the requirements in three categories:

• Software product quality: This category includes CAPIF compliance and 5G

integration through NEF APIs.

• Security: This category outlines a series of tests to guarantee NetApp security

compliance.

• Marketplace: This category refers to Licensing, Open Source and validation of

binary images of the NetApps.

3.1 SOFTWARE QUALITY TOOLS
This subsection describes two tools developed in EVOLVED-5G to enable certification

of NetApps against 5G exposure APIs. These tools realize the 3GPP NEF (Network

Exposure Function) and CAPIF (Common API Framework) APIs. The tools are based in

3GPPP Release 17 specification listed at a repository in GitHub [16].

• NEF Services tool was already described in Deliverable 3.1 [17] and here we

provide an update on the progress made since the publication of this deliverable.

Documentation Quality is described to be checked manually and therefore there

is no tool developed for that purpose planed in the project.

• CAPIF Services tool (developed by TID and FOGUS) is described in detail for

the first time in the project. This tool has already a first release, and work

continues to improve the tool adding support for more APIs and the TLS transport

layer.

3.1.1 NEF Services

Network Exposure Function (NEF) enables third-party application providers utilize the

network capabilities and services that the 5G system offers. NEF services are of vital

importance to the 5G NPN (Non-Public Network) in the context of the EVOLVED-5G

ecosystem. NetApp, which is the main component developed in the project, utilize NEF

services in order to expose business APIs to vertical applications. Therefore, it is

considered mandatory that a NetApp is capable of communicating with the NEF services

provided by the 5GC network. To expose the network capabilities, NEF needs to interface

with a set of network functions within the 5GC (i.e., Southbound APIs). Considering the

fact that at this stage both Athens and Malaga platforms do not implement the entire

service-based architecture and the southbound interfaces that NEF requires to offer the

standardized APIs, the communication with network functions is a challenging task. To

this end, NEF services are provided through an emulator that creates simulated events

(e.g., mobility aware event where UEs are moving in predefined paths). The details of

implementation aspects of the NEF emulator are provided in D3.1[17]. Last but not least,

NEF services are described thoroughly in D4.1 [23].

3.1.2 CAPIF Services

The CAPIF has been standardized to guarantee a unique reference model for API-based

service provisioning in 3GPP systems. The great potential of such framework is currently

revealed due to the need for interaction between vertical industries and mobile networks.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

18

In particular, EVOLVED-5G has selected CAPIF as the API Framework to enable the

interaction between the NetApps (vertical industries domain) and the 5G Core exposed

APIs (mobile networks domain). Towards realizing the above-mentioned interaction, we

describe key functional aspects of CAPIF by focusing on related functional entities and

APIs. In addition, we implemented the CAPIF Core Function, i.e., the main entity of

CAPIF, as an effort to set the basis for an ecosystem where developers from vertical

industries can easily develop network-interacting applications. To facilitate any further

contribution in the area, our CAPIF implementation follows the principles of

microservice programming, and it is released (open source) [18] together with a set of

evaluation tests.

The CAPIF functional architecture is covered in 3GPP TS 23.222 [19] “Functional
architecture and information flows to support Common API Framework for 3GPP
Northbound APIs” (since Release 15) and they are also published in the related ETSI TS
123.222 [20] “Common API Framework for 3GPP Northbound APIs”. Based on the
architecture and the procedures defined in these reports, additional information and
requirements are considered, regarding CAPIF security features and security
mechanisms, as presented in 3GPP TS 33.122 [21]. The specification of the CAPIF APIs
that are needed for realizing the CAPIF functionality are part of 3GPP TS 29.222 [22].
Actually, within this technical specification the interacting protocol for the CAPIF
Northbound APIs is described.

Figure 18. Functional entities and Reference points of CAPIF architecture (3GPP TS 23.222)

CAPIF Architecture is displayed in Figure 18 . Three main entities can be observed,
namely, the API invoker, the CAPIF Core Function, and the API provider.

The API invoker is typically provided by a 3rd party application that supports the
following capabilities:

▪ Supporting the authentication by providing the API invoker identity and other
information required for authentication of the API invoker;

▪ Supporting mutual authentication with CAPIF;

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

19

▪ Obtaining the authorization prior to accessing the API;
▪ Discovering service APIs information; and
▪ Invoking the service APIs.

The CAPIF core function is the main entity of the CAPIF, and it consists of the
following capabilities:

▪ Authenticating the API invoker based on the identity and other information
required for authentication of the API invoker;

▪ Supporting mutual authentication with the API invoker;
▪ Providing authorization for the API invoker prior to accessing the service API;
▪ Publishing, storing and supporting the discovery of service APIs information;
▪ Controlling the service API access based on PLMN operator configured policies;
▪ Storing the logs for the service API invocations and providing the service API

invocation logs to authorized entities;
▪ Charging based on the logs of the service API invocations;
▪ Monitoring the service API invocations;
▪ Onboarding a new API invoker and offboarding an API invoker;
▪ Storing policy configurations related to CAPIF and service APIs;
▪ Support accessing the logs for auditing (e.g., detecting abuse); and
▪ Supports publishing, discovery of service APIs information with another CAPIF

core function in CAPIF interconnection.

The API provider is an entity that provides API Exposing, Publishing and
Management functions. For each one of the functions specific reference points have
been defined (CAPIF-3,4, and 5, as presented in Figure 18.

▪ The API exposing function (AEF) is the provider of the service APIs and is also

the service communication entry point of the service API to the API invokers. The
API exposing function consists of the following capabilities:

o Authenticating the API invoker based on the identity and other
information required for authentication of the API invoker provided by the
CAPIF core function;

o Validating the authorization provided by the CAPIF core function; and
o Logging the service API invocations at the CAPIF core function.

▪ The API publishing function (APF) enables the API provider to publish the
service APIs information in order to enable the discovery of service APIs by the
API invoker. The API publishing function consists of the following capability:

o Publishing the service API information of the API provider to the CAPIF
core function.

▪ The API management function (AMF) enables the API provider to perform
administration of the service APIs. The API management function consists of the
following capabilities:

o Auditing the service API invocation logs received from the CAPIF core
function;

o Monitoring the events reported by the CAPIF core function;
o Configuring the API provider policies to the CAPIF core function;
o Monitoring the status of the service APIs; and
o Registering and maintaining registration information of the API provider

domain functions on the CAPIF core function.

3.1.2.1 CAPIF Implementation Aspects

To implement the API services of the CAPIF Core Function (CCF), the first thing

needed is the CAPIF API definitions/signatures. Those have been specified in 3GPP TS

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

20

29.222[22], and 3GPP has published the related YAML files1 as well. The following

services have been defined for the CCF:

• Discover Service: API to ask CCF the list of APIs published and available in
CAPIF.

• Publish Service: API to publish APIs information from APF/AEFs.

• Events: API to manage Event subscriptions that enable Event Notification from
CCF.

• API Invoker Management: API to enable the onboarding of API Invokers into
CCF.

• Security: API to enable setting security profiles and retrieve security Tokens.

• Access Control Policy: API to manage access control rules in CCF.

• Logging API Invocation: API to add logs on API consumption.

• Auditing: API to query and retrieve service API invocation logs stored on the
CAPIF core function

• AEF Authentication: API for AEF security management

• API Provider Management: API for API provider domain functions management

• Routing Information: API to provide API routing information.

The YAML files of those services, can be used by a Swagger editor to inspect all

information elements in JSON. Each of these YAML files defines one or more APIs and

the supported methods to use them (POST, GET, DELETE, PUT). With the YAML files

of the services described above, it is possible to generate automatic code that implements

HTTP/HTTPS Endpoints that act as Servers that accept HTTP requests.

To build CAPIF Core Function several software tools have been used to develop,

implement, build, and test the CAPIF API services.

• OpenApi Generator2: This software program allows generation of API clients

SDKs (Software Development Kit tools), or API servers given an OpenAPI

specification. Moreover, it is possible to generate code in more than 20 different

programming languages.

• MongoDB: Mongo is a non-SQL and open-source database tool used to provide

storage to different CAPIF core functionalities.

• Nginx: Nginx is an open-source web serving technology that we use as a reverse

proxy to forward requests to the different CAPIF modules

• Flask: Flask is a micro-service web framework written in python used to build

CAPIF. The main advantage of this framework is its modularity. This feature

allows us to run different CAPIF services and mix them directly with other

services as database with relative ease.

• Robot framework: Robot is a generic test automation framework used for

acceptance testing and acceptance test-driven development.

• Docker: Docker is an open-source containerization tool for building, running, and

managing containers, where software is deployed. We use Docker to build each

service of the CAPIF. In this way, we can keep each CAPIF service development

isolated from other services. This design pattern is known as a micro-services-

oriented architecture and is widely used in software development due to its

1 https://github.com/jdegre/5GC_APIs
2 https://github.com/OpenAPITools/openapi-generator

https://github.com/jdegre/5GC_APIs
https://github.com/OpenAPITools/openapi-generator

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

21

innumerable advantages like better fault isolation and improved scalability,

among others.

Figure 19 Tools used in the Capif Core Function (CCF) Implementation

In order to guarantee the integrity of our implementation, we exploited an automated test

suite covering the core functionality of each CAPIF API service. Robot framework,

described in Section 2.5, is the testing tool we have curated to ensure the quality and

robustness of developed code. Moreover, we have defined a test strategy to improve the

code quality. This test strategy is composed of two steps:

• Test plan document elaboration: In this step, test plans are described, including

various behavior scenarios (considering both success and failure cases). The test

plan structure includes clarifications on the pre-conditions, the action that takes

place, and the post-conditions (response/result expected). The horizon of the test

plans that can be defined, moves beyond the request-respond information that is

available in the related 3GPP specifications, in a sense that behavioral scenarios

beyond the basic functionality are defined to stress test the implementation

integrity.

• Test implementation and execution: This step continues after finishing the

elaboration of the test plan documentation. Each test suite is implemented and

included into an automation pipeline that checks the status of the code after every

deployment in the platform. As depicted in (Figure 20) generated reports are very

descriptive and self-explanatory, making test cases easy to read/understand.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

22

Figure 20 Result of Robot framework CAPIF Functional Tests

3.1.2.2 Remarks on CAPIF Core Function RELEASE 1.0

The entire code of the CAPIF core function Release 1.0 can be found in the following

public repository of the EVOLVED-5G project:

Code: EVOLVED-5G_CAPIF_API_Services_RELEASE1.0

Development branch: EVOLVED-5G_CAPIF_API_services_development_branch

The above-mentioned repository includes a set of the Python-flask Mockup servers that

provide the CAPIF core function APIs as well as auxiliary code and instructions for

installing and testing the API services.

More precisely, the related repository includes the following folders:

• services: Services developed following CAPIF API specifications. Also, other

complementary services (e.g., NGINX and JWTauth services for the

authentication of API consuming entities).

• tools: Auxiliary tools. Robot Framework related code and OpenAPI scripts

• test: Tests developed using Robot Framework

• docs: Documents related to the code in the repository

o images: images used in the repository

o test_plan: test plan descriptions for each API service referring to the tests

that are executed with the robot framework.

o testing_with_postman: auxiliary JSON file needed for the Postman-based

examples.

https://github.com/EVOLVED-5G/CAPIF_API_Services/releases
https://github.com/EVOLVED-5G/CAPIF_API_Services

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

23

• iac: Infrastructure as Code, contains all the files needed for the deployment of the

structure that supports the services. (It is used only for the case of non-local

deployment of the CCF services e.g., in the Openshift of EVOLVED-5G project))

o Terraform: Deploy file

• pac: Jenkins files to manage different automated tasks. (It is used only for the case

of non-local deployment of the CCF services e.g., in the Openshift of EVOLVED-

5G project)

o Jenkins Pipelines

In CAPIF Release 1.0, three main CCF APIs services (plus an auxiliary one) are provided:

• JWT Authentication APIs (Auxiliary API service)

• CAPIF Invoker Management API

• CAPIF Publish API

• CAPIF Discover API

3.1.2.3 Exploring CAPIF Core Function RELEASE 1.0

Complete “HOW TO” instructions are available in the README file in the repository.

3.1.2.3.1 Install and run CAPIF services in a Local Repository

Three different options are offered as described in the related Github repository:

• Run All CAPIF Services locally with Docker images

• Run each service using Docker

• Run each service using Python

NOTE 1: The use of OpenAPI generator during the initial set up process will provide the

images of all the CCF API services. However, it should be noted that in Release 1.0, the

functionalities of CAPIF Invoker Management API, CAPIF Publish API, and the CAPIF

Discover API are available and ready to use/test.

NOTE 2: After the successful installation the Mongo DB Dashboard will be available on

http://0.0.0.0:8082/ (if accessed from localhost) or http://<Mongo Express Host

IP>:8082/ (if accessed from another host)

3.1.2.3.2 Familiarize with CAPIF core function APIs

Two different options are offered, as listed below:

• Execute CAPIF API calls using PostMan

• Execute CAPIF API calls using Curl

3.1.2.3.3 Execute test plans for the CAPIF core function APIs

For testing the functionality of the APIs provided, a complete set of tests has been

prepared (CCF_Release1.0_test plans). For the execution of the tests the Robot

framework is used. Instructions for setting up the Robot Framework and running the tests

are also provided.

https://github.com/EVOLVED-5G/CAPIF_API_Services/blob/develop/README.md#repository-structure
https://github.com/EVOLVED-5G/CAPIF_API_Services#capif_api_services
https://github.com/EVOLVED-5G/CAPIF_API_Services/blob/develop/docs/testing_with_postman/EVOLVED-5G%20--%20using%20CCF%20from%20Postman_13.1.2022.pdf
https://github.com/EVOLVED-5G/CAPIF_API_Services#using-curl
https://github.com/EVOLVED-5G/CAPIF_API_Services/blob/develop/docs/test_plan/api_invoker_management/test_plan.md
https://github.com/EVOLVED-5G/CAPIF_API_Services#robot-framework

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

24

3.2 SECURITY CERTIFICATION

From the security requirements, described in Deliverable 2.2 [15], we have selected

commercial tools to address static code analysis and vulnerability scanning. NetApp

binary images security analysis is also performed but enclosed in next subsection.

3.2.1 Static Code Analysis

SonarQube [24] is an open-source platform developed by SonarSource for continuous

inspection of code quality. Sonarqube is a static code analysis tool that measures the

overall quality of a software project. SonarQube can provide a detailed report of the code

quality, detecting problems like code duplication, code smells and vulnerabilities.

Figure 21 Sonarqube report screenshot

Sonarqube is the quality assessment tool selected in Evolved5G for measuring the overall

quality of NetApps. Sonarqube brings to the NetApp developers countless advantages

such as increased productivity, improved developer skills and increased consistency to

the NetApps being implemented in the Evolved5G ecosystem.

3.2.2 Vulnerability Scanning

Trivy [25] is a comprehensive vulnerability/misconfiguration/secret scanner for

containers and other artifacts. Trivy detects vulnerabilities of OS packages (Alpine,

RHEL, CentOS, etc.) and language-specific packages (Bundler, Composer, npm, yarn,

etc.). In addition, Trivy scans Infrastructure as Code (IaC) files such as Terraform and

Kubernetes, to detect potential configuration issues that expose your deployments to the

risk of attack. Trivy also scans hardcoded secrets like passwords, API keys and tokens.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

25

Figure 22 Trivy scanning results

In Figure 22 Trivy scanning results, it is shown the three different sections that will be

analysed with Trivy:

- Code Vulnerabilities: Trivy does a static code analysis as well of the repository,

in a similar way that SonarQube does but with a lower degree of exhaustiveness

and more focused in a security aspect rather than code quality.

Figure 23 Trivy Code Vulnerabilities example

- Secrets Leakage: Trivy scans all the commits that have been made in the

repository searching for any secret leaks in the code. This functionality is so

important because it is likely that some secrets are hardcoded during the first

phases of the software project creation, and then once removed, those secrets will

be persisted in the commit history.

Figure 24 Trivy secret leaked analysis example

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

26

- Container vulnerabilities: In this part of the analysis, Trivy will show all the

vulnerabilities found in the container images. Here, we can see how Trivy shows

a detailed description of the problem, giving the name of the affected library, and

what would be the version that fixes that problem (if exists)

Figure 25 Trivy Vulnerabilities detected example

3.3 MARKETPLACE CERTIFICATION
In order to upload Certified NetApps to the Marketplace, some information needs to be

generated and attached to the Certification Report. This information relates to License

requirements (form commercial or open-source products used to develop the NetApp).

For this purpose, Debriked tool has been selected to illustrate this process.

Additionally, the binary image of the NetApp will be analysed for security compliance to

production ready container images industry standards using Trivy tool again.

3.3.1 Use Policy/Terms of service/ License files/ Open SourceScan Report

For analysing required Licenses by the NetApp being Certified, we have integrated

Debriked Compliance tool [26].

This tool allows automating license compliance processes with customizable intake rules.

Debriked compliance tools serves three purposes:

• Automate intake control: Stop non-compliant components from entering

NetApp codebase by enabling automated intake rules.

• Understand risk: Evaluate risk level for NetApp by simply setting an intended

use case for NetApp repositories.

• Report and analyse: Easily export a license report to be attached to Certification

report and keep track of NetApp compliance progress over time.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

27

Figure 26 Debriked License Analysis

Certification process will use Debriked to analyze License dependencies and report them

in the Certification report produced.

3.3.2 Valid Container Image and/or End-point details

For certifying the NetApp image security, we rely on Trivy . This is a repo that has

controls that cover both PodSecurityPolicy (PSP) and the Kubernetes Pod Security

Standards (PSS), plus additional best practices.

The Kubernetes Pod Security Standards (PSS) are the official standard for security best

practices for pods. These standards overlap with the checks that PodSecurityPolicies can

enforce.

PSS has 14 controls that are grouped into three standards: Baseline, Restricted and

Privileged. Appshield uses Baseline and Restricted; the Privileged standard specifically

allows privileged execution. This table maps PSS controls to PSP controls:

PSS Control PSP Control

1-Host Namespaces
2-Usage of host namespaces. 3-Usage of

host networking and ports

2-Privileged Containers 1-Running of privileged containers

3-Capabilities 11-Linux capabilities

4-HostPath Volumes 5-Usage of the host filesystem

5-Host Ports Not covered in PSP

6-AppArmor (optional)
14-The AppArmor profile used by

containers

7-SELinux (optional) 12-The SELinux context of the container

8-/proc Mount Type
13-The Allowed Proc Mount types for the

container

9-Sysctls 16-The sysctl profile used by containers

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://kubernetes.io/docs/concepts/security/pod-security-standards/

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

28

4 CERTIFICATION PROCESS

4.1 CERTIFICATION PROCESS OVERVIEW

NetApp Certification Process is responsible for Certifying that NetApps are compliant

with the Evolved5G criteria defined for considering a NetApp an Evolved5G NetApp.

This criterion is based in principles defined in D 2.2 [15]:

• The NetApp is secure

• The NetApp can be deployed in Cloud infrastructure

• The NetApp is Cloud Native

• The NetApp uses CAPIF APIs to Discover and Consume APIs

• The NetApp uses NEF APIs to interact with 5G Infrastructure

All these conditions are being Certified during the Certification Process using Industry

standard Automation technology and design principles. Thus, Evolved5G guarantees that

Certification process is:

• Repeatable: Certification can be performed many times to NetApps

• Deterministic: the repetition of Certification process over a NetApp with no

modifications always produce the same results

• Traceable: all test results can be tracked and analysed after process completes

• Automated: certification process is fully automated and requires no manual

configuration or intervention eliminating variability in the execution conditions

Figure 27 Certification Process elements

The starting point of the Certification Process is always a Validated NetApp. During

Validation process, the NetApp image is uploaded to Open repository (Artifactory) in the

Validation folder.

NetApp
NetApp
Image

CAPIF Core
Function

NEF
Services

NetApp
Scan

NetApp Pod

CAPIF Core

Function Pod

NEF Services

Pod

CAPIF Test

NEF Test

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

29

Figure 28 Artifactory Validation Folder

Certification Process will grab NetApp Source Code from Github repository and the

Netapp image from the Validation Folder in Artifactory. These are the two fundamental

content inputs to the process. Additionally, it is necessary to indicate the 5G Platform

environment selected to run the Certification tests. This environment can be either Athens

or Málaga.

With these inputs, it is possible to launch the Certification Pipeline that will automatically

execute all certifications tests to complete Evolved5G Certification. During Certification,

additional inputs (CAPIF Core Function, NEF Services) and tools (NMAP [27], Trivy.

[25], Debriked[26]) will be used as described in the next section 4.2.

Figure 29 Jenkins Certification Pipeline execution

Upon completion of the process, a file with results of the Certification will be uploaded,

along with the certified NetApp image to Artifactory Certification folder.

Figure 30 Artifactory Certification Folder

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

30

When certification fails, feedback is provided to the NetApp developer to fix the root

cause of failure and start the Certification process again.

4.2 CERTIFICATION PIPELINE

Certification Pipeline running in Jenkins is the responsible to perform the Certification

Process defined in Evolved5G. It uses nested pipelines for some of the operations and

both internal tools (Robot Framework) and external tools (Debriked, Trivy, Robot

Framework) to perform some of the certification tests defined.

The Certification pipeline is summarized in Figure 31 Certification Process Pipeline

Steps OverviewFigure 31 Certification Process Pipeline Steps Overview

Figure 31 Certification Process Pipeline Steps Overview

4.2.1 NetApp Steps

Step 1: The first step is to check vulnerabilities in the source Code of the NetApp. For

this checking, Trivy tool will be used. The pipeline will stop if critical vulnerabilities with

available patch are reported by Trivy. Otherwise, after completing the vulnerability scan,

the pipeline will continue to step 2.

Step 2: Before deploying the NetApp, Jenkins will make sure that NetApp image is

secure. For this, Jenkins will use again Trivy as external tool to validate the security

vulnerabilities of the Netapp. If security critical issues are reported, the pipeline will stop.

Otherwise, the pipeline will continue to Step 4.

Step 3: This step will verify that the NetApp has completed the Validation phase. To

check this, Jenkins will search for the NetApp image inside the Validation folder in

Artifactory. If the NetApp image exists in the folder, it will be grabbed from there and

continue to Step 4. Otherwise, the pipeline will stop.

Step 4: Next Jenkins need to upload the NetApp image to a Docker Registry in order to

enable the deployment of the NetApp in Athens and Málaga Kubernetes infrastructure in

Step # NetApp Steps Step # Certification Environment Steps

1 Vulnerability scan of NetApp (Trivy static code analysis) A Check UMA/Athens Connectivity is UP (ping)

2 Container Certification Tool (Trivy Container image analysis) B UMA/Athens Performance Assessment (5Genesis Open API)

3 Build NetApp / Grab the NetApp from Artifactory C Deploy CAPIF Core Function (Jenkins Pipeline)

4 Upload NetApp to Docker Registry (AWS Evolved5G Registry) D Automatic Tests of CAPIF Services (Robot Framework)

5 Deploy NetApp (Jenkins Pipeline) E Provision CAPIF Core Function Database (Mongo DB)

6 Test open ports of the NetApps (declared in Dockerfile) (NMAP/Telnet) F Deploy NEF Services (Jenkins Pipeline)

7
Onboarding NetApp in CAPIF Core Function (API Invoker) (CAPIF

Report)
G Automatic Tests of NEF Services (Robot Framework)

8 Discover APIs using CAPIF Core Function (CAPIF Report) H
Provision NEF Database (Mongo DB script)

9 NetApp callback CAPIF Core Function (CAPIF Report)

10 NEF Services AsSessionWithQoS API

11 NEF Services MonitoringEvent API

12 NEF Services Monitoring Events

13 Scale out ReplicaSet NetApps (Kubernetes API)

14 Shrink ReplicaSet NetApps (Kubernetes API)

15 Destroy NetApp (Jenkins Pipeline)

16 Offboarding a Netapp (CAPIF) (CAPIF Report) I Destroy NEF Services

17 Open SourceScan Report (Debriked report) J Destroy CAPIF Core Function

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

31

step 5. If the upload completes successfully, the pipeline will continue to Step 4.

Otherwise, the pipeline will stop.

Step 4: Jenkins will use nested Pipeline to deploy the NetApp in the selected environment

(Athens or Málaga). If the pipeline reports any error during the deployment, the

certification pipeline will jump to Step 15 to clean the environment and stop. If no errors

are reported, the pipeline will continue to Step 5.

Step 5: Once the NetApp is deployed, Jenkins will check that declared ports in Dockerfile

of the NetApp are open. For this operation, connectivity tools such as NMAP [27] or

Telnet [28] will be used.

Step 6: With the NetApp Deployed, next step is to check that the NetApp registers in

CAPIF Core Function properly as an API Invoker. To certify the registration, Jenkins will

query CAPIF Core Function Database to double check that the NetApp have been

registered properly by CAPIF Core Function.

Step 7: Once the NetApp has registered in CAPIF Core Function as API Invoker, next

steps is for the NetApp to Discover APIs published in CAPIF. To certify that NetApp is

using Discover API from CAPIF Core Function, Jenkins will parse the logs from CAPIF

Core Function Discover API to double check that the REST API have been consumed by

the NetApp.

Step 8: As part of the API dialogue between the NetApp and CAPIF Core Function, the

NetApp will receive CAPIF Events. These events are notifications coming from CAPIF

Core Function to the NetApp, and the CAPIF Event callback URL is set by the NetApp

in the API Invoker Registration. Jenkins will certify that CAPIF Events are received by

NetApp properly parsing the logs from CAPIF Core Function Events API. In the logs,

"200 OK” responses from the NetApp must appear as the result of Events sent.

Step 9 and 10: The NetApp Discover NEF API using CAPIF Core Function Discovery

API. Two APIs are exposed by NEF: AsSessionWithQoS and MonitoringEvent. Jenkins

will check which of these APIs are consumed by the NetApp and add them to the

Certification Report.

Step 11: As part of the API dialogue between the NetApp and NEF Services, the NetApp

will receive NEF Events. These events are notifications coming from NEF Services to the

NetApp, and the NEF Event callback URL is set by the NetApp in the NEF API Requests.

Jenkins will certify that NEF Events are received by NetApp properly parsing the logs

from NEF Services. In the logs, "200 OK” responses from the NetApp must appear as the

result of NEF Events sent.

Step 12: The NetApp might support scaling out horizontally by defining a ReplicaSet

workload resource. A ReplicaSet’s purpose is to maintain a stable set of replica Pods

running at any given time. As such, it is often used to guarantee the availability of a

specified number of identical Pods. ReplicaSets’ are recommended to be used defining

Deployments. Deployment provides declarative updates for Pods and ReplicaSets.

Jenkins will increase the number of instances of NetApp deployment and certify that

NetApp Pods scale properly.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

32

Step 13: After scaling out the NetApp increasing the number of instances, Jenkins will

shrink the number of instances setting the NetApp to default deployment and will certify

that the NetApp adjust to the scale defined.

Step 14: Once all previous tests have been executed, it is time to Destroy the NetApp and

certify that NetApp removes properly. Jenkins will remove the NetApp from the container

infrastructure, which will trigger NetApp removal clean up.

Step 15: As part of the NetApp removal clean up, the NetApp needs to unregister from

CAPIF Core Function. Jenkins will certify that the NetApp has unregistered properly by

querying CAPIF Core Function Database.

Step 16: With all functional tests executed, Certification pipeline will finally collect

information about open-source Licenses used by the NetApp. For this operation, Jenkins

will use Debriked Compliance external tool [26].

Figure 32 Debriked Compliance Tool License report

4.2.2 Certification Environment Steps

Certification Pipeline needs to interact with Athens or Málaga 5G Platform environments

to prepare some of the NetApp tests. Certification Pipeline needs to certify that Athens

and Málaga environments are available to execute the Certification process, and after the

Certification process is complete, it need to clean up the environment to make sure that

certification of other NetApps can be executed properly.

We have identified the following interactions that will be modelled in the Certification

Pipeline as Jenkins steps.

Env Step A: Before starting any tests, Jenkins needs to certify that connectivity to Athens

or Málaga platform is working as many tests depend on this connectivity.

Env Step B: Connectivity is required but is not enough. Jenkins will execute a

Performance Assessment experiment in the planforms to characterize the performance in

which the tests will be executed. Specific thresholds will be defined for bandwidth and

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

33

latency to guarantee that tests will be executed in an environment that is not restricting or

affecting the tests results.

Env Step C: One of the components required to perform NetApp tests is CAPIF Core

Function. A clean deployment of CAPIF Core function will guarantee that CAPIF Core

Function is not affected by previous interactions or behaviour of other NetApps.

Env Step D: As the CAPIF Core Function has been deployed in Málaga or Athens for

testing, in order to guarantee that CAPIF Core Function APIs work properly, a set of

functional tests will be executed using Robot Framework to certify that CAPIF Core

Function APIs work properly.

Env Step E: Once the CAPIF Core Function tests have been executed, CAPIF Core

function database will be cleaned up and prepared for testing with the NetApp. This step

prepares the Database for the NetApp tests on CAPIF.

Env Step F: The other component required to perform NetApp tests is NEF Services.

Again, a clean deployment of NEF Services will guarantee that NEF Services are not

affected by previous interactions or behaviour of other NetApps.

Env Step G: As the NEF Services have been deployed in Athens or Malaga for testing,

in order to guarantee that NEF Services APIs work properly, a set of functional tests will

be executed using Robot Framework to certify that NEF Services APIs work properly.

Env Step H: Once the NEF Services tests have been executed, NEF Services database

will be cleaned up and prepared for testing with the NetApp. This step prepares the

Database for the NetApp tests on NEF Services.

Env Step I: After all NetApp tests have been executed, we need to remove NEF Services

used for testing to leave the environment clean from the certification tests execution. This

step will Destroy NEF Services deployed in Athens or Malaga to clean the environment.

Env Step J: Similarly, we need to remove CAPIF Core Function used for testing to leave

the environment clean from the certification tests execution. This step will Destroy

CAPIF Core Function deployed in Athens or Malaga to clean the environment.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

34

5 MARKETPLACE

5.1 MARKETPLACE OVERVIEW/INTRO

Evolved-5G Marketplace is an online, cross-industry API Marketplace that enables

developers, entrepreneurs and businesses to come together to create, discover and

integrate services by consuming the NetApps that have been created in the Evolved-5G

ecosystem.

The Marketplace platform provides support to its users by a forum. The forum allows

NetApp creators, NetApp consumers and Visitors ask questions and exchange knowledge

with other marketplace users and get support by marketplace administrators.

In the Evolve-5G context we have identified as NetApp creators the SMEs or individual

NetApp developers that implement and release their solutions in the Marketplace. NetApp

consumers are SMEs that want to use the released NetApps in order to provide a solution

to their end customers.

The Marketplace targets four primary profiles. These profiles represent an approximation

of a segment of the marketplace users: “Visitors”, “NetApp creators”, “NetApp

consumers” and "Marketplace Administrators".

“Visitors” interact for the first time with the Evolved-5G ecosystem and are able to

understand the Evolved-5G offering and its value propositions. They can use the

marketplace to explore the product catalogue, view promotional material related with

each netapp, request support through the marketplace’s forum or seek technical advice in

order to participate in the marketplace as a NetApp creator or as a NetApp consumer. On

the other hand, “NetApp creators” use the Marketplace as the last step in the life cycle of

their NetApp development. By registering, they can connect their certified NetApp with

the marketplace, upload marketing and branding material, use wizards to provide CPQ

(Configure, Price, Quote) functionality and provide technical support for their users

through online tutorials or the forum. “NetApp consumers” are able to use the

marketplace to “purchase” NetApps, gain access to their APIs and utilize them. A smart

contract is responsible for storing the digital print of the purchase in Ethereum's

distributed database. This blockchain transaction acts as a “proof of purchase” and

will publicly exist even if the marketplace is no longer in place.

Finally, Marketplace Administrators are responsible for all the administration tasks of the

platform.

The marketplace has been developed taking into account best practices from the Software

Development Life Cycle (SDLC) [29]. SDLC is a set of steps used to create software

applications. These steps divide the development process into tasks that can then be

assigned, completed, and measured. In the upcoming sections we describe the design

phase of the marketplace (including planning, requirements collection, design and

prototyping), the development phase of the marketplace (including architecture definition

and actual implementation) and the deployment phase of the marketplace (including the

dockerization of all of the components) to be available in the Evolved5G OpenShift

platform. Finally, we conclude with some screenshots that demonstrate how a NetApp

can be released to the Marketplace.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

35

5.2 MARKETPLACE DESIGN

The marketplace design phase included 2 phases: 1) Finalization of the requirements, and

2) Mockups creation.

5.2.1 Phase 1 - Finalization of the requirements

The marketplace is a complex web application with the goal to support a community of

different users. During the requirements collection phase, the following have been

finalized:

a) Definition of the platform roles: the different user profiles that the platform will support

as described in Table 1.

Table 1 List of Platform Roles

Role name Description

1 Visitor A user that visits MarketPlace landing pages.
(S)he can quickly understand how the
MarketPlace works and its value propositions

2 NetApp creators (SMEs
/ Developers)

A NetApp creator can register to the
marketplace in order to

- manage the NetApp that he implemented
- release the NetApp to the marketplace (make
it public)
- set pricing schemes for the NetApp

3 NetApp consumers A NetApp consumer is an entity that uses the
marketplace to buy one or more NetApps

4 Marketplace
administrator

A marketplace administrator has access to key performance
indicators (KPIs) of the platform like:

1. number of submitted NetApps
2. number of purchased NetApps

b) Definition of high-level functional areas: that is high level categories of functionality

that should exist in order to support the marketplace’s scenarios of usage

Table 1 List of Functional Areas

Component /
Functional Area

Description

1 Landing pages The goal of these pages is for a user to easily understand what
the Marketplace offers and how it works, as well as to
start interacting with the platform.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

36

2 Authentication /
Authorization

Allow the user to login / register to the platform

3 Public Product
catalogue

Allow the user to search/ view NetApps.

4 NetApps
management

Allow the user to manage (create/edit/delete) NetApps

5 NetApps purchases Allow the user to purchase NetApps and select from different
available pricing packages

6 Email notifications The platform should be able to notify users about events

8 Dashboards Allow:
- NetApp creators to perform management and monitoring of
NetApps
- NetApp consumers to monitor NetApps status- Marketplace
administrators to view high level KPIs of the platform

9 Forum integration The platform should provide support to its users by a forum.
The forum will allow NetApp creators, NetApp consumers and
Visitors ask questions and get support by other marketplace users
and marketplace administrators.

10 Blockchain
integration

The platform should store a digital receipt of a NetApp purchase
to a blockchain network. The user will have access to this digital
receipt in the Ethereum network.

c) A set of user stories, for each of the role mentioned, above. A user story is an informal,

general explanation of a software feature written from the perspective of the end user. Its

purpose is to articulate how a software feature will provide value for each of the

aforementioned roles. For example, “a visitor should be able to search for NetApps”, “a

visitor should be able to view details of a specific NetApp and understand its value

propositions” etc.

d) A user interface flow diagram, which illustrates the interactions that users will have

with the application. An example of the interface flow diagram is provided below:

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

37

Figure 33 Part of the Evolved-5G user interface flow chart

As depicted in Figure 33 when a user visits the Evolved-5G Marketplace portal and before

registering or logging in he/she can browse through the contents of the portal and get

some information about the Evolved5G project Vision and goal, read the Technical

Documentation and How to’ s and even take a look in the product catalog to get some

idea of the NetApps already published in the Marketplace. Only a high-level description

of the NetApps is visible for the not-registered users.

After a visitor registers the Marketplace and logs-in he/she can selectively buy or sell a

NetApp.

5.2.2 Phase 2 - Mockups creation

Based on the requirements listed in the previous section, a set of mockups have been

created. A mockup is a static design of a web page or application that features many of

its final design elements but is not functional. The mockups have been created with the

help of a popular online prototyping tool Adobe XD [30].

Adobe XD helps you craft prototypes that look and feel like the real thing, so you can

communicate your design vision and maintain alignment across your team efficiently.

Adobe XD is a powerful and easy-to-use vector-based experience design platform that

gives teams the tools they need to craft the world’s best experiences collaboratively.

The creation of the mockups allowed feedback collection about the Marketplace, early in

the process, and facilitated fast improvements, since changing a UI Component in a static

mockup is much more efficient compared to making the change in the implemented

version of each screen.

In Figure 34 Examples of mockups that have been created in the online prototyping tool,

you can find a snapshot of all the mockups that have been created using Adobe XD which

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

38

can also be accessed in the following url: https://xd.adobe.com/view/6cffe34c-ceb6-4ec8-

9d53-8d7bc36b3bab-39ac/grid

Figure 34 Examples of mockups that have been created in the online prototyping tool

Figure 35 Example of mockup that demonstrates the Welcome screen that the user sees after login or register

5.3 MARKETPLACE IMPLEMENTATION
The functional areas defined in the previous development phases along with the user

stories and the mockups allowed the technical team to define the overall architecture of

the marketplace and start the implementation.

In the following diagram a high-level architecture of the Marketplace is shown.

https://xd.adobe.com/view/6cffe34c-ceb6-4ec8-9d53-8d7bc36b3bab-39ac/grid
https://xd.adobe.com/view/6cffe34c-ceb6-4ec8-9d53-8d7bc36b3bab-39ac/grid

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

39

Figure 36 High level architecture of the Marketplace

5.3.1 Marketplace web application

The Marketplace web application supports all the user scenarios for visitors, NetApp

creators, NetApp consumers and Marketplace Administrators. Additionally, it acts as an

entry point to the Marketplace’s forum, where users can find support on various Evolved-

5G topics. It is developed using Laravel, one of the most popular frameworks for building

web applications, JavaScript Frameworks, VueJs [33] and CSS frameworks (Bootstrap 5

[34] and Sass [35]). The storage layer was implemented in MySQL [36], a widely used

relational database management system (RDBMS).

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

40

Figure 37 Marketplace entry page

The Marketplace backend implements the integration with other Marketplace

components like a) the TM forum server and b) the Ethereum transaction handler. Both

are explained later in the chapter.

The relevant repository can be found at https://github.com/EVOLVED-5G/marketplace,

and the production environment can be found at https://marketplace.evolved-5g.eu/

5.3.2 Marketplace forum

The Marketplace forum has been implemented using Discourse [37], an open-source,

powerful platform for communities. A Discourse server has been initialized and its theme

has been configured in order to match the branding of the Evolved-5G communities.

https://github.com/EVOLVED-5G/marketplace
https://marketplace.evolved-5g.eu/

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

41

Figure 38 Forum and accelerator entry page

A NetApp creator can use the forum in order to create topics about their NetApps and to

provide relevant support. Visitors of the Evolved-5G Marketplace can use the forum to

understand how to build a NetApp and to get relevant support. Finally, educational

material can be found in the forum related with the “Community Accelerator“of

Evolved5G [38].

The online environment of the forum is available at https://forum.evolved-5g.eu/ and is

integrated with the web application, that is, various screens in the web application point

to relevant topics in the forum (e.g., when a user seeks for support for a specific NetApp,

or when a user needs to find out how to build a NetApp).

5.3.3 ETH Transaction Sender / Blockchain integration

The blockchain integration in the marketplace was driven by the need to create a digital

signature of a purchase, when a NetApp consumer purchases a NetApp, and to store it in

a public distributed database. This ledger acts as a “proof of purchase” and will exist

publicly even if the marketplace is no longer in place. The Ethereum Blockchain Network

covers this need.

Figure 39 High level overview of the blockchain integration

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

42

Every time a user buys a NetApp via the marketplace, a digital signature (hash string) is

created. For example, the user with email “buyer@test.com” buys a NetApp with id

“123”, that was created by the user “seller@test.com”. The digital signature is a hashed

version of the string: “buyer@test.com-buyer@test.com-123”. This signature, after being

hashed, is posted to the Ethereum Network.

5.3.4 How it works

An Ethereum Wallet (which belongs to Evolved-5G), is responsible for creating a new

Blockchain Transaction. This Transaction has the digital signature of the purchase, as its

Input Data

Figure 40 Blockchain transaction

The transaction is posted to the Ethereum Blockchain Network and is visible to all,

containing also the digital signature: For example, at transaction
https://rinkeby.etherscan.io/tx/0xbfecfcc96791f06c905762b8855ad49392ebe103edcca2c3428

2675ef904ed5b, if one clicks the “click to see more” field, they can view the “Input Data”

field that contains the hashed version of the digital signature.

mailto:seller@test.com
mailto:buyer@test.com
https://rinkeby.etherscan.io/tx/0xbfecfcc96791f06c905762b8855ad49392ebe103edcca2c34282675ef904ed5b
https://rinkeby.etherscan.io/tx/0xbfecfcc96791f06c905762b8855ad49392ebe103edcca2c34282675ef904ed5b

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

43

Figure 41 Digital signature is saved as Input Data in the Etherscan

The Blockchain transaction consists of a transfer of Ethereum (0.00000001 ETH =>

0.00000001 EUR), using the same wallet as origin and destination. These wallets belong

to and are controlled by the Evolved-5G marketplace.

At the end of the procedure, the wallet pays only the transaction costs, for creating and

storing the transaction on the Blockchain Network. The pilot currently runs on the

Rinkeby Test Ethereum Network, which is cost free. For the Smart Contract

implementation, infura.io has been used, which is a 3rd party service that allows free

requests towards the Ethereum network for up to 100K requests/day.

5.3.5 TM forum integration

The purpose of the TM forum integration is to pilot how an integration can be achieved

with

 TM Forum Open APIs. For this reason, the Product Catalogue Management API,

TMF620-API has been integrated to the marketplace, which provides a standardized

solution for adding products to a catalogue.

Figure 42 TMF620 API - Product Catalogue Management API

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

44

 A TM Forum server has been initialized and the Marketplace backend utilizes the forum

server in order to a) store the categories of the NetApps, and b) store pricing info about

the NetApps.

Figure 43 High level architecture of the TM Forum integration

5.4 MARKETPLACE DEPLOYMENT

The marketplace will be deployed in the OpenShift platform. For this purpose, all

Marketplace components have been dockerized:

a) The web application (related repo: https://github.com/EVOLVED-

5G/marketplace)

b) The blockchain component responsible for sending transactions to the Ethereum

network (related repo: https://github.com/EVOLVED-5G/marketplace-

blockchain-integration)

c) The TMI forum server that contains the TMF60-API, Product Catalogue

Management API endpoints (related repo: https://github.com/EVOLVED-

5G/marketplace-tmf620-api

d) The Discourse Forum (related repo:

https://github.com/discourse/discourse_docker)

Additionally, staging environments for testing purposes of upcoming releases, are

available at:

a) Marketplace: https://marketplace.evolved-5g.eu/

b) Forum: https://forum.evolved-5g.eu/

5.5 NETAPP RELEASE TO MARKETPLACE
“NetApp creators” use the Marketplace as the last step in the life cycle of their NetApp.

Once registered to the platform, they can initialize a wizard in order to release the NetApp

to the marketplace.

https://github.com/EVOLVED-5G/marketplace
https://github.com/EVOLVED-5G/marketplace
https://github.com/EVOLVED-5G/marketplace-blockchain-integration
https://github.com/EVOLVED-5G/marketplace-blockchain-integration
https://github.com/EVOLVED-5G/marketplace-tmf620-api
https://github.com/EVOLVED-5G/marketplace-tmf620-api
https://github.com/discourse/discourse_docker

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

45

Figure 44 Welcome screen - The NetApp creator is invited to start the wizard

During the first step, the NetApp’s basic details are provided, e.g., the NetApp name, a

short description, the category of the NetApp etc.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

46

Figure 45 Step 1: Net app creator adds basic information

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

47

During the second step, the user has to agree to the Marketplace policy/terms and

conditions

Figure 46 Step 2: Net app creator agrees to the privacy policy

During the 3rd step, the docker image URL is provided from the open repository, as well

as the certification/validation URL from the certification environment. A NetApp creator

has also the option to upload a file that contains license information.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

48

Figure 47 Step 3 - NetApp creator inserts the Docker image url and the certification/validation report URL

During the fourth step, the user provides information about the NetApp. The goal is to

provide a tutorial of usage, describing how someone can use the NetApp.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

49

Figure 48 Step 4 - NetApp creator adds a tutorial of how one can use the NetApp

During the fifth step, user can provide pricing information about the NetApp. Two options

are available. In the “Once-off pricing” option, a customer pays a fixed amount in order

to start using the NetApp.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

50

Figure 49 Step 5 - NetApp creator add pricing information - Once off scenario

In the “pay as go” pricing scenario, a NetApp creator can define a more flexible and

detailed pricing plan.

For example, API endpoints of the NetApp can have a relevant cost each time they are

consumed.

In the screenshot below the NetApp creator has created a pricing plan, where the first 100

calls to endpoint “/get-device-location” are free, and all of the upcoming calls have a fixed

price of 0.005€ per call

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

51

Figure 50 Step 5 - NetApp creator add pricing information - Flexible pricing scenario

Finally, a NetApp creator can save the NetApp and switch its status from “Private” to “Public”.
This action will make the NetApp visible to the product catalogue of the Marketplace. A landing
page of the NetApp, displaying the NetApp information (basic details, tutorials and pricing info),
will also be available.

Figure 51 Step 5 - Change status to release to the marketplace

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

52

Figure 52 NetApp is now available in the Product Catalogue

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

53

Figure 53 A single public page exists for the NetApp

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

54

6 MARKETPLACE AND OPEN REPOSITORY INTEGRATION

6.1 INTEGRATION DESIGN
The Evolved-5G Marketplace is the end destination of a NetApp, for which the

development lifecycle has ended. The Marketplace exposes a dockerized image of the

NetApp ensuring also that it has previously been certified.

The distribution of a NetApp through the Marketplace is realized through the

implementation of the Evolved-5G Open Repository. The Evolved-5G Open Repository

is based on the JFrog 3 platform. JFrog facilitates the creation of software repositories

hosting artifacts of various forms, including files, packages, containers etc. Thus, the

integration of the Open Repository with the Evolved-5G framework is designed in two

points: (i) certification process – Open Repository and (ii) Open Repository –

Marketplace.

As described in Chapter 4, the certification process ends up with a certified NetApp being

uploaded to the Open Repository, in the specific catalogue of certified artifacts. At the

same time, a certification report is produced by the process, which is also uploaded to the

Open Repository. A unique ID of the NetApp produced by hashing the certified NetApp

image is shared with the certification report. This way, a detailed certification report is

ensured to refer to a specific NetApp, and in particular to a specific version of the NetApp.

Any update of the NetApp requires a fresh certification process that yields a new

certification report. The diagram depicted in Figure 54 illustrates the mapping process of

the NetApp with its certificate.

Figure 54 Mapping a NetApp with its certificate

The integration of the Open Repository with the Marketplace is illustrated in Figure 54

Mapping a NetApp with its certificate. The product catalogue of the Marketplace lists all

the NetApps that have been certified and uploaded to the Marketplace. Each NetApp is

presented with additional descriptive information along with the relevant certification

3 https://jfrog.com/artifactory/

NetApp gets
Certified

NetApp
Uploaded to
Artifactory

UniqueID for
NetApp is
generated

(MD5 of
Docker image)

Certification
report is

created (PDF)

Certification
report signed
with Unique

ID

Certification
report is

uploaded to
Artifactory

Certification
report and

NetApp
binaries are

linked by
Unique ID

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

55

report. A NetApp in the product catalogue is linked with the Open Repository with a URL

corresponding to the NetApp image, as well as a URL of the related certification report.

Both are provided by the NetApp developer during the NetApp creation wizard execution

in the Marketplace application (Figure 47).

6.2 IMPLEMENTATION

In order to support the Open Repository integration, the “NetApp creation” wizard

provides a field that contains the Docker Image URL as produced by the Open Repository.

This URL identifies uniquely the dockerized version of the NetApp and is provided to the

NetApp creator by the Open Repository environment. The NetApp creator is expected to

simply copy-paste the URL at this field. The marketplace will validate the NetApp’s

existence at the Open Repository, as a requirement before proceeding to next steps.

Figure 55 NetApp creation wizard - Step 3 asks the user for a valid Open Repository URL that contains the docker
image

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

56

7 CONCLUSION AND NEXT STEPS

This deliverable presented the work performed in the context of WP3, and more

specifically, as part of task T3.4, during the first period of the project, concretely from

M1 to M18.

T3.4 designed and started the development of the marketplace and the specification of

certification process that NetApps will have to go through in order to be certified. A

detailed description of this certification process and status of the marketplace

development is provided in this deliverable as well as information about the current stage

of its implementation.

Regarding next steps, it must be taken into account that some tools need to be refined in

order to be integrated in the CICD and some new functionalities will be added to

Marketplace as part of T3.4. Work on the certification environment and the infrastructure

also continues, with the integration of new components and the improvement of existing

functionality. All this work will be documented in deliverable D3.4 to be submitted in

M30.

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

57

REFERENCES

[1] EVOLVED-5G, Deliverable 2.1 “Overall Framework Design and Industry 4.0

Requirements”
[2] EVOLVED-5G, Deliverable 3.4 “NetApp Certification Tools and Marketplace

development”

[3] CICD perspective best practices, from https://en.wikipedia.org/wiki/CI/CD.

[4] GitHub, from https://docs.github.com/en.

[5] Docker project, from https://www.docker.com/

[6] AWS Elastic Container Registry, from

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html

[7] Jenkins https://www.jenkins.io/doc/

[8] JFrog Artifactory, from

https://www.jfrog.com/confluence/display/JFROG/JFrog+Documentation

[9] Java Virtual Machine (JVM), from

https://docs.oracle.com/javase/specs/jvms/se7/html/

[10] Robo Framework, from https://robotframework.org/robotframework/

[11] OpenShift, from https://docs.openshift.com/

[12] OpenConnect, from https://openconnect.github.io/openconnect-gui/

[13] Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security Version

1.2”, RFC 6347, DOI 10.17487/RFC6347, January 2012.

[14] OpenShift architecture reference, from http://uncontained.io/articles/openshift-

ha-installation

[15] EVOLVED-5G, Deliverable 2.2 “Design of the NetApps development and

evaluation environments”
[16] CAPIF standard specification YAMLs. https://github.com/jdegre/5GC_APIs.

[17] EVOLVED-5G, Deliverable 3.1 ”Implementations and integrations towards

EVOLVED-5G framework Realization (intermediate)”

[18] CAPIF implementation, from https://github.com/EVOLVED-

5G/CAPIF_API_Services

[19] 3GPP TS 23.222 Common API Framework for 3GPP Northbound APIs.

[20] ETSI TS 123.222 Common API Framework for 3GPP Northbound APIs

[21] 3GPP TS 33.122 Security aspects of Common API Framework (CAPIF) for

3GPP northbound APIs.

[22] 3GPP TS 29.222 Common API Framework for 3GPP Northbound APIs

[23] EVOLVED-5G, Deliverable 4.1 “5G Exposure Capabilities for Vertical

Applications”
[24] Sonarqube, from https://www.sonarqube.org/

[25] Trivy project, from https://aquasecurity.github.io/trivy/v0.28.1/

[26] Debriked project, from https://debricked.com/tools/license-compliance/

[27] NMAP, from https://nmap.org/docs.html

[28] Telnet, from https://docs.microsoft.com/en-us/windows-

server/administration/windows-commands/telnet

https://en.wikipedia.org/wiki/CI/CD
https://docs.github.com/en
https://www.docker.com/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/Registries.html
https://www.jenkins.io/doc/
https://www.jfrog.com/confluence/display/JFROG/JFrog+Documentation
https://docs.oracle.com/javase/specs/jvms/se7/html/
https://robotframework.org/robotframework/
https://docs.openshift.com/
https://openconnect.github.io/openconnect-gui/
http://uncontained.io/articles/openshift-ha-installation
http://uncontained.io/articles/openshift-ha-installation
https://github.com/jdegre/5GC_APIs
https://github.com/EVOLVED-5G/CAPIF_API_Services
https://github.com/EVOLVED-5G/CAPIF_API_Services
https://www.sonarqube.org/
https://aquasecurity.github.io/trivy/v0.28.1/
https://debricked.com/tools/license-compliance/
https://nmap.org/docs.html
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/telnet
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/telnet

D3.1 Implementations and integrations towards EVOLVED-5G framework
realisation GA Number 101016608

58

[29] S, Shylesh, A Study of Software Development Life Cycle Process Models (June

10, 2017). Available at http://dx.doi.org/10.2139/ssrn.2988291

[30] Adobe XD, from https://www.adobe.com/products/xd.html

[31] Laravel, from https://laravel.com/

[32] Laravel, from https://laravel.com/

[33] VueJS, from https://vuejs.org/

[34] Bootstrap, from https://getbootstrap.com/docs/5.0/getting-started/introduction/

[35] Sass, from https://sass-lang.com/

[36] MySQL, from https://www.mysql.com/

[37] Discourse, from https://www.discourse.org/

[38] Community Accelerator, from https://evolved-5g.eu/community-accelerator/

http://dx.doi.org/10.2139/ssrn.2988291
https://www.adobe.com/products/xd.html
https://laravel.com/
https://laravel.com/
https://sass-lang.com/
https://www.mysql.com/
https://www.discourse.org/
https://evolved-5g.eu/community-accelerator/

	1 Introduction
	1.1 Scope
	1.2 Objectives
	1.3 Structure

	2 Certification Environment
	2.1 CICD Support for Certification process
	2.2 Open Repository
	2.2.1 Image Management

	2.3 Automation tool
	2.4 Infrastructure Deployment Tool
	2.5 Robot Framework Testing Engine
	2.6 Container Execution Platforms
	2.6.1 OpenShift 4.0
	2.6.2 Malaga Platform Kubernetes
	2.6.3 Athens Platform Kubernetes

	3 Certification Tools
	3.1 Software Quality Tools
	3.1.1 NEF Services
	3.1.2 CAPIF Services
	3.1.2.1 CAPIF Implementation Aspects
	3.1.2.2 Remarks on CAPIF Core Function RELEASE 1.0
	3.1.2.3 Exploring CAPIF Core Function RELEASE 1.0
	3.1.2.3.1 Install and run CAPIF services in a Local Repository
	3.1.2.3.2 Familiarize with CAPIF core function APIs
	3.1.2.3.3 Execute test plans for the CAPIF core function APIs

	3.2 Security Certification
	3.2.1 Static Code Analysis
	3.2.2 Vulnerability Scanning

	3.3 Marketplace Certification
	3.3.1 Use Policy/Terms of service/ License files/ Open SourceScan Report
	3.3.2 Valid Container Image and/or End-point details

	4 Certification Process
	4.1 Certification Process Overview
	4.2 Certification Pipeline
	4.2.1 NetApp Steps
	4.2.2 Certification Environment Steps

	5 Marketplace
	5.1 Marketplace Overview/Intro
	5.2 Marketplace Design
	5.2.1 Phase 1 - Finalization of the requirements
	5.2.2 Phase 2 - Mockups creation

	5.3 Marketplace Implementation
	5.3.1 Marketplace web application
	5.3.2 Marketplace forum
	5.3.3 ETH Transaction Sender / Blockchain integration
	5.3.4 How it works
	5.3.5 TM forum integration

	5.4 Marketplace deployment
	5.5 NetApp Release to Marketplace

	6 Marketplace and Open Repository Integration
	6.1 Integration design
	6.2 Implementation

	7 Conclusion and next steps
	References

