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Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

Day 4: Goals
● Learn about uncertainty lifecycle in 

environmental sciences and AI development 
● Learn about common methods for uncertainty 

quantification and metrics to evaluate uncertainty
● Learn about different strategies for 

communicating uncertainty to different audiences 



Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

https://app.sli.do/event/1zumy91n

Or go to sli.do 
and use the 

code TAI4ES

Questions?
Day 4: Agenda
● 9:00 Uncertainty quantification methods (Part 1)
● 10:00 Short brain & bio break
● 10:10 Uncertainty quantification methods (Part 2)
● 10:45 Short brain & bio break
● 10:55 Communicating uncertainty (Part 3)
● 11:55 Lecture series wrap up!

https://urldefense.com/v3/__https://app.sli.do/event/1zumy91n__;!!GNU8KkXDZlD12Q!4yYLQYR3jEljJ3rZVyEbMUtQuNSJX8rOvaw7RqAZeDZav7KWlNK8Wf2QwRt3Fx7wwV-izNmxjfdilR0$


Part 1: UQ in ML



Warm-up and refresher from yesterday

Let’s do couple quick questions to get us back in the trustworthy AI 
mindset:

1. In your own words, tells us one thing you learned about selecting case studies 
yesterday

2. What was your favorite part of yesterday’s lectures?

4.1. & 4.2. Go to sli.do and use the code TAI4ES



User’s perception of AI/ML trustworthiness 

Where does uncertainty come into play? What types of uncertainty? 

What are the potential implications of this uncertainty?  

AI/ML model development User

Sampling 

AI model OutputData

Developer decisions - room for error and bias! 

Coverage

Collection

Quality 

Data 
processing 

Validation Code/software Computing 

Opening discussion - building on yesterday’s lecture

4.3. & 4.4. Go to sli.do and use the code TAI4ES



1) Motivation and Examples

2) Classifications of Uncertainty

3) Evaluation criteria for uncertainty estimates.
To answer the question:  What makes a good uncertainty estimate?  

BREAK

4) Selected methods for UQ estimation in ML algorithms. 
To answer the question:  How do you quantify uncertainty in ML?  

Overview of Part 1 & 2



Why do we want uncertainty estimates for our ML models?

1. We want to know how much we can trust the ML method’s answer 
for a specific sample.

2. Side effect: An ML method that knows about its own uncertainty often 
gives better predictions, too!

3. We want to know whether we can improve the model (see types of 
uncertainty later - aleatory vs. epistemic) or whether we’re dealing with 
internal variability that cannot be reduced.

Motivation



Simple example from 

Chang, D.T. Bayesian Neural Networks: Essentials. arXiv preprint, v1, June 2021, 
https://arxiv.org/abs/2106.13594

Consider simple regression task with scalar output, i.e. predict scalar, y.
Traditional (deterministic) NN may yield as sample output for 10 samples:

Motivation

https://arxiv.org/abs/2106.13594


1) Traditional (deterministic) NN

2) Probabilistic NN here yields mu and sigma → can calculate 95% confidence interval.
● We get sigma value with each estimate.  Tells us about confidence of NN prediction for that 

sample.
● One test for sigma:  We can check how often actual value is within 95% CI.  

(But NN could cheat - just make sigma really large and actual value will always be in 95% CI.  
So this test is not enough to evaluate quality of estimates - see “sharpness criterion” later!)

● Also note:  The actual estimates (prediction mean) have changed, too.  
Estimate itself often better in probabilistic ML than in deterministic ML.  But not always.



Uncertainty Propagation – A Satellite CDR Example

International requirements for different applications for sea surface temperature (SST) 
climate data records (CDR) to ensure reliable climate monitoring and prediction.

 



ESA’s SST Climate Change Initiative User Requirements report:

 

Credit: C. Merchant

More than 90% of surveyed 
users prefer to have uncertainty 
estimates with SST for their 
applications.

Uncertainty Propagation – A Satellite CDR Example

https://climate.esa.int/media/documents/SST_CCI-URD-UKMO-201-Issue_2.1-signed.pdf
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Impact of Data Uncertainty in Climate Monitoring

In climate analysis, we often rely on the time series for trend quantification, which is affected by the 
uncertainty & quality of the data (thinking about the noise/signal ratio). 
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In climate analysis, we often rely on the time series for trend quantification, which is affected by the 
uncertainty & quality of the data (thinking about the noise/signal ratio). 



A practical satellite product workflow

Satellite data retrieval requires a series of transformation from raw signal to physical 
observations to usable products. 

Merchant et al. (2019) 
https://doi.org/10.1038/s41597-019-0236-x

Start

End



Uncertainty Propagation – A Satellite CDR Example

Errors in the processing workflow will propagate through the workflow and sometimes being 
amplified / mitigated into the desired products/information. ML uncertainty typically 
corresponds to the uncertainty in Level 2 in this workflow.   

Level 0 (raw data)

Data digitisation;
Sensor noise;
Instrument failure;
…

Level 1b 
(radiance)

Sensor calibration;
Geolocation error;
…

Level 2 
(granular)

Retrieval algorithm 
accuracy;
Definition of the 
geophysical variables 
(e.g., skin temperature 
v.s. temperature at a 
depth);
Dependency data
…

Level 4+ 
(gap-filled)

Extrapolation / 
interpolation;
Post-processing;
…

Level 3 
(gridded)

Spatial-temporal 
sampling;
Locally-correlated 
errors;
…



Uncertainty Propagation – A Satellite CDR Example

Errors in the processing workflow will propagate through the workflow and sometimes being 
amplified / mitigated into the desired products/information. ML uncertainty typically 
corresponds to the uncertainty in Level 2 in this workflow.   

Level 0 (raw data)

Data digitisation;
Sensor noise;
Instrument failure;
…

Level 1b 
(radiance)

Sensor calibration;
Geolocation error;
…

Level 2 
(granular)

Retrieval algorithm 
accuracy;
Definition of the 
geophysical variables 
(e.g., skin temperature 
v.s. temperature at a 
depth);
Dependency data
…

Level 4+ 
(gap-filled)

Extrapolation / 
interpolation;
Post-processing;
…

Level 3 
(gridded)

Spatial-temporal 
sampling;
Locally-correlated 
errors;
…

Most common stages for ML use cases



Uncertainty Propagation – A Satellite CDR Example

Although there are different source 
for the uncertainty, the contribution 
from different sources depends on 
the applications at hand. 

Application contexts are very 
important for uncertainty 
quantification.

Merchant et al. (2017) https://doi.org/10.5194/essd-9-511-2017



Uncertainty propagation

Assuming the target (y) is a function of multiple predictants (i.e., x1, …, xn) 

The overall uncertainty is the combination of the errors from each individual predictants while taking 
account of the correlated errors among different predictants (e.g., spatially correlated, temporally 
correlated, or physically correlated).



Bring it back to AI/ML cases

User’s perception of AI/ML trustworthiness 

AI/ML model development User

Sampling 

AI model OutputData

Developer decisions - room for error and bias! 

Coverage

Collection

Quality 

Data 
processing 

Validation Code/software Computing 

Uncertainty in 
input data

Uncertainty in trained 
AI/ML model

Uncertainty in 
testing data

Uncertainty in data 
processing steps



Quick break to give you time to soak 
information in and ask questions!

Go to sli.do and use the code TAI4ES



Two examples of practical use of UQ:

1. Cold Stunning predictions

2. Estimating precipitation from satellite imagery

Motivating examples



Uncertainty: Cold Stunning Predictions
● Water temperature below 8C for ~24 

hrs leads to sea turtle cold stunnings
● AI (shallow neural nets) used since 

2008 to predict onset and duration of 
cold stunnings (black dash line)

● AI Predictions allow for interruption of 
navigation, staging of resources, …

● Here, example for Feb 2022 cold 
stunning predictions (400+ sea turtles)

How to best quantify, visualize, 
communicate uncertainty? 

Co-production of models with 
stakeholders?

Research: IBM/AI2ES providing ensemble 
air temperature predictions (right)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Start of Navigation 
Interruption



Orescanin, M., Petković, V., Powell, S.W., Marsh, B.R. and Heslin, S.C., 2021. 
Bayesian Deep Learning for Passive Microwave Precipitation Type Detection. 
IEEE Geoscience and Remote Sensing Letters.

Satellite Application of UQ estimate

Task: 
Classify precipitation type (stratiform or convective) based on passive MW imagery.

Goal:  
Provide two outputs:
1. Map of precipitation type: indicates stratiform/convective per pixel.
2. Map of uncertainty: indicates how much to trust classification per pixel.

Method used:  
Bayesian neural network.  More details later.



Orescanin et al., Bayesian Deep Learning for Passive Microwave Precipitation Type Detection, 2021.

Satellite Application of UQ estimate

Classification from baseline 
operational algorithm

Ground truth
(label from DPR)

Classification from 
Bayesian NN

Uncertainty estimate 
from Bayesian NN

high entropy = 
high uncertainty



Next topic:  
2) Classifications of Uncertainty



There are many different ways to classify uncertainty.
Different classifications arise from 

1. Needs of the specific application and end user;
2. Information available and approaches used to develop uncertainty estimates.

It can be very confusing to encounter all these different classifications in the literature. 
Do not be surprised to see those.  It’s not you - it’s the nature of the field.

Example:  two approaches that use very different classification

1. Component-based approach, i.e. modeling uncertainty of each component separately 
(based on expert knowledge), then propagating contributions.

2. Typical AI approach, i.e. being given only data set and AI model, and no information about 
components. 

Classifications of Uncertainty



Aleatory uncertainty: the natural randomness in the underlying process.
● Also known as: statistical, stochastic or irreducible uncertainty.
● Classic Example:  

○ Tossing a perfect coin (50-50 probability)
○ Even the best model of this system cannot predict outcome of tossing a coin, because of its 

stochastic properties.
● Irreducible: This uncertainty can be estimated, but not eliminated.

Epistemic uncertainty: the scientific uncertainty due to limited data and knowledge.
● Also known as: systemic, model, or reducible uncertainty.
● Uncertainty based on our ignorance - we just do not know the system and its state well enough.
● Classic example: 

● Training a machine learning model with few data samples.
● Uncertainty can be reduced by feeding more appropriate data and/or adding more physical 

knowledge.
● Reducible: This uncertainty can be reduced with better models & data, e.g., by collecting and 

feeding in more data or by choosing a better ML method.

     Total Uncertainty   =   Aleatory Uncertainty  +  Epistemic Uncertainty

Classification of Uncertainty in AI



Aleatory vs. Epistemic uncertainty 

Distribution of training data:

A) y(x) is normal distributed 
   for all x ∈ [0,4] with

● 𝝁 = sin(x · π)
● 𝛔 = 0.1 · sin(x · π)

Represents internal variability.

B) Sampling in x varies: 
● For x ∈ [0,2]:  high density
● For x ∈ [2,4]:  low density

 Represents sampling rate in x.

Internal variability: 
varies with x.



Aleatory vs. Epistemic uncertainty 

Distribution of training data:

A) y(x) is normal distributed 
   for all x ∈ [0,4] with

● 𝝁 = sin(x · π)
● 𝛔 = 0.1 · sin(x · π)

Represents internal variability.

B) Sampling in x varies: 
● For x ∈ [0,2]:  high density
● For x ∈ [2,4]:  low density

 Represents sampling rate in x.

Small sampling rate:  
low density in x

High sampling rate:  
high density in x

Internal variability



Aleatory vs. Epistemic uncertainty 

Results from a deterministic NN:
What do we notice?



Aleatory vs. Epistemic uncertainty 

Results from a deterministic NN

Very large epistemic uncertainty:
due to low sampling rate

in this region

Large aleatory uncertainty:
due to internal variability of 

observed system

We want to identify both 
types of uncertainty!

That’s what happens if we run a model 
where it has not been trained well

(few training samples in that regime).



Different UQ methods capture different types of uncertainty.

In theory:
1. Non-Bayesian methods capture only aleatory (irreducible) uncertainty.
2. Bayesian methods can capture epistemic uncertainty.
3. Some combinations of methods can capture both - in theory!

In practice: 
● What the various methods capture in practice is yet another question altogether!  
● Estimates vary greatly between methods.  

→  That’s why evaluation criteria for uncertainty estimates are so important!
→  Next big topic. 

Do UQ methods capture both?

But first - a little exercise.



Uncertainty categories adopted from: 

Beucler et al., Machine Learning for Clouds and Climate, book chapter in “Clouds and Climate”, AGU 
Geophysical Monograph Series, https://www.essoar.org/doi/abs/10.1002/essoar.10506925.1

Uncertainty categories:

1. Stochastic: due to internal climate variability or the chaotic nature of flow, etc.
2. Observational: due to measurement and representation errors 
3. Structural: due to incorrect model structure
4. Parametric: due to incorrect model parameters

Question:  Can we map these four categories to aleatory vs. epistemic?

Reminder:
● Aleatory uncertainty:   natural randomness in the underlying process.
● Epistemic uncertainty: scientific uncertainty due to limited data or knowledge.

Sample classification in environmental science

4.5. Go to sli.do and use the code TAI4ES

https://www.essoar.org/doi/abs/10.1002/essoar.10506925.1


1. Stochastic: due to internal climate variability or the chaotic nature of flow, etc.
2. Observational: due to measurement and representation errors (e.g., satellite retrieval error)
3. Structural: due to incorrect model structure (e.g., ML model type)
4. Parametric: due to incorrect model parameters (e.g., ML training)

Which ones are aleatory vs. epistemic?
● Clearly aleatory (irreducible):   stochastic
● Clearly epistemic (lack of knowledge):    structural, parametric
● But what about observational?   

Seems to have both aleatory and epistemic components.
Some of it could be reduced by better knowledge of sensor system (e.g., satellite), 
but some of it is inherent internal variability of sensor system - so both?

Key lessons:  1) Different classifications do not easily map to each other.  
2) Many classifications are valid and make sense in their own way.

Classification of Uncertainty - ES example



Quick break to give you time to soak 
information in and ask questions!

Go to sli.do and use the code TAI4ES



Next topic:
3) Evaluating uncertainty estimates



Evaluating uncertainty estimates

This section will discuss five evaluation tools:

a) Reliability curve and attributes diagram
b) Spread-skill plot
c) Probability integral transform (PIT) and PIT histogram
d) Discard test
e) The continuous ranked probability score (CRPS)



3a) Reliability curve and attributes diagram

● The reliability curve is used to 
evaluate probabilistic predictions.

● Typically used for binary classification 
(predicting a yes-or-no event).

● Reliability curves can also be modified 
for regression (shown later).

● Reliability curves evaluate only the 
central prediction (not uncertainty).

● However, in studies involving UQ, 
reliability curves are commonly used 
to evaluate the central prediction.



3a) Reliability curve and attributes diagram

● Reliability curves are used even if the model is not truly probabilistic.
● Most ML models for classification output confidence scores (pseudo-probabilities), 

which are not true probabilities.
● However, most people just call these “probabilities” and use the reliability curve to 

evaluate how calibrated these “probabilities” are.
● There is nothing wrong with using the reliability curve for this purpose, as long as you 

recognize the difference between pseudo-probabilities and true probabilities.

Take-home point: you can use the reliability curve to evaluate true probabilities 
or pseudo-probabilities, but be careful with terminology.



3a) Reliability curve and attributes diagram

● The reliability curve plots predicted event 
probability vs. conditional event frequency.

● The reliability curve is binned by predicted 
probability, often into 10 bins:

○ 0-10%
○ 10-20%
○ …
○ 90-100%

● Thus, each point is a mean over all 
examples in one bin:

○ x-coordinate: mean predicted 
probability in bin

○ y-coordinate: observed event 
frequency in bin

● Thus, the reliability curve answers the 
question:

“Given predicted probability p, how likely is the event to actually occur?”



3a) Reliability curve and attributes diagram

● Ideally, conditional event frequency should 
always = forecast probability.

● In other words, in cases where the model 
says probability = p, the true event 
frequency (f) should be p.

● Dashed grey line: perfect reliability, where f 
= p for all bins.

● Points below grey line: predicted 
probability is too high, or model is 
“overconfident”.

● Points above grey line: predicted 
probability is too low, or model is 
“underconfident”.



3a) Reliability curve and attributes diagram

● The attributes diagram (Hsu and Murphy 
1986) is a reliability curve with extra reference 
lines:

○ Diagonal grey line = perfect reliability, as 
before

○ Vertical grey line = climatology (event 
frequency over all data)

○ Horizontal grey line = no resolution
○ Blue shading = positive-skill area

● A model with no resolution follows the 
no-resolution line.

● A climatological model (one that always 
predicts p = event frequency over all data) has 
a reliability curve with one point, at the 
intersection of the climo and no-resolution 
lines.

● “Positive skill” means Brier skill score > 0.

https://doi.org/10.1016/0169-2070(86)90048-8
https://doi.org/10.1016/0169-2070(86)90048-8


3a) Reliability curve and attributes diagram

● The attributes diagram can also be adapted for 
regression problems.

● Differences are summarized below, letting the target 
variable be z.

○ The x-axis is the model-predicted z-value – a real 
number that in general can range from (-∞, +∞) – 
instead of a probability.

○ The y-axis is the conditional mean observed 
z-value – a real number that in general can range 
from (-∞, +∞) – instead of an event frequency.

○ The perfect-reliability line is still the 1-to-1 line.
○ The no-resolution line is at y = zclimo, and the 

climatology line is at x = zclimo, where zclimo is the 
average z-value over the full dataset.

○ The interpretation of the perfect-reliability, 
climatology, and no-resolution lines is the same.

○ The positive-skill area shows where the mean 
squared error (MSE) skill score (MSESS), rather 
than the BSS, is positive.



3b) The spread-skill plot

● Similar to reliability curve but may be used *only* for models 
that include uncertainty.

● Can be used for classification or regression.

● x = predicted model spread

○ Mean standard deviation of model’s predictive 
distribution

● y = RMSE of model’s mean prediction

● Each point corresponds to one bin of spread values.

○ Just like, in reliability curve, each point corresponds to 
one bin of forecast probs.

● The spread-skill plot answers the following question:

Spread-skill plot 
for classification 

task

Spread-skill plot 
for regression 

task

“Given predicted model spread, what is model 
error?”



3b) The spread-skill plot

● For a model with perfectly calibrated uncertainty 
estimates, the spread-skill plot follows the 1-to-1 line.

○ At points below the 1-to-1 line (bins where spread > 
error), the model is overspread or “underconfident”.

○ At points above the 1-to-1 line, the model is 
underspread or “overconfident”.

● We also include a histogram to show the number of cases 
in each spread bin.

● Overall quality of spread-skill plot can be summarized by 
mean distance from the 1-to-1 line, which we call the 
spread-skill reliability (SSREL).

Spread-skill plot 
for classification 

task

Spread-skill plot 
for regression 

task



3c) The PIT histogram
● PIT = probability integral transform
● Definition: value that predictive CDF 

(cumulative density function) attains at 
observed value

● Alternate definition: quantile of observed 
value in distribution of predictions

● Examples:
○ Observed value = median of 

predictive distribution ⇒ PIT = 0.5
○ Observed value = max of predictive 

distribution ⇒ PIT = 1.0
○ Observed value = min of predictive 

distribution ⇒ PIT = 0.0



3c) The PIT histogram
● The PIT histogram is a histogram of all PIT values (one for each example).
● For a perfectly calibrated model, the PIT histogram is uniform.

○ In other words, all PIT values occur with the same frequency.
● If the PIT histogram has a hump in the middle, the model has too much spread or is 

“underconfident” (below; Figure 15 of Barnes et al. 2021).

● If the PIT histogram has humps on the sides (a lot of values near 0 or 1), the model has too 
little spread or is “overconfident”.

https://arxiv.org/abs/2109.07250


3c) The PIT histogram

● Atmospheric scientists are typically more familiar with the rank histogram, invented by Talagrand 
and discussed in Hamill (2001).

● The PIT histogram is a generalization of the rank histogram.

● The rank histogram is used for ensembles, where the ensemble contains a finite number of models 
and thus generates a finite number of predictions.

● The PIT histogram (and all other evaluation tools in Section 3) can be used for any method that 
generates a predictive distribution, whether the distribution is created by:

a) collecting deterministic predictions from each member of an ensemble;
b) predicting the quantiles of a distribution;
c) predicting the parameters (e.g., mean and standard deviation for Gaussian) of a distribution;
d) anything else.

● Happily, the rank histogram and PIT histogram can be interpreted in the same way (uniform = 
perfectly calibrated; bunched in middle = underconfident; bunched at sides = overconfident).

https://doi.org/10.1175/1520-0493(2001)129%3C0550:IORHFV%3E2.0.CO;2


3d) The discard test

● The discard test compares model error versus the 
fraction of highest-uncertainty cases discarded.

● Procedure:
○ Select a fraction f (example: 0.1 or 10%).
○ Discard the f * 100% of cases with highest 

uncertainty.
○ Compute the model error before and after 

discarding.
○ Did the model error decrease after discarding?  If 

so, good.

● For a model with well calibrated uncertainty estimates, 
error should decrease monotonically as the discard 
fraction increases.



3d) The discard test

● The overall quality of the discard test can be 
summarized by the monotonicity fraction 
(MF):

● N
f
 is the number of discard fractions used

● ε
i
 is the model error with the ith discard 

fraction
●         is the indicator function, which evaluates 

to 1 if the condition is true and 0 if the 
condition is false



3e) The continuous ranked probability score (CRPS)

CRPS:  comparison between probabilistic models and deterministic models

CRPS varies from [0, ∞), and the optimal value 
is 0 (no difference between model and obs)



3e) The continuous ranked probability score (CRPS)

CRPS:  comparison between probabilistic models and deterministic models

Predicted value Observed value

Predicted CDF Heaviside step 
function (1 if ypred > 
ytrue; 0 otherwise)

CRPS varies from [0, ∞), and the optimal value 
is 0 (no difference between model and obs)



3e) The continuous ranked probability score (CRPS)

● Big advantage of CRPS: 

○ Considers the full predictive PDF, not just the mean or standard deviation or certain quantiles

● CRPS can be used as a loss function to train neural networks (more in methods)

○ Creates an ensemble of predictions that can be used to quantify uncertainty

○ Ensemble members are trained to represent the true PDF and do not require any a priori distribution information

● Original work using CRPS and providing excellent derivations

○ Hersbach (2000): Decomposition of the CRPS for ensemble prediction systems

○ Gneiting et al (2005): Calibrated probabilistic forecasting using minimum CRPS estimation

○ Gneiting and Raftery (2007): Strictly proper scoring rules, prediction, and estimation

○ Székely and Rizzo (2005): A new test for multivariate normality

https://doi.org/10.1175/1520-0434(2000)015%3C0559:DOTCRP%3E2.0.CO;2
https://doi.org/10.1175/MWR2904.1
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1016/j.jmva.2003.12.002


Overview of UQ-evaluation methods

Method Classification Regression What it tells us

Attributes 
diagram

✔ ✔ Evaluates only central prediction, not uncertainty estimates.

Class: observed event frequency as a function of predicted 
event probability, Brier score, Brier skill score

Reg: mean observed target value as a function of predicted 
target value, mean squared error (MSE), MSE skill score

Spread-skill 
plot

✔ ✔ Model error as a function of predicted model spread.  If 
uncertainty is perfectly calibrated, this plot follows the 1-to-1 
line.

PIT histogram ✔ Distribution of PIT values.  If uncertainty is perfectly calibrated, 
this distribution is uniform, so the PIT histogram is flat.

Discard test ✔ ✔ Model error vs. discard fraction.  If uncertainty is well 
calibrated, error decreases monotonically as discard fraction 
increases, i.e., as more high-uncertainty samples are dropped.
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● We chose 6 UQ methods for this presentation; we think these 6 methods represent 
the most common/promising approaches.

1. Quantile regression (also works for ML models other than NNs)
2. CRPS loss function
3. Parametric prediction
4. Deep ensembles
5. Monte Carlo dropout - time permitting
6. Bayesian neural network - time permitting

Methods



Method 1: Quantile regression

● Quantile regression (QR) involves directly predicting the quantiles of a probability 

distribution.

● This means that for each data sample, instead of predicting a single number (the mean or 

“expected value” or “maximum-likelihood estimate”), we predict several numbers 

(quantile-based estimates).

● In early work, median regression (predicting the 50th percentile) was seen as an alternative to 

least-squares linear regression, which predicts the mean.

● QR works for many types of ML, not just neural nets.



Method 1: Quantile regression

● The “trick” is to train the model with the quantile loss function:

● q is the desired quantile level, ranging from [0, 1]

● y
true

 is the correct value

● y
pred

q is the estimated value at quantile level q

● Large values of q penalize underprediction (y
pred

q < y
true

) more than overprediction (y
pred

q > y
true

), 

encouraging the model to output large y
pred

q.

● Conversely, small values of q encourage the model to output small y
pred

q.



Method 1: Quantile regression

● To estimate multiple quantiles with NNs, a common approach is to train a separate NN for each 

quantile.

● Because the different NNs are trained independently, this approach does not prevent the problem of 

quantile-crossing, where the estimated value y
pred

q decreases as the quantile level q increases.

○ Example: the 25th-percentile rainfall prediction is 30 mm but the 75th-percentile prediction is 20 

mm.

● Thus, we have developed a novel NN architecture that completely prevents quantile-crossing (see 

notebook).

● For any consecutive pair of quantile levels, q
i - 1

 and q
i
, the estimate                must be >                .

● To satisfy this condition, we express                as the sum of                and a positive term.

● We implement this with Add() layers and the ReLU activation function.

https://github.com/thunderhoser/cira_uq4ml/blob/main/quantile_regression_for_classification.ipynb


● Below: U-net architecture with quantile regression.
● Task is binary classification: take 205-by-205 satellite images and predict 

convection at 1-hour lead.



Method 2:  Using CRPS loss function

This method is for any machine learning model with a loss function
● Implemented by Gneiting and Raftery (2007)

● Can be evaluated for any distribution using Monte Carlo techniques to generate ensemble 

members representative of the distribution

CRPS*(F, y
true

) = E
F
❘Ẏ – y

true
❘  –  ½ 

E
F
❘Ẏ - Ẏ’❘

● CRPS* = Negative orientation of CRPS

○ Can be reported in same units as observations

○ Reduces to Mean Absolute Error (MAE) for a single ensemble member

MAE between NN 
predictions and y

true
Half the predicted spread 
(MAE of pairwise differences 
between ensemble members)

Ẏ = Predictions from all ensemble members 
(i.e., randomly-drawn sample with the  
distribution of y

pred
)

Ẏ’ = Transposed copy of the predictions
E

F
 = Evaluation function 

(reduces dimensionality to single value, 
often the mean)

y
true

 =  Observations; y
pred

 = Predictions



Method 2:  CRPS loss function

Based on Brey (2021)

Probabilistic CRPS does well at capturing different regimes
Do not need to know data distribution a priori
Evaluate carefully–looking only at mean (for example) would 
make it look like MAE is better than CRPS

https://github.com/TheClimateCorporation/ensemble/


Method 2:  CRPS loss function

● Recent work in probabilistic ML using CRPS as the loss function:
○ Chapman et al. (2022): Probabilistic prediction from deterministic atmospheric river forecasts 

with deep learning

○ Ghazvinian et al. (2021): A novel hybrid artificial neural network parametric scheme for 

postprocessing medium-range precipitation forecasts

○ Grönquist et al. (2021): Deep learning for post-processing ensemble weather forecasts

○ Brey (2021): CRPS-Net, A package for making and working with probabilistic predictions

○ Scher and Messori (2020): Ensemble methods for neural network-based weather forecasts

○ Rasp and Lerch (2018): Neural Networks for postprocessing ensemble weather forecasts

● Notebook demonstrating the CRPS loss function

● Notebook demonstrating different UQ methods and evaluation metrics 

○ Regression task with six sample datasets

○ CRPS loss function, Monte Carlo dropout, parameters of probability distribution

○ Attributes diagram, spread-skill plot, PIT histogram, discard test

● Notebooks demoing MC dropout and quantile regression, including evaluation methods

https://doi.org/10.1175/MWR-D-21-0106.1
https://doi.org/10.1016/j.advwatres.2021.103907
https://doi.org/10.1098/rsta.2020.0092
https://github.com/TheClimateCorporation/ensemble/
https://doi.org/10.1029/2020MS002331
https://doi.org/10.1175/MWR-D-18-0187.1
https://colab.research.google.com/drive/1e-qLJEay7E8Szm2JoUV9o25Xi0vxaM8O?usp=sharing
https://colab.research.google.com/drive/1OQkNle8imtkODvXmQ4F1R7bT_RYs15O9?usp=sharing
https://github.com/thunderhoser/cira_uq4ml/blob/main/mc_dropout_for_classification.ipynb
https://github.com/thunderhoser/cira_uq4ml/blob/main/quantile_regression_for_classification.ipynb


Method 3:  Parametric Prediction

Premise:  Instead of having NN output a 

single prediction, output a probability 

distribution 

Pros:  Does not require any modification to 

NN architecture (just change output layer 

and loss function); does not require 

assumptions of linearity, normality, etc

Cons:  Must specify distribution a priori 

Figure 8 from Barnes et 
al. (2021)

References and Resources
Barnes et al. (2021): Adding Uncertainty to 
Neural Network Regression Tasks in the 
Geosciences, https://arxiv.org/abs/2109.07250

Notebook with implementation of this method

https://arxiv.org/abs/2109.07250
https://colab.research.google.com/drive/1OQkNle8imtkODvXmQ4F1R7bT_RYs15O9?usp=sharing


Ensemble techniques use the diversity of 

various model trained on slightly different 

data / features / initialization to estimate 

the predictive uncertainty.

Bootstrapping/bagging are the most 

commonly used ensemble technique.

Credit: https://www.rossidata.com/UncertaintyQuantificationandEnsembleLearning

Method 4:  Deep Ensemble



Credit: https://towardsdatascience.com/understanding-random-forest-58381e0602d2

From a single learner/model to an ensemble of learners/models

Decision tree Random forest

Ensemble explained via random forest



We often use forecast / 
prediction from an 
ensemble of model runs to 
quantify the uncertainty in 
weather/climate modeling. 

A common example of ensemble for model uncertainty



Lakshminarayanan et al. (2017) "Simple and scalable predictive uncertainty estimation using deep ensembles." 
Advances in neural information processing systems 30.

Input Data

Random 
initialization 1

Trained 
network 1

Method 4:  Deep Ensemble



Lakshminarayanan et al. (2017) "Simple and scalable predictive uncertainty estimation using deep ensembles." 
Advances in neural information processing systems 30.

Input Data

Random 
initialization 1

Random 
initialization 2

Random 
initialization M

Trained 
network 1

Trained 
network 2

Trained 
network M

… … …

Method 4:  Deep Ensemble



Lakshminarayanan et al. (2017) "Simple and scalable predictive uncertainty estimation using deep ensembles." 
Advances in neural information processing systems 30.

Input Data

Random 
initialization 1

Random 
initialization 2

Random 
initialization M

Trained 
network 1

Trained 
network 2

Trained 
network M

… … … Assumption of 
uniformly-weighted mixture

Method 4:  Deep Ensemble



Deep ensemble is able to capture the uncertainty of the machine learning model that include both 
aleatoric and epistemic.

Method 4:  Deep Ensemble

Lakshminarayanan et al. (2017) "Simple and scalable predictive uncertainty estimation using deep ensembles." 
Advances in neural information processing systems 30.



Deep ensemble is able to capture uncertainty even under “data shift”.

Ovadia, et al. "Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift." 
Advances in neural information processing systems 32 (2019).

Method 4:  Deep Ensemble



Using long term satellite records (HIRS) to estimate the temperature and humidity at different 
pressure levels (10 levels), 3-layer NN (Matthews et al., 2019).

Deep ensemble example in satellite retrieval

Mean 
target

Mean 
output

Mean 95% 
PI (low)

Mean 95% 
PI (high)

PI % 
coverage

280.5637 280.5626 276.8789 284.2451 94.36%

275.8684 275.8694 272.3181 279.4166 94.66%

268.2491 268.2485 266.0995 270.3981 94.75%

261.2067 261.2067 259.2162 263.1963 94.81%

252.9137 252.9134 250.8242 255.0034 94.64%

242.7405 242.7421 240.3515 245.1342 94.99%

230.4737 230.4741 228.2630 232.6822  94.75%

218.7811 218.7802 215.6937 221.8664 94.37%

207.8232 207.8239 204.8009 210.8469 94.78%

212.1718 212.1729 208.0538 216.2923 94.54%



Deep ensemble is an useful tool for estimating uncertainty but it comes at a price – high 
demand for computing and memory (similar to BNN you will see later).

Comments on Deep Ensemble

Computation (time/memory)

Q
ua

lit
y 

of
 U

Q Ensembles / Bayesian NNs

Single NN

The trade-off between the computational 
cost and the quality of uncertainty estimation 
is hard to be generalized and should be 
addressed for your own use cases.

There are active ongoing developments of 
practical and general UQ methods in AI/ML.

Credit: Lakshminarayanan (2022)



Method 5:  Monte Carlo Dropout

Image source: Michal Oleszak, Monte Carlo Dropout, Towards data science, Sep 20, 2020.
https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571 

Regular Neural Network
Same network with two neurons “dropped out” 
(eliminated from network) 

What is dropout?       Randomly drop some neurons in network - typically during training. 

https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571


Method 5:  Monte Carlo Dropout

Image source: Michal Oleszak, Monte Carlo Dropout, Towards data 
science, Sep 20, 2020.
https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571 

Standard use of dropout:  Dropout used during training - to avoid overfitting

● Dropout is usually used only during NN training to avoid overfitting: 

● Idea:  during training randomly ignore neurons according to specified drop out probability:

○ neurons with drop-out rate=0 → never dropped

○ neurons with drop-out rate=0.5 → dropped about 50% of the time.

○ Dropout rate becomes an additional hyperparameter

● For each batch: decide which neurons are dropped.  Different neurons active for each batch!

● NN is forced to learn to distribute signals across many neurons (redundancy), because it cannot rely 

on any neuron to be connected.

● Since different neurons are dropped in each batch, we effectively create an ensemble

https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571


Method 5:  Monte Carlo Dropout

Image source: Michal Oleszak, Monte Carlo Dropout, Towards data 
science, Sep 20, 2020.
https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571 

Different use - to obtain uncertainties:  Drop-out during prediction (after having trained with dropout)

● Dropout can be interpreted as Bayesian approximation of Gaussian process.
● Idea: Use dropout when running the model to generate predictions 

→ each dropout version provides a different NN model
→ provides ensemble of NN models 
→ ensemble of predictions → can get uncertainty estimate from that ensemble.

● Loss function:  Best coupled with using special loss function during training, see next slide.
● It was shown that MC Dropout can be interpreted as a special case of Bayesian inference - 

although originally it was not derived as such.  See:
○ Gal, Yarin, and Zoubin Ghahramani. "Dropout as a bayesian approximation: Representing model uncertainty in deep 

learning." International conference on machine learning. PMLR, 2016.

https://towardsdatascience.com/monte-carlo-dropout-7fd52f8b6571


Method 5:  Monte Carlo Dropout

Pros:  
● Extremely easy to implement:  

just add dropout layers to NN and make sure they stay on during inference.
Cons: 

● Slow at inference time. 
● We have not found them to give great results for our applications.



Standard (deterministic) NN: 

● Weights & biases are parameters to be learned;

● Activation functions are fixed (pre-selected).

Bayesian Neural Networks = Neural Networks where 

● either weights & biases, 

● or activation functions

   in the layers are probabilistic.

Most common BNN type - we will only focus on this type here: 

● Activation functions are fixed;

● Weights and biases are modeled as probabilistic.

Method 6: Bayesian Neural Network



Method 6: Bayesian Neural Network

Standard (Deterministic) 
Neural Network:
all weights and biases are scalars 
to be learned

Image credit:  Gluon Educational Resources, Chapter 18 on Variational methods and uncertainty.
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html

https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html


Method 6: Bayesian Neural Network

Bayesian Neural Network:

● Probabilistic layers: 
all weights and biases are probability 
distributions to be learned.

● Shown here: 
○ Normal distribution (mu, sigma) 

assumed for each weight. 
○ But does not have to be 

Gaussian.

Image credit:  Gluon Educational Resources, Chapter 18 on Variational methods and uncertainty.
https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html

https://gluon.mxnet.io/chapter18_variational-methods-and-uncertainty/bayes-by-backprop.html


● TensorFlow’s probability (TFP) library provides probabilistic layers to implement BNNs.

● In theory, we can just replace deterministic layers by probabilistic layers using TFP. 

But in practice it’s not that easy:

○ Large memory requirements;

○ Large computational requirements for training BNNs.

● Experience by other groups working in environmental science:

○ Many research groups report that they can only implement 2-3 probabilistic layers 

before running out of memory.

○ Success story:  One group successfully converted all layers of a deep, complex NN 

into probabilistic layers, using their own implementation.

Which group and application could it be?

Hint: You’ve already seen it mentioned in this presentation.

Method 6: BNNs - implementation



Orescanin, M., Petković, V., Powell, S.W., Marsh, B.R. and Heslin, S.C., 2021. 
Bayesian Deep Learning for Passive Microwave Precipitation Type Detection. 
IEEE Geoscience and Remote Sensing Letters.

BNNs for predicting precipitation from satellite imagery

Method used:  
● Bayesian neural network - making all NN weights probabilistic.

Application:   
● Classify precipitation type (stratiform or convective) based on passive MW imagery
● Namely, map from raw GMI data to precipitation type (stratiform/convective)
● Goal:  provide two outputs:

i. Map of precipitation type: indicates stratiform/convective per pixel.
ii. Map of uncertainty: indicates how much to trust classification per pixel.

Set-up:
● 14 million samples available for training and testing.
● Ground truth (labels): obtained from dual-frequency precipitation radar (DPR)
● Input:  passive Microwave Imagery (GMI)



BNNs for predicting precipitation from satellite imagery

Approach:

● NN architecture:  CNN of type ResNet
● Baseline model:  deterministic ResNet

Comment:  ResNet is a deep network with lots of parameters.
● New model:  probabilistic ResNet

○ Turn all layers of ResNet into Bayesian layers:  
→ all weights of all layers are modeled as Gaussian distribution. 
→ That doubles # of parameters: 
     each weight, w, is replaced by two parameters: (mu, sigma)

● Key comments:
○ Implementation:  Implemented in TensorFlow probability.
○ Impressive implementation:  they manage to turn all layers of ResNet into 

Bayesian layers, without running out of memory!
○ But still needs lots of data (they have 14M samples!)



BNNs for predicting precipitation from satellite imagery

Deterministic ResNet: 86% accuracy, no uncertainty estimate.
Probabilistic ResNet: 90% accuracy, and yields uncertainty estimate.

Classification from baseline 
operational algorithm

Ground truth
(label from DPR)

Classification from 
Bayesian NN

Uncertainty estimate 
from Bayesian NN

high entropy = 
high uncertainty

Orescanin et al., Bayesian Deep Learning for Passive Microwave Precipitation Type Detection, 2021.



Other success stories in environmental science

● Vandal et al. (2018): “Quantifying uncertainty in discrete-continuous and skewed data with Bayesian deep learning”

○ Successfully use Bayesian deep learning for precipitation

● Clare et al. (2021): “Combining distribution-based neural networks to predict weather forecast probabilities”

○ Turn regression problem into multi-class classification, by splitting continuous var into bins

○ Then use neural net with softmax activation

● Scher and Messori (2021): “Ensemble methods for neural-network-based weather forecasts”

○ Test 4 ensemble methods: random initial perturbations, PCA-based perturbations, retraining many times, Monte 

Carlo dropout

● Foster et al. (2021): “Probabilistic machine learning estimation of ocean mixed layer depth from dense satellite and 

sparse in-situ observations”

○ Test 4 ML methods with UQ – including Monte Carlo dropout, predicting mean and variance, deep ensemble

● Ortiz et al. (2022): “Decomposing satellite-based classification uncertainties in large earth-science datasets”

○ Decompose uncertainty into aleatoric and epistemic components

○ This decomp helps users make informed decisions about high-uncertainty cases (e.g., need to collect more data vs. 

augment existing data)

● Chapman et al. (2022): “Probabilistic predictions from deterministic atmospheric river forecasts with deep learning”

○ Compare dynamical ensemble vs. neural networks vs. analogue ensemble for UQ.  Find that NNs have many 

advantages.

https://doi.org/10.1145/3219819.3219996
https://doi.org/10.1002/qj.4180
https://doi.org/10.1029/2020MS002331
https://doi.org/10.1029/2021MS002474
https://doi.org/10.1109/TGRS.2022.3152516
https://doi.org/10.1175/MWR-D-21-0106.1


Draft paper and Jupyter notebooks from our team for your use

● Draft paper (49 pages) - includes most of the UQ methods and eval tools discussed here. 

● Notebook for CRPS loss function

● Notebook demonstrating wide variety of UQ methods and evaluation tools

○ Application: regression task with 6 synthetic datasets

○ UQ methods: CRPS loss function, Monte Carlo dropout, parametric prediction

○ Evaluation tools: attributes diagram, spread-skill plot, PIT histogram, discard test

● Monte Carlo dropout

○ Application: classifying hand-written digits

○ Includes spread-skill plot, discard test, and case studies

● Same as above but for quantile regression

Big thanks to Ryan Lagerquist and Katherine Haynes for creating these notebooks.

Ryan
Lagerquist 

(CSU)

Katherine 
Haynes
(CSU)

https://docs.google.com/document/d/1osrzfDqUD8DTRUvEW46vsw8uENQsOaLCo2LIzyu9NJY/edit?usp=sharing
https://colab.research.google.com/drive/1e-qLJEay7E8Szm2JoUV9o25Xi0vxaM8O?usp=sharing
https://colab.research.google.com/drive/1OQkNle8imtkODvXmQ4F1R7bT_RYs15O9?usp=sharing
https://github.com/thunderhoser/cira_uq4ml/blob/main/mc_dropout_for_classification.ipynb
https://github.com/thunderhoser/cira_uq4ml/blob/main/quantile_regression_for_classification.ipynb


Resources that we found particularly helpful as entry point: 
1. Dürr, O., Sick, B. and Murina, E., 2020. Probabilistic deep learning: With python, keras and tensorflow probability. 

Manning Publications. (book)
2. Blog comparing different UQ methods including MC Dropout, Deep Ensemble, GPR, Qunatile Regression - 

https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/  (blog post)
3. Dr. Steven Brey’s detailed explanation of a probabilistic implementation of the CRPS - 

https://github.com/TheClimateCorporation/ensemble/blob/main/notebooks/intro_to_probabilistic_predictions.ipynb 
(Github)

4. Review of UQ in Deep Learning - https://doi.org/10.1016/j.inffus.2021.05.008 (article)
5. Valentin Jospin, L., Buntine, W., Boussaid, F., Laga, H. and Bennamoun, M. Hands-on Bayesian Neural 

Networks - a Tutorial for Deep Learning Users, arXiv preprint, v2, Sept 2021, https://arxiv.org/abs/2007.06823 
(article)

6. Chang, D.T. , Bayesian Neural Networks: Essentials. arXiv preprint, v1, June 2021, 
https://arxiv.org/abs/2106.13594 (article)

7. Ortiz, P., Orescanin, M., Petković, V., Powell, S.W. and Marsh, B., 2022. Decomposing Satellite-Based 
Classification Uncertainties in Large Earth Science Datasets. IEEE Transactions on Geoscience and Remote 
Sensing, 60, pp.1-11. (article)

Other Suggested Reading

https://www.inovex.de/de/blog/uncertainty-quantification-deep-learning/
https://github.com/TheClimateCorporation/ensemble/blob/main/notebooks/intro_to_probabilistic_predictions.ipynb
https://doi.org/10.1016/j.inffus.2021.05.008
https://arxiv.org/abs/2007.06823
https://arxiv.org/abs/2106.13594


Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

https://app.sli.do/event/1zumy91n

Or go to sli.do 
and use the 

code TAI4ES

Questions?
Day 4: Agenda
● 9:00 Uncertainty quantification methods (Part 1)
● 10:00 Short brain & bio break
● 10:10 Uncertainty quantification methods (Part 2)
● 10:45 Short brain & bio break
● 10:55 Communicating uncertainty (Part 3)
● 11:55 Lecture series wrap up!

https://urldefense.com/v3/__https://app.sli.do/event/1zumy91n__;!!GNU8KkXDZlD12Q!4yYLQYR3jEljJ3rZVyEbMUtQuNSJX8rOvaw7RqAZeDZav7KWlNK8Wf2QwRt3Fx7wwV-izNmxjfdilR0$


Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

https://app.sli.do/event/1zumy91n

Or go to sli.do 
and use the 

code TAI4ES

Questions?
Day 4: Agenda
● 9:00 Uncertainty quantification methods (Part 1)
● 10:00 Short brain & bio break
● 10:10 Uncertainty quantification methods (Part 2)
● 10:45 Short brain & bio break
● 11:00 Communicating uncertainty (Part 3)
● 11:55 Lecture series wrap up!

https://urldefense.com/v3/__https://app.sli.do/event/1zumy91n__;!!GNU8KkXDZlD12Q!4yYLQYR3jEljJ3rZVyEbMUtQuNSJX8rOvaw7RqAZeDZav7KWlNK8Wf2QwRt3Fx7wwV-izNmxjfdilR0$


Part 3: Risk communication and 
Uncertainty



Uncertainty: Cold Stunning Predictions

● Water temperature below 8C for ~24 
hrs leads to sea turtle cold stunnings

● AI (shallow neural nets) used since 
2008 to predict onset and duration of 
cold stunnings (black dash line)

● AI Predictions allow for interruption of 
navigation, staging of resources, …

● Here, example for Feb 2022 cold 
stunning predictions (400+ sea turtles)

How can we best quantify, visualize, 
communicate uncertainty? 

Research: IBM/AI2ES providing ensemble 
air temperature predictions (right)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Start of Navigation 
Interruption

4.6. Go to sli.do and use the code TAI4ES



Definition of Trust (Reminder from Monday)

● Trust is the willingness of a party to be vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action important to the trustor, irrespective 
of the ability to monitor or control that other party.  (e.g., Mayer et al 1995)

● Trust: In the presence of uncertainty, the degree to which someone does or does not rely on, 
or put faith in, someone or something (Wirz et al.)

○ Definition is purposefully broad, so as to capture the many different definitions and 
related dimensions of trust. Our definition of trust is designed to capture trust in all 
forms.

● Trust is the relationship between a trustor and a trustee: the trustor trusts the trustee.  Trust is 
dynamic, evolves with interactions, and is easier to lose than gain. 

AI2ES Definition: Trust is the willingness to assume risk by 
relying on or believing in the actions of another party.



Characterizing and communicating risk and uncertainty  

“Risk is a situation or event where something of human value (including 

humans themselves) is at stake and where the outcome is uncertain.”

“Risk is an uncertain consequence of an event or an activity with respect to 

something that humans value.” 

–  Aven and Renn, 2009 Journal of Risk Research 

○  

4.8. Go to sli.do and use the code TAI4ES

Quick survey to help us think about “risk” in the context of AI



 Paul Slovic, Science, 1987

Risk perceptions: Psychometrics

What makes risk acceptable? 
The risk factor space



 van der Bles AM, van der Linden S, 
Freeman ALJ, Mitchell J, Galvao AB, Zaval L, 

Spiegelhalter DJ. 2019 Communicating 
uncertainty about facts, numbers and 
science. R. Soc. open sci. 6: 181870.



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

● Are their intentions good, and aligned with 
your best interests? (value similarity)

● Do they have the right expertise?  
(competence)

● Local weathercasters tend to be trusted for 
information about weather and climate.

● Others (e.g., politicians) with unaligned 
interests may communicate uncertainty 
strategically: “merchants of doubt,” Scientific 
Certainty Argumentation Methods (SCAMs) 

Top: Marshall Shepherd, University of 
Georgia Photographic Services
Bottom: Jeff Masters, Wunderground

(Earle, 2010; Oreskes & Conway, 2011; Freudenburg et al., 2008; Bloodhart et al., 2015)



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

● Are their intentions good, and aligned with 
your best interests? (value similarity)

● Do they have the right expertise?  
(competence)

● Local weathercasters tend to be trusted for 
information about weather and climate.

● Others (e.g., politicians) with unaligned 
interests may communicate uncertainty 
strategically: “merchants of doubt,” Scientific 
Certainty Argumentation Methods (SCAMs) 

Top: Marshall Shepherd, University of 
Georgia Photographic Services
Bottom: Jeff Masters, Wunderground

(Earle, 2010; Oreskes & Conway, 2011; Freudenburg et al., 2008; Bloodhart et al., 2015)



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Facts, numbers, scientific models and hypotheses



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Facts, numbers, scientific models, and hypotheses

Data or model variability, biases, or other shortcomings

Direct uncertainties, as shown above



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Facts, numbers, scientific models, and hypotheses

Data or model variability, biases, or other shortcomings

Uncertainty can be direct, or indirect (e.g., quality of evidence)

How big the uncertainties are matter in decision making! 



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Communicating numerical risks: 

● Use absolute risks (but also provide relative risks 
when dealing with potential catastrophic events).

● For single unique events, use percent chance if 
possible, or if necessary, “1 in X.”

● When appropriate, express chance as a proportion, a 
frequency, or a percentage—it is crucial to be clear 
about the reference class.

(Spiegelhalter, 2017)



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Communicating numerical risks: 

● Use absolute risks (but also provide relative risks 
when dealing with potential catastrophic events).

● For single unique events, use percent chance if 
possible, or if necessary, “1 in X.”

● When appropriate, express chance as a proportion, a 
frequency, or a percentage—it is crucial to be clear 
about the reference class.

(Spiegelhalter, 2017)

“More important than the choice of format is 
being absolutely clear as to what the 
probability actually means (Morgan et al. 

2009), which requires careful specification of 
the reference class (Gigerenzer & Galesic 2012).”  
- Spiegelhalter, 2017 p 38 



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Communicating numerical risks (continued): 

● To avoid framing bias, provide percentages or 
frequencies both with and without the outcome.

● Keep the denominator fixed when making comparisons 
with frequencies, and use an incremental risk format.

● Be explicit about the time interval.
● Be aware that comparators can create an emotional 

response.
● For more knowledgeable audiences, consider providing 

quantitative epistemic uncertainty about the numbers 
and qualitative assessment of confidence in the 
analysis.

● More sophisticated metrics can be made for technical 
audiences, but this only serves to exclude others.

(Spiegelhalter, 2017)



Research: IBM/AI2ES providing 
ensemble air temperature predictions (left)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions



Research: IBM/AI2ES providing ensemble 
air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions



Research: IBM/AI2ES providing ensemble 
air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

● Numeracy
● Graphicacy
● Mental models

Which is larger? 
1/100,000
1/10,000 

Peters et al. (2007) found that 
~10% of respondents had trouble 

with this kind of comparison. 

Innumeracy increases use of 
heuristics (rules of thumb, mental 

shortcuts)

(Peters et al., 2007; Peters & Levin, 2008; 
Reyna et al., 2009)



Research: IBM/AI2ES providing ensemble 
air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

Padilla et al., 2018

● Numeracy
● Graphicacy
● Mental models



Research: IBM/AI2ES providing ensemble 
air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions

● Numeracy
● Graphicacy
● Mental models

WFO forecaster in 2009 on hurricanes 
impacting Miami/Dade:

“...at least the way that I envision it, if I was going 
out on the street and told somebody that a 
hurricane was coming, the first thing they’d want 
to know is how strong it is. And if I told them it 
was going to produce 15- to 20-inches of rain, 
that probably wouldn’t answer their question. 
They want to know how strong it is, based on the 
winds. If I say it has winds of 80 miles per hour, that 
may not be as bad. If I say it has winds of 180 miles 
an hour, that would probably really scare a lot of 
people. I think that, especially in this area, people 
use Hurricane Andrew as a benchmark, being a 
Category 5 hurricane. And if the winds are 
forecasted to be less than that, people may not be 
as concerned as if the winds were supposed to be 
as strong as a comparable Category 5 hurricane. “

(unpublished quote, see Bostrom et al. 2016)



Research: IBM/AI2ES providing ensemble 
air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature 
and threshold crossings predictions ● Communicating uncertainty can increase trust in the 

information, affect attitudes toward the messenger, and may 
sometimes delay decision making - more research needed! 

● Align the format with the decision, for example: 
5% of models predict a temperature below the sea turtle 
temperature threshold 

● And test your communications!



Research:
 IBM/AI2ES providing ensemble air temperature predictions (above)
(1) Create ensemble ANN predictions
(2) Quantify uncertainty in AI temperature and threshold crossings 
predictions



Expressing risk and uncertainty in words 

● “verbal phrases are vague, 
in the sense that the same 
term (e.g., a chance, not 
certain) can be used to 
characterize a whole range 
of numerical probabilities”  
-Budescu & Wallsten, 1995 

● Semantic and pragmatic 
implications of these 
expressions include:  
hedges (maybe), outcome 
valence (risk, hope), and 
directionality (occurrence 
or non-occurrence of a 
target event).

- Zikmund-Fisher, 2013 
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characterize a whole range 
of numerical probabilities”  
-Budescu & Wallsten, 1995 

● Semantic and pragmatic 
implications of these 
expressions include:  
hedges (maybe), outcome 
valence (risk, hope), and 
directionality (occurrence 
or non-occurrence of a 
target event).

- Zikmund-Fisher, 2013 



Communicating
uncertainty 

vs.
 

confidence

Van der Bles et al 2018 (IPCC WG1 AR5, 2013)   



Pretend this is your model and it's Saturday February 12th and you the 
Port authority is asking you "will the temperature go below our sea 
turtle water temp threshold (the top red line) and how sure are you?" 
How would you communicate certainty and your confidence? 

4.9. Go to sli.do and use the code TAI4ES



Communicating uncertainty visually:
Data classification in maps

Qin, C., S. Joslyn, S. Savelli, J. Demuth, R. Morss, and K. Ash, The Impact of 
Probabilistic Tornado Warnings on Risk Perceptions and Responses. J. of 
Experimental Psychology-Applied. (under review)

“Except, when you put a boundary on it, then 
people probably think if they’re on one side 
of the boundary or the other there’s a huge 
difference in probability when there isn’t.” - 
Scientist 3 Thompson et al 2015 

If and how data are binned: 

“Our operating assumption is that everything 
west of Interstate 5 will be toast.”  - The Really 
Big One, New Yorker

“An unfocused unclassed map is a more accurate 
representation of the risk data than a focused 
classed map.” - Severtson et al 2013, p 813 
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Probabilistic Tornado Warnings on Risk Perceptions and Responses. J. of 
Experimental Psychology-Applied. (under review)

“Except, when you put a boundary on it, then 
people probably think if they’re on one side 
of the boundary or the other there’s a huge 
difference in probability when there isn’t.” - 
Scientist 3 Thompson et al 2015 

If and how data are binned: 

“Our operating assumption is that everything 
west of Interstate 5 will be toast.”  - The Really 
Big One, New Yorker

“An unfocused unclassed map is a more accurate 
representation of the risk data than a focused 
classed map.” - Severtson et al 2013, p 813 



Evaluability is a function of understanding and context  

   

 Key components of risk information processing: 
Understanding, evaluative reaction, behavioral tendencies

● Familiarity with a visualization drives preferences, also graphicacy, visualization 
format, and hurricane characteristics in combination influence hurricane forecast 
track interpretations (Millett et al. 2021)



   

 Key components of risk information processing: 
Understanding, evaluative reaction, behavioral tendencies

Evaluability is a function of understanding and context

● When Hurricane Delta hit in October 2020, 
people in Louisiana were still recovering from 
Laura. 

Algorithmic salience (Itti et al. 1998)



   

 Key components of risk information processing: 
Understanding, evaluative reaction, behavioral tendencies

● Evaluability is a function of understanding, and context

Algorithmic salience (Itti et al. 1998)

● Boundaries lead people to conceptualize the 
data as categorical (Tversky, 2005)

● “Deterministic construal error”  (Joslyn & Savelli, 2021)

From Padilla et al.(2017) 



   

 Key components of risk information processing: 
Understanding, evaluative reaction, behavioral tendencies

● Evaluability is a function of understanding, but also of context

● Boundaries lead people to conceptualize the 
data as categorical (Tversky, 2005)

● “Deterministic construal error”  (Joslyn & Savelli, 2021)

Algorithmic salience (Itti et al. 1998) ● Fixation on the center part of 
the cone of uncertainty and 
the legend (Gedminas, 2011)



● Evaluability is a function of understanding, but also of context

   

 Key components of risk information processing: 
Understanding, evaluative reaction, behavioral tendencies

Participants viewing the ensemble display (b) 
were more likely to report that the display 

indicated the forecasters were less certain 
about the path of the hurricane over time 

compared to the cone (a), in an experiment 
by Padilla et al. (2017) 



Communicating uncertainty visually 
MacEachren et al. experimentally test 
visualizations of nine types of uncertainty, to 
examine effects of numerous visual attributes: 

● Location
● Size 
● Color hue, value and saturation, 
● Grain 
● Orientation
● Shape 
● Arrangement 
● Clarity/fuzziness
● Resolution (of boundaries and images) 
● Transparency 



Expressing uncertainty visually: semiotics



Expressing uncertainty visually: semiotics
Fuzziness is a 
highly intuitive 
way of 
representing 
general 
uncertainty, 
color 
saturation less 
so, counter to 
expectations.

- MacEachren



Communicating 
uncertainty 
visually:
statistical graphics

Padilla, L., Kay, M., & Hullman, J. 
(2014). Uncertainty Visualization. 

Wiley StatsRef: Statistics 
Reference Online, 1-18.

van der Bles AM, van der Linden 
S, Freeman ALJ, Mitchell J, 

Galvao AB, Zaval L, Spiegelhalter 
DJ. 2019 Communicating 

uncertainty about facts, numbers 
and science. R. Soc. open sci. 6: 

181870.



Resources on communicating risk and uncertainty
Aven, T., & Renn, O. (2009). On risk defined as an event where the outcome is uncertain. Journal of risk research, 12(1), 1-11.Bostrom, A., Morss, 

R. E., Lazo, J. K., Demuth, J. L., Lazrus, H., & Hudson, R. (2016). A mental models study of hurricane forecast and warning production, 
communication, and decision-making. Weather, Climate, and Society, 8(2), 111-129

Bloodhart, B., Maibach, E., Myers, T., & Zhao, X. (2015). Local climate experts: The influence of local TV weather information on climate change 
perceptions. PloS one, 10(11), e0141526. 

Broad, K., A. Leiserowitz, J. Weinkle and M. Steketee, "Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season", 
Bulletin Amer. Meteorological Soc., vol. 88, no. 5, pp. 651-667, 2007.  

Brown, N. R., & Siegler, R. S. (1993). Metrics and mappings: a framework for understanding real-world quantitative estimation. Psych. review, 
100(3), 511.

Earle, T. C. (2010). Trust in risk management: A model‐based review of empirical research. Risk Analysis: An International Journal, 30(4), 541-574. 
Freudenburg, W. R., Gramling, R., & Davidson, D. J. (2008). Scientific certainty argumentation methods (SCAMs): science and the politics of doubt. 

Sociological Inquiry, 78(1), 2-38.
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Millet, B., Majumdar, S. J., Cairo, A., Diaz, C., Ding, Q., Evans, S. D., & Broad, K. (2021, September). End-user Preference for and Understanding 
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Sage CA: Los Angeles, CA: SAGE Publications.

Morgan, M. G. Dowlatabadi, H., Henrion, M., Keith, D., Lempert, R., McBride, S., Small, M. and Wilbanks, T., (2009)..Best practice approaches for 
characterizing, communicating and incorporating scientific uncertainty in climate decision making: Synthesis and assessment product 5.2 
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Resources on communicating risk and uncertainty (continued)
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Bloomsbury Publishing USA.
Padilla, L., Kay, M., & Hullman, J. (2014). Uncertainty Visualization. Wiley StatsRef: Statistics Reference Online, 1-18.
Padilla, L. M., Creem-Regehr, S. H., Hegarty, M., & Stefanucci, J. K. (2018). Decision making with visualizations: a cognitive framework across disciplines. 

Cognitive research: principles and implications, 3(1), 1-25.
Padilla, L.M., Ruginski, I.T. & Creem-Regehr, S.H. Effects of ensemble and summary displays on interpretations of geospatial uncertainty data. Cogn. 

Research 2, 40 (2017). https://doi.org/10.1186/s41235-017-0076-1
Peters, E. Levin, I. P. (2008). Dissecting the risky-choice framing effect: Numeracy as an individual-difference factor in weighting risky and riskless options. 

Judgment and Decision Making, 3(6), 435-448.
Peters, E., Västfjäll, D., Slovic, P., Mertz, C. K., Mazzocco, K., & Dickert, S. (2006). Numeracy and decision making. Psychological science, 17(5), 407-413.
Qin, C., S. Joslyn, S. Savelli, J. Demuth, R. Morss, and K. Ash, The Impact of Probabilistic Tornado Warnings on Risk Perceptions and Responses. J. of 
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Reyna, V. F., Nelson, W. L., Han, P. K., & Dieckmann, N. F. (2009). How numeracy influences risk comprehension and medical decision making. 
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Resources on UQ paper

Methods to Quantify Uncertainty provided by Neural Networks and their Evaluation for Environmental 
Science Applications

Authors:  Katherine Haynes , Ryan Lagerquist, Marie McGraw, Kate Musgrave, Imme Ebert-Uphoff

Paper:
● Draft version (June 29, 2022): released for TAI4ES summer school participants
● arXiv version (more refined): to come soon, link will be posted here.

Please check back here soon for that more official version (also will be submitted to journal AIES soon).

Github repo:
● https://github.com/thunderhoser/cira_uq4ml

https://drive.google.com/file/d/1AmxEQx4NYbGDASY4iYVknOb6pH5Mecb3/view?usp=sharing
https://github.com/thunderhoser/cira_uq4ml


So how do we communicate this type of 
information to users? 

An example from AI2ES 



The developers also examined which 
locations in the overall training area 
contributed the most to different 
outcomes. The dashed line in the figure 
symbolizes the coastline.

The contingency table on the right 
shows which areas the guidance draws 
on most heavily. 

Understanding what the AI/ML guidance is ‘using’ 

“Contributes toward prediction” 
means the guidance is relying 

on that area for the given 
outcome (hits, misses, false 

alarms, or correct rejects).

“Contributes away from 
prediction” means the area is 

contributing to the opposite 
prediction of the given outcome.



The developers also examined which 
locations in the overall training area 
contributed the most to different 
outcomes. The dashed line in the figure 
symbolizes the coastline.

The contingency table on the right 
shows which areas the guidance draws 
on most heavily. 

Understanding what the AI/ML guidance is ‘using’ 

Q1: What areas contribute most to ‘Hits’
Q2: What areas lead the model astray?
Q3: What areas contribute most to 

accurate predictions?

As a developer, what can you 
do with this information? 

What about as a user?

4.10-12 Go to sli.do and use the code TAI4ES



Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

https://app.sli.do/event/1zumy91n

Or go to sli.do 
and use the 

code TAI4ES

Questions?
Day 4: Agenda
● 9:00 Uncertainty quantification methods (Part 1)
● 10:00 Short brain & bio break
● 10:10 Uncertainty quantification methods (Part 2)
● 10:45 Short brain & bio break
● 10:55 Communicating uncertainty (Part 3)
● 11:55 Lecture series wrap up!

Time for any open questions!

https://urldefense.com/v3/__https://app.sli.do/event/1zumy91n__;!!GNU8KkXDZlD12Q!4yYLQYR3jEljJ3rZVyEbMUtQuNSJX8rOvaw7RqAZeDZav7KWlNK8Wf2QwRt3Fx7wwV-izNmxjfdilR0$


Lecture wrap-up!

● We hope you have learned a lot about trust in AI especially for environmental 
science applications!

● Our recordings and notebooks will stay available on our website permanently 
○ https://www.ai2es.org 
○ Click on education to find all past recordings and courses

● Want to learn more? 
○ Keep up with AI2ES on twitter and our webpage!
○ Many of our site-wide meetings are open to the public - contact us if you 

want to join a meeting
● Want to collaborate? 

○ Talk to us!

https://www.ai2es.org


Thanks to all the lecture series speakers! 
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Rao

(NOAA)



Thank you!

● This material is based upon work supported by the National 
Science Foundation under Grant No. ICER-2019758.

● This summer school is being supported by NCAR/UCAR
● Thank you to:

○ Taysia Peterson and the multi-media team @ NCAR 
○ Susan Dubbs @ OU
○ Our sponsors!  NCAR/UCAR, Google cloud, LEAP, Radiant Earth
○ All of our guest speakers
○ All of you for coming and participating!



Trustworthy Artificial Intelligence for Environmental 
Science (TAI4ES) Summer School 

Reminder for trust-a-thon participants: 
The closing fireside chat is today at 3pm MT!

Please take the evaluation survey!!! It’ll 

come in an email soon


