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Mitigating bias in algorithmic systems is a critical issue drawing attention across communities within the
information and computer sciences. Given the complexity of the problem and the involvement of multiple
stakeholders – including developers, end users and third-parties – there is a need to understand the landscape of
the sources of bias, and the solutions being proposed to address them, from a broad, cross-domain perspective. This
survey provides a “fish-eye view,” examining approaches across four areas of research. The literature describes three
steps toward a comprehensive treatment – bias detection, fairness management and explainability management –
and underscores the need to work from within the system as well as from the perspective of stakeholders in the
broader context.
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1 INTRODUCTION

Long before the widespread use of algorithmic systems driven by big data, Friedman and Nissenbaum
[66], writing in the ACM TOIS in 1996, argued that “freedom from bias” should be considered equally
alongside the criteria of reliability, accuracy and efficiency, when judging the quality of a computer system.
Defining biased systems as those that “systematically and unfairly discriminate” against individuals
or certain social groups, they emphasized that if a biased system becomes widely adopted in society,
that the social biases it perpetuates will have serious consequences. More than 20 years later, the ACM
U.S. Public Policy Council (USACM) and the ACM Europe Policy Committee (EUACM) published a
joint Statement on Algorithmic Transparency and Accountability,1 underscoring widespread concerns
surrounding computer bias, but this time, focusing on the social consequences of data-driven algorithmic
processes and systems. The statement puts forward seven principles to be considered in the context of

1https://www.acm.org/binaries/content/assets/public-policy/2017_joint_statement_algorithms.pdf
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system development and deployment, in working toward mitigating the threat of harm to people posed by
biases. Despite that the principles are articulated in a single page, it is clear that the issue of algorithmic
bias is extremely complex. Multiple sources of bias (e.g., data, modelling processes) are mentioned, as
well as alternative solutions – from simply raising users’ awareness of the issue, to enabling the auditing
of models by third parties. Furthermore, the principles mention a range of stakeholders (the algorithm’s
owners, designers, builders, and end users), alluding to their roles in ensuring the ethical development
and appropriate use of algorithmic processes.

Despite the recent surge in attention to the topic, addressing algorithmic bias is not a new concern
for researchers. For instance, in the 1990s, machine learning researchers were considering problems of
explainability, or how to interpret models and facilitate their use (e.g., [43], [52]). In the early 2000s,
researchers in the data mining community were developing processes for discrimination discovery from
historical datasets (e.g., [153]). Similarly, around the same time, information retrieval researchers were
considering the issue of bias in training datasets (e.g., [22]) and the resulting impact of this bias on
ranking algorithms [37]. Thus, while several research communities were tackling various issues related to
algorithmic biases earlier on, they were largely disjoint from one another. Furthermore, they addressed
the problems from “inside,” working exclusively from the perspective of the developer. More recently,
multiple perspectives on algorithmic bias have come to light, with the increasing influence of algorithmic
systems in society. Arguably, a 2016 article entitled Machine Bias [4] played a key role in stimulating
widespread discussion, opening up the conversation to other stakeholders beyond those who develop
algorithmic processes and systems.

Recently, a number of comprehensive surveys has emerged on algorithmic bias, shedding light on
the source(s) of bias and potential solutions. However, such surveys tend to focus on one source of
algorithmic bias and/or class of solutions. For instance, Olteanu and colleagues [143] reviewed the
literature surrounding data biases, addressing social data sources, given their frequent use in the creation
of training data sets. Taking a fair machine learning perspective, Mehrabi and colleagues [134] provided a
survey of common problems and solutions, including those focused on data and processes. Addressing
explainability, Guidotti et al. contributed a taxonomy of the various methods used to interpret the
behaviors of black box models [79]. In addition, there are survey papers providing deep dives into the
technical solutions proposed in very well-defined areas. For example, in [188], the authors focus specifically
on gender bias in the natural language processing domain, while in [29, 39], the authors consider the
technical approaches of mitigating bias in ML. Finally, in [8], the authors focus on data bias and data
management approaches for mitigating bias.

In this survey, our aim is to help the reader achieve a high-level understanding of the current state of
this complex topic, across domains. With a view toward promoting more comprehensive solutions, we
present a fish-eye view of the literature surrounding algorithmic bias, and provide a methodology that is
based on three key aspects, namely problems, domains and stakeholders. By examining the literature
along these lines, we can better understand how solutions can and should be used to address algorithmic
system bias.

In information visualization, fish-eye views, which balance focus and context (i.e., depth and breadth),
are useful for facilitating understanding in information spaces that are very large and diverse [68]. The
user maintains perspective of the “big picture,” but can still choose when to drill down into further details.
Given the diversity of perspectives on algorithmic bias, a high-level view is much needed, particularly for
researchers and practitioners new to the area. Our main contributions are to:

• Provide a methodology for analyzing the work on algorithmic bias, and a “live” repository of articles.
• Document the problems and solutions studied across research communities.
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• Map the problems to the solutions across diverse domains, as well as the involved stakeholders.
• Describe opportunities for cross-fertilization between communities, solutions and stakeholders.

The article is organized as follows. Section 2 describes the methodology used for the review and the
selection of domains and publication venues. Section 3 presents the problem and solution spaces discovered
while analyzing the papers. Following that, we present the detailed analysis of the three categories of
solutions described in the literature: Section 4 focuses on Bias Detection, Section 5 discusses the Fairness
Management methods, and Section 6 presents the work within Explainability Management. Finally, in
Sections 7 and 8, we summarize the state-of-the-field, discussing the cross-fertilization among the four
communities, the stakeholders and the solutions, as well as some open issues for further consideration.

2 METHODOLOGY

Our methodology involves both bottom-up and top-down processes for collecting articles relevant to
bias in algorithmic systems. The methodology is an adaptation of the standard facet-based methodology
used in information science to carry out book and even product classification [85]. In the first phase, a
bottom-up, open search process took place, in which each co-author collected relevant literature, adding
it to a shared repository. This initial body of material was used to guide the choice of research domains
and publication venues, as well as to identify a set of properties by which to characterize the problems
and solutions described.

2.1 Selection of Domains

An inventory of the initial repository was taken, to understand which domains (i.e., communities) had
produced a critical mass of publications related to the mitigation of algorithmic biases. We focused on
well-established domains within the information and computer sciences, which are investigating data and
knowledge transformation and communication to the user. Based on the initial inventory, four domains
emerged – machine learning (ML), human-computer interaction (HCI), recommender systems (RecSys),
and information retrieval (IR) – to characterize the problems that are being addressed, as well as the
solutions being proposed, across domains. Next, we provide additional justification of these four domains.

The widespread application of ML techniques, which in many cases are opaque, led to the issue of
potential bias and discrimination of algorithmic systems and processes. Hence, the ML community and
ML-related publications naturally emerged as an established area we needed to review. RecSys represents
a specific application area and a domain that attracts significant research attention on algorithmic bias.
Within RecSys, ML techniques are applied for reasoning on and exploiting user characteristics; thus,
within this domain, many challenges have arisen surrounding potential bias and fairness. IR focuses on
information delivery to users, often with the use of search and ranking algorithms that are opaque; thus,
bias and fairness have long been researched. The above domains cover a substantial amount of applications
where the risk of bias and discrimination in the reasoning process exists. Finally, HCI directly considers
the end users and their perceptions when interacting directly or indirectly with different applications. In
particular, understanding the potential bias, discrimination or fairness issues that might emerge when
a user is interacting with information presented through an interface is considered of high importance.
It should be noted that an “Other” domain emerged, through the initial repository, where we collected
a number of articles published in emerging, cross-disciplinary communities or domains that are not
represented in the above main categories. Through “Other” we were able to capture research published in
other domains where a mass of publications related to bias, fairness and explainability did not (yet) exist,
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but important work was published, hence, making this a comprehensive review with applicability in areas
other than the main domains that emerged.

2.2 Selection of Publication Venues

Through the exercise of selecting the domains, a list of high-impact publication venues was created for
each domain, as presented in Table 1. Also, note that some venues publish articles across domains. For
instance, while ACM CSCW is generally aligned with the HCI community, some articles describing studies
of recommender systems can be found there. Such cases are indicated with parentheses in Table 1.

Domain Publication Venues Reviewed # Papers
Machine Learning/AI AAAI, IJCAI, KDD, SIGKDD, CIDM, ICML, AIES, NIPS, 106

MLSP, ACM Data Mining and Knowledge Discovery Journal
Information Retrieval ACM SIGIR, ACM CIKM, ACM WWW, 68

TOIS, JASIS, IR Journal, (AAAI ICWSM)
Recommender Systems ACM RecSys, AAAI ICWSM, UMUAI, ArXive 46

(ACM CSCW, ACM CIKM, ACM FAccT (formerly FAT*))
Human Computer Interaction ACM CHI, ACM CSCW, ACM CHI Journal, CSCW Journal 34

Journal of Behaviour and Information Technology
Other AAAI HCOMP, ACM FAccT, ICDM,VLDB 57

Table 1. Key publication venues reviewed per domain.

The next step was to review each publication venue’s proceedings / published volumes during the twelve-
year period 2008 - 2021, resulting in a high-recall search for relevant published articles. The key words
used were: “accountability,” “bias,” “discrimination,” “fair(ness),” “explain(able),” and “transparen(cy).”
In addition, the articles collected address a particular algorithmic process or system, or a class of system.
In other words, articles of a more abstract or philosophical nature were excluded from the survey. Likewise,
in the ML category, articles from AI venues (e.g., AAAI, IJCAI) that were not published in the respective
ML track, have been excluded, as to focus on algorithmic, data-driven systems.

3 ANALYSIS OF PAPERS

This survey is based on our current repository of over 245 articles.2 The list of publication venues
reviewed is not exhaustive; further venues may be added in the future. However, the problem and solution
spaces, detailed below, have proven to be robust across the articles reviewed to date. In our repository,
each article is labeled with its respective domain (ML, HCI, RecSys, IR, Other). After reviewing the
article, three additional properties, which shall be explained below, were also recorded:

• The problem(s) identified within the system.
• The attribute(s) affected by the problem(s).
• The solution(s) proposed to address the problem(s).

These attributes – domain, problematic system component(s), attribute(s) affected by the problem, and
proposed solution(s) – are provided as tags in our Zotero repository. Thus, others may use this resource
in various ways, e.g., to focus on a specific problem or type of solution. Table 2 provides examples of the
manner in which articles in our repository were analyzed; further details are provided in the following
subsections.

2Available at Zotero - https://www.zotero.org/groups/2450986/cycat_survey_collection_public.
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Domain Example Problem(s) Attribute(s) Solution(s)
ML Word embeddings trained on Google News Data gender Discrimination

articles perpetuate prevalent gender biases. [17] discovery - indirect
IR Users of Mendeley search disproportionately favor User national origin Discrimination

articles by authors of their national origin. [193] discovery - direct
RecSys ProĄles of women and people of color in online User, Data gender, race Auditing

freelance marketplaces were found to be lower- Third parties
ranked than others; reasons included bias in

training data and lower ratings by others. [80]
HCI Authors provided various explanations to users User information Explainability -

about Facebook feeds. Explanations were found Output model, output
to shape beliefs on how the system works

but not in understanding its outputs. [159]
Other Authors addressed bias in computer vision training Data information Fairness

data, through an algorithm that Ąlters human pre-processing
reporting bias from visually-grounded labels. [137]

Table 2. Example analyses of articles in the repository.

3.1 Problem space

To explore the problem space described in the literature, we characterized, for each article, the system
component(s) deemed to be problematic, as well as the attribute(s) whose values are affected by the bias.

3.1.1 Problematic system component(s). We recorded the macro component(s) of the algorithmic system
or process,3 considered by the author(s) as being the source of the problem. Figure 1 provides a general
characterization of an algorithmic system, with its macro components, which we have used to examine
the problem space of algorithmic bias. Note that some components are optionally present. This includes
a User (U), who interacts directly with the system’s inputs and/or outputs. Alternatively, an API may
be in place, to allow the system to interact with other systems and applications.

In this generic architecture, the system receives input (I) for an instance of its operation. This is
provided by a user (U), or another source (e.g., the result of an automated process). The algorithmic
model (M) makes some computation(s) based on the inputs and produces an output (O). The model learns
from a set of observations of data (D) from the problem domain. It may also receive constraints from
third-party actors (T) and/or internal fairness criteria (F) that modify the operation of the algorithmic
model (M). Finally, some systems have direct interaction with a user (U) who, as previously discussed,
will bring her own knowledge, background and attitude when interpreting the system’s output.

Thus, as depicted in Figure 1, bias may manifest and/or be detected in one or more of these components:

• Input (I) - Bias may be introduced by the user in the input, e.g., incorrect/incomplete information.
• Output (O) - Bias may be detected at the outcome produced in response to the input.
• Algorithm (M) - Bias can manifest during the model’s processing and learning.
• Training Data (D) - Training data may be unbalanced or discriminatory toward groups of people.

It may also comprise an unrepresentative set of instances, or suffer from inaccuracies in the ground
truth.

3We refer to Şsystems,Ť although articles may describe particular algorithmic processes as well as deployed systems.
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Fig. 1. Generic architecture of an algorithmic system.

• Third Party Constraints (T) - Implicit and explicit constraints, given by third parties, may impact
the design and performance of the algorithm, as to be discriminatory. These include operators of
the system, regulators, and other bodies that influence the use and outcomes of the system.4

• User (U) - When users interact directly with a system, they may contribute to bias in a number of
ways, such as through the inappropriate use of the system or misinterpretation of system output.

3.1.2 Affected attribute(s). We have also characterized the attribute(s) whose values are influenced by
the problematic system behavior. While early technical papers used the generic terms, “sensitive” or
“protected” attributes, to characterize the features on which a group is unfairly treated by the algorithmic
decision [154], recent work has considered a broader set of attributes, including the social, cultural, and
political attributes of the content or person being processed, e.g., gender, race, age, income, etc.

The system under study in an article can exhibit different behaviors with respect to the affected
attribute, which may or may not be problematic for a given user or observer. While many affected
attributes concern social and cultural characteristics (i.e., characteristics describing the social world),
we also observe dimensions such as the quality / accuracy / credibility of the information provided to
the user (i.e., information attribute). By information, we mean the quality (or bias) of the information
conveyed by or to the user. In other words, the concern here is the extent to which the data used by
the algorithm constitute a truthful representation of the world. Note that information bias may also be
introduced by the algorithm because of its low classification/predictive performance, i.e., low accuracy.
Even though such instances may not represent cases where an algorithmic system’s behavior can directly
result in discrimination or harm, in many contexts, these issues can indirectly lead to serious consequences
for system users (e.g., limited exposure to high-quality sources of information on a given topic because of
biased search engine results).

Information is the most studied attribute in our corpus, and is the primary dimension addressed in the
ML literature. For instance, in the explainability literature, a primary concern is the extent to which
information is effectively conveyed to the user. Likewise, IR articles often consider information as the
affected dimension under study; here, the classic example is the large body of work on search engine
biases. In contrast, the literature in HCI and RecSys does not often address information as an affected
dimension. In these fields, articles on mitigating algorithmic biases more often consider social and cultural

4An example was described in Table 2 of a RecSys in which other usersŠ ratings of workers afected system performance
during a given instance. Another is a search engine suppressing ranked results to comply with laws in the userŠs region.
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dimensions, such as demographics as a general term, or more specific attributes such as gender and race,
with a few studies emerging on characteristics such as age, language and physical attractiveness.

3.2 Solution Space

The solution space discussed in the literature consists of three main steps in mitigating algorithmic bias,
with each involving different stakeholders within each community. Next, we describe the stakeholders
involved in the solution processes. Afterwards, we give a detailed overview of each of the three steps in
bias mitigation.

3.2.1 Stakeholders. The selection of the four domains allows us to capture perspectives and processes
involving multiple stakeholders, as depicted in Figure 2. For instance, while the ML literature focuses
on the developer perspective (and thus, formal processes), HCI considers the user’s interaction with
the system, or how the interface might influence the perception of fairness (and thus, more informal
processes). IR and RecSys represent communities focused on end user applications; thus, we can learn
the extent to which algorithmic biases have presented challenges to these applications and the nature of
the solutions proposed.

Fig. 2. Processes and stakeholders involved in mitigating algorithmic bias.

Developer(s) can internally detect bias in data and processes, evaluate formal notions of fair treatment
of the individuals, groups and/or content affected by algorithmic judgements, as well as implement
methods used by the system for explaining its decisions to users and/or third parties. System Observer(s),
who may be regulators, researchers or even data journalists, can conduct their own audits of the system
behaviors. However, User(s) of the system have their own perceptions of the system’s behavior, which
depend not only on the system itself, but also their own knowledge, experience and attitudes. Indirect
User(s) are the people who are affected by the algorithmic decision. These are, for instance, defendants
evaluated by an algorithmic risk-assessment system or candidates whose resumes are screened with an
algorithmic resume screening system. Indirect users also have their own perceptions of the system’s
behavior.

3.2.2 Classification of Solutions. The literature suggests that a comprehensive solution for mitigating
algorithmic system bias consists of three main steps: i) Bias Detection, ii) Fairness Management, and iii)
Explainability Management.

ACM Comput. Surv.
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Bias Detection includes techniques that scrutinize the system to detect any type of systematic bias.
It can be achieved by Auditing and/or Discrimination Discovery methods. Auditing involves making
cross-system or within-system comparisons, and is typically done by an analyst / observer or regulator
who does not have access to the inner-workings of the system [173]. There are variations in the extent to
which the auditing approaches are formalized. In some cases, auditing uses the tools of discrimination
discovery (e.g., discrimination/fairness metrics). In this sense, auditing as a term refers to who is doing
the discrimination discovery and why, but not to a different set of tools and techniques. In other cases,
auditing is used in a more formal way to detect any fairness issues in the system. Discrimination discovery
(direct or indirect) approaches include tools and practices for detecting unfair treatment by data /
algorithms / systems using statistical metrics, i.e., measuring specific fairness notions.

Fairness Management includes techniques that developers use to mitigate the detected bias and certify
that the system is fairness-aware. Fairness management approaches are used by developers to tackle bias
in different parts of the system. They are divided into: Fairness pre-processing, Fairness in-processing,
Fairness post-processing, Fairness certification and Fairness perception.

• Fairness Pre-processing includes approaches that process the training data in a manner that
promotes fairness. Examples are: re-sampling, re-weighting and feature transformation approaches.

• Fairness In-processing includes approaches that address discrimination during the training procedure.
Examples are: regularization, optimization and learn-to-rank approaches.

• Fairness Post-processing includes approaches that ensure that a system is “fair” by changing the
output of the learned classifier i.e., changing the label weights and re-ranking approaches.

• Fairness Certification includes approaches provided by the developer/observer in the case where no
unintended bias has been detected. The developer/observer verifies whether the output satisfies
specific fairness constraints, and if so, can certify the algorithmic system as “fair.” In general,
certification aims to test algorithmic models for possible disparate impact, according to the fairness
internal certification and bias detection results, “certifying” those that do not exhibit evidence of
unfairness.

• Fairness Perception includes approaches that examine the perception of different stakeholders with
the decision outcome of the algorithm. Examples are the use of questionnaires and statistical tests.

Explainability Management includes techniques that facilitate transparency and build trust between
the end user and the system. Explainability and interpretability contribute to the sense of transparency
as well as the perception of fairness [81]. Explainability approaches are used to provide transparency of
the system and in that way, enable the detection of any bias or fairness issues in the data and model. In
general, explainability-aware techniques can be divided into two main categories: Model Explainability,
which provides explanations for the training process of the models and Outcome Explainability, which
provides explanations of the algorithm’s decision outcome in an understandable way to the user. Outcome
Explainability methods explain only the output, and they do not provide explanations for the process of
the algorithm. This form of explanation is usually helpful when the user of the system is not an expert,
such as in the case of RecSys. Figure 3 aligns the three steps involved in mitigating biases, with the
taxonomy of solutions found.

3.3 Summary

Before describing each set of techniques in detail, we provide a summary of the problems and solutions
documented within the four domains surveyed. Table 3 presents Bias Detection solutions, while Tables 4
and 5 present solutions for Fairness and Explainability Management. The distribution of problems
addressed across the four domains illustrates the insights gained from our “fish-eye view.” As expected,
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Fig. 3. The solution space - tools for mitigating bias in algorithmic systems.

the ML literature addresses problems concerning the training data, the algorithmic model and the system
output. The RecSys and IR literature, as user-focused application areas, consider problems both inside and
outside the system, while HCI naturally addresses the interactions between the user and the algorithmic
system.

Similarly, we find that across domains, researchers are engaged in all three steps in bias mitigation
– detection, fairness and explainability management. In the following sections, we provide a detailed
overview of example approaches of the three steps, from across domains, and shall compare the techniques
used.

Domain Problem Solution Reference(s)

Bias Detection

ML Data/Model Auditing [6, 127, 171, 223]
Data/Model/Output Discrimination Discovery [41, 47, 95, 120, 154, 219, 223, 230]

IR User/Data Auditing [89, 102, 116, 119, 129, 144, 201]
User/Data Discrimination Discovery [13, 33, 57, 110, 124, 147, 205, 208–210, 218]

HCI User/Data Auditing [98, 132, 136]
Third Party/Model/Output Discrimination Discovery [11, 46, 76, 158]

RecSys Data/Output Auditing [55, 60, 91]
Data/Output Discrimination Discovery [2, 14, 58, 185, 189]

Table 3. Summary of the problem and bias detection solution space per domain.

4 DETECTION OF BIAS IN ALGORITHMIC SYSTEMS

There are multiple notions of fairness that are important in the context of an algorithmic system as given
in [199]. The fairness of an algorithmic model (or classifier), depends on the notion of fairness one wants
to adopt. Based on [199], there are three main categories for fairness notions: i) Statistical measures, ii)
Similarity-based measures, and iii) Causal reasoning. Before going into a detailed overview of examples

ACM Comput. Surv.
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Domain Problem Solution Reference(s)

Fairness Management

ML Data Fairness Pre-processing [25, 97, 99, 118, 223]
Model Fairness In-processing [30, 50, 77, 100, 105, 106, 108, 117, 162, 213, 216, 222]
Model/Output Fairness Post-processing [82, 99, 154]
User/Output Fairness Perception [186]
Data/Model/Output Fairness Certification [30, 44, 50, 62, 77, 105, 106, 108, 179, 213, 222]

IR Data Fairness Pre-processing [49, 51, 74, 181]
User/Model Fairness In-processing [45, 114, 146, 217]
User/Output Fairness Post-processing [101, 107, 115, 123]
User Fairness Certification [59, 87, 138]
User/Output Fairness Perception [133, 149]

HCI Data Fairness Pre-processing methods [31, 98]
User/Model Fairness Perception [21, 203]
User/Output Fairness Certification [121, 211]

RecSys Data Fairness Pre-processing methods [24, 101, 127, 135, 212, 214, 217]
User/Model Fairness In-processing methods [114, 217, 217]
User/Output Fairness Post-processing [101, 183, 220]

Table 4. Summary of the problem and fairness management solution space per domain.

Domain Problem Solution Reference(s)

Explainability Management

ML Model Model Explainability [20, 36, 52, 72, 112, 174, 190, 227]
[27, 42, 96, 125, 191, 228]

Output Outcome Explainability [47, 157, 164, 164, 165, 187, 197]
[16, 65, 84, 177, 182, 200, 215, 227, 229]

HCI User Model Explainability [88]
User/Output Outcome Explainability [15, 56, 67, 159]

RecSys User/Output Outcome Explainability [19, 111, 195, 198]
User/Model Model Explainability [142, 148, 202]

Table 5. Summary of the problem and explainability management solution space per domain.

for bias detection approaches, we provide the definition of the most popular fairness metrics used in the
approaches (discrimination discovery and fairness management) proposed in our corpus.

• Demographic parity (or Statistical parity) [230]: Both subjects of the protected and unprotected
group have equal probability to be assigned to the positive predicted outcome.

• Equality of opportunity (or False negative error balance) [82]: A statistical group fairness notion.
The model satisfies this definition if both subjects of protected and unprotected groups have equal
false negative rate (FNR), the probability of an individual who is actually in a positive class to be
assigned by the classifier a negative predictive value.

• Disparate mistreatment (or Equalized odds) [82, 219]: A statistical group fairness notion. The model
satisfies this definition of fairness if subjects of both protected and unprotected groups have equal
true positive rate (TPR) and false positive rate (FPR).

• Counterfactual fairness [117]: A causal reasoning, individual fairness notion. The algorithmic model
is considered as fair when the prediction of an individual is the same even if the value of the sensitive
variable changes. To validate this type of fairness, a causal model is used.

ACM Comput. Surv.
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In addition to the above notions, in ranking systems, such as RecSys and IR, a common type of bias is
the position bias where users tend to consider only the items ranked in the top few positions [156]. The
fairness notions that consider position bias are the producer or item-side fairness and the consumer or
user-side fairness. Producer or item-side fairness focuses on the items that have been recommended so
that similar items are ranked in a similar way. Consumer or user-side fairness focuses on the users who
receive the ranked results or the recommendations. A similar group of users should all receive similar
recommendations.

Next, we present the details described in the articles collected from the four communities for detecting
any type of bias in a system using Auditing and Discrimination Discovery approaches.

4.1 Auditing Approaches for Bias Detection

The most common auditing approach used for bias detection involves humans (external testers, researchers,
journalists or the end users) acting as the auditors of the system. In IR systems, researchers usually
perform an audit by submitting queries to search engine(s) and analyzing the results. For instance,
Vincent et. al. [201] performed an audit on Google result pages, where six types of important queries (e.g.,
trending, expensive advertising) were analyzed. The goal was to examine the importance of user-generated
content (UGC) on the Web, in terms of the quality of information that the search engines provide to users
(i.e., if there was a bias in favor/penalizing such content). Similarly, Kay et. al. [102], Magno et. al. [129],
and Otterbacher et. al. [144] submit queries to image search engines to study the perpetuation of gender
stereotypes, while Metaxa et al. [136] consider the impact of gender and racial representation in image
search results for common occupations. They compare gender and racial composition of occupations to
that reflected in image search and find evidence of deviations on both dimensions. They also compare the
gender representation data with that collected earlier by Kay et al. [102], finding little improvement over
time.

Another example of bias detection in a search engine via auditing is the work of Kilman-Silver et.
al. [109] who examine the influence of geolocation on Web search (Google) personalization. They collect
and analyze Google results for 240 queries over 30 days from 59 different GPS coordinates, looking for
systematic differences. In addition, Robertson et. al. [166] audited Google search engine result pages
(SERPs) collected by study participants for evidence of filter bubble effects. Participants in the study
completed a questionnaire on their political leaning and used a browser extension allowing the researchers
to collect their SERPs.

Kulshrestha et al. [116] propose an auditing technique where queries are submitted on Twitter, to
measure bias on Twitter results as compared to search engines. The proposed technique considers both
the input and output bias. Input bias allows the researchers to understand what a user would see if shown
a set of random items relevant to her query. The output bias isolates the bias of the ranking mechanism.
In addition, Johnson et. al. [98] investigate the demographic bias detection in Twitter results using as
an auditing technique, the retrieval of geotagged content using Twitter API. Another example where
researchers are the auditors is the study of Edelman et. al. [55] where the authors run an experiment
to audit Airbnb applications to detect racial bias in ranked results, and more specifically, for African
American names.

Another cluster of user-based studies in IR systems concerned the detection of perceived biases about
search and/or during a search for information. In these studies, users are the auditors. For instance,
Kodama et al. [110] assessed young people’s mental models of the Google search engine, through a
drawing task. Many informants anthropomorphized Google, and a few focused on inferring its internal
workings. The authors called for a better understanding of young people’s conceptions of search tools, so
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as to better design information literacy interventions and programs. In addition, Otterbacher et al. [145]
described a study in which participants were the auditors for detecting perceived bias. They were shown
image search results for queries on personal traits (e.g., “sensitive person”, “intelligent person”) and were
asked to evaluate the results on a number of aspects, including the extent to which they were “biased.”

Auditing approaches using ML have also been widely used. A situational testing auditing approach
has been proposed by Luong et. al. [127], to detect discrimination against a specific group of individuals,
using an ML algorithm. K-nearest neighbors was combined with the situation testing approach to identify
a group of tuples with similar characteristics to a target individual. Zhang et. al. [224] proposed an
improvement over the method of Luong et. al. [127], by engaging Causal Bayesian networks (CBNs),
which are probabilistic graphical models used for reasoning and inference. For the development of a CBN,
the causal structure of the dataset and the causal effect of each attribute on the decision are used to
guide the identification of the similar tuples to a target individual. Robertson et. al. [167], present an
auditing approach in the form of an opaque algorithm, called ‘‘recursive algorithm interrogation’’ used for
detecting bias in search engines. The auto-complete functions of Google and Bing are treated as opaque
algorithms. They recursively submitted queries, and their resulting child queries, in order to create a
network of the algorithm’s suggestions.

Hu et. al. [89] audited Google SERPs snippets, for evidence of partisanship where the generation
of snippets is an opaque process. Moreover, Le et. al. [119] audit Google News Search for evidence of
reinforcing a user’s presumed partisanship. Using a sock-puppet technique, the browser first visited a
political Web page, and then continued on to conduct a Google news search. The results of the audit
suggested significant reinforcement of inferred partisanship via personalization. In addition, Eslami et.
al. [60] use a cross-platform audit technique that analyzed online ratings of hotels across three platforms,
in order to understand how users perceived and managed biases in reviews.

In the HCI literature, auditing often involves characterizing the behavior of the algorithm from a user
perspective. For instance, in Matsangidou and Otterbacher [132], the authors consider the inferences
on physical attractiveness made by image tagging algorithms on images of people. They audited the
output of four image recognition APIs on standardized portraits of people across genders and races.
In a more recent work [12], the authors use auditing to understand machine behaviors in proprietary
image tagging algorithms. The authors created a highly controlled dataset of people images, imposed on
gender-stereotyped backgrounds. Evaluating five proprietary algorithms, they find that in three, gender
inference is hindered when a background is introduced. Of the two that “see” both backgrounds and
gender, it is the one with output that is most consistent with human stereotyping processes that is
superior in recognizing gender. Another example is the work of Eslami et. al. [61], where the authors
describe a qualitative study of online discussions about Yelp on the algorithm existence and opacity. The
authors further enhanced the results by conducting 15 interviews with Yelp users who acted as auditors
of the system, in an attempt to understand how the reviews filtering algorithm works.

Auditing approaches have also been used to detect bias in ML classification systems. For instance,
in [23], the authors (developers) audit three automated facial analysis algorithms to detect any gender
inequalities in the classification results. They found that males were classified more accurately than
females in all the three algorithms and that all the algorithms performed worst on darker female subjects.

Recently, automated methods for auditing have been introduced to detect gender or race bias in the
context of online housing advertisements and search engine rankings. Asplund et al. [6] propose the use
of controlled “Sock-puppet” auditing techniques, which are automated systems that mimic user behavior
in offline audits. They use these techniques to investigate gender-based and race-based discrimination in
the context of online housing advertisements and any bias in search-result ranking. The authors use the
definition of disparate impact to consider both application systems as fair or not.
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4.2 Discrimination Discovery

A common approach for discrimination discovery is to compute metrics to detect any direct/indirect
discrimination of specific groups in the data. Examples include absolute measures, conditional measures
or statistical tests [230]. Absolute measures define the magnitude of discrimination over a dataset by
taking into account the protected characteristics and the predicted outcome. Statistical tests, rather than
measuring the magnitude of discrimination, indicate its presence/absence at a dataset level. Conditional
measures compute the magnitude of discrimination that cannot be explained by any non-protected
characteristics of individuals. Fairness notions have also been used in many works as metrics for discrim-
ination. In Bellogin et. al. [14], the authors detect statistical biases in the evaluation metrics used in
recommender systems that affect the effectiveness of the recommendations. They found out that there
is sparsity and popularity bias on the evaluation metrics. Many works focus on investigating the racial
bias in advertising recommendations systems. For instance, Sweeney [189] investigates the racial bias in
advertising recommendations by an ad server when searching for particular names in Google and Reuters
search engines. She finds that ads for services providing criminal records on names were significantly
more likely to be served if the name search was on a typically Black first name. Ali et al. [2], Speicher et.
al [185] and Imana et al. [91] detected significantly skewed ad delivery on racial lines in Facebook ads for
employment, financial services and housing. More specifically, in [91], the authors first build an audience
that allows them to infer the gender of the ad recipients on the platforms that do not provide ad delivery
statistics along gender lines, i.e., Facebook, Linkedin. They use this audience to distinguish between
skew in ad delivery due to protected categories from the skew due to differences in qualifications among
people in the targeted audience. Indirectly, they measure the “equality of opportunity" fairness notion.
Another example of bias detection in RecSys and online social networks is the work of Chackraborty
et al. [32] who detect demographic bias in the input data of crowds in Twitter who make posts worthy
of being recommended as trending. The bias is detected by comparing the characteristics of the trend
promoters with the demographics of the general population of Twitter. Apart from demographic bias,
political bias is very common in social networks. In Jiang et al. [95], the authors measure the fairness
in social media contexts based on the fairness notions: demographic parity and the equalized odds. The
authors detect political bias through content moderation. Bias in the social platform Facebook has also
been assessed through reverse engineering of the Facebook API ranking algorithm using logistic regression
in [86]. More specifically, the authors identify the features of a post that would affect its odds of being
selected. Sentiment analysis reveals that there are significant differences in the sentiment word usage
between the selected and non-selected posts.

In IR systems, discrimination discovery is primarily used in user-focused studies. Weber and Castillo [205]
conducted a study of user search habits, which involved a large-scale analysis of Web logs from Yahoo!.
Using the logs, as well as users’ profile information and US-census information (e.g., average income
within a given zip code), the authors were able to characterize the typical behaviors of various segments
of the population and detect any discrimination related to the users’ sensitive demographic attributes. In
a similar manner, Yom-Tov [218] used search query logs to characterize the differences in the way that
users of different ages, genders and income brackets, formulate health-related queries. His driving concern
was the ability to discover users with similar profiles, according to their demographic information (user
cohorts), who are looking for the same information e.g., a health condition. Pal et al. [147] considered
the identification of experts in the context of a question-answering community. Their analysis revealed
that as compared to other users with less expertise, experts exhibited significant selection biases in their
engagement with content. They proposed to exploit this bias in a probabilistic model, to identify both
current and potential experts. A method to identify selection bias, IMITATE, has also been proposed in
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Dost et al. [54]. IMITATE investigates the dataset’s probability density, then adds generated points in
order to smooth out the density and have it resemble a Gaussian, the most common density occurring in
real-world applications.

In a study of information exposure on the Mendeley platform for sharing academic research, Thelwall
and Maflahi [193] illustrated a home-country bias. Articles were significantly more likely to be read by
users in the home country of the authors, as compared to users located in other countries. Chen et al. [33]
investigated direct and indirect (implicit) gender-based discrimination in the context of resume search
engines, by a system towards its users. Direct discrimination happens when the system explicitly uses the
inferred gender or other attributes to rank candidates, while indirect discrimination is when the system
unintentionally discriminates against users (indirectly via sensitive attributes). The results suggested
that the system under review indirectly discriminates against females, however, it does not implicitly
use gender as a parameter. Another method for detecting bias in search engine results involves the use
of metrics that quantify bias in search engines [139]. A series of articles by Wikie et. al. [208–210] and
a paper of Bashir and Rauber [13] investigates the identification retrieval bias in IR systems. Bashir
and Rauber study the relationship between query characteristics and document retrievability using the
TREC Chemical Retrieval track. In Wilkie and Azzopardi [209], they examined the issue of fairness vs.
performance. Wilkie and Azzopardi [208] consider specific measures of retrieval bias and the correlation to
the system performance. Wilkie and Azzopardi [210] consider the issue of bias resulting from the process
of pooling in the creation of test sets. A recent study [175] detects gender and race bias in the annotation
process of training data of image databases used for facial analysis. The authors found that the majority
of image databases rarely contain underlying source material for how those identities are defined. Further,
when they are annotated with race and gender information, database authors rarely describe the process
of annotation. Instead, classifications of race and gender are portrayed as insignificant, indisputable, and
apolitical.

A set of works in HCI analyzes crowdsourced data from the OpenStreetMap to detect potential biases
such as gender and geographic information bias [46, 158]. In a similar vein, two other studies run a
crowdsourcing study to detect any bias on human versus algorithmic decision-making [11, 76]. Green
and Chen [76] run a crowdsourcing study to examine the influence of algorithmic risk assessment to
human decision-making, while Barlas et. al. [11] compared human and algorithmic generated descriptions
of people images in a crowdsourcing study in an attempt to identify what is perceived as fair when
describing the depicted person. The execution of a crowdsourcing study for detecting bias has also been
used in IR systems [57, 124].

Many works study the problem of bias detection in textual data using data mining methods concerning
specific protected groups. The typical approach is to extract association or classification rules from the
data and to evaluate these rules according to discrimination of protected groups [154, 168]. For instance,
Datta et. al. [47] analyse the gender discrimination in online advertising (Google ads) using ML techniques,
to identify the gender-based ad serving patterns. Specifically, they train a classifier to learn differences in
the served ads and to predict the corresponding gender. Similarly, Leavy et. al. [120] detect gender bias
in training textual data by identifying linguistic features that are gender-discriminative, according to
gender theory and sociolinguistics. Zhao et al. [226] detect gender bias in coreference resolution systems.
They introduce a new benchmark dataset, WinoBias, which focuses on gender bias. They also use a data
augmentation approach that in combination with existing word-embedding debiasing techniques, removes
the gender bias demonstrated in the data. Madaan et al. [128] detect gender discrimination in movies
using knowledge graphs and word embeddings after analyzing the data (using, for example, mentions of
each gender in movies, emotions of the actors during the movies, occupation of each gender in the movies,
screen time, etc.) In a similar vein, Ferrer et al. [64] propose a data-driven approach to discover and
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categorize language bias encoded on the vocabulary of online communities in the Reddit platform. They
use word embeddings to discover the most biased words towards protected attributes, apply k-means
clustering combined with a semantic analysis system to label the clusters, and use sentiment analysis to
further specify biased words. Rekabsaz and his colleagues [161] also explore the detection of societal bias
in word-embedding models by utilizing the first-order co-occurrence relations between the word and the
representative concept words. Islam et al. [92] introduce a collaborative filtering method to detect gender
bias in social media. Their proposed method is called Neural Fair Collaborative Filtering (NFCF). They
also use debiasing embeddings, and fairness interventions via penalty term.

A cluster of works in IR addresses the detection of bias such as age-based bias, and text-frequency and
stylistic biases in sentiment classification [49, 160, 181]. Other examples of detecting bias in classifiers
that use sentiment analysis are the existence of offensive language or stereotyping of sensitive attributes
in automated hate speech detection algorithms [7, 48] and the detection of cultural biases at Wikipedia
pages using sentiment analysis [26]. Shandilya et al. [178] also detect the under-representation of sensitive
attributes in the summarization algorithms. Keyes [104] identified the problem of automatic gender
recognition in HCI research and how the approaches followed until recently are discriminatory towards trans
gendered people. For systems to be fair, Keyes [104] proposed alternative methods and the development
of more inclusive approaches in the gender inference process and evaluation. Apart from automatic gender
recognition, an additional significant advancement in the field of HCI is that of data-driven personas.
Salminen et al. [172] investigated the presence of demographic bias in automatically generated, data-driven
personas. They discovered that the more personas they generated, the more diverse the sample became
in terms of gender and age representation. Practitioners who use data generated personas should consider
the possibility of unintentional bias in the data they use, that consequently is transferred to the personas
they generate.

Multiple approaches have been proposed in ML that detect discrimination in the data or classifier. Choi
et al. [38] discover and mine discrimination patterns that reveal if an individual is classified differently when
some sensitive attributes were observed. The algorithm detects discrimination patterns in a Naive Bayes
classifier using branch and bound search and removes them. It learns maximum likelihood parameters
based on these parameters. Pedreshi et al. [154] use an opaque predictive model to extract frequent
classification rules based on an inductive approach. Background knowledge is used to identify the groups
to be detected as potentially discriminated. On the other hand, Zhang et. al. [223] use a causal Bayesian
network and a learning structure algorithm to identify the causal factors for discrimination. The direct
causal effect of the protected variable on the dependent variable represents the sensitivity of the dependent
variable to changes in the discrimination grounds while all other variables are held fixed. They also
detect discrimination in the prediction/classification outcome by computing the classification error rate
(error bias). In a more recent work, Zucker et al. [231] introduce a new domain-specific programming
language, the Arbiter for ML practitioners. It allows users to make guarantees about the level of bias in
any produced models.

The notion of divergence [150], which estimates the difference in classification performance measures,
has also been proposed as a metric to identify data subgroups in which a classifier performs differently.
Pastor et al. [151] introduce the DivExplorer, an interactive visual analytics tool that identifies algorithmic
bias using the divergence notion. An interactive system to detect fairness issues in the classifiers has also
been proposed in [122]. The system is called DENOUNCER and it allows users to explore fairness issues
for a given test dataset, considering different fairness notions. In addition, Nargesian et al. [140] detect the
groups in the dataset that are unfairly treated by the classifier by developing an exploration-exploitation
based strategy. Their approach captures the cost and approximations of group distributions in the given
dataset.
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In IR systems, a common type of bias is the cognitive or perception bias that arises from the manner in
which information is presented to users, in combination with the user’s own cognition and/or perception.
For example, Jansen and Resnick [93] analyzed the behaviors of 56 participants engaged in e-commerce
search tasks, with the goal of understanding users’ perceptions of sponsored versus un-sponsored (organic)
Web links. The links suggested by the search engine were manipulated in order to control content and
quality. Even controlling for these factors, it was shown that users have a strong preference for organic
Web links. In a similar vein, Bar-Ilan et al. [10] conducted a user experiment to examine the effect of
position in a search engine results page (SERPs). Across a variety of queries and synthetic orderings of
the results, they demonstrated a strong placement bias; a result’s placement, along with a small effect on
its source, is the main determinant of perceived quality. User perception is also examined in a study [136]
where the authors consider people’s impressions of occupations and sense of belonging in a given field
when shown search results with different proportions of women and people of color. They find that
both axes of representation as well as people’s own racial and gender identities impact their experience
of image search results. Gezici et al. [71] propose a new evaluation framework to measure bias in the
content of SERPs (on political and controversial search topics) by measuring stance and ideological bias.
They propose three novel fairness-aware measures of bias based on common IR utility-based evaluation
measures.

Ryen White, of Microsoft Research, has published extensively on detecting users’ perception bias
during and after a search, particularly when trying to find information to answer health-related queries.
In an initial work [206], a user study focused on finding yes-no answers to medical questions, showed that
pre-search beliefs influence users’ search behaviors. For instance, those with strong beliefs pre-search, are
less likely to explore the results page, thus reinforcing the above-mentioned positioning bias. A follow-up
study by White and Horvitz [207] looked more specifically at users’ beliefs on the efficiency of medical
treatments, and how these beliefs could be influenced by a Web search. An example of searching for user
perception bias in recommender systems was presented in [169], where drivers’ perceptions of the Uber
application were investigated, taking into consideration drivers’ profiles and their history performance.

4.3 Bias Detection Comparison

Table 7 in the Supplementary Materials compares the methods used for bias detection across the research
domains surveyed.

5 FAIRNESS MANAGEMENT

The second set of tools used in mitigating algorithmic system bias concerns processes of Fairness
Management. One consideration is to use fairness management approaches to mitigate the bias detected
in any part of an algorithmic system. However, in order to make sure that an algorithmic system can
be considered “fair,” it is not enough to simply mitigate the detected bias – the design of the system
should be “fairness-aware.” In this section, we provide details of the solution approaches proposed in the
literature in each of the five fairness management categories.

5.1 Fairness Pre-processing Methods

An approach that is used to mitigate bias in the input or training data is the removal of sensitive
attributes that may be involved in discrimination. However, in some cases, the inclusion of sensitive
characteristics in the data may be beneficial to the design of a fair model [232]. To handle this issue,
some approaches remove information about the protected variables from the training data but they
also transform it using data mining methods. For instance, Kamiran and Calders [99] use a naive Bayes
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classifier to generate rankings of each observation in the training data based on its probability of belonging
to the desirable class category. The outcome variable in the training data is adjusted until there is no
remaining association between the protected variable and the intended outcome variable. The drawback
of this solution is that it is limited to a binary outcome variable and the transformed training data cannot
be used with other outcome variables.

Calders and Verwer [25] eliminate these drawbacks via three algorithms that transform (i.e., re-weight)
the training data based on an objective function that is minimized when the outcomes from a model
that fit to the transformed data are independent of the protected variable. This class is also restricted to
binary outcomes and protected variables. Data transformation approaches have also been proposed by
Johndrow and Lum [97] and Zemel [221]. Johndrow et al. [97] suggest a statistical framework where the
training data are transformed by mapping individuals to an input space that is mutually independent of
specific groupings. In [221], the authors encode the data by mapping each individual, represented as a
data point in an input space, to a probability distribution in a new representation space. The aim of this
is to hide sensitive information that can identify if the individual belongs to a protected group. Percy
et al. [155] propose an approach to mitigate gender bias on gambling. The method uses gender data
for training only, constructing separate models for each gender and combining trained models into an
ensemble that does not require gender data once deployed.

Another frequent pre-processing technique is the use of directed acyclic graphs and causal reasoning
that capture the dependencies between the features and their impact on the outcome. For instance, Zhang
et al. [223] discover and prevent discrimination bias in decision support systems using a causal Bayesian
network (BN) to identify pairs of tuples with similar characteristics from the dataset. Then, they generate
a new dataset sampled from the learned BN. Cardoso et al. [118] also use a Bayesian network estimated
from real-world data to generate biased data that are learned from real-world data. A data transformation
method has also been applied to ensure fairness in RecSys [212]. The authors propose a new graph-model
technique, the FairGo model, which ensures fairness for every recommender system by transforming the
original embedding of user and items into a filtered embedding space based on the sensitive feature set.
FairGo is model-agnostic and can be applied to multiple sensitive attributes.

Rather than adjusting/transforming the observations of the training data, other works use re-labeling.
Cardoso et al. [118] propose the use of an auditing tool to repair the dataset by changing attribute labels.
Kamiran and Calders [99] massage the data by swapping some of the labels in such a way that a positive
outcome for the disadvantaged group is more likely and then they re-train the model. Feldman et al. [63]
proposed the disparate impact removal solution approach that manipulates individual data dimensions in
a way that depends on the protected attribute.

Similar techniques to data transformation, but that consider the selection of features, have been
introduced in [31, 170]. Salazar et al. [170] use a multi-objective optimization algorithm for feature
construction. They use this approach to generate more features that lead to both high accuracy and
fairness by applying human understandable transformations. Celis et al. [31] develop a novel approach
that takes as input a visibly diverse control set of images of people and uses this set as part of a procedure
to select a set of images of people in response to a query. The goal is to have a resulting set that is more
visibly diverse in a manner that emulates the diversity depicted in the control set.

Other popular fairness pre-processing methods are the re-sampling methods that generate a balanced
dataset that will not under- or over-represent a particular protected group [49, 51, 74, 98, 181]. A similar
approach is used in RecSys where a re-sampling method is used to balance the neighborhoods before
producing recommendations [24] or re-balance the input data according to the protected attributes (e.g.,
gender) to produce a fair training dataset [127]. A re-sampling method has also been used by Sharma et
al. [180]. They use a data augmentation technique that adds synthetic data for removing bias in the data.
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The technique selectively adds only a subset of the synthetic points to create new augmented dataset to
meet the fairness criteria while maintaining accuracy.

5.2 Fairness In-processing Methods

One category of in-processing approaches involves the use of an optimization method. Xiao et al. [214]
suggest a multi-objective optimization framework optimizing fairness and social welfare simultaneously
on group recommendation. The goal was to maximize the satisfaction of each group member while
minimizing the unfairness between them. Results show that considering fairness in group recommendation
can enhance the recommendation accuracy. A multi-objective optimization approach has also been
proposed in [141] for fair allocations using two criteria, maximum fairness and efficiency. They propose
a dynamic programming algorithm to construct an appropriate Pareto set. Optimization approaches
with fairness weights have also been used in recommender systems for two-sided marketplaces [135]. In
that scenario, the developed systems should be fair on both the demand and supplier sides. The authors
propose different recommendation policies that jointly optimize the relevance of recommendations to
consumer (i.e., user) and fairness of representation of suppliers. Kusner et al. [117] focus on satisfying the
counterfactual fairness as the notion of fairness. They capture the social biases that may arise towards
individuals based on sensitive attributes. They provide optimization of fairness and prediction accuracy
of the classifier using a causal model.

A second category of in-processing methods is the use of regularization methods. Yan and Howe [216] in-
troduce the FairST, a fairness-aware demand prediction model for spatiotemporal urban applications. Two
spatio-temporal fairness metrics have been introduced as a form of regularization to reduce discrimination
in demographic groups. Kamishima et al. [100], also use a regularization approach that can be applied to
any algorithmic classifier. They introduce a prejudice remover regularizer that enforces independence
from sensitive attributes. Instead of applying a regularization method, Rezaeil et al. [162] mitigate bias
detected in a classifier by re-building it and incorporating fairness constraints to the predictor. The
method reshapes the predictions (output) for each group to satisfy the fairness constraints that consider
the protected groups.

In IR and RecSys, in-processing approaches primarily explore the mitigation of bias in the ranking
algorithms using learn-to-rank methods. For instance, Dai and colleagues [45] propose a novel framework,
Adversarial Imitation Click Model (AICM), which is based on imitation learning to address the exposure
bias in click-models. Click-models rely on learning-to-rank, by studying how users interact with a ranked
list of items. In [146], the authors consider both the selection and position bias in the rank-based
results. They frame the problem as a counterfactual problem and adapt Heckerman’s (rank) approach by
combining it with position bias correction methods to correct both the selection and position bias. Yang
and Ai [217] propose a fair and unbiased ranking method named Maximal Marginal Fairness (MMF) for
dynamic learning to rank, to achieve both fairness and relevance in top-k results. In a recent work [114],
the authors introduce a fair rank aggregation framework for aggregating multiple rankings in a database,
which can be applied to the databases of the ranking systems. It uses pairwise discordance to both
compute closeness among consensus and base rankings and measure the advantage given to each group of
candidates. Another fairness issue in ranking systems concerns the mitigation of bias in the PageRank
algorithm. The authors in [196] provide a parity-based definition of fairness that imposes constraints on
the proportion of PageRank allocated to the members of each group. They validate the fairness notion of
local and personalized PageRank fairness.
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5.3 Fairness Post-processing Methods

The most well-known post-processing method used in ML literature is the re-labeling of the decision
outcome. Pedreschi et al. [154] alter the confidence of classification rules inferred by the CPAR algorithm,
whereas Kamiran et al. [99] re-label the class that is predicted at the labels of a decision tree. In [82],
the authors propose a new fairness definition to optimally adjust any learned predictor so as to remove
discrimination. Their framework constructs classifiers from any Bayes optimal regressor following a
post-processing step that minimizes the loss in utility. Additionally, in the literature of rank-based systems
(i.e. IR and RecSys), post-processing methods focus on the re-ranking of the recommended or search
results. In [123], the authors provide a re-ranking approach to mitigate the unfairness problem between
active and inactive users by adding constraints over evaluation metrics. Experiments show that their
approach improves group fairness of users in recommender systems, and also achieves better overall
recommendation performance.

A re-ranking method has also been proposed by Karako and Manggala [101] who introduce a fairness-
aware variation of Maximal Marginal Relevance (MMR). The proposed method incorporates fairness in a
recommender or search system by choosing a sample of labeled images, based on gender when retrieving
untagged images similar to an input image or query. Mitigation of gender bias on image tagging has been
proposed in [192] where the authors introduce the Guided Attention Image Captioning model (GAIC).
The GAIC pipeline encourages the model to provide correct gender with high confidence when evidence
in the image is obvious. When gender evidence is vague or occluded, GAIC describes the person with
neutral words, such as “person,” In addition, Zehlike et al. [220] and Singh and Joachims [183] propose
fair top-k ranking algorithms for RecSys that makes the recommendations subject to group fairness
criteria and constraints.

“Other” works in ranking systems propose methods to achieve the fairness of the general ranking
results, rather than focusing on the top-k ranking. Patro and colleagues [152] propose the FairRec
algorithm, which validates exhibiting the desired two-sided fairness, both consumer and producer fairness,
by mapping the fair recommendation problem to a fair allocation problem. Kuhlman et al. [115] use an
auditing methodology FARE (Fair Auditing based on Rank Error) for error-based fairness assessment
of the ranking results. They propose three error-based fairness criteria, which are rank-appropriate, to
assess the correctness of the rankings. In addition, Kirnap et al. [107] estimate four fair ranking metrics
by acquiring group membership annotations for a sample of documents in its corpus.

5.4 Fairness Certification

Fairness certification methods are used to certify the fairness of the system using some constraints [30, 50,
108, 222] or by introducing new fairness metrics such as FACE and FACT [105], feature-apriori fairness,
feature accuracy fairness and feature-disparity fairness [77]. Wu et al. [213] propose a framework that
uses many of these fairness metrics as convex constraints that are directly incorporated into the classifier.
They first present a constraint-free criterion (derived from the training data) that guarantees that any
learned classifier will be fair according to the specified fairness metric. Thus, when the criterion is satisfied,
there is no need to add any fairness constraint into the classifiers. When the criterion is not satisfied, a
constrained optimization problem is used to learn fair classifiers.

Hu et al. [90] propose a metric-free individual fairness based on the gradient contextual bandit algorithm
that aims to maximize fairness. In [70], the authors use multi-objective clustering algorithms to maximize
both accuracy and fairness and to introduce diversity and transparency as constraints. Counterfactual
fairness is another well-known metric used for certifying system fairness. In [179], counterfactual ex-
planations evaluate fairness with respect to a particular individual as well as the fairness of the model
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towards groups of individuals. They define the metric “burden” to evaluate group fairness. The burden is
computed taking into consideration how much the fitness measure differs for counterfactuals generated for
specific groups of individuals. Cruz Cortes et al. [44] use population fairness metrics: Predictive Parity and
Error Rate Balance. They propose a simple agent-based model to detect any discrimination inequalities
in an arrest-sentence system. Group fairness has been used as a definition in recommender systems for
group recommendations as well. Kaya et al. [103] define a new metric for group fairness called Group
Fairness Aware Recommendations (GFAR) considering the fairness of the top-N ranked items. GFAR
defines top-N ranking as fair when the relevance of each of the top-N items, to the group members is
‘balanced’ across the group members.

In information retrieval systems, researchers often focus on user evaluation to certify the fairness of the
system. Mitra et al. [138] presented the first large-scale study of users’ interactions with the auto-complete
function of Bing. Through an analysis of query logs, they found evidence of a position bias (i.e., users
were more likely to engage with higher-ranked suggestions). They were also more likely to engage with
auto-complete suggestions after having typed at least half of their query. In a follow-up study, Hofmann
et al. [87] conducted an eye-tracking study with Bing users. In half of their queries, users were shown the
ranked auto-complete suggestions while in the other half of queries, the suggestions were random. The
authors confirmed the position bias in the auto-complete results, across both ranking conditions. They
found that the quality of the auto-complete suggestions affected search behaviors; in the random setting
users visited more pages in order to complete their search task. Another popular fairness certification
method is simply to raise users’ awareness. Epstein et al. [59] develop solutions for the Search Engine
Manipulation Effect (SEME), citing recent evidence of its impact on the views of undecided voters in the
political context. In a large-scale online experiment with 3,600 users in 39 countries, they showed that
manipulating the rankings in political searches can shift users’ expressed voting preferences by up to
39%. However, providing users with a “bias alert,” which informed them that “the current page of search
rankings you are viewing appears to be biased in favor of [name of candidate],” reduced the shift to 22%.
They found that this could be reduced even further when more detailed bias alerts were provided to users.
Nonetheless, they reported that SEME cannot be completely eliminated with this type of intervention,
and suggested instituting an “equal-time” rule such as that used in traditional media advertisements.

“Other” works use alternative approaches rather than the computation of specific metrics to certify an
ML system. For instance, Fang et al. [62] certify the fairness of a classifier by constructing fairgroups,
considering the feature importance to the decision variable. Individuals with similar features are grouped
into clusters. This approach adopts the notion of fairness related to disparate impact, which affects
individuals with at least one protected feature. In addition, Kilbertus et al. [106] provide fairness learning
and certification without access to users’ sensitive data. To achieve this, they use an encrypted version of
sensitive data, privacy constraints and decision verification by employing secure multi-party computation
(MPC) methods. The use of techno-moral graphs for certifying ML algorithmic systems was also suggested
in [94]. The authors argue that a three-dimensional conceptual space can be used to map ML algorithmic
projects in terms of the morality of their respective and constitutive ground-truth practices. Such
techno-moral graphs may, in turn, serve as equipment for greater governance of ML algorithms and
systems.

5.5 Fairness Perception

Woodruff et al. [211] explore, in a qualitative study, the perception of algorithmic fairness by populations
that have been marginalized. In particular, they consider how race and low socioeconomic status was used
in stereotyping and adapting services to those involved. Most participants were not aware of algorithmic
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unfairness even though they had experienced discrimination in their daily lives. Brown et al. [21] also
present a qualitative study for understanding the public’s perspective on algorithmic decision-making in
public services. They discovered that many participants mentioned discrimination and bias based on race,
ethnicity, gender, location, and socioeconomic status. A descriptive approach for identifying the notion
of perceived fairness for ML was suggested by Srivastava et al. [186]. They argued that the perceived
fairness of the user is the most appropriate notion of algorithmic fairness. Their results show that the
formal measurement, demographic parity, most closely matches the perceived fairness of the users and
that in cases when the stakes are high, accuracy is more important than equality.

Perceived fairness on algorithmic decision-making is also explored in [204] where the authors conduct an
online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm
outcomes, algorithm development and deployment procedures, and individual differences. They find that
people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the
negative effects of describing algorithms that are very biased against particular demographic groups.
This effect is moderated by several variables, including participants’ education level, gender, and several
aspects of the development procedure. These findings suggest that systems that evaluate algorithmic
fairness through users’ feedback must consider the possibility of “outcome favorability” bias. In another
study, the authors identify perception bias in borderline fact-checking messages [149]. The authors
conduct both a quantitative and qualitative study by conducting semi-supervised user interviews to
learn the user experience and perception of different fact-checking conditions. In a recent work [131], the
authors introduce a network-centric fairness perception function that can be viewed as a local measure of
individual fairness.

In addition, Maxwell et al. [133] investigated the influence of result diversification on users’ search
behaviors. Diversification can reduce search engine biases by exposing users to a broader coverage of
information on their topic of interest. A within-subject study with 51 users was performed, using the
TREC AQUAINT collection. Two types of search tasks - ad hoc versus aspectual - are assigned to
each user using a non-diversified IR system as well as a diversified system. Results indicated significant
differences in users’ search behaviors between the two systems, with users executing more queries, but
examining fewer documents when using the diversified system on the aspectual (i.e., more complex) task.

5.6 Fairness Management Comparison

Table 8 in the Supplementary Materials provides a comparison of the Fairness Management solutions.

6 EXPLAINABILITY MANAGEMENT

The increasing use of algorithms in decision-making – especially for critical applications – has lead
to policies requiring clearer accountability for algorithmic decision-making, such as the EU’s General
Data Protection Regulation, and its “Right to Explanation” [75]. Doshi-Velez and Kim [53] argue that
interpretability can help us evaluate if a model is biased or discriminatory by explaining the incompleteness
that produces unquantified bias. On the other hand, Selbst and Barocas [176] and Kroll et al. [113] have
demonstrated that even if a model is fully transparent, it might be hard to detect and mitigate bias due to
the existence of correlated variables. According to Eslami et al. [61], full transparency is neither necessary
nor desirable in most systems. Full transparency may negatively affect users’ information privacy [35].
Moreover, users often need to be provided with details on the decisions made, and not simply with
explanations of the outcome. A good example is a qualitative study [21] in which participants requested
not only information concerning how the algorithm under study took decisions, but also the parameters
upon which the decisions were taken.
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Friedrich and Zanker [67] classify explainability into two types: white-box and black-box. How explana-
tions are white-box explanations of the input, output, and process leading to the particular outcome. They
provide information focusing on the system’s reasoning and data source, which enhances user satisfaction
of the system. Why explanations treat systems as non-transparent and do not provide any information on
how a system works. Instead, they give justifications for outcomes and explain the motivations behind the
system, to fill the gap between the user’s needs and the system’s goals. Rader et al. [159] proposed two
additional types of explainability, “What” and “Objective”. What explanations only reveal the existence
of algorithmic decision-making without providing any information on how the system works. This type of
explainability aims to raise the users’ awareness of the algorithm. Objective explains the process of the
development of the system and its potential improvement with the objective of preventing or mitigating
bias in the system.

Important aspects for personalized explanations in algorithmic systems include the presentation
format of the different types of explanations (e.g., graphical, textual, bullet points), the length of each
explanation, and the adopted vocabulary if natural language is used for the explanations. The range
of explanations is based on the domain; for example, decisions in the health domain are more critical
than in movie recommendations and may need a wider range of explanations of how a system derives its
predictions/classifications. Regarding the presentation format, Eiband et al. [56] proposed a participatory
design methodology for incorporating transparency in the design of user interfaces such as to make
intelligent systems more transparent and explainable. The process used in the design methodology consists
of two main parts. The first part defines the content of an explanation (what to explain) while the second
focuses on the presentation format of the explanation (how to explain). In a similar vein, Binnis et al. [15]
classify a set of explanation styles into four categories based on the type of information they would like
to present to the end user:

• Input influence style: A set of input variables are presented to the user along with their positive or
negative influence on the outcome.

• Sensitivity style: A sensitivity analysis shows how much each of the input values would have to
differ in order to change the outcome (e.g., class).

• Case-based style: A case from the model’s training data that is most similar to the decision outcome
is presented to the user.

• Demographic style: The system presents to the user statistics regarding the outcome classes for
people in the same demographic categories as the decision subject, e.g., based on age, gender,
income, etc.

Recent surveys on interpretable ML methods and techniques can be found in [3, 79]. In the following
sections, we briefly identify the main explainability approaches used in ML and RecSys systems.

6.1 Model Explainability

Model explainability techniques are primarily used to explain the process of an opaque ML model such
as a neural network (NN) or a deep learning (DL) model. These techniques usually use a transparent
model to mimic the model’s behavior and be interpretable by humans. For instance, some works use
a decision tree to mimic the behavior of a non-transparent model [20, 42, 96, 112] and tree ensemble
models [52, 72, 174, 190, 227]. The use of decision trees for explaining NN was first presented in [42] where
the TREPAN network implements the algorithmic process of the NN and returns the representations of the
model. Chipman et al. [36] use decision trees as an interpetable predictor model for tree ensemble models
by summarizing the forest of trees through clustering, and use the associated clusters as explanation
models. A similar technique is the use of decision rules to explain a non-transparent model, for instance,
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by extracting rules from a trained model such as a neural network (NN), and then using the NN to refine
existing rules [42, 96, 228].

More recent works use ontologies to represent and integrate knowledge to the model in order to enhance
human understandability. An example is the recent extension of TREPAN [40] that uses and integrates
knowledge in the form of ontologies in the decision tree extraction to enhance human understandability on
decision trees. In addition, Ribeiro et al. [163] use ontologies to explain NN. They build small classifiers
that map a neural network model’s internal state to concepts from an ontology, enabling the generation
of symbolic justifications for the output of NN. An alternative approach has been proposed in [18], where
the authors present the Bayes-TREX framework, which uses Bayesian inference techniques to explain NN
based on the whole dataset, not only the test data. Bayes-TREX takes as input the whole data and finds
in-distribution examples that trigger various model behaviors across several contexts.

In addition to the aforementioned approaches for explainability of non-transparent ML algorithms,
many articles, especially in the domain of recommender systems, propose some approaches for interpreting
the ranking (recommender) algorithms. In such systems, the authors aim to provide explanations based
on user opinions and evaluation of previous purchases, rather than on the analysis of the ranking
algorithm [202]. The aim is to provide personalized explanations by selecting the most appropriate
explanation style. Nunes et al. [142] presented a systematic review on explanations for recommendations
in decision support systems where they proposed a taxonomy of concepts that are required for providing
explanation. According to Tintarev and Masthoff [194], there are seven purposes for providing explanations
in a recommender system: transparency, scrutability, trust, effectiveness, persuasiveness, satisfaction
and efficiency. Park et al. [148] introduce the J-RECS, a recommendation model-agnostic method that
generates personalized justifications based on various types of product and user data (e.g., purchase
history and product attributes). Although most of the surveyed works in RecSys provide explanations
based on user data, a recent work [69] propose some metrics for measuring explainability and transparency
of the ranking algorithm.

A good example that connects explainability to fairness perception is the recent work of Anik et al. [5].
The authors explore the concept of data-centric explanations for ML systems that describe the training
data to end users. They first investigate the potential utility of such an approach, including the information
about training data that participants find most compelling. The authors also investigate reactions to
the explanations across four system scenarios. Their results suggest that data-centric explanations have
the potential to impact how users judge the trustworthiness of a system and to assist users in assessing
fairness.

6.2 Outcome (or Post-hoc) Explainability

Outcome explainability approaches attempt to provide an interpretation for the outcome generated by the
model. A recent work focuses on providing both local and pedagogical explanations for the output of ML
models [130]. Pedagogical explanations are those that teach something about how the model works rather
than attempting to represent it directly. Outcome explanations are divided into: visual explanations, local
explanations and feature relevance explanations techniques.

Local explanation approaches are the Local Interpretable Model-Agnostic Explanations (LIME) [164]
and its variations [78, 165, 197]. The explanations in LIME are only provided through linear models and
their respective feature importance. Anchors is another local explanation method proposed by Ribeiro et
al. [165] that uses decision rules for explaining the model sufficiently. A post-hoc global explainability
method has been proposed in [9]. A SEPA framework has been introduced that incorporates post-hoc
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global explanation methods for image classification tasks. SEPA uses understandable semantic concepts
(entities and attributes) that are obtained via crowd-sourcing from local interpretability saliency maps.

An example of feature relevant explanation approach is the ExplainD, a framework presented in [157] for
interpreting the outcome of any non-transparent model. ExplainD uses generative additive models (GAM)
to weight the importance of the input features. A unified framework of the class of six existing additive
feature importance methods, the SHAP (SHapley Additive exPlanations) has also been introduced in [126].
SHAP assigns each feature an importance value for a particular prediction to interpret the predictions.
According to Slack et al. [184], post-hoc explanation techniques that rely on the input, such as LIME
and SHAP, are not reliable since they do not take into consideration the bias in the model. In [184], the
authors proposed a scaffolding technique that scaffolds any biased classifier in a way that its input data
remain biased but the generated post-hoc explanations do not reflect the underlying bias.

Other examples of feature relevant explanations include the approach used in Horne et al. [88] for
explaining the spread of fake news and misinformation online. They used an AI assistance framework
for providing these explanations to users. This was been shown to improve the user perception of bias
and reliability on online news consumption. In another approach, Henelius et al. [84] search for a group
of attributes of which the interactions affect the predictive performance of a given classifier, and they
evaluate the importance of each group of attributes using the fidelity metric. In addition, Vidovic et
al. [200] propose the measure of feature importance (MFI), which is model-agnostic and can be applied to
any type of model. Feature-relevant explanations are also used in [1], where the authors suggest the DIFF
operator, a declarative operator that unifies explanation and feature selection queries with relational
analytics workloads.

Another widely known category of outcome explainability approaches is the use of counterfactual
explanations, which is a special case of feature-related explanations [179, 203]. In [179], they propose the
CERTIFAI model-agnostic technique that provides counterfactual explanations using a genetic algorithm.
The user can use counterfactual explanations to understand the importance of the features. In [203],
the authors introduce Lewis, an open-source software that provides counterfactual explanations for the
decision-making of an algorithm at the global, local and contextual level. For individuals negatively
impacted by the algorithm’s decision, it provides actionable resources to change the outcome of the
algorithm in the future. Visualization model-specific techniques are used to inspect the training process
of a deep neural network (DNN) behavior on images [16, 215, 229]. In these works, a Saliency Mask (SM)
is used as the interpretable local predictor e.g., a part of an image. Similarly, Fong et al. [65] propose a
framework of explanations as meta-predictors for explaining the outcome of deep learning models. The
meta-predictor is a rule that predicts the response of the model to certain inputs such as highlighting
the salient parts of an image. Another set of works use saliency masks to incorporate the DL network
activation into their visualizations [177, 182, 227].

In RecSys, outcome explainability approaches are used to explain recommendations to the user. One
category of techniques for RecSys are the ones that explain the latent factors that contribute to the
decision outcome based on the collection of users’ interests and items’ characteristics such as Explicit
Factor Models [225] and Tensor factorization [34]. Other approaches for explaining recommendations
are based on the use of knowledge graphs that relate the items’ characteristics and users’ behavior,
based on their past interactions with the items [28, 83]. Visual explanations have recently been used in
RecSys to justify the recommendation process in combination with giving more control to the user in
a specific context of an interactive social recommender system [195]. By conducting a user study, the
authors investigate how the addition of user control and explainability affect the user perception, user
experience, and user engagement. Based on the results, the best user experience happens when there is
full explainability and control.
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6.3 Explainability Management Comparison

Table 9 in the Supplementary Materials provides a comparison of the solutions focusing on Explainability
Management.

7 BRINGING IT ALL TOGETHER

Our survey was intentionally broad, providing a “fish-eye view” of this complex topic. We did not restrict
our review to the literature on fairness and/or discriminatory bias in a social sense; rather, we considered
articles describing the problems and solutions surrounding bias, which affect any number of attributes
including the quality of information provided by a system.

Fig. 4. A fish-eye view of mitigating algorithmic bias: problems, stakeholders, solutions.

Sources of Bias. The articles reviewed mentioned at least one of seven problematic components and/or
points at which bias can be detected. These are shown in Figure 4, which groups them into four types:
data bias, user bias, processing bias, and human bias. All biases are at least indirectly human biases;
for instance, datasets and processing techniques are created by humans. However, we believe that it
is helpful to distinguish the biases that are directly introduced into the system by humans, such as
third-party biases, from those resulting from conflicting fairness constraints, as well as those due to the
choices of the developer. User bias is distinguished from other human biases in our framework; as detailed
in the literature, users can both introduce bias (e.g., biased input), but can also perceive bias in the
output. Finally, Figure 4 also incorporates, at a high level, the three steps in a comprehensive solution
to mitigate algorithmic bias: bias detection, fairness management and explainability. Figure 4 presents
an overview of the problem and solution spaces revealed by the survey. This framework integrates the
concepts presented earlier on, the components of a system that can be problematic (Figure 1), and the
solutions described across communities (Figure 3). Next, Table 6 depicts the cross-fertilization between
the four communities that we reviewed, in terms of realizing comprehensive solutions for mitigating
bias. All four communities use all three steps for mitigating bias in different parts of an algorithmic
system. However, the interrelationships between the communities is primarily based on the stakeholders
involved in implementing each solution. In addition, there are similarities and differences across the
specific solution approaches used in each step of mitigating bias within the different communities. For
instance, data re-sampling is an approach used in all four communities for fairness pre-processing, while
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learn-to-rank (fairness in-processing) and re-ranking (fairness post-processing) are approaches used for
fairness management only in the communities of IR and RecSys, which are concerned with ranking
systems. In the following paragraphs, we give a more detailed view of the interrelationships of the four
communities in each step of mitigating bias, considering both the solution approaches and the stakeholders
involved in implementing them.

Stakeholders

Domains Developers Users Observers Indirect Users

ML Bias Detection Auditing
Fairness management Fairness Perception Fairness Perception
Model Explainability Outcome Explainability Outcome Explainability

IR Bias Detection Auditing
Fairness Pre-processing Perceived Fairness Fairness CertiĄcation Perceived Fairness
Fairness In-processing
Fairness Post-processing

Outcome Explainability Outcome Explainability
RecSys Bias detection Bias Detection Auditing

Fairness Pre-processing Fairness Perception Fairness Perception
Fairness In-processing
Fairness Post-processing Fairness CertiĄcation
Model Explainability Outcome Explainability Outcome Explainability

HCI Bias Detection Auditing
Fairness Perception Fairness Certicifation Fairness Perception

Fairness Pre-processing
Model Explainability Outcome Explainability Outcome Explainability

Table 6. Cross-fertilization between research communities.

Bias Detection: In most of the articles in our repository, across all four communities, auditing is
typically done by the observers of the system. It should also be noted that within ML, beyond involving
the model, inputs and outputs, auditing can also involve the generation of biased datasets for conducting
a black-box audit. As presented in Table 6, in three domains, bias detection, in general (both auditing
and discrimination discovery), is done by observers. The exception is ML, where developers implement
automated auditing and discrimination discovery tools, and also observers use auditing to detect fairness
issues in the system. In addition, in the RecSys community, developers sometimes implement the auditing
process or use discrimination (or fairness) metrics to detect bias as in the ML community.

Fairness Management: The issue of ensuring that people and/or groups of people are treated fairly by
an algorithmic system was found to be of interest to researchers across all domains considered. However,
the tools stakeholders have at their disposal vary. For instance, in three communities (ML, RecSys,
IR), developers are the ones who implement pre-processing, in-processing and post-processing methods
to mitigate fairness issues in different parts of the algorithmic system, as also presented in Table 6.
Specifically, in ML systems, developers are involved both in the development of the system and manage
fairness of the system by developing inside the box. In contrast, in HCI, the system observers manage
fairness by observing the system’s behavior or the output of the system. In addition, the users of the
system participate in the conducted studies for managing system fairness concerning the users’ perception.
In IR and RecSys, apart from the developers, observers are also involved in certifying that the algorithm
is fair.

Explainability Management: With respect to the transparency of the algorithmic system, a set of
explainability approaches has been introduced in the literature, to encourage trust in the system by the

ACM Comput. Surv.



Mitigating Bias in Algorithmic Systems - A Fish-Eye View • 27

end user, which primarily concerns the HCI and ML communities. In HCI articles, the most appropriate
presentation and format of explainability is examined for enriching the transparency of the systems and
the trust of the end user. Moreover, multiple papers study specific explainability approaches for explaining
the matching/ranking algorithm in RecSys and IR ranking systems. As shown in Table 6, in ML systems,
the developers implement algorithms or methods for providing transparency for the black-box model and
outcome whereas in RecSys and IR ranking systems, personalized explanations focus on the user and
indirect users of the system. In HCI, the observer, in collaboration with the user, conducts experimental
studies using various explanation presentation styles and in some cases, personalized explanations for
providing the user with some transparency of the system. The exception is one HCI approach, where the
developer(s) provides data-centric explanations (Model Explainability).

Affected Attributes. From the articles reviewed in this survey, we can conclude that there are two types
of attributes that are affected by the bias and fairness issues in an algorithmic system:

• Attributes describing the social world; in particular, socio-cultural characteristics of people such as
gender, age, language and national origin.

• Attributes describing information, with the critical question being how well the attributes describe
real-world events and phenomena, i.e., the quality and/or credibility of information provided as
input to the algorithm, or as output to the user.

As mentioned, the attributes describing information are most clearly connected to the explainability
management approaches. The other solutions (auditing, discrimination discovery and fairness management)
typically address bias that concerns attributes of the real-world and in some cases, information as well.
This is the case because in explainability management, people are interested in the process by which
information is built while in the other cases, they are interested in the actual discrimination. Based on
that, we can also conclude that the three steps of mitigating bias are complementary and can be applied
to address different facets of the problem within an algorithmic system.

Limitations. We must note some challenges faced when reviewing the literature on mitigating algorithmic
bias. First, the field is becoming highly interdisciplinary. It was often difficult to categorize the articles
we collected into one domain; for instance, RecSys researchers often publish in HCI venues, or even ACM
FAccT. Thus, while we aimed to collect articles from across four domains, one should keep in mind that
there is some overlap between them. Thus, it was more difficult than expected to characterize how each
community has contributed to the work on addressing algorithmic bias. This challenge, however, does not
affect the development of a “fish-eye view” on the field. In addition, the classifications of solutions that
we provide is driven by empirical evidence as we discovered it by the extensive, state-of-the-art works
reviewed in the survey. Still, there are cases we do not capture, which are outside of our classification. Any
classification scheme has its own foundation issues, which have long-term effects, as they influence the
validity of the classification in the long term. Thus, it becomes obvious that the entire issue of bias and
the solution(s) to bias should be placed into the context of diversity, taking into account local cultures
and problems [73], which will be examined in a future work.

Secondly, the framework presented in Figure 4 does not yet explicitly incorporate accountability into the
solutions for mitigating algorithmic bias. Because we focused on literature in the information and computer
sciences, studying articles describing particular algorithms and/or systems, the issue of accountability
was not often discussed. Going forward, the literature search could be expanded into law and the social
sciences as to further investigate the role of the Observer/ Regulator in the landscape of solutions.
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8 CONCLUSION

In this survey, we provided a “fish-eye view” of research to date on the mitigation of bias in any type of
algorithmic system. With the aim of raising awareness of biases in user-focused, and algorithm-focused
systems, we examined studies conducted in four different research communities: information retrieval
(IR), human-computer interaction (HCI), recommender systems (RecSys) and machine learning (ML).
We outlined a classification of the solutions described in the literature for detecting bias as well as for
mitigating the risk of bias and managing fairness in the system. Multiple stakeholders, including the
developer (or anyone involved in the pipeline of a system’s development), and various system observers
(i.e., stakeholders who are not involved in the development, but who may use, be affected by, oversee, or
even regulate the use of the system) are involved in mitigating bias. In future work, we aim to further
refine the various roles of individual stakeholders and the relationships between them.

A second consideration to be explored, is that while many solutions described in the literature have
been formalized (e.g., discrimination detection methods, fairness management, internal certification),
there are many other issues surrounding perceived fairness. The perceived fairness of the user is somewhat
subjective and it is not clear how the internal, formal processes relate to users’ perceptions of the systems
and their value judgements. To this end, it is important to emphasize the particular role of explainability
management for bias mitigation. Specifically, in this context, explainability can be viewed as a means
rather than an end; complex algorithmic systems can become more transparent to users, the more
interpretable their models and outcomes are. Clearly, explainability has a tight relationship to the user’s
perception of fairness.

Finally, in this survey, we recorded the attribute(s) affected by the problematic system in each of the
reviewed domains and found that there are two key types of attributes affected by the problematic system:
attributes describing the world and attributes describing information. Based on that, explainability
management solutions mitigate bias that only affects information, while bias detection and fairness
management mitigate bias that affects the attributes describing the social world. In future work, we aim
to treat the two types of bias (social world, information) independently.

9 SUPPLEMENTARY MATERIALS

Supplementary materials are available in the online version of this paper.
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