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 The computation of network reliability for a system with many states is an 

NP-hard issue. Finding all the minimum path vectors (d-MPs) lower boundary 

points for each level d is one of the few approaches for computing such 

dependability. This research proposed enhancements to the technique 

described in Chen's "Searching for d-MPs with rapid enumeration" paper. We 

propose additional adjustments to the method that creates the flow vector F in 

this enhancement. This decreases the number of required steps and the 

temporal complexity of the method. Comparing the newly suggested approach 

to the old algorithm reveals that the adjustment has increased the 

enumeration's efficiency and degree of complexity.  
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1. INTRODUCTION 

The area of machine learning has exceeded the level of performance that can be achieved by humans 

on a variety of categorization problems with the emergence of deep learning. Concurrently, there is an urgent 

need to describe and measure the reliability of a model's prediction based on individual samples. This is 

particularly true when such models are used in the context of safety-critical areas [1]–[3]. 

The reliability theory aim is to compute the reliability of complex systems from the awareness of the 

reliabilities of its components. Various methods for computing system reliability have been introduced in the 

literature. Among these methods we can find cut/path set enumeration [4]–[13], the state enumeration methods 

[14], [15]. 

According to the traditional reliability theory, an element can only be in a functioning or failed 

condition [16]. However, portions of multi-state systems have varying capacity levels under a variety of 

circumstances. Concerning these systems, we compute the probability that the flow from the origin node 

towards the sink node is higher than or equal to the specified demand d [17], [18]. 

The enumeration of all d-minimal pathways (d-MPs) for a certain level d is one of the available 

approaches [10], [19]–[25] for computing the system dependability of a multi-state system. There are two ways 

provided in the literature for locating all d-MPs for a certain d. The first one generates d-MPs using direct 

methods, and the second approach generates d-MPs using pre-enumerated minimal paths (MPs). 

https://creativecommons.org/licenses/by-sa/4.0/
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Yeh [26] suggested a component-based formulation with three limitations to get d-MP candidates as 

one of the direct techniques that may generate d-MPs. The second is Ramirez [20], which proposed an 

additional way for information-sharing mechanisms. 

Bai [22] introduced a novel approach that creates the d-MP candidates by merging all the MPs and 

determining if each d-MP candidate is less than the whole state vector. 

In [21], Lin offered a mathematical formulation based on three restrictions for obtaining the candidates 

for d-MPs from all previously enumerated MPs. Lamalem [25] presented a novel method for listing all d-MPs 

for all d levels. This method utilizes the network's routes matrix to generate new d-MP candidates from (d-1)-

MP d-MP candidates. Chen [27] used a novel approach known as integer-programming [28] to reduce the 

number of steps required to generate the flow vector F. 

Providing new improvements to the Chen [16] method, this study claimed new improvements. These 

adjustments reduce by a minimum of 60 times the number of steps necessary to get the flow vector F. To 

demonstrate the effectiveness of the suggested enhancements, we conducted several experiments and compared 

the results to a well-known method. 

The remainder of the paper is structured as follows: The first part provides the method's definitions 

and underlying assumptions. The stochastic-flow network model is described in section 3. Next, in section 4, 

we present Chen’s algorithm [27] and Lin [21]. Later in section 5, we propose the new improvements to Chen’s 

[27] algorithm. In the end, The efficiency of the new improvements added to the algorithm is compared with 

Chen [27] and Lin [21]. 

 

 

2. METHODS 

2.1.  Definitions 

For G(A, N, M) is the stochastic-flow network, such that A=(a1, ..., an) defines the group of edges, 

N=(n1, ..., nm) defines the group of nodes, and M=(M 1, ..., M n) defines the full capacity of each edge ai. 

The path is a group of elements that connect the sources s to the sink t. 

The Minimal Path (MP) is a path that contains no other paths between the source s and the terminal t. 

 

2.2.  Assumptions 

The network should specify the fundamental following hypothesis: 

 Each state of an arc is statistically independent of another arc. 

 The nodes are working perfectly. 

 The capacity of every element ai ranges from 0<1<2...< M n. 

 The network's flow conforms to the flow-conservation rule. 

 

2.3.  Model of stochastic network flow  

Let p1, p2, ..., pz represent the collection of MPs from the source s to the terminal or sink t. The 

stochastic-flow networking may be represented by two vectors: the flow vector F=(f1, f2, ...fz) and the capacity 

vector X=(x1, x2, ..., xn), where fi represents the overall flow of a MP. Moreover, pi and xi represents the current 

capacity of an edge ai. The vector F is attainable if and only if the following conditions are met: 

 

∑ {f
j
 | ai ϵ p

j 
 ≤ Mi, i=1, 2, …, nz

j=1        (1) 

 

∑ f
j 
=d𝑧

j=1          (2) 

 

f
i
 ≤ min{Mi |ai  ϵ p

j
}, j=1, 2, …, m        (3) 

 

According to constraint (1), the total flow through ai under F cannot exceed M i. Constraint (2), states that the 

entire flow of F equals the supplied demand d. The third constraint is that the flow on each MP pj cannot exceed 

its maximum capacity. Lemma 1 Any F that fulfills restriction (1) satisfies restriction (3). 

Proof 1: If the total of the flows of the several pathways crossing an edge is less than its capacity, then the flow 

of a specific path is less than the sum of the capacities of the many paths it crosses, indicating the smallest of 

them. 

Let F={F — meets the conditions (1) and (2)}. X = (x1, x2,..., xn) is a d-MPs capacity vector for a given d If 

there exists an F ∈ F such that: 
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𝑥𝑖 = ∑ {𝑓𝑗 | 𝑎𝑖  𝜖 𝑝𝑗}, 𝑖 = 1, 2, … , 𝑛
𝑧
𝑗=1       (4) 

 

Let ϕ(X) represent the flow from node s to sink t, ϕ(X) is the capacity or status of the system. Assuming 

there are L d-MPs, they are denoted by Z1, Z2, Z3, ..., ZL. Therfore, the possibility that ϕ(X) ≥ d may be 

determined as follows: 

 

𝑃𝑟 (ɸ(𝑋)) =  𝑃𝑟 ({𝑋 ≥ 𝑍1}⋃{𝑋 ≥ 𝑍2}⋃… .⋃{𝑋 ≥ 𝑍𝐿})    (5) 

 

Ocucurrence X ≥ Z denotes xi ≥ zi for each i, where X and Z are identically sized vectors. 

Based on a multistate network with n autonomous nodes. Component i (1 ≤ i ≤ n) has Mi + 1 discrete and 

mutually exclusive states 0, 1,..., Mi. For a specific vector Z whose compenent zi indicates the position of component 

i, where: 

 

𝑃𝑟 (𝑋 ≥ 𝑍) =  ∏ 𝑃𝑟 (𝑥𝑖 ≥ 𝑧𝑖 )
𝑛
𝑖=0        (6) 

 

2.4. Chen and Lin algorithmic improvements 

To explain Chen’s process, we shall utilize Figure 1 from Chen [27] as a network. For locating all 

viable solutions to F = (f1, f2, ...fz), we must apply the constraints (1), (2) and (3). 

 

 

 
 

Figure 1. Graph taken from Chen 

 

 

In Figure 1, there are four minimum paths : p1 = (a1, a3, a6), p2 = (a2, a4, a7), p3 = (a2, a5, a6) and p4 = (a1, a3, 

a5, a4, a7). They correlate to corresponding F = (f1, f2, f3, f4), the provided requirement d is 5 and the full 

capacity for every arc ai is 5. 

From constraint (3), we have : 

 

{
 
 

 
 

 

f
1
 ≤ 5

f
2
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f
3
 ≤ 5

f
4
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From constraint (1), we have : 

 

{
 
 

 
 

 

f
1 

 + f
4
 ≤ 5 

f
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 + f
3
 ≤ 5

f
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 + f
4
 ≤ 5

f
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 + f
4
 ≤ 5

f
1 

 + f
3
 ≤ 5

  

  

From constraint (2), we have : 

 

𝑓1 + 𝑓2 + 𝑓2 + 𝑓4 = 5  

 

The system of equations to be solved is: 
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2.4.1. The conventional explicit statement  

In [21], Lin’s program that utilizes explicit enumeration to explore f1, f2, f3, f4 is identical to the 

following code; it employs four loops, and in each loop, the flow fi begins at 0 and ends at minimum {M i | ai  

∈ pj }, j = 1, 2, 3, ... m as a constraint (3)  

 

 
 

As it can be noticed, Lin’s [21] algorithm enters each loop and stops at the last condition to check if 

it’s false or true. If the condition is satisfied, the algorithm adds the flows (f1, f2, f3, f4) to the set of feasible 

solutions F, The computation complexity required by running this algorithm using the network of 

Figure 1 is 6*6*6*6 = 1296 steps (because each flow fi start from 0 to 5). 

 

2.4.2. Chen’s algorithm 

Chen’s algorithm [27] employs the linear programming approach presented in [28]. The method 

reorders the constraints in order to decrease the number of required steps. Using the same example from  

Figure 1, the reorganizations result in: 
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f
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 + f
4
 ≤ 5

 𝑓1 + 𝑓2 + 𝑓2 + 𝑓4 = 5.

 

 

This strategy of reordering the constraints allows the algorithm to add certain constraints after several 

iterations, which implies that the algorithm will not enter each iteration as Lin's [21] algorithm does. This 

strategy used by Chen [28] will decrease the number of steps required to locate all potential answers F. 
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Chen's approach [16] requires 546 steps, which is a significant decrease from 1296 to 546 steps by 

just reordering the requirements. This number can also be decreased by adding new improvements to the 

algorithm so it will need only 56 steps. 

 

 

3. PROPOSED IMPROVEMENTS 

3.1.  Background 

Chen’s [16] algorithm uses the integer programming problems presented in [28]. Despite that, the 

algorithm of Chen [16] didn’t take advantage of constraint (2), for all the F: f1 begin from 0 to 5, f4 begin from 

0 to 5, f3 begin from 0 to 5, and f2 begin from 0 to 5, which increment the steps needed even with re-ordring 

the constraints. The purpose of the new enhancements is to appropriately apply constraint (2) to reduce the 

number of required steps. Constraint (2) states that the entire flow must match the supplied demand d, meaning 

it cannot exceed d. Consider the following scenario with a demand of 5. 

if f1=3 then  

if f4=2 then 

 f1 + f4 = 5 ≤ 5 is true then  

if f3=2 then 

 f1 + f3 = 5 ≤ 5 and f3 + f4 = 4 ≤ 5 is true then  

if f2=2 then 

 f3 + f2 = 4 ≤ 5 and f4 + f2 = 4 ≤ 5 are true, but f1 + f2 + f3 + f4 = 9 > d is false. 

By this example, we can deduce that the algorithm traversed all of the loops before reaching the 

constraint (2). The issue with this approach is that it enters branches that it is not meant to (i.e., we already 

have the relevant data to decide using constraint (2)). When f1 = 3, the flow f4 should only take values between 

0 and 2, not 5, since if f4 = 4, then f3 + f4 = 7 and 7>d, indicating that the values taken by flow f4 rely on the 

value of flow f3. This example demonstrates that Chen's approach enters branches that cannot provide a solution 

for which we already have definitive knowledge. 

The same applies to f3, if f1 takes 3 and f4 takes 2, f1 should take only 0 as value, because f1 + f4 = d = 

5. The same thing for f2. Consequently, the present flow values are dependent on the values of the prior flows. 

The suggested enhancements determine the current flow maximum capacity that cannot be exceeded by 

maximizing constraint (2), constraint (3), past flows, and demand d. 

Let Lj signify min{M i|ai ∈ pj}. 

Let V ≡ {F|F are preceding flows} 

 

𝑀𝑎𝑥_𝑓𝑖 = 𝑚𝑖𝑛 (𝑑 − (∑𝑓𝑗
𝑗ϵV

) , 𝐿𝑗) (7) 

  

Max- fi is the maximum carrying capacity of the flow fi . 

The final variable after reordering the equations shall only take on a single value that satisfies the requirement 

(2). We use, 

 

∑ f
j 
=d

𝑧

j=1

 (8) 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Evaluating multi-state systems reliability with a new improved method (Yasser Lamalem) 

1573 

Which implies: 

 

𝑓𝑛 = 𝑑 −∑ f
j 

 

j=1

 (9) 

  

The last variable after reordering the equations is fn. 

In (7) and (8) will decrease a significant number of steps, and the algorithm will only enter branches 

that potentially lead to a solution while avoiding time-wasting branches. The constraints derived from (3) will 

be replaced with constraints derived from (7). Consequently, if these alterations are taken into account, the 

resultant equation of constraint (2) will be substituted by the result of constraint (3) on the final variable. 

Consider, for instance, the last loop of algorithm 2: 
FOR (f2 = 0 ; f2 ≤ 5 ; f2 ++) do 

IF f3 + f2 ≤ 5 and f4 + f2 ≤ 5 and f1 + f2 + f3 + f4 = 5 

F = F ∪ {F} 

ENDIF 

ENDFOR 

The following will replace this loop: 
f2 = 5 - f1 + f3 + f4 //using (8). 

IF f2 + f3 ≤ 5 and f2 + f4 ≤ 5 and f2 ≤ 5 

F = F ∪ {F} 

ENDIF 

 

3.2. Illustration 

To clarify the new improvements, we took the example used by Chen and Lin. Taking the 

improvements given previously (section 5), before taking each flow fi, we compute the Max fi that this flow 

cannot exceed to avoid many iterations. The new algorithm relating to Figure 1 is given in algorithm 3. 

After applying the two proposed in (7) and (8) to the network in Figure 1, when f1 = 3, f4 will take 

only the values from 0 to 2 instead of 0 to 5. Another example, when f1 = 3, and f4 = 2, f3 will take only 0 as 

value instead the values from 0 to 5. As a result, the number of steps required to locate the flow vector F in this 

case is 56 instead of 546 of Chen’s [16] and 1296 of Lin’s [21]. 

In (8) and (7) reduce a big number of steps compared to algorithm of Chen’s [16] because before a flow 

fi takes any value, the algorithm makes sure that this value can lead to a feasible solution by using (7). Utilizing 

these enhancements eliminates needless iterations, hence reducing the number of steps required to construct 

the flow vector F. 

 

 
 

 

4. RESULTS AND DISCUSSION 

To test the efficiency between the new proposed improvements Chen’s [16] and Lin [21] algorithms, 

we used networks below taken from [16]. In Figure 2, we present the five grid networks for all three cases. All 

algorithms were programmed in C and executed on an HP computer with an Intel Core i7 processor of the 

second generation and 8 GB of RAM. Table 1 compares the algorithmic stages of Lin's [21], Chen's [16], and 

the suggested enhancements. Table 2 provides the execution times of the three methods in milliseconds. For 

all networks, the capabilities of all arcs equal five, and the demand d=5. By adding in (8) and (7), it is evident 

from Tables 1 and 2 that the new adjustments reduced the number of steps and, therefore, the CPU time 

required by the algorithm to construct the vector flow F. 
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Figure 2. Grid networks example with different nodes 
 

  

Table 1. Comparison result between the 3 algorithms in terms of steps. 

Networks 
Algorithms 

Lin [16] Chen [11] Our method 

Graph a 1296 546 56 

Graph b 279936 9726 462 

Graph c NA 573336 4368 
Graph d NA 121301496 65780 

Graph e NA 693876 11628 

 

 

Table 2. The execution time of the 3 algorithms in ms. 

Networks 
Algorithms 

Lin [16] Chen [11] Our method 

Graph a 0.051 ms 0.009 ms 0.005 ms 

Graph b 1.009 ms 0.11 ms 0.014 ms 
Graph c 8821.56 ms 4.355 ms 0.205 ms 

Graph d NA ms 3573.58 ms 8.128 ms 

Graph e NA ms 15.867 ms ms 

 

 

5. CONCLUSION 

This study provides additional enhancements to Chen's method by taking full use of the constraints 

that locate the flow vector candidates. As a result, the number of steps required to enumerate the flow vector 

F is reduced by at least 60 times. Therefore, the amount of time it takes to execute. Lin's and Chen's algorithms 

were evaluated alongside the newly developed advancements. The findings of the tests indicate that the newly 

implemented improvements improved the effectiveness of discovering all d-MPs in multi-state networks for a 

given level d. 
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