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 Artificial intelligent and application of computer vision are an exciting topic 

in last few years, and its key for many real time applications like video 

summarization, image retrieval and image classifications. One of the most 

trend method in deep learning is a convolutional neural network, used for 

many applications of image processing and computer vision. In this work 

convolutional neural networks CNN model proposed for color image 

classification, the proposed model build using MATLAB tools of deep 

learning. In addition, the suggested model tested on three different datasets, 

with different size. The proposed model achieved highest result of accuracy, 

precision and sensitivity with the largest dataset and it was as following: 

accuracy is 0.9924, precision is 0.9947 and sensitivity is 0.9931, compare 

with other models. 
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1. INTRODUCTION 

Image feature extraction and classification has always been a fundamental research area in computer 

vision [1]. As the advanced and trained neural network has the ability to extract features and characteristics 

of existing images as well as classification of the extracted objects. It is also considered a very important 

scientific and research branch in the field of neural networks. Convolutional neural networks (CNN) have the 

property that the features of each layer are activated by the local area of the preceding layer via a convolution 

kernel that shares weights. Because of this property, CNN are better suited for image object detection and 

expression than other neural network methods [2].  

Motivation and contribution; deep learning (DL) and deep CNN (DCNN) have significantly 

improved performance over state-of-the-art areas. Whereas CNN models can collect higher-level information 

from the post-level convolution layer in addition to extracting detailed texture data from pre-level 

convolution networks. In this field, several researchers have introduced pre-trained DCNN models, such as 

ResNet [3], VGG [4], AlexNet [5], the YOLO model, and GoogleNet [6]. On the other hand, another set of 

enhancements focused on densely training and testing the networks across the entire image and at several 

scales [7]. The proposed model of color images classification based on CNN was suggested. And the model 

divided into two part: first is a preprocessing to enhance the appearance of the image and second part: 

features extraction and classification based on CNN model. 

Paper layout; the rest of this paper is organized as a following, related work and literature survey are 

described in in section 2, section 3 shows the materials and methods are used in this paper. In section 4, the 

proposed model and mathematical formula of the suggested model are represented and discussed, 

https://creativecommons.org/licenses/by-sa/4.0/
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experimental result and discussion discuss and shows in section 5, finally conclusion of the research work 

will be presented in section 6. 

 

 

2. RELATED WORK 

CNN have proven to be effective in object detection and classification [3], the technique of deep 

learning algorithms based on the data input in the form of video or images, add weights and bias to various 

features of the image and then distinguish them by localizing every object in the bounding box from another 

object. Researchers seek in this ambit to take advantage of the spatial information contained within the pixels 

of an image. As a result, they are built on the concept of discrete convolution. There are numerous network 

layers in the CNN paradigm, that work to optimize the model's fault tolerance through several functional 

strategies consist of convolution, pooling, and dropout layer [8]. As it's recognized, convolution and pooling 

are two of these procedures that are required in current CNN models. Zhiqiang and Jun [9] showed the 

drawbacks and disadvantages in the features that are made manually by suggesting models extract them and 

also developing a detection algorithm, but there were also some defects like low resolution and occlusion. 

MobileNet employed separable convolution to lower computing expenses while attempting to strike 

a compromise between accuracy and speed [10]. While deep ResNet, which debuted in 2015 with its residual 

function, enabled deeper network architectures to contain hundreds of layers [8]. Lin et al. [11] used CIA, 

Morph, and CACD2000 database and apply evolutionary-fuzzy-integral-based CNN (EFI-CNNs) for age and 

gender categorization depend on the fuzzy integral theory of the faces. In comparison to previous 

technologies such as GoogLeNet, CNN's AlexNet, and VGG16, this method has improved accuracy.  

As well as in regards of X-rays and their applications in [12]. They evaluated the application of 

CNN comprehensively in classification and detection tasks within the X-ray luggage images. A comparison 

of CNN and classic (bag of visual words) BoVW model based on handcrafted features are employed in 

research using deep CNN with transfer learning to overcome limited object data availability. Additionally, 

they finally train a CNN support classifier for vector machine (SVM). Based on AlexNet characteristics, they 

attain an accuracy of 0.994. as well as the researcher in [13] proposed model based on pretrained CNN and 

compare the accuracy that achieved between them, the model tested on architectural heritage images dataset. 

Research by Zhao et al. [14] deep learning was used to develop a system for fine-grained object 

classification and semantic segmentation. This approach differentiates between subordinate-level groups, 

such as dog breeds and bird species. On the ImageNet dataset, they achieved a 3.57 percent error rate. 

According to Fang [15] the technique to handle image classification difficulties has been proposed. They gain 

a better understanding of deep learning by analyzing misclassified situations of emotions and facial 

recognition in their work.  

Kadhim and Abed [16] proposed model for satellite image classification based on three different 

pre-trained CNN. The suggested work tested on SAT4, SAT6 and UC merced and achieve a good result and 

accuracy 95.8, 94.1 and 98. Out from the above mentioned, most of the above studies focusing on pretrained 

CNN, for image classification, unlike the proposed solution which design CNN suitable for image 

classification mission with less number of layers, to decrease training time and achieve good result. 

 

 

3. MATERIALS AND METHODS  

3.1.  Materials 

The experiment of the proposed work deploys three different datasets: UC merced land, 

architectural heritage elements dataset and animal image dataset (Dog, Cat and Panda):  

a. UC Merced land, this dataset consists of 21 classes land images, each class contain 100 images with 

256×256 dimension, these images were collected from large dataset images from the USGS national 

map urban area imagery collection [17]; 

b. architectural heritage elements dataset, the dataset was published with two versions with 10 classes, the 

complete version contains of 10235 labelled images; 

c. animal image dataset, this dataset consists of three different classes (Dog, Cat and Panda) collected 

from Kaggle. The Figure 1 show samples of dataset that used to test the proposed model. 

 

3.2.  Methods  

Machine learning is a study of giving the computer ability to learning without any human interaction 

based on set of data known as a training dataset to predicate a new data. Machine learning basically classified 

into three major types based on learning method. One of the most famous methods of neural network in deep 

learning is a CNN. CNN is specially designed for image classification and recognition, it contains many 
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layers of NN, for features extraction and preprocessing the data to predicate which class data belong to 

Figure 2 show the basic architecture of CNN. 
 

 

 
 

Figure 1. sample of UC merced dataset 
 

 

 
 

Figure 2. Basic architecture of CNN 
 

 

A CNN contains of three types of layer, these layers constructed by CNN are: 

 Convolutional layer is the layer which responsible of features extractions from input matrix, the earlier 

convolutional layer extracts the low features of images like edge, and line. As well as deeper level of it 

used to extract the deep features of input images or matrix. 

 Pooling layer is a second type of NN layer, used to reduces the input image matrix space using mask size 

2×2 or 3×3. The efficiency of pooling layer to reduce dimension of features help the CNN to speed up the 

computation time. 

 Fully connected layer is used in the last of the CNN architecture to combine all the features together. 

 

 

4. FEATURES EXTRACTION BASED ON CNN  

Image classification based on CNN are proposed and evaluated based on three different datasets. 

 

4.1.  Problem statement  

The growing need many efficiently methods for analysis and understanding the images as one 

application of computer vision in medical system as well as in robotics. One of the most important and 

primary problems in image processing is a classification, in which classification refers to the task of labeling 

an image based on their features. 

 

4.2.  CNN architecture of proposed model 

Suggested CNN architecture contain a multiple convolutional and pooling layers that ended by fully 

connected layer [18], [19]. Each convolutional layer has its own weights across input, in which each input 

data entered for the current layer comes from subset of features from the previous layer [20]. Same concept 

with pooling layer the conduct output of the convolutional layer, it’s to minimize the set of features to avoid 

the complexity cost of features data that moving to the depth [21], [22]. We can see, images feature 

representations and extracted by each layers is consider as a local features, therefore some fully connected 

layers introduced in sequence to find the global features which depend on the output of the previous layers 
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fully-connected layers have a complete connection to all the activities in previous connected as a hierarchical 

structure, that give the CNN ability to extract more discriminative feature representations from the lower 

layer to the higher layer. The Figure 3 formulate the proposed CNN layers. 
 

 

 
 

Figure 3. Proposed CNN architecture 
 

 

Features extracted from convolutional layer, in this suggested model deep color images features can 

be extracted directly from convolutional and fully connected layers. To increase the performance of color 

images classification some of preprocessing phase are applied before CNN features extraction phase. It 

contains color normalization and enhance the appearance of each band spritely [20]. In the convolution layer 

the entire images contain three sub matrix (R, G and B) called color layers [23], [24]. The convolution matrix 

to do the filtering for each channel. The mechanism of convolution is, each area of 3*3, doing filtering for 

each channel 3*3 respectively, then add them together to get final numbers [25]. The proposed CNN 

architecture contains two fully connected layers FC1 and FC2 to extract the images features from enhance 

images dataset then from classifications layer and output make decision of classification result. The 

following algorithm explain the steps of color image classification using proposed architecture of CNN. 

 

Algorithm of color image classification CNN 

Input image matrix 

Output classification result 

Algorithm Steps 

While iteration < = max_number of dataset images do: 

1. Enhance the images appearance using Adaptive histogram equalization 

2. Feature’s extraction and classification 

3. Read image 

While iteration of layer<= 3 do 

a. Read image blocks 

b. Appy convolution layer for all image pixels 

i. Sliding mask features and image match path 

ii. Multiply each input image by mask of features pixel  

Features_I(x,y)= I(x,y)*mask(3,3) 

iii. Average_features= ∑ features_ I(x, y)/  no of 

c. Pooling layer 

i.  Apply [2*2] max pooling on convolution features 

4. Fully connected layers FC1 and FC2 

5. Output classification result 

 

 

5. EXPERIMENTAL RESULT AND ANALYSIS  

We evaluate the performance of the color image classification is used three datasets have been 

mentioned above and tested in the current work. UC merced land, architectural heritage elements dataset and 

animal image dataset, each one has multi classes. These datasets divided into 70% for training and 30 % for 

testing. The proposed model consists of two main phases: first phase focusing on preprocessing the images of 

dataset and color normalization, help the features extraction phase to achieved a good result. The second 

phase is features extraction and classification based on CNN. Table 1 shows the configuration of CNN’s 

architecture. The proposed CNN was built and evaluated using the Matlab R2020 and using deep network 

designer tool for CNN’s architecture Figure 4 shows the training and loss function of the dataset. 
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Table 1. Configuration of proposed CNN 
Layer number Name Activations Properties 

1 Input image 128*128*3 AHE data set 

256*256*3 UC Merced land 
256*256*3 Animal images 

Color images 

Different dimensions 

2 conv1_1 Filter size [3,3] The convolution mask size is 3 *3 

padding [ 0 0 0 0] and stride [1 1] 
3 Relu1 Run length activation function  

4 Pool max1 Pooling size [3,3] The pooling is max value in window2 *2 

padding [0 0 0 0] and stride [2 2] 
5 Conv2_1 Filter size [3,3] The convolution mask size is 3 *3 

padding [ 0 0 0 0] and stride [1 1] 

6 Relu2 Run length activation function - 
7 Pool max2 Pooling size [3,3] The pooling is max value in window2 *2 

padding [0 0 0 0] and stride [2 2] 

8 Conv3_1 Filter size [3,3] The convolution mask size is 3 *3 
padding [ 0 0 0 0] and stride [1 1] 

9 Relu3 Run length activation function - 

10 Pool max3 Pooling size [3,3] The pooling is max value in window2 *2 
padding [0 0 0 0] and stride [2 2] 

11 Fully connected layer FC1 Features layer 

12 Fully connected layer FC2 Features layer 
13 Classification layer  Output layer 

 

 

 
 

Figure 4. Training of proposed CNN 

 

 

6. RESULT  

Three metrics have been calculated to evaluate the performance proposed model, some of analysis 

were used to measure the result based on standard metrics, to evaluate the accuracy performance of the suggest 

model. The measurement that calculated is an accuracy, precision and sensitivity of a method determines how 

correct class are predicted, (1), (2) and (3) shows the accuracy calculation, precision and sensitivity. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (1) 

 

precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

where TP is true postive, TN is true negative, FP is false positive and FN is false negative 

Table 2 shows the summary of performance of color image classification based on CNN as well as it 

is contain value of TP, TN, FP, FN, accuracy, sensitivity and precision for all classes of dataset. The accuracy 

ratio in second dataset was the highest between other datasets, same as the precision and sensitivity ratio. The 

main reasons of this success ratio were because the number of images in training and testing is larger than 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 11, No. 3, June 2022: 1343-1349 

1348 

other dataset, and CNN model in general need large of dataset to work well. Table 3 show the comparison of 

color image classification.  
 

 

Table 2. Summary of color image classification performance 
Dataset TP TN FP FN Accuracy precision sensitivity 

UC Merced land 287 331 4 8 0.9810 0.9863 0.9729 

Architectural heritage elements dataset 6410 3747 44 34 0.9924 0.9947 0.9932 
Animal image 166 154 8 4 0.9639 0.9540 0.9765 

 

 

Table 3. Comparison of color image classification accuracy performance 

Algorithm 
Classification accuracy of 

UC Merced land 
Classification accuracy of architectural 

heritage elements dataset 
Classification accuracy 

of animal image 

Pre-trained GoogleNet 0.97 0.9547 0.95 

Pre-trained ResNet18 0.978 0.9557 0.96 
[13] - 0.93 - 

[16] 0.98 - - 

Proposed model 0.9810 0.9924 0.9639 

 

 

7. DISCUSSION 

As shown in Table 3, the accuracy ratio of three different dataset using pretrained model GoogleNet 

and ResNet18 was between 0.95 to 0.97 using GoogleNet, and 0.9557 to 0.978 using ResNet18 for UC 

Merced land, architectural heritage elements dataset and animal image respectively. In addition, the 

researcher in [13] tested the proposed model only using one dataset architectural heritage elements dataset 

and achieved accuracy result was 0.93. as well as in [16] the methods applied and tested on UC Merced land 

and achieved accuracy result 0.98. all the above-mentioned methods focusing on pretrained model, unlike the 

proposed model used the design tools in Matlab to complete the CNN design of each layers. 

 

 

8. CONCLUSION 

This work presents a CNN model for color images classification. The suggested model of CNN 

consists of 13 layers. And have been tested and evaluated on three public and very well-known datasets: UC 

Merced land, architectural heritage elements dataset and animal image. The CNN make classification using 

deeper features which extracted from entire color images. The performance of the proposed model has been 

tasted based on three metrics accuracy, precision and sensitivity. The proposed model achieved a high 

accuracy 0.9924 of architectural heritage elements dataset, 0.9810 for UC Merced land and 0.9639 of animal 

image. As well as a precision and sensitivity were calculated to evaluate the performance of proposed model. 
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