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ABSTRACT 84 

Purpose: Nutrition is an important, modifiable, environmental factor affecting human 85 

health by modulating epigenetic processes, including DNA methylation (5mC). 86 

Numerous studies investigated the association of nutrition with global and gene-87 

specific DNA methylation and evidences on animal models highlighted a role in DNA 88 

hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of 89 

different layers of nutrition in association with global levels of 5mC and 5hmC is 90 

lacking. We investigated the association between global levels of 5mC and 5hmC 91 

and human nutrition, through the stratification and analysis of dietary patterns into 92 

different nutritional layers: adherence to Mediterranean Diet (MD), main food groups, 93 

macronutrients and micronutrients intake. 94 

Methods: ELISA technique was used to measure global 5mC and 5hmC levels in 95 

1,080 subjects from the Moli-sani cohort.  Food intake during the 12 months before 96 

enrolment was assessed by using the semi-quantitative EPIC food frequency 97 

questionnaire. Complementary approaches involving both classical statistics and 98 

supervised machine learning analyses were used to investigate the associations 99 

between global 5mC and 5hmC levels and adherence to Mediterranean diet, main 100 

food groups, macronutrients and micronutrients intake. 101 

Results: We found that global DNA methylation, but not hydroxymethylation, was 102 

associated with daily intake of zinc and vitamin B3. Random Forests algorithms 103 

predicting 5mC and 5hmC through intakes of food groups, macronutrients and 104 

micronutrients revealed a significant contribution of zinc, while vitamin B3 was 105 

reported among the most influential features. 106 
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Conclusion: We found that nutrition may affect global DNA methylation, suggesting 107 

a contribution of micronutrients previously implicated as cofactors in methylation 108 

pathways. 109 

Keywords: global DNA methylation, Mediterranean diet, micronutrients, food 110 

groups, zinc, vitamin B3. 111 

 112 

INTRODUCTION 113 

Since the characterization of DNA methylation abnormalities in several human 114 

diseases, including cancer [1] and cardiovascular disease (CVD) [2,3],  identifying 115 

environmental factors which may epigenetically affect the genome has become of 116 

utterly importance. In this regard, nutrigenomics has helped to identify the role of 117 

nutrients in influencing gene regulation [4,5] through DNA methylation in several 118 

phases of life, [6] including childhood [7,8] and elderly [9].  119 

Diet (high-fat, high-sugar) or food components (amino acids, bioactive compounds) 120 

can affect genome function and DNA methylation-dependent gene expression by 121 

influencing the folate-mediated one-carbon metabolism or the trans-methylation 122 

pathways [6]. Both polyphenols and vitamins (i.e. folate [10]), which are particularly 123 

present in healthy dietary patterns such as the Mediterranean Diet (MD) [11], are 124 

known to specifically act as epigenetic modulators by targeting the DNA methylation 125 

and DNA methyl-transferases pathway [12].  126 

Thanks to the continuous development of different and more specific analytical 127 

technologies, both 5-methylcytosine (5mC) and 5‑hydroxymethylcytosine (5hmC), 128 

resulting from 5mC oxidation via Ten-Eleven Translocation (TET) proteins 129 
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dependent demethylation [13], can be studied from a single locus scale to the 130 

genome-wide and global level [14], quantifying the average status of these 131 

modifications across the whole genome [15]. 132 

Global DNA methylation, an overall and accepted marker of environmental cues on 133 

the genome [16] has been evaluated by measuring 5mC and 5hmC via liquid 134 

chromatography coupled with tandem mass spectrometry (LC-MS/MS) or enzyme-135 

linked immunosorbent assay (ELISA) [14], or, more frequently, via the 136 

characterization of the 5mC status at the Long Interspersed Element-1 (LINE-1) or 137 

the Short Interspersed Element (SINE)[15].  138 

A number of population-based studies investigated the link between LINE-1 139 

methylation and micro [17] and macronutrients intake, as well as food groups [18], 140 

up to specific dietary patterns [19]. Unlike 5mC, 5hmC has been less studied in the 141 

context of nutrition, although it is now accepted as the sixth DNA base in mammalian 142 

genomic DNA [20]. Indeed, it has been found widely distributed in many human 143 

tissues, especially in the brain [21]. Interestingly, a role for 5hmC in neuronal 144 

development has been recently demonstrated and genes that have acquired 5hmC 145 

during aging were associated with age-related neurodegenerative disorders [22]. A 146 

recent study showed that a high fat diet-induced metabolic disorder stimulates neural 147 

5hmC remodelling in mice, with effects on mitochondrial dysfunction and neural 148 

impairment [23]. In the same line, Ciccarone et al. reported that the 5hmC levels are 149 

dynamically regulated in mice heart by a chronic high dietary fat intake, revealing a 150 

role of DNA hydroxymethylation in obesity‑related heart pathophysiology [24]. 151 

Despite this experimental evidence, a more comprehensive population-based study 152 

analysing the relationship between the different layers of nutrition and global DNA 153 

methylation - considering both 5mC and 5hmC - is lacking. The assessment of global 154 
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5mC and 5hmC levels in nutritional studies could be important to identify potentially 155 

different global DNA methylation patterns in response to the intake of different 156 

nutrients. This could allow understanding the effect of individual food components or 157 

specific dietary patterns on human health and disease.  158 

Here, we performed a fine-grained investigation of the relation between the global 159 

levels of 5mC and 5hmC and nutrition, through stratification and analysis of diet into 160 

three different nutritional layers: adherence to MD and intake of the main food 161 

groups, macronutrients and micronutrients, in a sub-cohort of the Italian Moli-sani 162 

study [25]. 163 

 164 

SUBJECTS AND METHODS 165 

Study population 166 

The study population was composed of subjects participating in the Moli-sani study 167 

(N=24,325; 49.20% men; ≥ 35 years) who were randomly recruited from the general 168 

population of Molise Region, between 2005 and 2010. The study design and 169 

procedures have been previously described [25,26]. For this study, we used data 170 

from a randomly selected sub-cohort of 1,160 subjects. Subjects with dietary 171 

questionnaires judged as unreliable by the interviewers or with missing values in the 172 

studied variables were excluded from the analysis. 173 

The Moli-sani study complies with the Declaration of Helsinki and was approved by 174 

the Ethical Committee of the Catholic University in Rome, Italy. All participants 175 

provided written informed consent. 176 

 177 
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Dietary assessment  178 

Food intake during the 12 months before enrolment was assessed by using the 179 

semi-quantitative EPIC food frequency questionnaire (FFQ) validated and adapted to 180 

the Italian population [27,28], for a total of 188-food items that were classified into 74 181 

predefined food groups on the basis of similar nutrient characteristics or culinary 182 

usage. The EPIC questionnaire also allowed to compute the daily energy (Kcal/day) 183 

and alcohol intake (g/day) for the subjects assessed. 184 

The Nutrition Analysis of FFQ (NAF) [29] was used to convert dietary data into 185 

frequencies of consumption and average daily quantities of food (g/day), 186 

macronutrients (g/day), micronutrients (mg/day or μg/day) and energy intake 187 

(kcal/day). NAF was linked to the Italian food composition tables 188 

(http://www.inran.it/646/tabelle_di_composizione_degli_alimenti.html). 189 

Adherence to the traditional Mediterranean diet (MD) was determined through the 190 

Mediterranean Diet Score (MDS) developed by Trichopoulou et al. [30]. The MDS 191 

was obtained by assigning 1 point to healthy foods (fruits and nuts, vegetables, 192 

legumes, fish, cereals, monounsaturated (MUFA) to saturated fatty acid ratio (SFA)) 193 

whose consumption was above the sex-specific medians of intake of the Moli-sani 194 

study population, free from CVD, cancer and diabetes and then applied to the whole 195 

population; foods presumed to be detrimental (meat and dairy products) were scored 196 

positively if their consumption was below the median. All other intakes received 0 197 

points. For ethanol, men who consumed 10–50 g/d and women who consumed 5–25 198 

g/d received 1 point; otherwise, the score was 0. The MDS ranged from 0 to 9 (the 199 

latter reflecting maximal adherence). 200 

 201 

DNA extraction and epigenetic measures 202 
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Buffy coat DNA was extracted through a silica matrix-based method, as described in 203 

[31]. Of the 1,160 DNA samples from the subjects selected from the Moli-sani cohort, 204 

1,140 had good quality to perform the methylation analysis (see below).  205 

Global levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were 206 

measured using the MethylFlash Global DNA Methylation (5mC) ELISA Easy Kit 207 

(colorimetric) and the MethylFlash Hydroxymethylated DNA 5-hmC Quantification Kit 208 

(colorimetric) (EpiGentek), according to the manufacturer’s instructions. Quality 209 

control and statistical analyses of methylation measurements were carried out in R 210 

(The R Project, 2020; https://www.r-project.org/) [32].  211 

Overall, 1,214 samples (including 1,140 original and 74 duplicate samples) were 212 

assessed for 5mC and 5hmC levels. Samples with absorbance Optical Density (OD) 213 

values below the mean of negative controls plus 2 Standard Deviations (SDs) for 214 

both 5mC and 5hmC were considered of bad quality and set to missing. Based on 215 

this criterion, we did not detect any bad quality sample for 5mC (OD > 0.089), while 7 216 

samples were set to missing for 5hmC (OD > 0.099). After these filters, 1,140 and 217 

1,135 unique samples were retained for 5mC and for 5hmC, respectively, which 218 

were standardized within plates. Additionally, outlier samples (i.e. with absolute 219 

values of standardized methylation levels above 3 Standard Deviations, 17 for 5mC 220 

and 2 for 5hmC) were removed from analyses, as well as 56 and 58 samples 221 

(respectively) corresponding to prevalent CVD cases in the extracted subcohort to 222 

avoid potential biases by reverse causality of CVD on methylation levels [33]. After 223 

QC, 1,067 samples with 5mC measures and 1,075 samples with 5hmC measures 224 

were left for the following analyses. Both measures showed distributions 225 

approaching normality (Fig. S1a, b). 226 

 227 

https://www.r-project.org/
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Statistical Analyses 228 

First, we analysed the association between adherence to Mediterranean diet [30] 229 

and standardized global methylation levels, adjusting for sex, age, energy intake 230 

(Kcal/day), educational level (none or primary/lower secondary/upper 231 

secondary/post-secondary school completed), white blood cell (granulocyte, 232 

monocyte and lymphocytes) fractions and for additional variables showing univariate 233 

trends of association with both exposure and outcome (P<0.2), which included 234 

smoking habits (subjects were assigned to three categories: smokers, ex-smokers, 235 

i.e. subjects who quitted at least one year before the interview, and non-smokers), 236 

leisure time physical activity (assessed through a structured questionnaire and 237 

expressed as daily energy expenditure in metabolic equivalent task-hours [MET-238 

h/day] [34]), abdominal obesity based on waist-to-hip ratio, dyslipidaemia, cancer 239 

and, diabetes(waist circumference [cm] was measured in the middle between the 240 

12th rib and the iliac crest, while hip circumference [cm] was measured around the 241 

buttocks. Waist-to-hip ratio [WHR] was calculated, and the resulting measure of 242 

abdominal obesity was inferred as a dichotomous variable [Yes/No], defining as 243 

obese men with WHR ≥ 0.90 and women with WHR ≥ 0.85 [World Health 244 

Organization, 2011]. Prevalent diabetes, and dyslipidaemia were defined as 245 

dichotomous variables [Yes/No], based on the reported and verified use of specific 246 

drugs for their treatment, while prevalent CVD and cancer classification was based 247 

merely on self-report of medical history of the disease, possibly supported by 248 

medical documentation or by the use of specific drugs.  249 

Then, we performed multivariable linear regressions to model 5mC and 5hmC as a 250 

function of daily intake of nutritional variables at three different layers. First, we 251 

tested association with the intake of eight food groups, namely vegetables, fruits, 252 
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cereals, fish, legumes, dairy products, meat (g/day), and the ratio between 253 

monounsaturated and saturated fats (MUFA-SFA ratio). Then we tested association 254 

with three main classes of macronutrients, including total proteins, lipids and 255 

available carbohydrates (g/day). Finally, we modelled the relation with the daily 256 

intake of seventeen different micronutrients, including Iron, Calcium, Sodium, 257 

Potassium, Phosphorus, Zinc, vitamin B1, B2, B3, B6, C and E (expressed in 258 

mg/day), as well as with the intake of vitamin B9, A1, D, Beta-carotene and Selenium 259 

(μg/day) (Fig. 1). All multivariable models were further adjusted for alcohol drinking 260 

habits (classifying subjects in current-/former-/occasional-/never drinkers- and 261 

treating missing values as an additional dummy class). These models were 262 

performed through lm() function in R, inputting all the nutritional variables of a given 263 

nutritional layer together. To avoid potential bias implied by multicollinearity, we 264 

carried out multivariable stepwise regressions through the stepAIC() function of the 265 

MASS package in R [35], with (default) “both” option. This kept within each model 266 

only those nutritional variables significantly contributing to an increase in the total 267 

variance explained by the model - in spite of the addition of a parameter to the 268 

regression – allowing to “clean” the models for potential collinearity bias introduced 269 

by the other nutritional variables.  270 

To reduce the risk of detecting false positives – which is high in the presence of a 271 

large number of statistical tests [36] and to identify only robust associations between 272 

the multiple nutritional intakes tested and epigenetic modifications, we applied a 273 

correction for testing of multiple nutritional variables in the different layers, using a 274 

matrix spectral decomposition of their correlation matrices (Resumed in Fig. S2) in 275 

MatSpD (http://gump.qimr.edu.au/general/daleN/matSpD/) [37]. This did not detect 276 

any reduction in the number of latent variables to correct for at the food group level, 277 
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while two and seven main latent variables could be extracted from the 278 

macronutrients and micronutrients analysed, respectively. As for the methylation 279 

measures, we conservatively adjusted for two independent measures tested, in view 280 

of their moderate correlation (Pearson’s r = 0.51). Therefore, a Bonferroni corrected 281 

statistical significance was set to α = 0.05/(8*2) = 3.1x10-3 for the analysis of food 282 

groups, α = 0.05/(2*2) = 0.012 for macronutrients and α = 0.05/(7*2) = 3.6x10-3 for 283 

micronutrients. Since the three nutritional levels analysed are intertwined and the 284 

nutritional variables within each level cannot be considered fully independent, we did 285 

not correct significance thresholds for the number of nutritional levels or the total 286 

number of nutritional variables tested. 287 

In linear models revealing significant associations (i.e. 5-mC vs micronutrients 288 

intake), we tested potential interactive effects of nutritional intakes, testing those 289 

micronutrients which showed the most significant and consistent associations both in 290 

classical statistical (linear regression) and in machine learning models (see below). 291 

Specifically, this hypothesis was tested for vitamin B3, first in a two-way interaction 292 

with zinc, and then in a three-way interaction with zinc and phosphorous. 293 

 294 

Machine learning analyses 295 

We aimed at identifying the most influential nutritional intakes in the prediction of 296 

5mC and 5hmC within a non-linear setting, taking into account potential synergistic 297 

effects and more complex relationships. For this purpose, we built two random forest 298 

(RF) algorithms to predict the level of 5mC and 5hmC, respectively, based on food 299 

groups, macronutrient and micronutrient intakes tested above. RF algorithms 300 

represent supervised machine learning approaches based on the construction of 301 
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multiple decision trees to estimate a label as accurately as possible and are ideal in 302 

the presence of a high number of predictors (also known as features) [38]. 303 

Nutritional intakes underwent min-max normalization before analysis. The resulting 304 

dataset (N=1,067 and 1,075 for 5mC and 5hmC, respectively) was divided in a 305 

random training and a test set with a 70:30 ratio.Then we performed hyperparameter 306 

tuning through the train() function of the caret package (https://CRAN.R-307 

project.org/package=caret), in a five-fold cross validation setting, to optimize the 308 

accuracy (R-squared) of the algorithm over two varying parameters: the number of 309 

variables randomly sampled as candidate predictors at each node split in the 310 

decision tree (mtry, varying between 1 and 15), and the number of trees to grow in 311 

the random forest (ntree alternative values: 100, 200, 300, 400, 500, 600, 700, 800, 312 

900, 1000). Finally, we trained the optimized models within the training set (mtry=2, 313 

ntree=1000 for 5mC and mtry=7, ntree=300 for 5hmC), and built them through the 314 

randomForest() function of the homonymous package in R [39]. 315 

Then we used the optimized trained models to predict the labels (5mC and 5hmC) in 316 

the independent test sets, and performed a variable importance analysis within each 317 

model, through the importance() function. This reveals the importance of each intake 318 

variable i) based on permutation feature importance (PFI) analysis, shuffling 319 

measures of one nutrient intake at a time and then comparing the loss function 320 

(Mean Squared Error between actual and predicted label, or MSE) of the perturbed 321 

RF model with that of the full model (i.e. with no permuted feature). To make this 322 

analysis more inferential, we applied the PIMP() and PimpTest() functions of the vita 323 

package [40] to have a significance test for each feature importance. Only those 324 

nutritional intakes showing highest increase in MSE in permuted models and a 325 

significant importance P-value were considered as statistically influential on the 326 

https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
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prediction of the methylation measures. For this analysis, the significance threshold 327 

was corrected for seventeen total latent intakes and two independent methylation 328 

measures tested, based on computations reported above (α = 0.05/((8+7+2)*2) = 329 

1.5×10-3). 330 

 331 

RESULTS 332 

The characteristics of the analysed sub-cohort (N=1,080 with at least an epigenetic 333 

measure available) are summarized in Table 1. Compared to the Moli-sani study, 334 

sex ratio was similar (48% men), but the analysed sub-cohort was slightly younger 335 

(mean (SD) age 54.9 (11.5) year vs 55.8 (12.0) years, p < .0001), due to the removal 336 

of prevalent CVD cases. Similarly, in the analyzed sub-cohort there was a lower 337 

prevalence of diabetes (p = 0.02) and hyperlipidaemia, as well as a higher calory 338 

intake and a slightly higher MDS (p < 0.0001). Overall, there was no systematic 339 

difference between the analysed sub-cohort and the whole Moli-sani population, 340 

except those due to removal of CVD cases. Raw univariate associations of 5mC and 341 

5hmC with prevalent chronic health conditions are reported in Table S1. 342 

We present below association p-values after Bonferroni correction, obtained by 343 

multiplying raw association p-values for the number of methylation measures (two) 344 

and of latent variables tested at each nutritional level (eight for food groups, two for 345 

macronutrients and seven for micronutrients), where applicable. Raw association p-346 

values (before Bonferroni correction) are reported in the tables (see below). We 347 

observed an inverse although not significant association between the adherence to 348 

MD and global methylation levels (5mC) (standardized β (Standard Error) = -0.049 349 

(0.028), p = 0.16). Multivariable association analyses modelling 5mC as a function of 350 
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the daily intake of eight different food groups did not reveal any statistically 351 

significant association surviving Bonferroni correction for multiple testing (Table 2a) 352 

as did the analysis of macronutrients (Table 2b). However, a negative association 353 

between global methylation and cereals intake approached statistical significance (β 354 

(SE) = -0.0011 (0.0004), p = 0.06).  In the analysis of micronutrients we detected a 355 

positive, statistically significant association of methylation levels with daily intake of 356 

zinc (β (SE) = 0.072 (0.024), p = 0.04). Additional nominally significant associations 357 

were observed with the intake of vitamin B3 (-0.042 (0.016)) and phosphorus (-358 

0.0005 (0.0002)), as well as vitamin D, sodium and vitamin B6 (see Table 2c).  359 

However, these did not survive correction for multiple testing (α = 3.6x10-3), which 360 

did not allow us to rule out a potential type I error (false positive) bias. Interaction 361 

analyses of the most associated micronutrient intakes revealed no significant 362 

associations of zinc*vitamin B3 (two-way) and of zinc*vitamin B3*phosphorus (three-363 

way) interaction terms with 5mC (p = 0.49 and 0.77, respectively). 364 

As for global hydroxymethylation (5hmC), no food group or macronutrient was 365 

retained in stepwise regression models. However, in the stepwise regression of 366 

micronutrients intake two variables were retained, namely sodium and iron, which, 367 

however, did not show any significant association with 5hmC levels (β (SE) = -9.0 368 

(5.8)×10-5, p = 0.84 and β (SE) = 0.033 (0.018), p = 0.49, respectively; see Table 3). 369 

When we analysed non-linear relationships through independent RF algorithms for 370 

5mC and 5hmC prediction, feature importance analysis revealed prominent intakes 371 

in the prediction of methylation measures. Vitamin B3 (niacin), phosphorus and 372 

vitamin B1 were the most important nutritional intakes in the prediction of 5mC, 373 

showing a >16% increase in the average loss function of the permuted algorithms 374 

compared to the original random forest (Fig. 2a). However, only vitamin B3 reached 375 
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statistical significance surviving correction for multiple testing (p < 10-16). On the 376 

other hand, total lipids intake was the most important variable in the prediction of 377 

5hmC, but was associated only with a  ̴ 11% increase in the average MSE of 378 

perturbed models (Fig. 2b), and did not reach statistical significance (p > 0.05).  Still, 379 

the original RF models deployed explained a relatively low fraction of variance both 380 

for 5mC and 5hmC (R2 of actual vs predicted measure in linear regression ≤ 1 %).  381 

 382 

DISCUSSION 383 

Our study shows that global DNA methylation but not hydroxymethylation, measured 384 

in a general population sub-cohort of Italian adults, is associated with specific 385 

micronutrient intakes, through complementary approaches involving both classical 386 

statistics and supervised machine learning analyses.  387 

Multivariable stepwise regressions revealed a significant positive association of 5mC 388 

levels with the daily intake of zinc. Zinc is involved in a wide range of key biological 389 

processes such as neurological function, reproduction, development [41,42], antiviral 390 

[43] immunity and inflammation [44-46]. Moreover, it plays a role in inflammation-391 

related physiological processes - like aging [47] - and health conditions like 392 

neurodegenerative disorders [48,49], diabetes [50], cardiovascular disease [51] and 393 

cancer [52]. It has been suggested that the role of zinc in human pathology is 394 

thought to be mainly dependent on its function as epigenetic regulator [53]. Indeed, 395 

zinc has been identified as a regulatory component of the function of over 3,000 396 

among transcription factors and enzymes [54,55] including the DNA 397 

methyltransferases [56], responsible for the transfer of methyl groups to the DNA 398 

strands [57]. A CXXC domain and a plant homeodomain region have been described 399 
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to be part of DNMT1 and DNMT3 protein structure, respectively [58,59]. These 400 

regions depend upon zinc binding to make the DNMTs catalytically active [58,59]. 401 

Furthermore, zinc was found to be involved in methionine synthase and betaine 402 

homocysteine methyltransferase [60,61], important in the regulation of DNA 403 

methylation.  Our data represent a step forward in the understanding of the effect of 404 

zinc intake on DNA methylation and support the importance of nutritional 405 

interventions as complementary disease treatment or as prevention strategy [62-65].  406 

To better dissect the link between the global methylation and hydroxymethylation 407 

levels and the intake of nutrients, we also analysed non-linear relationships using 408 

supervised machine learning algorithms. Despite these models explained a small 409 

fraction of variance in 5mC and 5hmC, these revealed an important contribution of 410 

vitamin B3 intake to the prediction of 5mC levels. Vitamin B3 actually covers two 411 

different compounds, namely nicotinic acid (pyridine-3-carboxylic acid) and 412 

nicotinamide (nicotinic acid amide). Nicotinamide is biosynthetically converted to 413 

nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide 414 

phosphate (NADP+) and their respective reduced forms (NAD(P)H). These cofactors 415 

are central in cellular homeostasis and growth for their roles in many important 416 

biological functions and redox reactions [66]. It is known that in humans the excess 417 

of nicotinamide is degraded mainly through S-adenosylmethionine-dependent 418 

methylation, catalysed by nicotinamide N-methyltransferase [67]. Therefore, the 419 

excess of intake of nicotinamide may increase the consumption of methyl-group 420 

resources and affect other S-adenosylmethionine-dependent methylation reactions 421 

by competing for the limited methyl-group pool, possibly including DNA methylation 422 

[68]. Accordingly, it has been observed that nicotinamide supplementation induces 423 

epigenetic changes in developing rats [69] and its maternal supplementation causes 424 
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global DNA hypomethylation and gene expression changes in foetal rats [70]. 425 

Although this functional evidence provides further support to our observational 426 

finding, a more in-depth investigation on the role of niacin intake in regulating human 427 

DNA methylation and its possible effect on gene expression is needed, in light of its 428 

commonly used utilization to fortify foods like bread [71]. 429 

In spite of the partial discordance between the results of the multivariable 430 

regressions and of the random forest models, zinc was listed among the most 431 

predictive features also in machine learning analyses, while vitamin B3 was the 432 

second most associated micronutrient in linear 5mC prediction. Of note, this partial 433 

discrepancy may be well explained by the different settings and relationships 434 

modelled among the different nutritional intakes and 5mC, namely linear and 435 

analysing single nutritional levels in multivariable regressions vs. more complex and 436 

analysing all levels together in random forest approaches. Conversely, we observed 437 

no significant associations with global hydroxymethylation levels, neither in a linear 438 

nor in a non-linear setting. Since this represents the first attempt to test 5hmC for 439 

association with nutritional intakes in humans, we have no terms of comparison and 440 

further studies are needed to corroborate or confute this lack of evidence. 441 

Our analysis revealed no significant association between the adherence to MD and 442 

global DNA methylation patterns, neither with 5mC nor with 5hmC. Adherence to 443 

healthy dietary patterns has been previously associated with LINE-1 methylation 444 

levels [18,19]. In particular, a cross-sectional study of 349 non-pregnant healthy 445 

women from Southern Italy, reported that the adherence to a dietary pattern 446 

characterized by a high intake of vegetables and fruits, was positively associated 447 

with LINE-1 methylation [19]. In the same study, the authors observed a significant 448 

positive correlation of LINE-1 methylation with “healthy” foods —such as wholemeal 449 
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bread, cereals, fish, fruit, raw and cooked vegetables, legumes, and soup— and a 450 

negative correlation with the intake of vegetable oil [19]. In another study analysing 451 

LINE-1 methylation measured in peripheral blood leukocytes from 161 healthy 452 

subjects [18], Zhang and colleagues showed that a “prudent” dietary pattern is 453 

associated with a lower prevalence of DNA hypomethylation. Furthermore, they 454 

observed that subjects with lower LINE-1 methylation consumed more saturated fats 455 

than those with higher levels [18]. Our data, in combination with some recent studies 456 

[72,73], might indicate that adherence to MD is rather affecting gene specific or 457 

repeated element DNA methylation than global DNA methylation as we measured. 458 

Although our study represents one of the largest and most comprehensive 459 

association analyses between human nutrition and global DNA methylation and 460 

hydroxymethylation patterns, it presents some limitations. First, the cross-sectional 461 

design does not allow inferring the causality links between nutritional intakes and 462 

methylation patterns. Second, we cannot exclude that by measuring global 463 

methylation via a different technique we would identify different relationships to the 464 

ones described in this study. Third, since we used only a global measure of DNA 465 

methylation/hydroxymethylation rather than focusing on specific genes, it is difficult 466 

to understand the functional meaning of these associations. However, this is to be 467 

intended only as a preliminary analysis of methylation patterns and their potential 468 

environmental influences in the Moli-sani cohort and longitudinal studies in larger 469 

sub-cohorts, focusing on specific genes, are underway. Still, the complementary 470 

approaches used here suggests that nutrition, in particular micronutrients intakes, 471 

may affect the global methylation status of DNA in humans. Functional studies are 472 

now warranted to better understand the role of both individual nutrients and of their 473 
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combination in specific dietary patterns, to better define their effect on DNA 474 

methylation and on related health conditions. 475 
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Table 1. Baseline characteristics. Characteristics of the subcohort sample with at 

least one methylation measure available (N=1,080) compared to the whole Moli-sani 

cohort (N=24,325) 

  Subcohort   Whole Moli-sani cohort  

Variable N Mean SD   N Mean SD 

Age (years) 1,080 54.91 11.52   24,325 55.79 11.96 

MDS 1,080 4.73 1.6   24,221 4.35 1.64 

Physical activity 
(meth/d) 

1,080 
3.6 4.03 

  24,325 
3.48 

4.02 

BMI (kg/m2) 1,079 28.04 4.54   24,308 28.06 4.78 

Energy intake (Kcal/d) 1,080 2210.19 682.57   24,225 2079.01 667.66 

Abdominal Obesity 
(WHR) 

1,079 
0.92 0.07 

  24,297 
0.92 

0.08 

Monocytes (%) 1,037 5.93 2.04   23,544 7.09 2.12 

Granulocytes (%) 1,037 60.69 7.68   23,542 60.25 7.82 

Lymphocytes (%) 1,037 33.33 7.39   23,545 32.63 7.34 

                

Categorical variables N n %   N n % 

Males (n. %) 1,080 518 47.96   24,325 11.702 48.11 

Education               

Primary 1,080 223 20.65   24,286 6.268 25.81 

Lower secondary 1,080 285 26.39   24,286 6.742 27.76 

Upper secondary 1,080 405 37.5   24,286 8.259 34.01 

Post-secondary 1,080 167 15.46   24,286 3.017 12.42 

Health conditions               

CVD  1,068 0 0   24,023 1.427 5.94 

Cancer  1,076 35 3.25   24,198 788 3.26 

Diabetes  1,065 38 3.57   24,017 1.214 5.05 

Hyperlipidaemia  1,061 45 4.24   24,092 1.911 7.93 
Drinking status 
(drinkers)       

        

Ever 1,080 151 13.98   24,325 6.156 25.31 

Current 1,080 774 71.67   24,325 14.650 60.23 

Former 1,080 96 8.89   24,325 1.032 4.24 

Occasional 1,080 57 5.28   24,325 1.515 6.23 

Missing 1,080 2 0.19   24,325 972 4 

Smoker status (smokers)               

Ever 1,078 527 48.89   24,296 12.050 49.6 

Current 1,078 263 24.4   24,296 5.582 22.97 

Former 1,078 288 26.72   24,296 6.664 27.43 

 

Abbreviations: MDS: Mediterranean Diet Score 
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Table 2. Results of the stepwise multivariable association models of global 5mC vs 

daily intake of a) eight food groups, b) three macronutrients and c) seventeen 

micronutrients. 

a) 

Food Group Unit Beta SE T-stat Raw  
P-value 

Bonferroni 
P-value 

Cereals g/day -0.001 0.0004 -2.91 3.7×10-3 0.06 

Dairy products g/day -0.0004 0.0003 -1.53 0.13 1 

MUFA-SFA ratio NA -0.16 0.11 -1.52 0.13 1 

Vegetables g/day - - - - - 

Fruits and nuts g/day - - - - - 

Fish g/day - - - - - 

Legumes g/day - - - - - 

Meat g/day - - - - - 

 

b) 

Macronutrient Unit Beta SE T-stat Raw  
P-value 

Bonferroni 
P-value 

Total Lipids g/day 0.004 0.002 1.80 0.07 0.28 

Available Carbohydrates g/day - - - - - 

Total Proteins g/day - - - - - 

 

c) 

Micronutrient Unit Beta SE T-stat Raw  
P-value 

Bonferroni  
P-value 

Zinc mg/day 0.07 0.02 2.96 3.1×10-3 0.04 

Vitamin B3 mg/day -0.04 0.02 -2.55 0.01 0.14 

Phosphorus mg/day -0.0005 0.0002 -2.40 0.02 0.28 

Vitamin D mg/day 0.08 0.04 2.09 0.04 0.56 

Sodium mg/day -0.0001 0.00006 -2.00 0.05 0.70 

Vitamin B6 mg/day 0.28 0.12 1.97 0.05 0.70 

Iron mg/day - - - - - 

Calcium mg/day - - - - - 

Potassium mg/day - - - - - 

Vitamin B1 mg/day - - - - - 

Vitamin B2 mg/day - - - - - 

Vitamin C mg/day - - - - - 

Vitamin B9 μg/day - - - - - 
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Vitamin A1 μg/day - - - - - 

Beta-carotene μg/day - - - - - 

Vitamin E mg/day - - - - - 

Selenium μg/day - - - - - 

 

Beta coefficients and their SE are reported as increase of global methylation 

(standardized % of CpG sites) per unitary increase of daily intake of each nutritional 

variable. Beta coefficient and the corresponding T-statistics and P-value are reported 

only for the nutritional variables that were retained in the stepwise regression. 

Variables for which no statistics is reported are those automatically excluded from 

predictors in the model since they do not represent a gain in the trade-off between 

goodness of fit and parsimony of the model. In other words, these variables did not 

significantly contribute to an increase in the total variance of 5mC, and were 

therefore not retained and tested in the final regression model. Statistically significant 

associations for each nutritional layer (surviving Bonferroni correction, i.e. Bonferroni 

p-value < 0.05) are highlighted in bold. Abbreviations: MUFA-SFA ratio, 

monounsaturated to saturated fat ratio; SE, standard error; T-stat = T statistics. 
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Table 3. Results of the stepwise multivariable association models of global 5-hmC vs 

daily intake of seventeen micronutrients.  

 

Micronutrient Unit Beta 
SE T-stat Raw  

P-value 
Bonferroni 

P-value 

Zinc mg/day - - - - - 

Vitamin B3 mg/day - - - - - 

Phosphorus mg/day - - - - - 

Vitamin D mg/day - - - - - 

Sodium mg/day -0.00009 0.00006 -1.55 0.12 1 

Vitamin B6 mg/day - - - - - 

Iron mg/day -0.03 0.02 -1.81 0.07 0.98 

Calcium mg/day - - - - - 

Potassium mg/day - - - - - 

Vitamin B1 mg/day - - - - - 

Vitamin B2 mg/day - - - - - 

Vitamin C mg/day - - - - - 

Vitamin B9 μg/day - - - - - 

Vitamin A1 μg/day - - - - - 

Beta-carotene μg/day - - - - - 

Vitamin E mg/day - - - - - 

Selenium μg/day - - - - - 

 

 

Beta coefficients and their SE are reported as increase of global methylation 

(standardized % of CpG sites) per unitary increase of daily intake of each nutritional 

variable. Beta coefficient and the corresponding T-statistics and P-value are reported 

only for the nutritional variables that were retained in the stepwise regression. 

Variables for which no statistics is reported are those automatically excluded from 

predictors in the model since they do not represent a gain in the trade-off between 

goodness of fit and parsimony of the model. In other words, these variables did not 

significantly contribute to an increase in the total variance of 5hmC, and were 

therefore not retained and tested in the final regression model. Statistically significant 

associations for each nutritional layer (surviving Bonferroni correction, i.e. Bonferroni 
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p-value < 0.05) are highlighted in bold. Abbreviations: SE, standard error; T-stat = T 

statistics. 
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Fig. 1 Different nutritional scores and intakes analysed for association with global 

DNA methylation and hydroxymethylation levels in the present study.  

The different nutritional strata tested for association with 5mC and 5hmC in the 

present study are illustrated. From top to bottom: adherence to Mediterranean Diet 

(courtesy of Oldways, www.oldwayspt.org), intake of main food groups, 

macronutrients and micronutrients. Abbreviations: 5hmC, 5-hydroxymethylcytosine; 

5mC, 5-methylcytosine 
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Fig. 2 Permutation Feature importance analysis of a) 5mC and b) 5hmC predictions 

through Random Forest algorithms. Loss drop after perturbations (defined as the 

average percentage increase in the Mean Squared Error  of the permuted vs the 

baseline models) are reported for the ten most influential nutritional intakes within 

each analysis. Abbreviations: av. carbohydrates, available carbohydrates; MUFA-

SFA ratio, monounsaturated to saturated fat ratio. 

 


