
This is the post-print version of the following review: Magi Meconi, G; Sasselli, I; Bianco, V; 

Onuchic, J; Coluzza, I., Key aspects of the past 30 Years of protein design, Rep. Prog. Phys. 2022. 

 

 The final publication is available at IOP Science through DOI: 10.1088/1361-6633/ac78ef 

 

This review may be used for non-commercial purposes in accordance with IOP Publishing Terms 
and Conditions for Self-Archiving. 
This manuscript version is made available under the CC-BY-NC-ND. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://doi.org/10.1088/1361-6633/ac78ef
http://doi.org/10.1088/1361-6633/ac78ef


Reports on Progress in Physics

ACCEPTED MANUSCRIPT

Key aspects of the past 30 Years of protein design
To cite this article before publication: Giulia Magi Meconi et al 2022 Rep. Prog. Phys. in press https://doi.org/10.1088/1361-6633/ac78ef

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2022 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 165.124.164.104 on 17/06/2022 at 07:02

https://doi.org/10.1088/1361-6633/ac78ef
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6633/ac78ef


IOP Publishing Journal Title
Journal XX (XXXX) XXXXXX https://doi.org/XXXX/XXXX

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd

Key aspects of the past 30 Years of protein design

Giulia Magi Meconi1, Ivan R. Sasselli1 , Valentino Bianco2, Jose Onuchic3 
and Ivan Coluzza4,5

1 Computational Biophysics Lab. Center for Cooperative Research in Biomaterials (CIC biomaGUNE), 
Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San 
Sebastián, Spain.

2  Onena Medicines, San Sebastian, Spain
3 Center for Theoretical Biological Physics, Department of Physics & Astronomy, Department of  

Chemistry, Department of Biosciences, Rice University, Houston, Texas 77251, United States
4  BCMaterials, Basque Center for Materials, Applications and Nanostructures, Bld. Martina Casiano, 

UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain 
5  Basque Foundation for Science, IKERBASQUE, 48009, Bilbao, Spain

E-mail: icoluzza@cicbiomagune.es

Received xxxxxx
Accepted for publication xxxxxx
Published xxxxxx

Abstract

Proteins are the workhorse of life. They are the building infrastructure of living systems; they are the 
most efficient molecular machines known, and their enzymatic activity is still unmatched in versatility by 
any artificial system. Perhaps proteins’ most remarkable feature is their modularity. The large amount of 
information required to specify each protein’s function is analogically encoded with an alphabet of just 
~20 letters. The protein folding problem is how to encode all such information in a sequence of 20 letters. 
In this review, we go through the last 30 years of research to summarize the state of the art and highlight 
some applications related to fundamental problems of protein evolution.

Keywords: Protein Design, Heteropolymers, Coarse-graining, Protein Folding, Evolution.

1. Introduction

Proteins are one of the most versatile modular 
assembling systems in nature. A remarkable feature 
of proteins is their alphabet of just ~20 letters[1–4]. 
The use of such a limited set has the advantage that 
new target structures can be designed (e.g., through 
evolution) by just changing the orders of the 
elements along the chain. Moreover, by degrading 
chains that do not fulfil their purpose, waste in the 

form of isolated residues can be efficiently recycled 
for new chains. Incidentally, this is why living 
organisms can eat each other and use their building 
blocks for themselves. Encoding the protein 
function and structure in the sequence is known as 
protein design.

Protein design is a scientific problem that has 
been one of the most interdisciplinary research 
fields of the past 30 years. Unfortunately, protein 
design remains one of the major challenges across 
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biology, physics, and chemistry disciplines. The 
implications of solving such a problem are 
enormous and branch into material science, drug 
design, evolution and even cryptography. For 
instance, in drug design, an effective computational 
method to design protein-based ligands for 
biological targets, such as viruses bacterial or 
tumour cells, could significantly boost the 
development of new therapies with reduced side 
effects. In material science, self-assembly is a 
highly desired property, and, soon, artificial 
proteins could represent a new class of designable 
self-assembling materials. The scope of this review 
is to describe the state of the art in computational 
protein design methods and give the reader the 
information necessary to outline what to expect 
from this field in the near future.

The design of proteins belongs to the so-called 
"inverse folding problems" (IFPs). IFPs consist in 
the search for amino acid sequences whose lowest 
free energy state (i.e., the native structure) coincides 
with a given target conformation. Protein design 
theory has roots in the statistical models of 
heteropolymers freezing transition [5–10]. 
Currently, there are several computational 
methodologies that, in some cases, give remarkable 
successful results in solving the IFPs. The advent of 
computational protein evolution (another name for 
protein design) [6,11–25] opens the possibility to 
address fundamental questions about the nature of 
the amino acid alphabet [26–29]. Protein design 
searches for protein sequences capable of folding 
into a given backbone conformation. The search is 
usually done by point mutations while keeping the 
backbone structure fixed. In addition to several 
applications to medicine [13,15,30–32] and material 
science [33–36], protein design offers the possibility 
to explore fundamental problems of protein 
evolution.

2. State of the art in protein design: Rosetta 

There are many protein design software available 
[37–44]. Among the freely usable for academic 
use, the Rosetta package is one of the most 
recognised and has shown the largest variety of 
successful applications. Finally, Rosetta offers 
both design and structure prediction that allows 
testing the consistency of the prediction within the 
same package. That is why in this review, we will 
focus on Rosetta.
Rosetta is a biomolecular modelling software 
package originally developed for protein structure 
prediction and protein folding [37–41]. However, 
over the last two decades, the modelling suite 
extended its applications to different tasks such as 
protein-protein docking [45,46], protein-ligand 
docking [47–55], protein design, loop modelling 
[15,56–59] and the incorporation of nuclear 
magnetic resonance (NMR) spectroscopy data 
[60–67]. Additionally, several protocols have been 
developed for the interpretation of a wide range of 
chemical and biological macromolecular systems. 
This group includes the modelling of interactions 
with peptides [58,68–77] and nucleic acids [78–
86], the antibody modelling [80,87–94] and design 
[32,95–98], the modelling of membrane proteins 
[99–102], carbohydrates [103,104] and 
metalloproteins [49].
The computational protein design consists of 
searching for amino acid sequences that adopt 
predefined folded structures and functions. The 
design methods have two fundamental components: 
a sampling algorithm to explore the extensive amino 
acid sequence and conformational space accessible 
to the protein [95] and a score energy function to 
rank the solutions [105].
Rosetta Design's exploration of the vast space of 
possible sequences is guided by using the Monte 
Carlo simulated annealing algorithm. The heuristic 
method finds the solution space randomly: every 
residue mutation to another one is done at a random 
position. The sampled solutions are 
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accepted/rejected using the Metropolis criterion: the 
solution is accepted if its energy decreases with 
respect to the original conformation; whenever the 
energy increases, the new conformation has a small 
probability to be accepted (P = e^( - (Enew - Eorig

) [106,107].)/T))
The all-atom Rosetta energy function [108] is the 
potential employed for the energy estimation of the 
design solutions and it was originally created for the 
protein design [107,109]. 
∆Etotal = EvdW + Ehbond + Eelec +

( 1)𝐸disulf + Esolv + EBBtorsion + Erotamer + Eref

The potential is a weighted linear combination of 
physics-based and statistical energy terms: (a)  EvdW

a 6-12 Lennard -Jones potential for van der Waals 
forces that favours the close-packed residues; (b) 

 an explicit orientation-dependence hydrogen-Ehbond

bonding potential; (c)  an electrostatic potential Eelec

between charged residues that includes an additional 
term representing the probability of observing two 
amino acids close to each other in the protein 
structure; (d)  disulfide bond energy; (e)  Edisulf Esolv

a solvation approximation that favours the 
hydrophobic amino acids to pack in the interior of 
the proteins and the polar amino acids to point 
outward; (f)  backbone torsional angle EBBtorsion

potential; (g)  sidechain rotamer energy; (h) Erotamer

 unfolded-state reference energy. A Eref

comprehensive overview of the full-atomistic score 
function is contained in the article of Alford et al. 
[108], where are all the mathematical and physical 
energy-function details are documented. This 
potential is essential because all energy terms are 
pairwise decomposable. Instead of estimating all the 
interactions among the atoms, the total number of 

energy contributions is restricted to  1
2N(N - 1),

where N is the number of atoms in the systems. In 
that way, the approximation considers only the 
pairwise terms involving the targeted residue, 
subjected to a mutation or a conformational change 

during the protein design. Thus, it allows a fast-
computational implementation of the energy 
contributions, which is fundamental for the rapid 
performance of the Metropolis Monte Carlo (MCM) 
sampling simulations used by Rosetta during the 
protein design. 
The search of the enormous conformational 
sequence space guided by the MCM algorithm is 
typically restricted by reducing the degrees of 
freedom during the design simulations. 
As a first approximation, the flag “fixbb” is a 
Rosetta fixed backbone design application 
[49,107,109] in which the backbone is maintained 
fixed. At the same time, side-chain identities and 
conformations are allowed to vary during the 
sequence design [11,110]. The number of residues 
side-chain conformations is discretised through the 
Dunbrack rotamer library [111–113]. The rotamer is 
a side chain conformation described by its values of 
internal dihedral angles. The rotamers libraries 
gather, for each residue, a discrete number of values 
for these torsional angles. These collected rotamers 
are usually the most frequent and the most 
energetically favourable. The torsional angle side 
chains can be backbone independent, f and y 
backbone angles dependent, or secondary structure-
dependent (the rotamer frequencies change 
considering a-helix or b-sheet motifs). The fixed 
backbone design is helpful for computational 
efficiency but is not adequate to sample the 
sequence space because it does not sample the 
backbone conformational space. Therefore, it limits 
the chance to optimize the functional interactions. 
Hence, the mutation is highly constrained and 
cannot guarantee that the new sequence will fold 
into the desired backbone conformation. 
The backbone flexibility is a crucial feature for the 
characterization of natural proteins and the 
backbone adjustment to accommodate sidechain 
mutations occurring during the design [114,115]. 
Rosetta software used several strategies to deal with 
the backbone flexibility.
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(I) The first strategy consists of generating large 
backbone conformations using short backbone 
fragments taken from previously solved protein. 
The fragment-based approach has been used for de 
novo protein design (design without a template 
structure) and de novo backbone folds or function 
design. SEWING [116] protocol generates de novo 
backbones by assembling large sub-structures of 
protein (typical helical building blocks). During the 
backbone design, the method allows the user to 
incorporate particular features, such as ligand 
binding sites for the ligand-binding protein design 
and functional motifs like protein-binding peptides 
for protein interface design [117]. 
RosettaRemodel [118] is a versatile approach for 
protein design, in which the new protein structure is 
built by sticking together protein fragments or small 
segments of native protein structures. The 
secondary structure of the desired protein is 
specified in a blueprint file. The executable consists 
of 3 main steps: backbone remodel, sequence design 
and a final minimization step. RosettaRemodel has 
been employed as a tool to solve different design 
problems, such as de novo backbone modelling, 
sequence design in a fixed backbone, loop 
modelling, disulfide design, motif grafting and 
motif deletion and remodelling of proteins. Huang 
et al. used the RosettaRemodel application to design 
a four-fold repeat and symmetrical TIM-barrel 
protein. The capability to design the TIM-barrel 
catalyst is of great interest because the fold of this 
protein is one of the most common enzyme 
topologies and has opened new possibilities for the 
de novo design of functional enzymes [119]. 
Parmeggiani et al. [31] developed a computational 
method for repeat protein design, taking sequence 
and structural information from the repeat protein 
families. On that paper, sets of sequences were 
designed for six protein families with different 
secondary structures: tetratricopeptide repeat 
(TPR), ankyrin (ank), armadillo (arm), HEAT, 
WD40 and leucine-rich repeats (LRR). [120,121] A 

similar design protocol was used later for de novo 
design of repeat proteins with open[122] and closed 
[123] structural architectures. 
(II) A second strategy involves a flexible design 
approach based on the iteration between a fixed 
backbone sequence optimization via Monte Carlo 
search and flexible backbone minimization to adjust 
the designed sequences. [109,124]
FastDesign is a Rosetta design protocol that 
integrates the sequence design in the FastRelax 
method for the backbone minimization [125–128]. 
The algorithm proceeds in two main steps. In the 
first step (fixed-backbone sequence design), the 
backbone is kept fixed, but the side chains' mutation 
and the rotameric conformations' optimisation are 
allowed. In the second step (fixed-sequence 
backbone minimization), a gradient-based 
minimization of torsional degrees of freedom is 
applied to relax the entire structure while the 
sequence is maintained fixed. The main principle of 
the FastDesign protocol is the iteration of these two 
steps. A single FastDesign cycle consists of distinct 
rounds (default is 4) of design and repacking of the 
side chains follow by backbone and side-chain 
minimization. At each round, the repulsive part of 
the van der Walls energy contribution is 
progressively scaled from 2% to 100% of its total 
value to avoid clashes due to the amino acid 
mutations. The protocol runs different cycles 
(usually 5), and the best scoring pose, among all the 
cycles performed, is selected representing the output 
structure. The Fast Design method found many 
applications for the design of new protein functions 
[14,129,130].
(III) BackrubEnsemble [131–135] is a method of 
flexible backbone design that leads to a structural 
ensemble of the main chain by rotating backbone 
segments through the application of the Backrub 
algorithm[136]. The protocol works in two steps. 
The first step generates random backbone 
ensembles after applying the Backrub motion. This 
algorithm rotates as a rigid body, a backbone protein 
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segment around the axis defined by the segment's 
starting and ending Ca atoms. The moves are 
accepted or rejected using a Metropolis criterion. 
The second step carries out a fixed-backbone 
sequence design. The sampling of the side chains 
conformational space depends on the probability 
distributions described by the Dunbrack rotamer 
library, and the Metropolis criterion selects the 
proposed solutions.
The Backrub Ensemble was shown to reproduce 
better the experimental observed sequence 
conformational fluctuations [134,137,138] and 
sequence variations in protein-protein 
[132,133,135] interface compared with the fixed-
backbone sequence design applications. The 
algorithm also found its application for the design of 
protein with recognition functionality [139]. 
(IV) CoupleMoves [140] is a Rosetta application 
that “couples” in a single Monte Carlo step, 
backbone and sidechains movements. In this way, 
the backbone can react at once to the conformational 
and identity changes of the side chains, enabling 
sampling of backbone and amino acid sequences 
movements, which may be previously rejected for 
the noncouple FastDesign and BackrubEnsemble 
methods due to sidechain clashes. 
Mutations of side chains to shorter lengths are more 
favourable, as they reduce the likelihood of 
collisions between side chains. However, this can 
cause the backbone to collapse to accommodate the 
amino acid replacement. To minimise the possibility 
that mutations occur with smaller side chains, the 
CoupleMoves application uses a different strategy 
for the sampling of side chains: at each side chain 
move, all the possible rotamers are considered, and 
the mutation and torsional angle with the highest 
probability is selected, according to the Boltzmann-
weighted Rosetta score. The CoupleMoves method 
has also been used for designing small ligand 
binding sites, combining ligand translation and 
rotations with the switching of ligand conformers. 
The original CoupleMoves uses the Backrub 

algorithm to sample the backbone move, but 
recently the kinematic closure (KIC) algorithm 
[141] has been introduced to perform the backbone 
moves. 

The ability to design sequences is not only limited 
to the creation of a protein with a specific function 
and increased thermodynamic stability but also 
aim to greater ambition. For example the multi-
specificity design[142], generates protein 
sequences with low energy affinity to multiple 
binding partners. 
RECON [12] is a Rosetta multi-specificity design 
method that designs proteins with the ability to bind 
with multiple different partners. The algorithm 
allows each protein-energy state to explore their 
local sequence and conformational space to reach its 
energetic minimum. Then, sequence constraints are 
iteratively applied such that the corresponding 
positions in the different states converge to the same 
amino acid. RECON can be helpful for the antibody 
design to recognise a new variant of the virus [143]. 

Interestingly, Rosetta design algorithms produce a 
solution space that is quite distinct from one of the 
natural protein sequences [144]. Of course, 
considering the astronomical size of the protein 
solution space, it is likely that computer-generated 
sequences will have a low chance of finding a 
natural solution. However, it has to be noted that 
typically Rosetta tends to diverge from natural 
sequences imposed as initial conditions to the 
design simulation [144]. 
Hence, it might be possible that there is space for 
the development of design algorithms capable of 
exploring sequences closer to the natural ones.

3. What makes protein designable

The protein design success strengthens the 
interest in a fundamental question about proteins:” 
What makes a protein designable?”. In other words, 
what is so exceptional about the proteins compared 
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to the other members of the large class of 
heteropolymers.

3.1. Fundamental aspect of design

In this section, we summarize the essential 
aspects that connect the folding of a generalized 
protein with the design of its sequence. To this end, 
we will follow the derivation and analysis of the 
pioneers in the field [7,145–148].

Although the derivation is valid only in a mean-
field approximation, the final result will give a clear 
and simple physical explanation of what it means to 
design a protein. The Random Energy Model 
(REM) [145] is a powerful theory that inspired the 
mean-field description of the freezing transition of 

heteropolymers [7,146]. The equivalence between 
REM and random heteropolymers (RHP) , 
hypothesized by Bryngelson and Wolynes [7], was 
proven valid in the mean-field limit and for an 
alphabet size larger than the number of residues by 
Shakhnovich and Gutin [147].  An RHP protein is 
represented as a collection of beads connected by a 
backbone, interacting with others. Each bead is a 
residue, and the residue-residue interaction depends 

on the amino acids' particular identity. Hence, a 
REM protein is defined by a conformation, the 
specific arrangement of the backbone, and a 
sequence that is the ordered list of amino acids 
along the backbone. Since we are in a mean-field 
approximation, we can assume we can thread any 
possible sequence on each conformation. This 
hypothesis might appear as an oversimplification 
because of the excluded volume of the amino acid 
side chains. However, if small backbone 
fluctuations are allowed, the number of possible 
threads (or capacity) of know protein structures are 
astronomical [149]. 

In other words, the probability P(EA,EB) of 
observing a protein in conformation A with energy 
EA and a second one with energy EB is simply the 
product of the probabilities P(EA,EB)= P(EA) P(EB). 

In REM, the total free energy of a random ℱ(𝑇) 
heteropolymer is:

( 2ℱ(𝑇) = ⟨ℱ𝑠𝑒𝑞(𝑇)⟩ = ―𝑇⟨lnℱ𝑠𝑒𝑞(𝑇)⟩      )

where ( ) is the free energy (partition ℱ𝑠𝑒𝑞 𝑍𝑠𝑒𝑞

function) for a possible random sequence and  is 𝑇
the temperature. The averages  are done over all ⟨…⟩
possible sequences. The free energy per monomer 
is defined as:

     ( 3)𝐹(𝑇)/𝑁 = { ℒ[𝐸 ―
𝜎2

𝐵

2T] ― 𝑇𝜔 if 𝑇 > 𝑇𝑔

ℒ[𝐸 ―
𝜎2

𝐵

2𝑇𝑔] ― 𝑇𝑔𝜔 if 𝑇 ≤ 𝑇𝑔

Where  and  are the average and variance of 𝐸 𝜎2
𝐵

the interaction matrix, respectively,  is the ℒ
valence of each residue, and 𝜔 is the 
conformational entropy per monomer defined such 
that is the number of states. The meaning ℳ = 𝑒𝜔𝑁

of 𝜔 is crucial to answering the initial question 
about the designability of the proteins. Still, its 
definition is not practical because it depends on 
the arbitrary definition of the number of states 
or “compact” states as in the original REM. We 

Frozen

Unfolded

F
ol

de
d

Figure 1: Phase diagram of the freezing transition in globular 
heteropolymers with a designed sequence at rescaled temperature 
TDesign/Tg versus the rescaled temperature  T/Tg at which folding is 
performed. We can identify three phases: 1) Frozen phase in the 
region T/ Tg<1 and TDesign / Tg>1, in which the folding dynamics is 
glassy. 2) Unfolded phase for T/ Tg>phase line and  TDesign / Tg>1 
where the design and folding explore random sequences and 
conformations respectively. 3) Folded phase for TDesign / Tg< phase 
liens where the design can successfully optimize sequences for a 
target structure that is then dynamically accessible. For T/ Tg<1 the 
kinetics is slow.
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propose that a more viable parameter is the 
folding resolution. Section 3.3 will demonstrate 
this argument using models beyond the lattice 
protein approximation. But in the meantime, we 
keep deriving the theory of heteropolymer 
freezing.

In REM there is the temperature  below 𝑇𝑔 =
𝜎Bℒ

1
2

(2𝜔)1 2

which the distribution of states become discrete and 
the entropy per monomer vanishes:

( 4 )𝑆(𝑇) = ―
𝑑𝐹(𝑇)

𝑑𝑇 |
𝑇 = 𝑇𝑔

= 𝜔 ― ℒ
𝜎2

𝐵

T𝑔
2 = 0.   

The temperature Tg is called glass temperature 
because below it the system is trapped in one of the 
conformations that belong to the discrete region of 
the density of states. Above the glass temperature 
Tg, the random-energy heteropolymer explores 
many states practically independent of the 
particular sequence of amino acids. However, as the 
temperature is lowered, the equilibrium is 
dominated by a few discrete states of low energy 
highly dependent on the specific sequence. The 
transition at  is called the freezing transition 𝑇 = 𝑇𝑔

[147,150].
Initially, it was suggested that the random-energy 

model might provide a valuable model for protein 
folding, as it yields a unique ground state with a 
probability independent of the system size. 
However, the energy differences between 
structurally distinct states in the discrete region of 
the energy spectrum are only of the order of , 𝑁
which does not allow for a robust equilibrium state. 
The question is then if it is possible to design 
particular sequences that freeze into a stable ground 
state. 

For such an approach to work, the energy of the 
target state must be well separated from the 
boundaries of the continuous distribution of states, 
where the glassy states accumulate (at typical 

distances of order ). Using mean-field 𝑁
arguments similar to the ones used above, we can 
derive an expression for the average energy of the 
designed state Ed as a function of the temperature of 
the canonical ensemble of sequences Td. We start by 
choosing a target conformation Cd as our tentative 
native state. This conformation is characterized by 
the energy  that depends on the 𝐸𝑑 = ℋ(𝑆𝑑,𝐶𝑑)
sequence . The partition function obtained by 𝑆𝑑

summing over all possible sequences is denoted by 
W, and it defines a free energy FW per monomer 
through: 

( 5 

𝐹𝑊

𝑁 ≡ ― 𝑇𝑑ln𝑊(𝑇𝑑) = ― 𝑇𝑑ln [⟨exp [ ―ℋ(𝑆𝑑,𝐶𝑑)]
𝑇𝑑 ⟩]

≃ ⟨ℋ⟩ ―
1

2𝑇𝑑[⟨ℋ2⟩ ― ⟨ℋ⟩2]

= ℒ[𝐸 ―
𝜎2

𝐵

2𝑇𝑑].

)
Where Td represents the design temperature. In 

terms of  we can write an approximate expression 𝐹𝑊

for the average energy of the designed sequence 

, which does not depend on the 
〈𝐸𝑑〉

𝑁 = ―
∂ln𝑊

∂(1
𝑇) ∣

𝑇→𝑇𝑑

target conformation, but instead shows that the 
energy per monomer is linear in the inverse design 
temperature

( 6 )
〈𝐸𝑑〉

𝑁 = ℒ[𝐸 ―
𝜎2

𝐵

𝑇𝑑]                        

For a target conformation Cd to be the global 
energy minimum, it must be the equilibrium 
configuration at a temperature . In the 𝑇𝑓 > 𝑇𝑔

protein folding funnel picture [7], this condition 
also means that the folding follows a downhill 
dynamic.  Eq. (6) translate into the equality 𝐹(𝑇𝑓)

 or = 〈𝐸𝑑〉

           ( 7ℒ[𝐸 ―
𝜎2

𝐵

2T𝑓] ― 𝑇𝑓𝜔 = ℒ[𝐸 ―
𝜎2

𝐵

𝑇𝑑]  )

that rewritten in terms of Tg
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           ( 8 )ℒ[𝐸 ―
𝜎2

𝐵

2T𝑓(1 +
𝑇2

𝑓

𝑇2
𝑔
)] = ℒ[𝐸 ―

𝜎2
𝐵

𝑇𝑑]
Which leads to a simple expression

                        ( 9 )
1

𝑇2
𝑓

+
1

𝑇2
𝑔

=
2

𝑇𝑓𝑇𝑑

which depends on the variance , but is 𝜎𝐵

independent of the mean value of the interaction. 

                 ( 10 )                   
𝑇2

𝑔

𝑇2
𝑓

+ 1 =
2𝑇2

𝑔

𝑇𝑓𝑇𝑑

Using such relation is possible to construct a phase 
diagram that describes the general link between 
design and folding in heteropolymers (see Figure 
1). The phase diagram entirely depends on the glass 
temperature . The larger  the more prominent 𝑇𝑔 𝑇𝑔

will be the Folded region or more effortless it will 
be to find solutions to the design problems. 

For example, maximising the alphabet size q would 
undoubtedly do the trick as it reduces frustration. 
The limit of  guarantees the lowest possible 𝑞→∞
frustration. 
An analogous phase diagram to the one plotted in  
Figure 1 can be done following the pioneering paper 
of Bryngelson and Wolynes [7]. In Figure 1 of Ref. 
[7] the freezing phase diagram is plotted as a 
function of the distribution width of the non-native 
states , a measure of the frustration versus the gap 

ΔL
T

between the native energies  and the average non-𝐿
native ones    . For large gaps, the 𝐿 (𝐿 ― 𝐿)/𝑇
proteins fold, indicating again that the solutions to 
the design problems should be located by 
minimizing the energy of the native state, reducing 
the frustration to the minimum. A particular 
solution is to create a set of interactions so that the 
native state is by construction the lowest energy 
state. Such models are generally referred to as Gō-
Models [3,7,151–173]. According to the “minimum 
frustration principle” introduced by Wolynes and 
Onuchic [7], evolution optimized natural 
sequences, and Gō-proteins share a folding energy 

landscape with a single global minimum and 
folding proceeds as a downhill process. Hence, in a 
Gō-protein, the glass transition is suppressed by 
construction.

In nature and for most practical applications, it 
is difficult to reach high values of q, so an 
alternative approach to increase designability is to 
control the configuration entropy 𝜔. 

3.2. Designability and Configurational Entropy 𝜔 

A formidable prediction of REM is identifying the 
condition for which a solution to the design 
problem exists [146,148,174].
We can start by taking the entropy in sequence 
space for a given target conformation C of the 
design process to define such requirements. 
From the 

         ( 11 )SC =
∂ ― 𝑇𝑑ln ∑

seqexp [H(seq,C)/Td]
∂𝑇𝑑

where the sum is performed over all possible 
sequences that might be generated with the 𝑁𝑠𝑒𝑞

NC residues of the conformation C and an 
alphabet of q amino acid types.  and q are 𝑁𝑠𝑒𝑞

connected via the effective number of amino acid 
types  used during the design: 𝑞𝑒𝑓𝑓

 ( 12 )𝑁𝑠𝑒𝑞 = 𝑞𝑁𝐶
𝑒𝑓𝑓; ln 𝑞𝑒𝑓𝑓 = ― ∑𝑞

𝑖 = 1𝑝𝑖ln 𝑝𝑖 ≤  ln 𝑞
where pi is the fraction of each residue used. qeff 
has its maximum in q when the composition is 
perfectly heterogeneous (pi = 1/q). 
Hence,

    ( 13 )𝑆𝐶 = ln 𝑁𝑠𝑒𝑞 ―
ℒ𝜎2

𝐵

2𝑇2
𝑑

= ln 𝑞𝑒𝑓𝑓 ― 𝜔
𝑇2

𝑔

𝑇2
𝑑

which in terms of the number of solutions to the 
design problem Nsol 

( 14 )𝑁𝑠𝑜𝑙(𝑇𝑑) = 𝑞𝑒𝑓𝑓 𝑒
―𝜔

𝑇2
𝑔

𝑇2
𝑑 = 𝑒

ln 𝑞𝑒𝑓𝑓 ― 𝜔
𝑇2

𝑔

𝑇2
𝑑     

Designed sequences are obtained when Td / Tg≦1, 
hence for the design to have a chance of success 

, which requires the condition 𝑁𝑠𝑜𝑙(𝑇𝑔) ≥ 1
 or the simple and powerful prediction ln 𝑞𝑒𝑓𝑓 > 𝜔

of REM  introduced by Finkelstein et al. q > eω

[174] in 1993.
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The prediction defines the intuitive condition 
that the alphabet used must be larger than the 
encoding space of the structure.

In the original formulation of REM, 𝜔 was defined 
as  and  is the number of accessible, 𝜔 =

ln ℳ
𝑁 ℳ

compact conformations per monomer [146,175]. It 
is important to stress that the compact polymer 
conformations are less than the total possible ones, 
hence 𝜔 < s where s is the entropy of the backbone. 
An operative definition of compact for off-lattice 
polymers is not given in the REM, making it 
difficult to establish a general methodology to 
estimate 𝜔 and, in turn, the designability of a 
heteropolymer.

3.3. Role of folding resolution and directionality of 
the interactions

Ultimately, a successful design should produce a 
protein that folds into the original target structure. 
The folding success is usually measured as the 
structural difference between the target and the 
refolded structures. That difference is the refolding 
resolution of the model. The resolution has a 
profound meaning on the understanding of protein 
design. The reason is the connection between 
resolution and space of compact structures 𝜔. 

𝜔 represents the space of all possible target 
structures, which is an arbitrary definition 

depending on how conformations are classified. 

A solution is to consider the desired folding 
resolution. Such resolution is defined through the 
characteristic length a that defines minimum 
separation to distinguish two atoms in two 
backbone conformations. Recently Cardelli et al. 
[176] reformulate the definition of 𝜔 as the number 
of accessible configurations partitioned by a, 
effectively introducing the resolution back into the 
protein folding theory. 

The higher the desired resolution, the larger the 
conformational space 𝜔, involving a more extensive 
alphabet q to design successfully. That is why the 
entire description of protein design must depend on 
the definition of the resolution a used. In the 
original formulation of the theory, such parameter 
was not essential because the reference model 
systems were proteins on the lattice with a discrete 
conformational space. 

To prove the necessity of the resolution a, Cardelli 
et al. introduced a designable heteropolymer model 
of which 𝜔 is computed as a function of a.

Cardelli’s new approach allows testing the 
predictions of the REM that a system is designable 
whenever . Moreover, the procedure allows q = eω

assessing the importance of directional interactions 
to the alphabet size. The latter is done by 
introducing patches on the surface of the beads, 
reminiscent of the protein backbone hydrogen 
bonds

To compute 𝜔, the authors connected the entropy 
of a protein chain to a system for which the 
entropy can be computed analytically. 
First, we need to compute the absolute entropy of a 
self-avoiding polymer where 𝑠𝑠𝑎𝑤 = ln (𝑁𝑠𝑎𝑤) 

 is the number of conformations of a self-𝑁𝑠𝑎𝑤

avoiding chain. 
To correctly compute , it is necessary to 𝑠𝑠𝑎𝑤

Figure 2: Scheme of the contributions to total conformation entropy 
 of a self-avoiding trimer including considering a 𝑠𝑠𝑎𝑤∣𝑁 = 3

resolution  .There are then 43 backbone configurations (A) 𝑎 =
𝜎
2

and 48 rotational degrees of freedom of each bead (B).
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know the number of conformations of a reference 
state. 

The chosen reference state is a trimer of self-
avoiding bonded beads, whose conformations can 
be enumerated analytically as a function of 
resolution a.
Introducing the resolution , with  the hard-𝑎 =

𝜎
2 𝜎

core bead radius, the number of conformations 𝑠𝑠𝑎𝑤

 can be computed analytically.∣𝑁 = 3 = 12.9
Starting from the trimer as the reference system, 

the total entropy for a self-avoiding polymer of 
length  is calculated with a potent particle 𝑁 = 50
insertion method [177,178] that computes the 
variation in the partition function upon the particle 
addition. 

( 15 )
𝑠𝑠𝑎𝑤∣𝑁 = 50 = 𝑠𝑠𝑎𝑤∣𝑁 = 3 ― [𝑠𝑠𝑖𝑚𝑢𝑙

𝑠𝑎𝑤 ∣𝑁 = 3 + 3ln (12(𝜎
𝑎)2)] +

+ 𝑠𝑠𝑖𝑚𝑢𝑙
𝑠𝑎𝑤 ∣𝑁 = 50 + 50ln(12(𝜎

𝑎)2) =  368
  

Where the authors have considered the rotational 
degrees of freedom of the particles. Using the 
expression in Eq.15, it is possible to compute the 
entropy variation for different values of a 
confirming that the number of configurations, and 
hence 𝜔 increase with the resolution.

In fact, for  (which in protein would 𝑎 =
𝜎

10

correspond to 0.4 Å resolution [179]) 𝑠𝑠𝑎𝑤∣𝑁 = 50

, while for , , = 377 𝑎 = 1.5𝜎 𝑠𝑠𝑎𝑤∣𝑁 = 50 = 359

corresponding to a 2% increase (see Figure 3).
The study offered three major conclusions. First, 

the relation between alphabet and designability 
works only once a target resolution is defined. 
Secondly, directional interactions are imperative for 
any practical application of polymer design as few 
patches quickly reduce the minimum alphabet size 
from q=1500 to just q=7 (see Figure 4). This is a 
massive reduction with profound implications on 
the evolution of life that ultimately depends on the 
possibility of optimizing and storing structures 
using a code of 20 letters. The third key result 
predicts that any polymer with 2 to 8 directional 
interactions should be designable with tiny 
alphabets of 3,4 letters (see Figure 4). It is again 
confirming the importance of directional 
interactions. Proteins are a particular case of the 2-
patches scenario, and we confirmed the prediction 
of the phase diagram in Figure 4 in a recent 
publication [180]. The study of the origin of the 20-
amino acid alphabet is a fascinating problem that 
has been extensively studied in the past 30 years. 
We will discuss it in section 5. 

4. Coarse graining 

The introduction of the REM theory for protein 
folding and design paved the way for a new protein 
coarse-graining approach.

As for any computational molecular model, the 
system is fully characterized by the Hamiltonian 

Figure 4: The line represents the alphabet size  at which the 𝑞 = 𝑒𝜔

transition between not designable and designable occurs. 
Accordingly, two areas are defined: yellow area (not designable) and 
blue area (designable). The circles are the designable cases, i.e. 
where the polymer designed with the indicated alphabet has been 
tested to fold into the target structure, while the crosses the ones 
where it does not (not designable) [179]. For 2 directional 
interactions, like in proteins, the minimum alphabet size for design is 
predicted to 4 letters, a prediction that has been verified 
computationally [180].

Figure 3: Dependence of the chain entropy  as a function of the 𝑠𝑠𝑎𝑤

chain length N. Different curves depend on different resolutions .𝑎
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that describes the interaction between the different 
atoms. A coarse-grained model is no different in 
this respect, but effective interactions between 
groups of atoms replace the atomic interactions. A 
carefully constructed coarse-grained model retains 
the full description of the phenomena under study at 
a fraction of the computational cost. We will present 
coarse-grained models that have proven to be 
designable or have the potential to be, although they 
have not been tested. Hence, our primary 
requirement for a coarse-grained model to be a 
viable protein representation is that it satisfies the 
REM requirements.

4.1. Lattice proteins

The success of the REM in describing the relation 
between folding and freezing has been proved by 
many studies performed using lattice models of 
proteins[1,5,159,181–187]. In this section, we focus 
on applying lattice models to understand the 
fundamental properties of protein folding. 
However, it is essential to mention that lattice 
models have been extended to accurately describe 
protein folding structure prediction [188–193]. 
They are simple enough to allow for extensive 
screening of protein sequences and structures 
aiming at the fundamental mechanism of proteins 
function. An exhaustive overview of the 
applications of lattice proteins is beyond the scope 
of this review. 

However, we think it is instructive to list exciting 
examples. It is important to note that such simple 
models often cannot provide a quantitative 
description but instead offer the possibility to test 
the hypothesis against large protein populations. In 
particular, the possibility of quickly performing 
protein design allows studying complex problems 
related to protein evolution [5,194–197], protein 
aggregation [198–202], and even intricate protein 
knotting [187,203,204].

Protein-Protein interaction is a fascinating 
application of lattice proteins. Lattice proteins 
models represent a powerful tool to reach problems 
at large time and size scales. They allow for 
efficient design of molecule-substrate binding 
specificity [1,4,184]. 

One of the critical properties of biological 
molecules is that they can bind strongly to specific 
substrates yet interact only weakly with the many 
other molecules they encounter in the cellular 
environment. 

After the synthesis at the ribosome, polypeptide 
chains are exposed to a highly crowded cellular 
environment. Despite many non-specific 
interactions, the chain can select a subset of amino 
acid contacts that funnel the free energy landscape 
toward a unique native/folded state. For instance, it 
was observed that proteins designed to interact 
strongly with each other are unlikely to bind non-
specifically to other substrates[184,205]. This result 
has also been verified off-lattice by Nerattini et al. 
[206]. Therefore, the conflict between specific 
interactions and weak non-specific interaction 
among small numbers of biomolecules need not be 
a severe design constraint.

However, protein aggregation and denaturation 
are mostly unavoidable when proteins are over-
expressed at concentrations higher than the 
physiological ones. That is why protein expression 
is highly regulated in cells. The concentration of 
each protein is kept below a critical value. In 2008 
Zhang et al. [202] presented a statistical analysis to 
rationalize the relative concentrations of 
monomeric, complex and misbound proteins. The 
authors concluded that in addition to strong specific 

Figure 5: Aggregation phase diagram for two designed proteins. 
The folded regions are orthogonal to each other proving that 
cross-aggregation is not a major problem for evolution.
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interactions, the presence of compartments and 
reduced protein-protein interactions (PPIs) could be 
beneficial in solving the mis-interaction problem. 

However, protein expression levels are linearly 
anti-correlated with their aggregation propensity 
[207]. This observation suggests that the simple 
arguments of weaker non-specific interactions are 
not enough because in a high protein concentration 
soup, eventually, they should dominate. Still, cells 
regulate each protein independently of the overall 
protein concentration. Hence, there is more to the 
story.

 
Recently Bianco et al. [200] showed that in 

protein mixtures, each component could maintain 
its folded state at densities more significant than the 
one they would precipitate in single-species 
solutions (see Figure 5). The authors demonstrate 
the generality of their observation over many 
different proteins using computer simulations 
capable of fully characterizing all the mixtures' 
cross-aggregation phase diagrams. Dynamic light 
scattering experiments were performed to evaluate 
the aggregation of two proteins, bovine serum 
albumin (BSA) and consensus tetratricopeptide 
repeat (CTPR), in solutions of one or both proteins. 
The experiments confirm their hypothesis and 
simulations. These findings demonstrate that below 
the aggregation concentration, a protein folds 
unperturbed by the presence of other proteins. 

Thanks to this property, cells can just regulate the 
expression of each protein regardless of the 
concentration of the others, enormously simplifying 
the entire problem.

Protein-protein interactions can also be tuned to 
induce folding to a specific configuration upon 
binding [4,184,185]. Moreover, the disordered state 
does not affect the protein's binding selectivity but 
reduces the affinity in a controllable fashion.

 In Figure 7, we plot the dependence of the 
binding affinity of a protein designed to bind to a 
given substrate as a function of the degree of 
disorder (``Randomness'') induced in the protein. 
The disorder is added during the design procedure 
by allowing the identity of a few residues to 
fluctuate freely hence creating random spots along 
the protein chain. When the number of random 

residues becomes too large, the protein cannot fold 
when unbound, and the binding affinity is 
significantly reduced (see Figure 7). The behaviour 
of such randomised proteins is reminiscent of the 
well-known intrinsically disordered proteins (IDPs) 
[198], and the design protocol could be used to 
produce artificial IDPs. 

4.2. Caterpillar

Figure 7: The binding strength of a protein is determined by the ratio 
 (where  as the partition sum of all protein conformations 𝑄𝑏/𝑄𝑓 𝑄𝑏

that have at least one contact to the substrate, and  is the partition 𝑄𝑓
sum of a ̀ `free'' protein in the bulk ) [184]. When the protein is frozen 
in its native state (diamonds), the conformational entropy does not 
change upon unbinding. At a fixed (reduced) temperature, proteins 
that fold upon binding (circles) are less strongly bound than ordered 
proteins (diamonds) with the same binding strength  (plotted in the 𝐸𝑏
inset).

r

RHCH
N

O
Cθ1 θ2

rOH

Cα
N

H O

C Φ
ψ

Figure 6: Real-space representation of the backbone of the 
caterpillar model. The large blue sphere represents the self-
avoidance volume  of the  atoms. The H and O  𝑅𝐻𝐶 = 2.0 Å 𝐶𝛼
atoms interact through a 10-12 Lennard-Jones potential 
tuned with a quadratic orientation term that selects for 
alignment of the C, H, O, and N atoms involved in a bond. 
The backbone fluctuates only around the torsional angles  𝜙
and .𝜓
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In what follows, we will give more details about the 
Caterpillar protein model.

Recently, inspired by the tube model of Maritan and 
co-workers [209–211], the Caterpillar protein 
model approximates a typical protein with the full-
atomistic backbone but without the side chains that 
define each amino acid [22,24]. Instead, the 
chemical differences are represented by an effective 
spherically symmetric potential centred on the  𝐶𝛼
atoms (see Figure 6). The sphere's zig-zag 
arrangement that follows the backbone reminds of a 
Caterpillar worm, hence the name ``Caterpillar''. 

The model has two key ingredients, the backbone 
hydrogen bond interactions and the heterogenous 
20 letter amino acid alphabet. 
The first element sets in the directional interactions. 
The presence of the hydrogen bonds was a 
necessary condition to induce a local protein-like 
secondary structure and, at the same time, recovered 
the designability properties [22] with a 20 letter 
alphabet. The results show that the Caterpillar 
model describes a system with designable folding 
behaviour strengthening the importance of 
directional interactions highlighted in section 3.

The 20 letters instead represent the chemical 
variability of the amino acids, and their accuracy 
defines how quantitative the model will be. The 
interactions were obtained by combining the 
maximum entropy principle [212–214] with the 
design algorithm developed for the Caterpillar 
model. Following the REM protein design 
described in section 3, two sequences are optimal 
solutions to the folding protein if they have the same 
energy. To this end, the Caterpillar algorithm 
optimizes the energy function by simultaneously 
designing over 120 test proteins and comparing the 
designed and the natural sequences. The simulation 
converges when the design and the natural 
sequences have matching Caterpillar energies and 
hydrophilic/phobic profiles.
Given that the native sequence is nature´s solution, 
the Caterpillar interaction matrix can be viewed as 
the one by which the natural and designed 
sequences are equivalent solutions to the inverse 
folding problem.

The uniqueness of such an approach is that it uses 
protein design instead of protein folding to predict 
the structural properties of proteins quantitatively. 

It is important to stress that the same methodology 
can be used to fit a larger spectrum of available 
experimental data (e.g. iso-electric point, 
physiological pH) or even other force fields such as 
ROSETTA described in section 2. 

Description of the interaction optimization algorithm

Given a set of single-domain proteins, for each 𝑁𝑃𝑟𝑜𝑡
protein, an ensemble of  sequences are 𝑁𝑆𝑒𝑞
generated. Hence the probability  of having 𝑃(𝑆𝑖,𝛤𝑗)
a sequence on a structure is given by the 𝑆𝑖 𝛤𝑗 
Boltzmann weight:

           ( 16 )𝑃(𝑆𝑖,𝛤𝑗) =
𝑒

―𝛽𝐻(𝑆𝑖,𝛤𝑗)

∑𝑁𝑆𝑒𝑞

𝑖
𝑒

―𝛽𝐻(𝑆𝑖,𝛤𝑗),

where H is the Caterpillar force field Hamiltonian. 

The objective is to determine the parameters of the 
force fields by simultaneously designing the  𝑁𝑃𝑟𝑜𝑡
proteins and comparing the  generated 𝑁𝑆𝑒𝑞
sequences with the natural one and select the 
parameters that give the best match. According to 
the maximum entropy principle, the optimal values 
for the parameters are found by maximizing the 
entropy S

   ( 17 )𝑆 = ― ∑𝑁𝑃𝑟𝑜𝑡

𝑗
∑𝑁𝑆𝑒𝑞

𝑖 𝑃(𝑆𝑖,𝛤𝑗)𝑙𝑛𝑃(𝑆𝑖,𝛤𝑗)
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associated with the distribution . The 𝑃(𝑆𝑖,𝛤𝑗)
maximization procedure can the constrained by 
using the method of Lagrange multipliers, each 
associated with a given fitness function. The 
optimal matrix corresponds then to the extremal of 
the function  defined as follows: 𝛬

( 18 )

Here, , and  are the Lagrange multipliers 𝜆𝑗𝑘 𝜆′𝑗𝑘 𝛾𝑗
associated with the HP nature of the amino acids 𝛼𝑗𝑘
, the total energy of the sequences  and the 𝐸𝑗𝑘

normalization condition . 𝑍𝑗 = ∑𝑁𝑆𝑒𝑞

𝑖 𝑃(𝑆𝑖,𝛤𝑗) = 1

According to the Euler-Lagrange method, the 
maximum of the function  will correspond to the 𝛬
maximum of the entropy  under the constraints 𝑆
imposed on the system. Hence, we can perform the 
derivative of  with respect to  keeping the 𝛬 𝑃(𝑆𝑖,𝛤𝑗)
Lagrange multiplier constant and equate the 
derivative with 0.

( 19 )
𝑑𝛬

𝑑𝑃(𝑆𝑖,𝛤𝑗) = 0                         

From the maximization, we collect independent 
relationships for all the Lagrange multipliers. For 
instance, for the  parameters. We get:𝛼

  ( 20 )

Eq. 20 implies that the distribution generated by the 
Lagrange multiplier that makes the average 
hydrophobic/hydrophilic profile equal to the natural 
one also maximizes the entropy.
Hence, the best model is the one with the parameters 
that make the natural and artificial sequences have 

the energy and the hydrophobic/hydrophilic profiles 
as similar as possible.

4.3. Tube Models

In 2000, Maritan and co-workers [209–211] 
introduced the “Tube” protein model, where a 
typical protein is represented as a flexible self-
avoiding tube with a radius of ~2.5Å and effective 
hydrogen bonds interactions along the tube. The 
configurations of the tube model are controlled by 
just two parameters, the total hydrophobicity and 
the bending rigidity. The model then reproduced all 
secondary and many known protein tertiary 
structures by local changes in the two model 
parameters. Hence, the results obtained with the 
tube model strongly suggest that the typical protein 
structures are inherent in the geometrical 
constraints of the backbone, as the latter are the 
main features of the tube model. To put in the words 
of the authors, the tube "pre-sculpts`` the free 
energy landscape. Recently their findings have been 
further expanded by Kukic et al. [208], who 
demonstrated how their ``CamTube'' model could 
map the protein structural space. More recently, 
Škrbić et al. have shown how the symmetry 
breaking created by the side chain along a polymer 
backbone can also induce a collapse of the 
configurational space into sub-space with helices 
and beta sheets [216,217].

4.4. Martini

The Martini force field has gained popularity for its 
applications in protein simulations and materials 
science [218,219]. This force field, developed by 
the Marrink group [213,214], provides an effective 
way of simulating the behaviour of a wide range of 
molecules.[222] Their lipid and protein 
parameterizations have given the opportunity of 
simulating membrane proteins in large simulations 
[223,224]. The scale of these simulations, almost 
reaching 100 nm, has granted the term of 
computational microscopy and has offered a unique 
view of the dynamic behaviour of membranes and 
the proteins embedded in them [225,226]. As well 
as lipids and proteins, the force field currently 
includes parameters for other molecules present in 
membranes such as sterols, [227] carbohydrates, 
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[228] glycolipids, [229] and photosynthesis 
cofactors, [230] in addition to molecules that 
display interesting behaviours in membranes, with 
numerous contributions from other groups that have 
helped to extend the parameter library [231–233]. 
DNA and RNA complete the list of available 
biomolecular parameters, allowing for studying 
complex biological systems.[234,235] The Martini 
scope has been expanded into materials science 
with excellent results in peptide self-assembly, 
[236–238] peptoids mesoscale behaviour, [239] 
polymers dynamics, [240,241] organic 
semiconductor layers formation, [242] and ionic 
liquids phase studies [243,244]. 
Although the coarse-grained resolution, with a bead 
representing 2 to 5 heavy atoms, has been vital for 
the efficiency of Martini to afford such simulation 
size and times, the development of the polarized 
version has helped in increasing the accuracy to 
represent specific interactions, such as cation-π, of 
great interest for proteins [245–247]. Martini has 
also been employed in mixed resolution 
methodologies combined with all-atoms to gain 
accuracy of the interactions in lipid bilayers.[248] 
Additionally, this force field has been combined 
with highly coarse-grained bilayers using 
dynamically triangulated surfaces to achieve the 
semi-atomistic resolution of Martini in a whole 
mitochondria simulation.[249] 
However, on its website, Martini's team explicitly 
states that this force field cannot be used to model 
protein folding, despite its success with small 
peptide self-assembly. The mapping of proteins into 
Martini resolution, or Martinizing of proteins, 
requires the input of the secondary structure tuning 
the bonded and non-bonded parameters to preserve 
it. To maintain the 3D structure of proteins, Martini 
often needs to be combined with elastic potentials 
between Cα within a threshold called the ElNeDyn 
model [250]. Therefore, the input structure is too 
rigid to reproduce unfolding events. In 2017, Poma 
et al. overcame this limitation by substituting the 
harmonic potentials with Lennard-Jones 
interactions using the contact map of the native state 
in protein, similarly to Go-models.[251] The 
Martini team seems to have adopted this idea for its 
version 3, stating in its open beta version 
documentation that they improve protein flexibility 

using Go-models. Although it is still unclear to 
which extent these new interactions will improve 
the model towards studying protein unfolding, the 
latest version has already shown some advances in 
protein structure and protein-ligand events. The 
beta version has been employed for high throughput 
protein-ligan binding, improving the modelling of 
protein cavities and binding pathways to assess the 
effects of mutations on the binding of different 
small drugs.[252] They claim that their coarse-
grained approach is similarly effective and more 
efficient than the corresponding atomistic 
approaches. In addition to this, Grunewald et al. 
have recently published the Martini approach for 
constant pH simulations, with excellent results 
reproducing experimental pKas.[253]

5. Application of coarse-grained models

This section highlights applications of coarse-
grained models trying to answer fundamental 
questions related to protein evolution. Due to the 
timescale and size of the protein sequence space, 
coarse-grained models represent an ideal 
investigation tool. 

5.1. Role of the alphabet

The amino acids are the building blocks of 
proteins, whose chemical diversity in a sequence is 
responsible for many three-dimensional structures 
and biological functions, playing a crucial role in 
the protein sequence evolution. 

The protein sequence is typically noted as a string 
of letters to represent each amino acid. The protein 
alphabet contains 20 different characters for the 
amino acids, unlike DNA and RNA, consisting of 4 
letters. 

An important issue that attracts the interest of the 
scientific community is the nature of the amino acid 
alphabet [1,7,26–29,183–185,254–281]  and, in 
particular, the effects of a reduced alphabet size on 
protein folding. Previous studies applied different 
computational methods for the protein design at 
different alphabet sizes. Using lattice protein 
models, a large variety of protein-like 
heteropolymers were designed at different 
alphabets [1,7,183–185,255–259]. From those 
studies emerged that a minimum number of residue 
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types is required to get target configurations [260]. 
It was also possible to investigate the effect of a 
minimalistic alphabet on protein-protein 
interactions [261–264]. Also, experimental works 
were conducted by designing proteins with 
simplified amino acid sequences [265–269]. 
Statistical analysis of protein databases also showed 
that a large part of the information, [254,270–275] 
encoded in natural proteins, could be enclosed into 
a small alphabet of only 5 residues types 
[254,265,267,276,277,281]. 

Nerattini et al. devise a computational protein 
design strategy that consists of a competition for 
available amino acids between a protein and an 
artificial interaction partner. No previous studies 
have considered the possibility of competition for 
the availability of amino acids. However, lack of 
materials may have played an essential role in the 
evolution of protein alphabets. Hence, it is 
interesting to estimate the effect of such 
competition. 

Nerattini’s scheme spontaneously drives the 
protein design to the generation of sequences with a 
reduced number of residue types. Moreover, the 
reduced alphabets chosen during the design process 
allows for the folding stability of the protein. The 
investigation results show that for the folding of a 
protein, the minimum size of the amino-acid 
alphabet is just 4 letters. The results have interesting 
parallelism with the 4-letter alphabet of RNA, 
which is considered the precursor of proteins during 
the early stage of life. However, the precision of the 
folding increases with the alphabet size: 6 letters are 
the minimum alphabet necessary to maintain the 
structure of the protein with the same accuracy 
commonly obtained with 20 letter alphabets. The 
observation is consistent with the experimental 
studies confirming that 6 letters are essential for 
maintaining protein folding and functionality. 
[254,265,267,276,277,281]

Besides having a binary system, the authors 
investigate how the alphabet reduction affects the 
heterogeneity of protein-protein interaction 
[1,184,262,264,282], observing a strong tendency 
of the designed protein to absorb and aggregate on 
a potential binding site. The 4 letters alphabet of the 
designed sequences has an average intra-protein 
residue interaction higher than the inter-protein 

interaction energy. This affinity makes it impossible 
for the folded state of the protein to be stable in 
contact with the artificial partner; hence, to avoid 
the absorption. Conversely, increasing the alphabet 
size to 6 letters, the intra-protein residue interaction 
stabilizes the folded structure upon binding due to 
its lower value with respect to the inter protein one. 
Living systems are under constant pressure for 
using the least variety of amino acids to reduce the 
resources necessary to construct specialised tRNA 
molecules for the translation process.[283] It is 
reasonable to assume that it could be advantageous 
to design proteins with a smaller alphabet during the 
early stages of life. Thus, it suggests that the 
optimization of the specificity of protein-protein 
interactions could have been the driving force for 
the evolution of the large protein alphabet. 

1.1 Protein Design as a tool to test evolution constraints

The rate of Protein sequence evolution varies from 
protein to protein, and several factors such as the 
processing of the protein in the cell (e.g., translation 
time) [284,285], or molecular characteristics 
specific to each protein [197,286,287], as well as 
from interactions with other proteins [288]. In 
contrast, the nature and rate of protein structural 
evolution are much less well understood. Viksna et 
al.[289] presented an estimate of the rate of 
structural changes based on the measure of 
topological distances between proteins structures. 
Meyerguz et al. [290] grouped all known proteins 
into basins corresponding to the common native 
structures. The authors have then built a network of 
sequences from the collected data and considered 
the frequency of “transition” sequences (separated 
by a single point mutation from a different basin). 
Structural evolution has also been studied in the 
context of the lattice protein model by Deeds et 
al.[196], where the structural similarities among all 
possible 103346 distinct structures of a 3x3x3 
lattice polymer have been mapped. Other work has 
concentrated on structural topologies connected by 
a relatively small set of structural evolutionary 
moves (e.g. domain swapping or duplications) 
[154,197,286]. 
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Coluzza et al. [291] considered the entire 
evolutionary process without focusing on a detailed 
description of cell physiology. In that case, the 
evolutionary process is equivalent to screening a 
large number of different sequences under the 
constraint that only a few structures are acceptable. 
The full evolutionary path can then be represented 
as a transition sequence between the allowed 
structures (steppingstones). Such steppingstones 
represent the possible structures that are still 
allowed by the selection function and are not 
identical to the initial and final target structure. The 
number of intermediate structures reflects the 
degree of restriction applied to the evolutionary 
process. Hence the larger the number of 
steppingstones, the more closely the evolutionary 
process approximates a free drift in protein space. 
The entire evolutionary trajectory between two 
targets is then represented as a path connecting the 
steppingstones, where each jump is weighted by its 
probability of occurrence. Accordingly, the main 
objective of Coluzza’s work is to measure the rate 
of each elementary jump and identify the analytic 
dependence of such rates from a small set of 
structural differences. 

The first point it is vital to realize is that the number 
of sequences that can fold into a structure is an 
astronomically large number [149].
The objective is to sample the rate at which an 
ensemble of sequences defined by the design 
procedure with target structure A will evolve to an 
equivalent ensemble defined by the design of 
structure B. 
First, the overlap between the most probable 
sequences of A and B is minimal, independently of 
the structural differences between A and B. In other 
words, provided that the structures are not identical, 
the Hamming distance between the ensemble of the 
folding sequences is always sizeable. This gap does 
not necessarily mean that the evolutionary process 
must proceed with large jumps with many 
concurrent mutations. Still, it means that the folding 
sequences in “common” (so with small Hamming 
distance) between the two distributions are pretty 
rare. Hence the evolutionary rate is highly 
dependent on the probability of finding such 
sequences that are still able to fold but are separated 

by a small number of mutations. For this reason, the 
neutral evolution inside each island is assumed to 
occur at a higher rate than it does between islands. 
According to such a hypothesis, the evolution rate is 
defined as the rate of crossing the point at which a 
sequence goes from having lower total energy in 
structure A to having lower energy in B. This choice 
can be justified as a measure of the propensity of 
those sequences to fold into B instead of A because 
of the entropic contribution to the free energy of the 
native structure is assumed to be the same across all 
steppingstones, then the only relevant pressure is the 
energetic contribution. The probability of observing 
such a sequence can then be measured using the 
Boltzmann distribution function in the space of all 
possible proteins (all sequences on all structures); 

     ( 21 )𝑅𝐴→𝐵 = 〈𝜃[ΔE𝐴𝐵]〉𝐴 =
〈𝑒

𝛽𝐸𝐵𝜃[ΔE𝐴𝐵]〉
𝐴𝐵

〈𝑒
𝛽𝐸𝐵〉

𝐴𝐵

where the ensemble average is performed 〈…〉𝐴𝐵 
over the AB joined ensemble. Alternatively, the 
equation can be interpreted as a simulation in the 
ensemble of sequences that fold into structure A but 
in the presence of a bias towards sequences that fold 
into structure B. 
Each rate is then sampled by applying the design 
procedure described above to the joined AB 
ensemble for each A, B pair with the following 
acceptance rule

( 22 )𝑃acc = min {1,exp[ ―
(𝛥𝐸𝐴 + 𝐵 ― 𝐸𝑝ln

𝑁new
𝑃

𝑁old
𝑃

)
𝑘𝐵𝑇 ]}. 

Such an acceptance rule also guarantees that 
homopolymers sequences are not included in the 
rate calculations that might significantly alter the 
results towards non-physical solutions with their 
significant enthalpic weight.
Hence the jumping rate from the island associated 
with structure A to B is going to be equal to the rate 
of accumulating enough mutations for each 
sequence of the island of A to become equal to one 
of the sequences in the island of B, as the 
evolutionary process will spontaneously continue 
towards the optimal sequences of B at a much faster 
rate.
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~500 Stepping Stones

Such a rate can be calculated efficiently and allows 
for a large-scale study of jumps across many 
structures.
By putting together all  measured for 490X490 𝑅𝐴→𝐵
structure pairs, the rate is well described as a 
function of three structural parameters that measure 
the difference between structures A and B: the 
difference in the number of hydrogen bonds , ΔH𝐴𝐵
the difference in the number of residue-residue 
parameters  and the difference in the number ΔQ𝐴𝐵
of native contacts .𝑄𝑁

  ( 23 )
ln𝑅𝐴→𝐵 = 151ln ( 1

1 + 𝑒
0.005(7.2𝛥𝐻𝐴𝐵 ― 𝛥𝑄𝐴𝐵))

+222ln ( 1

1 + 𝑒
―20.5(0.5 ― 𝑄𝑁))

In particular, this expression demonstrates that it is 
much easier to jump towards a compact structure 
with many hydrogen bonds than evolve towards a 
configuration that is either compact with few 
hydrogen bonds or non-compact with many 
hydrogen bonds. 

A result that comes naturally from our analysis is the 
probability of occurrence of a structure, which can 
also be interpreted as the designability of a protein 
structure. 

                    ( 24 )𝑃𝑖 =
𝑒

― 𝐴2𝐴0(𝐴1𝐻𝑖 ― 𝑄𝑖)

∑𝑒
― 𝐴2𝐴0(𝐴1𝐻𝑖 ― 𝑄𝑖)

That is a crucial result of this study. The 
designability of a protein does not depend just on 
how compact it is but mainly on the optimization of 
both the number of hydrogen bonds and the number 
of contacts between the residues. 
This result again highlights the vital role those 
directional interactions play in the designability of 
proteins and heteropolymers in general. 

1.2 Protein-Protein Interactions

Protein-protein recognition is one of the multiple 
types of molecular recognition tools that nature 
employs and, as it is involved in countless 
physiological processes, is crucial for living beings 
[292,293]. Synthetic systems, such as polymers, 
have also copied this mechanism, giving rise to 
artificial molecular recognition [294–302].
Molecular recognition requires highly specific 
binding with a high discriminatory resolution. In 
other words, the molecules must bind strongly to a 
minimum number of possible partners and weakly, 
if anything, with the rest. The design of binding 
sites introduces constraints to ensure a strong and 
specific interaction. Protein binding sites are in the 
range of 75 – 150 nm, [303] and often fit the ligand 
tightly. Therefore, the selectivity of protein-ligand 
recognition lies in both steric compatibility and 
chemical patterning of the pocket surface. Coluzza 
et al. designed patterned surfaces to bind a reduced 
number of partners selectively using a lattice model. 
[1,184] They showed that by designing the ligands 
in the bound state, the selectivity of the binding to 
the target surface is boosted. This result is based on 
the probability (P) of non-specific interactions for 
having a binding energy (E):

Figure 8: Schematic representation of the parameters used to 
generate the pocket moulds.
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          ( 25𝑃(𝐸) = (2𝜋𝑁𝜎2) ―
1
2𝑒

― [ 𝐸2

2𝑁𝜎2]
 )

Where N is the number of interaction sites to 
account for the size of the binding. The Boltzmann 
factor  gives the probability of an 𝑒𝑥𝑝 ( ― 𝛽𝐸)
interaction energy E in the bound state. 
Consequently, to be selective, surfaces must have a 
binding energy lower than the random average 
Boltzmann factor, . 〈𝑒𝑥𝑝( ― )〉 = 𝑒𝑥𝑝(𝑁𝜎2𝛽2 2)
Additionally, random binding sites are not strictly 
inert as they will still have a relevant probability to 
bind if they are sufficiently large (great N).

Nerattini et al. [206] employed the Caterpillar 
protein model [22,24] to explore pockets' precision 
and binding selectivity with optimal shape and poor 
steric selectivity. They conducted this study 
attending to hot spots at the protein-protein 
interface, which are currently recognized as a 
critical component for Protein-Protein Interactions 
(PPI). [304] They did not aim to reproduce PPI 
quantitatively and could afford to use a coarse-
grained model with implicit solvent, which is 
inappropriate to identify hot spots. Instead, they did 
examine the steric effect of certain features of the 
binding sites, such as depth and surface area. They 
carried out the design of a given protein with a 
second target protein by modelling the binding 
region of the latter on a plane. The explicit protein 
partner was here modelled with the mentioned 
Caterpillar model, as described in a previous 
section. The protein-like surface was constructed as 
a mould by pushing the protein on a dense flat mesh 
of self-avoiding beads, which mimic the portion of 
interest of the protein surface. This approach allows 
controlling the direction of the interaction. Binding 
site interactions were modelled using only the Cα of 
the Caterpillar. A certain number of beads scattered 
within the mesh mimicking the protein surface are 
conferred Caterpillar Cα character. The model is 
based on three parameters (Figure 8): ζ, the height 
of the centre of mass (CM) with respect to the flat 
mesh plane; µ, minimum Cα protein–Cαsurface 
distance; and δ, the distance between beads with Cα 
character in the binding site. Binding sites were 
generated by setting the last two parameters to 
typical natural values in globular proteins (both to 5 
Å) and varying ζ. Firstly, the maximum CM–Cα 

distance, corresponding to the entire protein radius 
(rMAX) was determined to normalize the rest of the 
CM–Surface distances. Thus, being z the CM–
Surface distance, ζ . For each value of ζ, the  =

𝑧
𝑟𝑀𝐴𝑋

flat mesh was tuned to represent each protein 
orientation to find the orientation that gives a 
binding site with maximum surface area. It must be 
noticed that the surface area of the binding site is 
inversely proportional to ζ.

The distance root mean square displacement 
(DRMSD) was used as an order parameter for the 
bias potential, measuring the deviation from the 
target structure:

    ( 26 )𝐷𝑅𝑀𝑆𝐷 =
1
𝐶∑

𝑖𝑗(|∆𝑟𝑖𝑗| ― |∆𝑟𝑖𝑗
𝑇|)2

Where  it is calculated as the sum over the 𝐷𝑅𝑀𝑆𝐷
ij contact pairs in the structure between residues in 
the same (DRMSDintra) or different (DRMSDinter) 
proteins.  is the distance between the pairs, ∆𝑟𝑖𝑗

while is the corresponding distance in the ∆𝑟𝑖𝑗
𝑇

target structure. This differs from most protein 
approaches where the RMSD is used instead, using 
the atom positions rather than distances. The system 
conformational space was projected over the 
collective variables DRMSDintra and DRMSDinter 
generating the free energy landscape 𝐹[DRMSDintra

.  can , DRMSDinter] 𝐹[DRMSDintra, DRMSDinter]
qualitatively show the relative stability between 
folded and unfolded in bound and unbound states. 
The profiles show that although the size of the 
binding site affects the strength of the binding, all 
the proteins can bind in their folded state to their 
target binding site, including the small ones. 

To quantify the binding affinity and selectivity, the 
authors measured the free energy difference  ∆𝐹
between the bound and unbound of the folded. This 
free energy difference is defined by:

               ( 27 )∆𝐹 = ― 𝑘𝐵𝑇𝑙𝑛(𝑄𝑏

𝑄𝑓)
Qb accounts for the bound protein conformations 
and Qf for the unbound, free in the bulk. 𝑒𝑥𝑝

 defines the binding strength, leading to an ( ―
∆𝐹
𝑘𝐵𝑇)

association constant that follows the expression:
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           ( 28 )𝐾𝑎 = 𝑒𝑥𝑝( ―
∆𝐹
𝑘𝐵𝑇)𝑉𝑏𝑢𝑙𝑘

𝑛

Being n the number of binding sites, which was set 
to 2 in the example and  the volume of the bulk.𝑉𝑏𝑢𝑙𝑘

Figure 9: Van't Hoff plot of the binding affinity  [l/mol] as a 𝐾𝑎
function of the inverse of reduced temperature 1/T for the 
investigated systems. The grey dashed line shows the folding 
temperature T/ . The red dashed line is the reference ambient 𝑇𝐹 = 1
temperature /  in reduced units. The curves' colour scheme 𝑇 𝑇𝐴 = 1
refers to the pockets’ size ζ going from large to small: purple, green, 
yellow and light blue.

Figure 9 shows the van't Hoff plot [305,306] of the 
binding affinity for the different pocket sizes. 𝐾𝑎 
The results showed that binding site surfaces 
decreased with ζ, the topology matching between 
the protein and the surface creates an effective 
pattern of steric repulsion, key for the binding site 
selectivity. 
The specificity of the binding sites towards their 
target was tested for the artificial binding sites 
employing different scenarios. Firstly, by crossing 
proteins and surfaces resulting from different ζ 
values, we tested the selectivity among proteins 
with different sequences but identical structures. 
Secondly, the folding and binding of a protein with 
different structures but similar sizes were tested. 
The first scenario showed the differences between 
small and large binding sites. The former showed 
negligible binding to large proteins, while the wider 
binding sites showed stronger binding and a 
disruptive effect in protein structure, leading to 

denaturation. The second scenario confirmed the 
lower specificity of large binding.

Therefore, this work presented an attractive 
approach for designing protein-protein interactions. 
Nerattini et al. designed specific sequences for 
target binding sites. The fact that the folded bound 
state is favoured in the resulting sequences and their 
binding energy increases with the size of the pocket 
is evidence of the approach's success to design 
protein-protein interactions. Additionally, the 
results shine a light on the specificity of the pockets, 
showing that large binding pockets have higher 
binding affinities, they also show lower specificity. 
The upper limit determined by the model matches 
with the size range of binding sites of natural 
proteins. Therefore, this method is an efficient 
approach to designing protein-protein interactions 
and provides fundamental information for 
understanding natural proteins and how specific 
parameters may have affected their evolution.

1.3 Compare artificial and natural sequences

Protein sequence maintains a delicate balance 
between structural stability and biological function, 
making it difficult to untangle the two 
contributions. It has been proved that a protein 
function, such as the catalytic activity of an enzyme, 
depends on the interaction between specific 
sequence positions and exhibits a balance between 
structural stability and flexibility. Also, It is 
challenging to classify residues as strictly 
functional or structural due to a correspondence 
between these two categories; their mutual 
correlation is essential for the protein activity. 
[307,308] It is meant by strictly structural residues 
such as amino acids responsible for protein 
stability. The loss of the folded structure can affect 
the functionality of the protein.

On the other hand, strictly functional residues can 
mutate without altering the structure's stability. An 
accurate characterization of structural and 
functional protein residues is fundamental for 
developing proteome mapping, protein engineering, 
and new pharmaceutical applications based on the 
design of target protein.[309–313] The 
experimental identification of residues is a time-
consuming and expensive process: a high-
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throughput tool requires a large scale mutation 
assay [308,309], whereas in-silico screening has a 
lower cost. Several Computational methods [316–
320] have been developed for studying protein 
evolution. Most of them are based on the search for 
sequence conservation and co-evolution. 

The residues co-evolution assumes that mutations 
of interacting amino acids are correlated. Co-
evolution allows proteins to change residue 
identities while maintaining specific residue-
residue interactions [19,321]. The residues involved 
in co-evolution events can be fundamental for the 
protein activity (e.g., catalytic site residues) and for 
the structure stability (e.g., hydrophobic core 
residues), or, in some instances, for both, when 
there is an interdependence between functional and 
structural residues. The Direct Coupling Analysis 
(DCA)[322–330] is one of the most promising 
computational tools for estimating residues pairs 
with direct reciprocal constraints in the evolution. 
The method for protein contact prediction is based 
purely on sequence information and can analyse a 
large number of protein domains. However, from 
DCA alone is not possible to distinguish between 
structural and functional residues due to the same 
signal given by the two types of coevolving residues 
during the analysis. Some information can be 
deduced from comparing the DCA and the distance 
between residues in the contact map [319,330–332]. 
But functional residues do not have always have 
long-range co-evolution signals.

Searching for amino acid sites of a protein 
sequence that preserve their identity in the 
evolutionary residue conservation (or site entropy) 
analysis is another method for identifying 
functionally essential protein regions. The 
evolutionary site conservation can be measured 
using Casari et al. technique.[333], based on the 
principal component analysis (PCA) of the 
sequence alignments. 

Nerattini et al.[334] introduced a methodology to 
rank the residues according to their functional (F) or 
structural (S) nature within the ones that are 
involved in both events (OFSR, overlapping 
functional, structural residue [307]). 

Their methodology hypothesises is that an 
artificial evolution process only results in a co-

evolutionary structural residue due to the absence of 
any functional constraints. 

Thus, to identify residue and further categorize 
them into structural, functional or OFSR, it is 
necessary to generate an artificial protein family 
that, by construction, contains only structural 
information. Any protein design method can 
generate artificial sequences with a specific target 
conformation [5,6,17,20,21,108,335–339]. The 
design doesn’t need to generate lab folding proteins. 
The only requirement is that the artificial sequences 
fold computationally into the target structure.

After selecting the protein family to analyse, 
single-site conservation and co-evolution analysis 
are carried out on artificial and natural alignments. 
Protein design generates artificial sequences, 
whereas natural sequences are found in the Pfam 
database.[316] 

The analysis of artificial sequences identifies 
residues essential for structural stability; on the 
other hand, signals from natural sequence analysis 
encode structural and functional information. 
Residues with high co-evolution signals only in the 
natural alignments are residues with a functional 
role in the protein if a similar signal is not present 
in the analysis of the artificial set. Conversely, 
structural signals are strongly conserved and co-
evolved in the artificial evolution but poorly in 
natural ones. Residues that display comparable 
signals between natural and artificial analysis are 
classified as overlapping-functional-structural 
residues OFSR, whose mutation would lead to the 
loss of both functionality and tertiary structure. 

DiPA methodology has demonstrated the validity 
to detect functional residues in protein families 
without requiring prior knowledge of the biological 
role of the analysed protein. Hence, in the study of 
a whole proteome, the DiPA algorithm could give a 
crucial contribution to the identification of the 
functional protein regions. By analysing the 
artificial evolution of protein dimers, the approach 
can also classify functional residues for the 
implication of protein-protein interactions, 
confirming the annotation mentioned above on the 
direct importance of the structural residues on the 
protein's function. 
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Conclusions

Computational Protein design is one of the most 
promising tools in protein engineering. The long-
term objective is to autonomously design new 
artificial enzymes and drugs with sequences 
tailored to specific functions and perform better 
than their natural contour parts. Additionally, 
protein design offers an ideal benchmark tool to test 
fundamental hypotheses about the evolution of 
life’s basic building blocks.

In this review, we tried to overview both basic and 
applied protein designs. The challenges ahead are 
still many. Although successful in many 
applications, it is still tough to systematically design 
proteins with high expression yields that vary a lot 
from application to application. The reason for such 
difficulties can be found both at the algorithm level 
(e.g. sampling), modelling (e.g. accuracy), and 
fundamental understanding of the central 
ingredients for successful design.
In terms of algorithms, essential developments are 
coming from multi-scale approaches mixing coarse-
graining and full-atomistic representations and the 
introduction of deep learning methods like the 
recent AlphaFold [340]. On the modelling side, it is 
essential to stress the emerging importance of 
constant pH simulations that take into account the 
charge fluctuations that occur on the protonable end 
of polar amino acids. Constant pH simulations are 
still growing, and there is not yet a single 
established method to perform them. However, 
many studies indicate that they are strategic in 
understanding protein-protein interaction 
phenomena [341] and hence for design [342]. 

Furthermore, protein design has the potential to 
push the development of parallel fields such as 
supramolecular peptide polymers. These materials 
exploit the tendency of small peptides to self-
assemble into protein-like structures driven by 
similar rules to proteins themselves. Some efforts 
have been carried out in modelling the behaviour of 
these materials using molecular dynamics 
simulations. Tuttle et al. screened short peptides 
using the MARTINI force field to find new self-
assembling sequences [236,343]. However, these 

had computing limitations that drove them to 
combine this with machine learning to screen 
peptide sequences consisting of up to 8 amino acids 
[344]. Ferguson et al. also employed this approach 
on a hybrid system [345]. Although machine 
learning has significantly reduced the 
computational effort of these procedures, these 
methods are far from the level of validations and 
efficiency of protein design. We believe that using 
a modular approach like the one employed for 
repeat proteins [122], protein design methodologies 
could be applied to self-assembling peptides, which 
would boost the development of these synthetic 
materials.

Finally, on the fundamental understanding of the 
relation between protein folding and protein design, 
we have stressed the physical role of directional 
interaction in sculping the conformational 
landscape. A landscape that can only be defined if a 
proper length scale is introduced to discriminate 
between conformations. Such length scale is 
nothing else than the target folding resolution. With 
such knowledge, it is possible to extend protein 
design beyond the biological kingdom to venture 
into the unknown, mimicking life, fully synthetic 
materials. That will be the era of bionic proteins.
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