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Abstract— We consider an optimal traffic-light control frame-
work for urban traffic intersections to alleviate congestion
phenomena. We analyze a scenario in which we provide drivers
with information about the waiting time at the intersections. We
model the drivers’ lane-changing information-based behavior as
the solution of a convex optimization problem. We compute
the optimal traffic-light control mechanism as the solution
to a bi-level optimization problem. We provide a complete
analysis in terms of (i) the existence of a solution; (ii) an
iterative algorithm to compute it; (iii) sufficient conditions
for the solution’s uniqueness and the algorithm’s convergence.
Early simulation results show the proposed control scheme’s
effectiveness compared with an optimal control algorithm in
the absence of waiting-time information.

I. INTRODUCTION

Transportation is the energy end-use sector with the fastest
growth rate in terms of greenhouse gas emissions, and road
traffic is estimated to be responsible for over 80% of this
increase since 1970 [1]. Road traffic, moreover, is associated
with several other problems of environmental, financial, and
social nature due to congestion, delays, and infrastructure
maintenance or building. For example, traffic congestion
costs billions of dollars to the economy every year [2]. All
these negative consequences are exacerbated in presence of
high-density traffic and congestion. Therefore, as the number
of road vehicles steadily increases every year1, rethinking the
way traffic is managed is necessary to guarantee a sustainable
future for transportation.

In this paper, we focus on an urban traffic setting and, in
particular, on intersection control. For more than 50 years,
computer-aided traffic lights have been the standard tool for
controlling intersections [3], and quite an extensive literature
exists on the topic boasting many different approaches. De-
sign solutions based on dynamic programming or informed
by control theory have been proposed, for instance, in [4]–
[11]. See also [12], [13] for broad reviews. Varaiya, in his
seminal paper [14], proposed a traffic light control algorithm
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to stabilize the queue length at the intersections. Since then,
many algorithms have been proposed to achieve the same
aim under various settings [15]–[18]. However, all these
papers did not consider the possibility of showing drivers the
information on how much time they have to wait, on average,
to cross the intersection. However, when these information
are provided to the drivers they can react by changing lanes
based on the displayed expected waiting-time information at
the lanes at an intersection. We seek to answer the following
questions: If we inform the drivers of the waiting-time at
the intersections, can the congestion be alleviated? Second,
can we develop an optimal traffic-light control mechanism
by considering the impact of the drivers’ rerouting decisions
based on the displayed information?

We consider a network of intersections where each in-
tersection may consist of multiple lanes. We propose and
analyze the addition to traffic lights of a visual indication
of each lane’s expected waiting time. Then, we propose
a control policy deciding the green-light duration of each
traffic light based on the observed and estimated future
traffic flows. Compared to canonical traffic light approaches,
a visual indication of the expected waiting time allows us to
considerably increase the duration of red lights. Indeed, as
drivers can see that their waiting time is too large, they can
change lanes and find alternative paths. Thus, we enable an
additional degree of freedom, for instance, to divert traffic
to specific routes to avoid congestion actively.

Compared to state of the art, it is worth noting that
incentivization mechanisms such as toll prices and their
impact on the traffic flows have been considered before [19]–
[21]. However, the above papers did not consider the control
of traffic-lights at intersections. The closest to our work
is [22] which investigated how the vehicles reroute based
on the traffic delays at various intersections. The authors in
[22] then investigated the performance of various traffic-light
control algorithms in alleviating the congestion. However, the
above paper did not formalize how an optimal traffic-signal
control algorithm should be computed by incorporating the
drivers’ behavior based on the traffic-delay. Our proposed
model formalizes how the drivers react to the information and
provides an algorithm to optimally compute the green traffic-
light durations at intersections based on the drivers’ reactions
on the expected waiting-time. Further, [22] considered an
information structure where the travel-time for each vehicle
is updated at every instance of time, which is computationally
costly. Instead, in our methodology, we provide the drivers
the waiting-time information at an intersection, which is



easier to implement in practice.
We cast the design of the control policy at the traffic-

intersections into a convex optimization problem on the
observed traffic characteristics. We model the fraction of the
drivers changing lanes based on the displayed information as
the solution to a second convex optimization problem. Since
control decisions depend on the drivers’ behavior, and vice
versa, the traffic-controller operates online and in closed-
loop, in which the loop is closed on humans [23], [24].
Indeed, the closed-loop system results in a solution to a bi-
level optimization problem which turns out to be non-convex.
We show that an optimal solution exists. Further, we propose
a fixed-point iterative algorithm to find an optimal solution.
We provide sufficient conditions under which the algorithm
converges.

We provide numerical results showing promising per-
formance of the proposed architecture compared with an
optimal traffic-light control policy that does not provide
visual information to the drivers. Specifically, our algorithm
controls the flow at intersections in such a manner which
significantly reduces the mean queue-length across the net-
work compared to the optimal policy which does not provide
visual information to the drivers.

II. THE MODEL

In this section, we first describe the network structure
which we consider (Section II-A). Subsequently, we char-
acterize the traffic-light control architecture (Section II-B),
and the dynamics of the traffic flow(Section II-C). Finally,
we characterize the constraints on the decision variables
the green traffic-light durations at different lanes across the
intersections (Section II-D).

A. The Road Network

The road network is modeled by a directed graph G =
(V, E), in which V is the set of nodes and E ⊆ V × V
the set of edges. Nodes represent intersections and edges
represent roads connecting adjacent intersections. In par-
ticular, if (i, j) ∈ E , then there is path going from i to
j. A nonempty subset Ne of nodes represents “terminal
intersections”, from where traffics can only originate or
terminate (Fig. 1). The incoming traffic from these terminal
nodes can not be controlled and they are exogenous variables.

The set of nodes which have direct outgoing edges toward
node i is denoted by N in

i . Similarly, the set of nodes which
have incoming edges from node i is denoted by N out

i . Note
that N in

i and N out
i can contain terminal nodes. For example,

in Fig. 1, N in
C = {A,B,D} and N out

C = {B,D,F}.
For a given node i ∈ V , we let Pi ⊆ N i

in × {i} × N i
out

be the set of all possible paths connecting any node j ∈
N in

i incident to node i toward any node k ∈ N out
i . For

example, in Fig. 1, (A,C,F) ∈ PC . Furthermore, we let
P = ∪i∈VPi. At each intersection i, there is a queue for
each path (j, i, k) ∈ Pi, including vehicles coming from
node j ∈ N i

in and going towards node k ∈ N i
out via node i.

For notational convenience, we shall assume that there is a
unique queue for each path in P .

B C D

A

E F G

J K

H

I
L

Fig. 1. An example of a network of urban intersections. The purple arrows
represent the direction of the traffic flow in the roads. The blue arrows
represent the paths of the network. The tail of an arrow shows the starting
node and the head represents the destination node. The terminal nodes are
Ne = {A,H, I, L}.

B. Traffic Lights

We assume that there is a different traffic light for each
path (j, i, k) ∈ P . Each traffic light is characterized by its
duty cycle, defined as the relative duration of the green light
in each period. In particular, the duty cycle of the traffic light
on path (j, i, k) ∈ P is denoted by gj,i,k ∈ [0, 1]. The duty
cycles (gj,i,k)(j,i,k)∈P represent the variables controlled by
the decision logic.

The controller updates its decision every ∆t ∈ R>0

minutes. In the meanwhile, the duty cycles are kept constant.
In every decision interval ∆t, each traffic light performs
T ∈ N>0 cycles, each one of duration ∆t/T , in which
green and red lights are alternated according to the current
value of the duty cycles (amber lights are neglected for
simplicity). Hence, for the traffic light controlling the path
(j, i, k), the green and red light durations in each period are
given, respectively, by gj,i,k∆t/T and (1− gj,i,k)∆t/T .

Traffic lights belonging to the same intersection may not
be independent to each other. Indeed, vehicles on potentially
colliding paths cannot cross the intersection at the same time.
For each intersection i, non-colliding paths are identified by
a covering Li = {Ii1, . . . , Iidi

} of Pi, with di ∈ N≥1, such
that (j, i, k), (j′, i, k′) ∈ Ii` for some ` ∈ {1, . . . , di} if and
only if (j, i, k) and (j′, i, k′) represent non-colliding paths.
Each Ii` is maximal2 with respect to this property.

C. Traffic Dynamics

In this section, we formally describe the time evolution of
traffic flows within an arbitrary decision interval of length

2Namely, every path (j, i, k) ∈ Pi \ I` collides with at least one path
of Ii

` . In Fig. 1 one example of the element IC
` is

{
(B,C,F) , (B,C,D)

}
.



∆t, in which each traffic light operates T cycles. For every
traffic-light cycle t ∈ {1, . . . , T} and every node i ∈ V ,
we denote by Λt

j,i the number of vehicles going from node
j ∈ N in

i to node i within the traffic-light cycle t. If j ∈ Ne,
i.e., j a terminal node, then Λt

j,i is the amount of vehicles3

which come from outside the considered road network. We
denote by αi

k,j the fraction of vehicles in Λt
j,i that goes

toward k ∈ N out
i . When k ∈ Ne, those vehicles will then

exit the network. We assume that αi
k,j does not depend on

the particular cycle t. Hence, the traffic going from node j
toward node k through i and during time period t is given
by αi

k,jΛ
t
j,i. Note that, for each i ∈ V ,

∑
k α

i
k,j ≤ 1, with

1−
∑

k α
i
k,j that denotes the percentage of the vehicles have

their destinations at node i.
Vehicles may start their journey from in-between every

pair of connected nodes. In particular, we denote by ζtj,i,k
be the amount of vehicles that initiate their journey between
node j ∈ N in

i and node i during cycle t, and that go towards
node k. Let N

t

j,i,k be the total amount of vehicles arriving
in the queue of path (j, i, k) ∈ P during cycle t. Then,

N
t

j,i,k = (αi
k,jΛ

t
j,i + ζtj,i,k), ∀(j, i, k) ∈ P,∀t. (1)

For ease of exposition, we assume that the traffic controller
has access to4 ζj,i,k and αi

j,k for each (j, i, k) ∈ P . Further-
more, in the following we make the simplifying assumption
that, during a traffic-light cycle, only the vehicles present in
the queue at the beginning of the cycle can move towards
the next node. This is a standard assumption (see, e.g., [15],
[25]), and it is justified in our context by the fact that, in a
urban area, paths are short and traffic speed is small5.

Let N0
j,i,k denote the amount of vehicles in the queue

(j, i, k) at the end of the previous control interval and, for
t = 1, . . . , T , let N t

j,i,k denote the amount of vehicles in
the queue (j, i, k) at the end of cycle t. We assume that the
number of vehicles at each queue, N t

j,i,k, can be measured.
Furthermore, let M t

j,i,k be the total number of vehicles
moving from node j ∈ N in

i towards node k ∈ N out
i during

cycle t, and let vj,i,k be the maximum traffic outflow for the
path (j, i, k) within a traffic-light cycle (for simplicity, vj,i,k
is assumed to be independent from t).

Then, for all (j, i, k) ∈ P and all t = 1, . . . , T ,

M t
j,i,k = min

{
vj,i,kgj,i,k, N

t−1
j,i,k

}
, (2)

which represents the total amount of vehicles that exit the
queue (j, i, k) during cycle t. Note that vj,i,kgj,i,k represents
the amount of vehicles which can exit the intersection.
Hence, the total amount of vehicles in queue (j, i, k) ∈ P at
the end of cycle t, is given by

N t
j,i,k = N

t

j,i,k +N t−1
j,i,k −M

t
j,i,k. (3)

3We underline that, since we deal with traffic flows rather than single
vehicles, we assume that Λt

j,i takes real values.
4Extensions to the case in which ζj,i,k and αi

j,k are uncertain are
possible. For instance, one may formulate a scenario-based stochastic
optimization problem by considering all possible values.

5We further observe that if a path (j, i, k) is long, we can break it in two
by introducing a virtual traffic intersection k′ with only one path (i, k′, k).
The corresponding traffic light has unitary duty cycle.

Moreover, since in view of (2) the amount of vehicles going
from node i ∈ V to node k ∈ V during cycle t is given by
M t

j,i,k, then we have

Λt
i,k =

∑
j∈N in

i

M t
j,i,k ∀(i, k) ∈ E , t = 1, . . . , T. (4)

D. Dependency Constraints on the Decision Variables

During each cycle t = 1, . . . , T , the traffic lights control-
ling the non-colliding paths in each set Ii` ∈ Li of each
intersection i ∈ V can be all green at the same time. For
example in Fig. 1, the traffic-lights corresponding to paths
in IC` =

{
(B,C,D) , (B,C,F)

}
can be green simultaneously.

Moreover, due to maximality of the sets Ii`, no other traffic
light associated to a path in Pi \Ii` can be green during such
time. For each i ∈ V and each Ii` ∈ Li, we introduce a
variable gIi` ∈ [0, 1], that indicates the fraction of time per
cycle in which the traffic lights in Ii` can be green6. For each
i ∈ V , the variables (gIi`)Ii`∈Li

must satisfy∑
Ii`∈Li

gIi` ≤ 1 ∀i ∈ V. (5)

The inequality in (5) indicates that it may happen that for
a certain fraction of time all the paths in Pi are blocked by
a red light. Moreover, since for every i ∈ V a path (j, i, k)
may belong to multiple elements7 of Li, then the duty cycles
must satisfy

gj,i,k ≤
∑

Ii`∈Li : (j,i,k)∈Ii`

gIi` , ∀i ∈ V, (j, i, k) ∈ P. (6)

If a path (j, i, k) belongs to only one element Ii` ∈ Li,
then the maximum duty cycle for the traffic light controlling
(j, i, k) is bounded by gIi` . If all paths have this property,
then we can simply set gIi` = max(j,i,k)∈Ii` gj,i,k. Otherwise,
the variables (gIi`)Ii`∈Li, i∈V represent a further set of control
variables that must be decided by the controller.

The controller decides the values of the duty cycles
(gj,i,k)(j,i,k)∈P and of the variables (gIi`)Ii`∈Li, i∈V . Deci-
sions are taken every ∆t minutes and are kept constants for
T traffic-light cycles of duration ∆t/T minutes in which
traffic lights alternate green and red lights.

III. CONTROL OF TRAFFIC LIGHTS

In this section, we formalize the control problem in terms
of an optimization problem cast on the traffic characteristics.
First, in Section III-A, we approach the “classic” problem,
where no additional information is shown to the drivers. In
Section III-B, we then consider the control problem in the
case in which traffic lights display an information about the
expected waiting time and the vehicles re-distribute based on

6In particular, each cycle is subdivided in non-intersecting “slots”. For
each crossing i, there are di slots, one for each set Ii

` . The variable gIi
`

represents the duration of the slot of Ii
` . The traffic light controlling the flow

on the path (j, i, k) can be green only in the slots for which (j, i, k) ∈ Ii
` .

7In Fig. 1, the sets of paths
{

(B,C,D) , (D,C,B) , (D,C,F)
}

and{
(B,C,F) , (B,C,D)

}
both belong to LC, here the path (B,C,D) belongs

to the multiple elements of LC.



the information. In Section III-C, we characterize the drivers’
response based on the expected waiting-time information.
Subsequently, in Section III-D, we formulate the optimal
control problem considering the drivers’ response as a bi-
level optimization problem.

A. Control Without Waiting-Time Information

As a further degree of freedom, we consider the case in
which the duty cycles are lower bounded by an arbitrary
designer-decided quantity gmin ≥ 0. Hence, the decision
variables satisfy

gj,i,k ≥ gmin, ∀(j, i, k) ∈ P
gIi` ≥ 0, ∀Ii` ∈ Li, i ∈ V. (7)

The controller is then obtained as a solution to the follow-
ing optimization problem

Q :


min

∑
(j,i,k)∈P

T∑
t=1

(
N t

j,i,k

)2

subject to (1), (2), (3), (4), (5), (6), (7),

in the decision variables (gj,i,k)(j,i,k)∈P and (gIi`)Ii`∈Li, i∈V .
We observe that, instead of the nonlinear constraint in (2),

we can equivalently consider the following linear inequalities

M t
j,i,k ≤ vj,i,kgj,i,k, M t

j,i,k ≤ N t−1
j,i,k. (8)

Then, Q is equivalent to

Q′ :


min

∑
(j,i,k)∈P

T∑
t=1

(
N t

j,i,k

)2

subject to (1), (3), (4), (5), (6), (7), (8),

in the decision variables (gj,i,k)(j,i,k)∈P and (gIi`)Ii`∈Li, i∈V .
A solution of Q′, is also a solution of Q and vice versa.

Thus, they are equivalent. Q′ is a convex quadratic problem
whose solution can be easily obtained with standard solvers.

B. Control With Waiting-Time Information

In this section, we suppose that traffic lights inform drivers
in every queue (j, i, k) about the time wt

j,i,k ∈ R≥0 that a
vehicle is expected to wait before crossing the intersection
during cycle t. Recall that at the end cycle t, the amount of
vehicles in the queue (j, i, k) is N t

j,i,k. Recall also that vj,i,k
is the outflow for queue (j, i, k). Hence, the total amount of
vehicles which exit queue (j, i, k) during a traffic light cycle
is gj,i,kvj,i,k. The waiting time depends on the position of
the vehicle within the queue and on the time required for
all the vehicles in front to cross the intersection. Thus, the
average waiting time displayed at the beginning of cycle t+1
to drivers in the queue (j, i, k) is given by8

wt+1
j,i,k =

1

N t
j,i,k

∫ Nt
j,i,k

0

x

gj,i,kvj,i,k
dx =

N t
j,i,k

2gj,i,kvj,i,k
. (9)

8If gmin > 0 in (7), then the waiting times wt
j,i,k are bounded. If,

instead, gmin = 0, then (9) may be saturated to ensure boundedness.

Vehicles may want to change lanes depending on the
shown value of the expected waiting time. We let βt+1

j,i,k,k′

be the fraction of vehicles of N t
j,i,k at queue (j, i, k) which

move9 toward queue (j, i, k′) after receiving the information
about the average waiting-time at the end of the cycle t at
the beginning of cycle t + 1.Clearly, the vehicles in queue
(j, i, k) can only move toward a queue (j, i, k′) which is
accessible at node i for vehicles coming from node j. In
particular, we let Cj,i := {k ∈ V : (j, i, k) ∈ P} ⊆ N i

out

be the set of all accessible nodes for vehicles going toward
node i ∈ V from node j ∈ N i

in.
Whether a vehicle decides to change lane given the new

information provided by the traffic light may depend on
many factors. We postpone the discussion to Section III-C, in
which we propose a model for the drivers average behavior,
and in the remainder of this section we treat the quantities
βt
j,i,k,k′ as parameters, only assumed to satisfy∑
k′∈Cj,i

βt
j,i,k,k′ = 1 and βt

j,i,k,k′ ≥ 0, ∀k′ ∈ Cj,i (10)

for all i ∈ V , j ∈ N i
in, k ∈ Cj,i, and t = 1, . . . , T . The

constraints (10) make βt
j,i,k,k′ probability factors, ensuring a

redistribution that preserves the amount of vehicles.
Let Ñ t

j,i,k be the number of vehicles in queue (j, i, k) at
the start of cycle t. Then,

Ñ t
j,i,k =

∑
k′∈Cj,i

N t−1
j,i,k′β

t
j,i,k′,k ∀(j, i, k) ∈ P. (11)

This is the state of the queue (j, i, k) ∈ P after re-balancing
at the start of the traffic-phase cycle t = 1, . . . , T . As only
the vehicles which are in the queue at the beginning of cycle
t can move to the next intersection, in view of (11), we thus
replace (2) and (3) with

M t
j,i,k ≤ Ñ t

j,i,k, M t
j,i,k ≤ gtj,i,kvj,i,k, ∀(j, i, k) ∈ P,

(12)
and

N t
j,i,k = Ñ t

j,i,k +N
t

j,i,k −M t
j,i,k ∀(j, i, k) ∈ P (13)

respectively.
Denote β := (βt

j,i,k,k′)i∈V,j∈N i
in,k,k

′∈Cj,i,t=1,...,T . Then,
similarly to the control design without information display
(Section III-A), for every fixed β satisfying (10) the control
policy with waiting time information is obtained as a solution
to the following optimization problem

H(β) :


min

∑
(j,i,k)∈P

T∑
t=1

(
N t

j,i,k

)2

subject to (1), (5), (6), (7), (9), (11), (12), (13)

in the decision variables (gj,i,k)(j,i,k)∈P and (gIi`)Ii`∈Li, i∈V .
We observe that H(β) is convex.

9We assume that the time the vehicles take to move towards other lanes
is negligible compared to one traffic-cycle duration.



C. Models of Drivers’ Reaction
Whether a vehicle changes lane in reaction to the displayed

information about the waiting time depends on many factors.
In this paper, we consider that for each path (j, i, k) ∈ P the
value of the variables βj,i,k,k′ , k′ ∈ Cj,i in a given cycle t is
chosen as the solution of the following optimization problem.

Dj,i,k(wt) :


min

∑
k′∈Cj,i

(
η βj,i,k,k′ log(βj,i,k,k′)

+ δβj,i,k,k′wt
j,i,k′ − βj,i,k,k

)
subject to (10)

parametrized by the waiting times wt := (wt
j,i,k)(j,i,k)∈P .

The first term in the cost function of Dj,i,k(wt) is a
negative entropy term. Minimizing this implies maximizing
dispersion. The second term, δ βj,i,k,k′wt

j,i,k′ , weights the
expected waiting time. Minimizing this term leads to an ar-
rangement towards the lanes for which the expected waiting
time is minimum. Finally, the third term,−βj,i,k,k, represents
the inertia to change lane since vehicles may have reluctance
to change lanes unless they get a larger saving in wait-times.
This term is indeed minimum when βj,i,k,k = 1, meaning
that there is no change of lane.

Solving Dj,i,k(wt) leads therefore to a compromise be-
tween dispersion, reaction to waiting times, and inertia, in
which the relative importance of the three terms over the
others is regulated by the parameters η and δ. In this respect,
we observe that, even if η and δ are much larger than one
(meaning that the inertia term has no effect), the presence
of the entropy term implies that vehicles will not always
change to lanes where the average waiting-time is smaller,
and vehicles may move towards the ones where the waiting
time is not minimum albeit with a smaller probability.
Indeed, when η decreases to zero the probability distribution
concentrates around the minimum-waiting-time lanes.

The negative entropy terms are important since vehicles
may not move towards the lane with the smallest waiting-
time because of various reasons. For instance, different vehi-
cles may have different destination or preferences for some
specific routes. Finally, we remark that negative entropy
terms are customarily used to model the decision of agents
in the context of learning theory [26], [27] where it is used
for regularization. Throughout this paper, we shall assume
that η > 0.

For fixed w, Dj,i,k(wt) has a unique solution given by the
following lemma, whose proof is omitted for reason of space

Lemma 1 For every (j, i, k) ∈ P and t = 1, . . . , T , let

qtj,i,k,k′ =

{
δ · wt

j,i,k′ If k′ ∈ Ck,i \ {k}
δ · wt

j,i,k′ − 1 If k = k′,
(14a)

then, the unique optimal solution of Dj,i,k(wt) is given by

βt
j,i,k,k′ =

exp
(
−qtj,i,k,k′/η

)
∑

z∈Ck,i exp
(
−qtj,i,k,z/η

). (14b)

Note that the probability that the vehicles will move towards
the lane associated with smaller waiting-times are higher
compared to the probability that the vehicles will move
towards the lanes associated with higher waiting-times. As
η increases, the decision becomes more random.

D. The Closed-Loop System

For fixed β, Problem H(β) has a unique optimal solution,
which produces a value of the weighting times wt according
to (9). Conversely, for fixed wt, the problem Dj,i,k(wt) has
a unique solution given by Lemma 1 for every (j, i, k) ∈ P .
These solution results in an optimal value for β. Therefore,
the closed-loop system consists in a bi-level optimization
problem obtained as the interconnection between H(β) and
(Dj,i,k(wt))(j,i,k)∈P .

In view of Lemma 1, the overall control problem can be
compactly rewritten as

K :


min

∑
(j,i,k)∈P

∑
t

(
N t

j,i,k

)2

subject to (1), (5), (6), (7), (9), (11), (12), (13), (14)

in the decision variables (gj,i,k)(j,i,k)∈P and (gIi`)Ii`∈Li, i∈V .
Unfortunately, K is not convex, and its solution cannot

be find efficiently in general. An approach to find optimal
solution to K is discussed in the next section.

IV. PATHWAYS FOR SOLVING K
As anticipated earlier in Section III-D, the overall control

problem K in presence of waiting-time information is not
convex. Nevertheless, it is given by the interconnection of
two convex problems, and the following can be concluded
by means of the Brouwer’s fixed point theorem (details are
omitted for reason of space).

Theorem 1 K admits an optimal solution.

However, Theorem 1 is only an existence result, and
it does not guarantee uniqueness of the solution, nor it
gives any analytical expression. In this section, we devise a
solution procedure based on the Banach fixed-point iteration
that can be used to solve K. Moreover, we give sufficient
conditions guaranteeing that K has a unique solution, and
that the proposed procedure finds it.

For fixed β, we denote by Γ(β) the unique solution
to H(β) satisfying (10) for all i ∈ V , j ∈ N i

in, k ∈
Cj,i, and t = 1, . . . , T . Likewise, we denote by w :=
(wt)t=1,...,T , and by Ψ(w) the unique solution to D(w) =
(Dj,i,k(wt))(j,i,k)∈P,t=1,...,T for fixed w. We recall that
every assignment g of the decision variables (gj,i,k)(j,i,k)∈P
and (gIi`)Ii`∈Li, i∈V produces a value of w according to (9),
which we denote simply by w(g).

As a consequence, every optimal solution g? of K satisfies

g? = Γ(Ψ(w(g?)), (15)

namely, it is a fixed point of the map Γ◦Ψ◦w. This, motivates
the following iterative procedure, which starts at k = 0 from
an arbitrary initial condition β̂0:



S1. Compute ĝk+1 = Γ(β̂k), the optimal solution
of H(β̂k).

S2. Compute β̂k+1 = Ψ(w(ĝk+1)) according to Lemma 1.
S3. Set k ← k + 1 and repeat from S1 until convergence,

or a stopping criterion is met.
Convergence to an optimal solution to K cannot be

established in general. Nevertheless, convergence can be
concluded under a contraction-like property of the map
Γ ◦Ψ ◦w. More precisely, we first notice that, under some
conditions, the solution maps Γ and Ψ◦w are both Lipschitz,
as established by the lemma below.

Lemma 2 Γ and Ψ are Lipschitz. If in addition gmin > 0
in (7), then also w and Ψ ◦w are Lipschitz.

Let LΓ and LΨw denote, respectively, the Lipschitz con-
stant of Γ and Ψ◦w. Then, the following theorem guarantees
that the procedure devised above always converges to an
optimal solution if LΓLΨw < 1.

Theorem 2 Suppose that LΓLΨw < 1. Then, K has a
unique optimal solution g?. Moreover, for every initial con-
dition (β̂0, ĝ0), the procedure described by S1-S3 produces
a sequence (ĝk)k∈N that converges exponentially to g?.

V. NUMERICAL RESULTS

We consider the road topology shown in Fig. 1. Note that
there are three one-directional roads. The network consists of
12 nodes, furthermore V = {A,B,C,D,E,F,G,H, I, J,K, L}
and Ne = {A,H, I, L}. The set Pi contains all the possible
paths for each node i ∈ V . Therefore, Pi = N i

in×{i}×N i
out,

∀i ∈ V . This results in 43 paths in total. The values of αi
j,k

are set so that the incoming flow is always split evenly in all
the possible outgoing paths. For example, the flow between
F and G is divided equally between the two possible options:
D and K. Therefore, αG

F,D = 0.5 and αG
F,K = 0.5. The amount

of the new vehicles that enter the network is

ζtj,i,k =

{
rt If j ∈ Ne

0 If j /∈ Ne

∀t,∀ (j, i, k) ∈ P

where rt is sampled randomly from a uniform distribution
on [0.5, 1]. Hence, no vehicle is dissipated and no additional
vehicle is created outside the terminal nodes. The maximum
flows vtj,i,k are sampled randomly from a uniform distribu-
tion on [2, 4], ∀t and ∀ (j, i, k) ∈ P . The drivers react to the
green light as explained in Lemma 1 with η = 1 and δ = 2.
The model is simulated using a 5 minutes traffic light cycle,
and it runs for 480 minutes (8 hours).

In these settings, we tested three controllers:
A. The controller Q′ (without waiting-time display) with

gmin = 10−4;
B. The controller Q′ (without waiting-time display) with

gmin = 0.05;
C. The controller K with gmin = 10−4, η = 1 and δ = 2

computed using the algorithm proposed in Section IV.
The controller A computes the traffic lights duty cycle
without considering that the drivers can change path in
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Fig. 2. The values of the mean queue length (left plot) and the flow balance
(right plot), i.e. the difference between the outgoing and the incoming
vehicles, at each time instant obtained with no control (purple line) and
with each of the three controllers A (blue line), B (green line), and C (red
line). The time series are filtered with a moving average filter with a 15
minutes window.

response to the traffic light duration in the considered time
interval. Controller B is a variation of A in which gmin is
larger. This is usually a sensible constraint to avoid the use
of excessive red times, which may frustrate drivers when not
informed about it. Finally, controller C considers the fact that
the traffic light duty cycle will influence the drivers’ decision
to change their path in the considered time interval.

All the presented controllers act every T = 5 cycles and
therefore ∆t = T · 5 = 25 minutes. In the first hour of
the simulation all the controllers are disabled and the traffic
lights durations have a fixed duty cycle, thus distributing the
time equally between all the possible paths. The controllers
assume that the values of vj,i,k and ζtj,i,k are constant for
the next T traffic cycles. These constant values are selected
as the mean of the last 60 minutes of measurements. The
waiting time is limited to be less than 50 minutes. This
constraint is not strict, and it is used mainly to avoid
computational problems that can arise when dealing with
extremely high values. The quadratic optimization problems
Q′ and H (β) are solved using YALMIP [28] equipped with
Gurobi [29] as a solver.

Fig. 2 (left plot) shows the mean queue length at each time
instant for the three controllers and for the case where no
controller is enabled. An increasing queue length means that
the network is congested and that there are more vehicles
coming in than there are coming out. Therefore, it is clear
that the controller C successfully avoids congestion, while
the other approaches fail to do so. The same conclusion can
be reached by looking at Fig. 2 (right plot), where the flow
balance of the network, i.e. the difference between the total
outgoing and incoming flows, is shown. Here, we can see
that controllers A and B have a negative flow balance. This
result in an increasing amount of vehicles inside the network
and therefore in congestion. Vice versa, controller C, after a
small transient, is characterized a flow balance that oscillates
around zero. Therefore, the amount of vehicles inside the
network does not increase, thus avoiding congestion.

Fig. 3 shows the queue length (normalized with respect
to the maximum queue) in all the 43 paths of the network.
Here, it is possible to note that the controller C manages to
keep a distribution of vehicle more balanced in the network
and to avoid the accumulation of the traffic in a single queue.
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Fig. 3. Queue length at time t = 420 minutes (7 hours) obtained using the
three controllers. The length of the queues in each scenario is normalized
with respect to the maximum queue obtained in that particular case.

VI. CONCLUSIONS AND FUTURE WORK

We consider a scenario where the waiting-time information
is provided to the drivers at the intersections and the drivers
can change lanes based on that information. By considering
the drivers’ reaction based on the traffic-light durations, we
formulate the optimal traffic-light duration selection at a
network of urban intersections as a bi-level optimization
problem and propose an iterative algorithm to solve it.
We, empirically, show that our approach can alleviate the
congestion compared to the scenario where the waiting-time
information is not provided to the drivers.

We did not consider any driver specific information such
as origin and destination while computing the response of the
driver. The characterization of the optimal traffic-light dura-
tion by incorporating such minute specifications constitutes
a future direction for research. Computing a decentralized
algorithm which can be implemented at each intersection
using only local information is also left for the future.
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entropy-regularized markov decision processes,” arXiv preprint
arXiv:1705.07798, 2017.

[27] P. Mertikopoulos, C. Papadimitriou, and G. Piliouras, “Cycles in
adversarial regularized learning,” in Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2018,
pp. 2703–2717.
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