Reconnection-powered emission

NN
\
ALMA 230 GHz
: 1300 light years J

~ VLBA 43 GHz

.0.25 Iight years
£ : EHT 230 GHz
- Lorenzo Sironi (Columbia) 0.0063 light years

Foundations of CR Astrophysics, Varenna 2022



Overarching summary

Relativistic reconnection can:

e efficiently dissipate magnetic energy (at rate ~ 0.1 ¢).

* produce non-thermal particles with hard power-law slopes.
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for a recent review, https://www.nature.com/articles/s42254-021-00419-x

What is magnetic reconnection?

 The Sweet-Parker model of magnetic reconnection.

* The regime of relativistic reconnection.

* The physics of particle acceleration in relativistic reconnection.

What can magnetic reconnection do?

 Where/How do reconnection layers form?

* Reconnection-powered particle acceleration and emission.




Magnetically-dominated
(aka “relativistic”):

Turbulence

Fluid instab.

VA ~ C



The PIC method

Particle-in-Cell (PIC) method: Move particles under

Lorentz force

It is the most fundamental way of | M e
capturing the interplay of charged
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The computational challenge:
The microscopic scales resolved by PIC simulations are much smaller than astronomical scales.

Typical length (c/wp) and time (1/wyp) scales are:
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Shock-driven reconnection in
spider pulsars

YN

with J. Cortes

Cortes & LS 2022, arXiv:2203.00023 =



What are spider pulsars?

* Millisecond pulsars in tight binary orbits with a degenerate (black widows)
or non-degenerate (redbacks) companion.
 The pulsar wind evaporates (devours) the companion.
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What are spider pulsars?

* Millisecond pulsars in tight binary orbits with a degenerate (black widows)
or non-degenerate (redbacks) companion.

 The pulsar wind evaporates (devours) the companion.
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Spectra and lightcurves

 The X-ray spectrum is hard, requiring an electron spectrum with hard slope.

p=—dlogN/dlogy ~ 1 -2
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 The X-ray lightcurve has two peaks, just before and after the pulsar eclipse.



Flow dynamics from a global PIC sim

0=10

* The pulsar wind is
terminated at a relativistic
shock that wraps around the
companion.

e Shock-driven reconnection
dissipates the magnetic
stripes.
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Particle spectrum

We explore the whole range of latitudes
where the wind is striped (o from 0 to 1)

* The particle spectrum is
hard, with p~7.4, in the range

Yo SV S Vo0

as a result of shock-driven
reconnection.
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Synchrotron spectrum
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We explore the whole range of latitudes
where the wind is striped (o from 0 to 1)
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* In the corresponding
frequency range, the
synchrotron spectrum is hard,
with a slope consistent with
X-ray observations.



Lightcurve

We explore the whole range of latitudes
where the wind is striped (o from 0 to 1)

normal(i)z;g phase . e For a~0, the lightcurve shows

— a0 ] two peaks, just before and after
Il the pulsar eclipse.

. .
y .
. L e 1 T T ™7
: : 0.3-8.0 keV
* g = .
- .
. 5 : I~ T
- : .
. . : ] ! |
- . .: . .
¢ .. B - .
» ¢ | 90 + 4
* : =
. - .
5 . . N -
\ : : . ] | L . L
- E : ‘ . - 80 o -
- . | N | -s (—
- . g
. 70 | 1] 1
: 5 . T T
* : : 60 = =
- . . 1 |
. . :
: : . 50 |- .
. N "y
! ! 1 ! ! !
—7/2 0
40 | L 1 |
0.5 1.0 125 15 2.

. 0 0.25 .
orbital phase Orbital Phase

vF, [arb. units]
=
o




Fermi acceleration
* For a~0, particles accelerated by shock-driven reconnection can be
injected in the good old Fermi process at the termination shock.
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Fermi acceleration
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e For a~0, particles
accelerated by shock-
driven reconnection
can be injected in the
Fermi process at the
termination shock.



Qverarching summary

Relativistic reconnection can:

e efficiently dissipate magnetic energy (at rate ~ 0.1 c).

* produce non-thermal particles with hard power-law slopes.

* serve as injection process for subseguent (non-reconnection) acceleration:
e.g., Fermi acceleration at shocks, stochastic acceleration in turbulence,
shear acceleration at jet boundaries.

* Imprint strong pitch-angle anisotropy.

* produce trans-relativistic bulk motions.



Reconnection-powered emission
in jets and black hole coronae
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(1) Blazars and AGN jets.

e Can reconnection explain the
multi-wavelength and multi-
timescale blazar emission?

(2) Boundary layers of relativistic jets.

|« Can reconnection explain the limb-
brightened appearance of AGN jets?

(3) Magnetized coronae of highly
accreting BHs in X-ray binaries.

Accretion
Disk

Accretion
Disk

Black
Hole

e Can radiative reconnection explain the
hard-state X-ray emission?
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1. Relativistic reconnection in

Reconnection ) *  Turbulence

with L. Comisso, E. Sobacchi and J. Nattila o>1

Comisso & LS 2018, PRL, 121, 255101
Comisso & LS 2019, ApJ, 886, 122

Sobacchi, Nattila & LS 2021, MNRAS,
503, 688



Why does reconnection occur?
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Blazar jets

Blazars: jets from Active Galactic Nuclei pointing along our line of sight

e broadband spectrum, from radio to y-
rays (and even TeV energies)

* l[ow-energy synchrotron +
high-energy inverse Compton (IC)

Log vL, [erg s!]

* high degree of radio and optical

polarization
15 20

(Ghisellini+ 17) Log v [Hz]



often with hard slope
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Blazar emission

(A) power-law spectra of the emitting particles,

Y~ 30

_' At v < 30 injection in reconnection
leads to o-dependent slopes, as hard |
i as p=1. |

At v = 30 3D reconnection leads to
a o-independent slope of p=2.



Blazar emission

(B) optical polarization rotations t (C) orphan® gamma-ray flares
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Large-angle polarization rotations Q Gamma-ray flares with no optical
during optical day-long flares. § counterpart.




(C) “orphan” gamma-ray flares
with L. Comisso, E. Sobacchi and J. Nattila

Comisso & LS 2018, PRL, 121, 255101
Comisso & LS 2019, ApJ, 886, 122
Sobacchi, Nattila & LS 2021, MNRAS,
503, 688
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Gamma-ray flares with no optical
counterpart.



Reconnection within turbulence

Reconnection is a natural by-product of magnetically-dominated turbulence
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Fly-through J; along z direction
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A representative high-energy particle

Two stages of acceleration

2D : 5 00 o : : 0.5
no cooling '

| Zoom-in

(Comisso & Sironi 18)



3D

no cooling

(Comisso & LS 19)

* Particle injection occurs quickly (¢;,; ~ 10/w), at reconnection layers.

inj

* This is followed by further acceleration (but slower, t,..; ~ [/c) by
scattering off the turbulent fluctuations.




The two stages of acceleration

Work by parallel and perp E field: {4 NEGEK fo

(Comisso & LS 19;
Wong+19)

e Injection by in reconnection layers.

* Then, acceleration by via scattering off turbulent fluctuations.



Particle anisotropy

(Comisso & LS 19)

e Lower energy particles (near injection) are mostly aligned with B field.
* Higher energy particles lie mostly in a plane perp to B.




IC cooling in blazar jets
We parameterize |C cooling losses via a critical Lorentz factor ycr
(balancing acceleration with IC losses):

4 2

6E're(: — §UTfycrUrad Erec = nrecBO (nrec ~ 01)

In blazar jets f' In our simulations
1. Yo ~ 0 ~10°=10° { 1. 75 ~ 0 = 160

2. “Yer > Yo 2. Yer Z Yo

N

— injection up to Y, is unaffected by cooling since tinj « tcool
— acceleration to » vy is prohibited by cooling since tscatt > tcool

3. /YCOOI g 0.01 - O.lfyo- : 3. /YCOOI g 0.0lfyo-



Particle anisotropy

with cooling

(Comisso & LS 19)

e Lower energy particles (near injection) are mostly aligned with B field.
* Higher energy particles lie mostly in a plane perp to B.



Synchrotron and IC emission

* Small pitch angles suppress the synchrotron emission, Py, sin? o

ct/1

(Sobacchi + 21)

e Even thOugh UB/Urad~1, we find that Lsync/L|C~1O'3.

— a first-principles explanation for orphan gamma-ray flares!



Qverarching summary

Relativistic reconnection can:

e efficiently dissipate magnetic energy (at rate ~ 0.1 c).

* produce non-thermal particles with hard power-law slopes.

* serve as injection process for subsequent (hon-reconnection) acceleration:
e.g., Fermi acceleration at shocks, stochastic acceleration in turbulence,
shear acceleration at jet boundaries.

* Imprint strong pitch-angle anisotropy.

* produce trans-relativistic bulk motions.



* A system with high-sigma reconnection has field B and size L.
What is the max energy of a synchrotron photon in this system?
Account for the effect of the particle anisotropy.

* A striped pulsar wind has magnetic field B and wavelength A.
What is the minimum energy that shock-driven reconnection
should provide, so that particles can be injected into Fermi
acceleration?

* Propose an alternative explanation for orphan flares in blazars.
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role of pitch angle anisotropy
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2. KH-driven relativistic reconnection
at jet boundaries

Reconnection ‘ ' Fluid instab. ‘,

with M. Rowan and R. Narayan o>1

0=1
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i & )
LS et al. 2021, ApJL, 907, L44 , | /k
e

a+20)



The boundary of M87 jet
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(Wong+21; see also Chatterjee+19)

What is the nonlinear outcome of KH at the jet boundary?



The jet / ambient system

2D PIC with TRISTAN-MP (Spitkovsky 2005)

X Electron-positron plasma Electron-ion plasma
F()B() = 1.3 ; Stationary

' Dominant By (poloidal) and B; (toroidal) "- Plasma-pressure
' { dominated, weak B

§ Relativistic bulk motion:

Field obliquity



Kelvin-Helmholtz (KH) instability
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* For realistic jet and ambient plasma conditions, the interface is KH unstable.

 The KH growth rate matches well with MHD expectations
[which confirms that we start from ~ MHD-scale initial conditions]



KH — reconnection

Magnetic reconnection is a natural by-
product of the nonlinear KH evolution.

0 200 400
s [e/w,) (Sironi+2021)




KH — reconnection — particle acceleration
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The acceleration mechanism

(1) The early acceleration
stages (injection) are powered
by E/, at reconnection layers.
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The acceleration mechanism

(1) The early acceleration
stages (injection) are powered
by E/ at reconnection layers.

(2) Reconnection-accelerated
particles then experience
shear-driven acceleration.
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Qverarching summary

Relativistic reconnection can:

e efficiently dissipate magnetic energy (at rate ~ 0.1 c).

* produce non-thermal particles with hard power-law slopes.

* serve as injection process for subseguent (non-reconnection) acceleration:
e.g., Fermi acceleration at shocks, stochastic acceleration in turbulence,
shear acceleration at jet boundaries.

* Imprint strong pitch-angle anisotropy.

* produce trans-relativistic bulk motions.



3. Radiative relativistic reconnection
in black hole X-ray coronae

with N. Sridhar and A. Beloborodov
P (&

Sridhar, LS et al. 2022, arXiv:2203.02856
Sridhar, LS et al. 2021, MNRAS, 507, 5625
LS & Beloborodov 2020, ApJ, 899, 52




The hard state of X-ray binaries

(Parfrey+15) (ﬁipperda+20)

E F; [keV cm™2 s7!]

Cygnus X-1

Hard state: interpreted as thermal

Comptonization by “coronal” plasma with 1000 104
electron temperature ~100 keV. (McConnell+2002)

But: how can the electrons stay hot?




Radiative reconnection

We parameterize |C cooling via a critical Lorentz factor ycr (balancing
acceleration with IC losses):
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e Strong IC cooling suppresses particle acceleration. see also Werner+19)

* For strong cooling, the particle spectrum is dominated by plasmoid bulk motions.



The radiative plasmoid chain
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The total IC power is dominated by the IC power resulting from trans-rel bulk motions.




~1 0
10 10 (LS & Beloborodov 20;
-1 Sridhar, LS & Beloborodov
Ve 21, 22)

* The bulk energy spectrum resembles a Maxwellian with T~100 keV

— Bulk Comptonization in the plasmoid chain mimics thermal Comptonization




A reconnection model for hard X-rays

trans-relativistic

hard X-rays via f outflow (£2)

IC-cooled e
in plasmoids




X-ray photon spectrum

-~ BeppoSAX
CGRO/OSSE

Energy |[keV]

(Sridhar, LS & Beloborodov 21, 22)




Overarching summary

Relativistic reconnection can:

e efficiently dissipate magnetic energy (at rate ~ 0.1 c).

* produce non-thermal particles with hard power-law slopes.

* serve as injection process for subsequent (non-reconnection) acceleration:
e.g., Fermi acceleration at shocks, stochastic acceleration in turbulence,
shear acceleration at jet boundaries.

* Imprint strong pitch-angle anisotropy.

* produce trans-relativistic bulk motions.
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