
Strudel: Algorithmic Patterns for the Web

Felix Roos
Lembach, France

flix91@gmail.com

Alex McLean
Then Try This

Sheffield/Penryn, UK
alex@slab.org

1. INTRODUCTION
This paper introduces Strudel (or sometimes StrudelCy-

cles), an alternative implementation of the Tidal (or Tidal-
Cycles) live coding system, using the JavaScript program-
ming language. Strudel is an attempt to make live cod-
ing more accessible, by creating a system that runs en-
tirely in the browser, while opening Tidals approach to algo-
rithmic patterns (Mclean 2020) up to modern audio/visual
web technologies. The Strudel REPL is a live code edi-
tor dedicated to manipulating Strudel patterns while they
play, with builtin visual feedback. While Strudel is writ-
ten in JavaScript, the API is optimized for simplicity and
readability by applying code transformations on the syntax
tree level, allowing language operations that would other-
wise be impossible. The application supports multiple ways
to output sound, including Tone.js, Web Audio nodes, OSC
(Open Sound Control) messages, Web Serial and Web MIDI.
The project is split into multiple packages, allowing granu-
lar reuse in other applications. Apart from TidalCycles,
Strudel draws inspiration from many prior existing projects
like TidalVortex (McLean et al. 2022), Gibber (Roberts and
Kuchera-morin 2012), Estuary (Ogborn et al. 2017), Hydra
(Jack [2022] 2022), Ocarina (Solomon [2021] 2022) and Feed-
forward (McLean 2020).

2. PORTING FROM HASKELL
The original Tidal is implemented as a domain specific

language (DSL), embedded in the Haskell pure functional
programming language, taking advantage of Haskells terse
syntax and advanced, strong type system. Javascript on
the other hand, is a multi-paradigm programming language,
with a dynamic type system. Because Tidal leans heavily
on many of Haskells more unique features, it was not al-
ways clear that it could meaningfully be ported to a multi-
paradigm scripting language. However, this already proved
to be the case with an earlier port to Python [TidalVortex;
McLean et al. (2022)], and we have now successfully im-
plemented Tidals pure functional representation of patterns
in Strudel, including partial application, and functor, ap-
plicative and monad structures. Over the past few months
since the project started in January 2022, a large part of

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Felix Roos and Alex McLean.

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Felix Roos and Alex McLean.

Tidals functionality has already been ported, including its
mini-notation for polymetric sequences, and a large part of
its library of pattern manipulations. The result is a terse
and highly composable system, where just about everything
is a pattern, that may be transformed and combined with
other patterns in a myriad of ways.

3. REPRESENTING PATTERNS
Patterns are the essence of Tidal. Its patterns are abstract

entities that represent flows of time as functions, adapting
a technique called pure functional reactive programming.
Taking a time span as its input, a Pattern can output a set
of events that happen within that time span. It depends on
the structure of the Pattern how the events are located in
time. From now on, this process of generating events from
a time span will be called querying. Example:

const pattern = sequence(c3, [e3, g3]);
const events = pattern.query(0, 1);
console.log(events.map(e => e.show()))

In this example, we create a pattern using the sequence
function and query it for the time span from 0 to 1. Those
numbers represent units of time called cycles. The length of
one cycle depends on the tempo, which defaults to one cycle
per second. The resulting events are:

[{ value: 'c3', begin: 0, end: 1/2 },
{ value: 'e3', begin: 1/2, end: 3/4 },
{ value: 'g3', begin: 3/4, end: 1 }]

Each event has a value, a begin time and an end time,
where time is represented as a fraction. In the above case,
the events are placed in sequential order, where c3 takes the
first half, and e3 and g3 together take the second half. This
temporal placement is the result of the sequence function,
which divides its arguments equally over one cycle. If an
argument is an array, the same rule applies to that part of
the cycle. In the example, e3 and g3 are divided equally
over the second half of the whole cycle.

In the REPL, the user only has to type in the pattern
itself, the querying will be handled by the scheduler. The
scheduler will repeatedly query the pattern for events, which
then will be used for playback.

4. MAKING PATTERNS
In practice, the end-user live coder will not deal with con-

structing patterns directly, but will rather build patterns



Figure 1: Screenshot of the Strudel editor, including piano-
roll visualisation.

using Strudels extensive combinator library to create, com-
bine and transform patterns.

The live coder may use the sequence function as already
seen above, or more often the mini-notation for even terser
notation of rhythmic sequences. Such sequences are often
treated only a starting point for manipulation, where they
then are undergo pattern transformations such as repetition,
symmetry, interference/combination or randomisation, po-
tentially at multiple timescales. Because Strudel patterns
are represented as pure functions of time rather than as data
structures, very long and complex generative results can be
represented and manipulated without having to store the
resulting sequences in memory.

5. PATTERN EXAMPLE
The following example showcases how patterns can be uti-

lized to create musical complexity from simple parts, using
repetition and interference:

"<0 2 [4 6](3,4,1) 3*2>".scale('D minor')
.off(1/4, scaleTranspose(2))
.off(1/2, scaleTranspose(6))
.legato(.5)
.echo(4, 1/8, .5)
.tone((await piano()).chain(out()))
.pianoroll()

The pattern starts with a rhythm of numbers in mini no-
tation, which are interpreted inside the scale of D minor.
Without the scale function, the first line can be expressed
as:

"<d3 f3 [a3 c3](3, 4, 1) g3*2>"

This line could also be expressed without mini notation:

slowcat(d3, f3, [a3, c3].euclid(3, 4, 1), g3.fast(2))

Here is a short description of all the functions used:

• slowcat: play elements sequentially, where each lasts
one cycle

• brackets: elements inside brackets are divided equally
over the time of their parent

• euclid(p, s, o): place p pulses evenly over s steps,
with offset o (Toussaint 2005)

• fast(n): speed up by n. g3.fast(2) will play g3 two
times.

• off(n, f): copy each event, offset it by n cycles and
apply function f

• legato(n): multiply duration of event with n
• echo(t, n, v): copy each event t times, with n cycles

in between each copy, decreasing velocity by v
• tone(instrument): play back each event with the

given Tone.js instrument
• pianoroll(): visualize events as midi notes in a pi-

anoroll

6. WAYS TO MAKE SOUND
To generate sound, Strudel supports different outputs:

• Tone.js
• Web Audio API
• WebDirt, a js recreation of Tidals Dirt sample engine
• OSC via osc-js
• MIDI via WebMIDI

Tone.js proved to be limited for the use case of Strudel,
where each individual event could potentially have a com-
pletely different audio graph. While the Web Audio API
takes a fire-and-forget approach, creating a lot of Tone.js
instruments and effects causes performance issues quickly.
For that reason, we chose to search for alternatives.

Strudels Web Audio API output creates a new audio graph
for each event. It currently supports basic oscillators, sample
playback, envelopes, filters and an experimental support for
soundfonts.

WebDirt (Ogborn [2016] 2022) was created as part of the
Estuary Live Coding System (Ogborn et al. 2017), and
proved to be a solid choice for handling samples in Strudel
as well.

Using OSC, it is possible to send messages to SuperDirt
(SuperDirt [2015] 2022), which is what Tidal does to gen-
erate sound. The downside of using OSC is that it requires
the user to install SuperCollider and its sc3plugins library,
which can be difficult.

The MIDI output can be used to send MIDI messages
to either external instruments or to other programs on the
same device. Web MIDI is currently only supported on
Chromium-based browsers.

7. FUTURE OUTLOOK
The project is still young, with many features on the hori-

zon. As general guiding principles, Strudel aims to be

1. accessible
2. consistent with Tidals approach to pattern
3. modular and extensible

For the future, it is planned to integrate alternative sound
engines such as Glicol (Lan [2020] 2022) and Faust (Faust -
Programming Language for Audio Applications and Plugins
[2016] 2022). To improve compatibility with Tidal, more
Tidal functions are planned to be ported, as well as full
compatibility with SuperDirt. Besides sound, other ways
to render events are being explored, such as graphical, and
choreographic output. We are also looking into alternative



ways of editing patterns, including multi-user editing for net-
work music, parsing a novel syntax to escape the constraints
of javascript, and developing hardware/e-textile interfaces.

8. LINKS
The Strudel REPL is available at https://strudel.

tidalcycles.org, including an interactive tutorial. The
repository is at https://github.com/tidalcycles/strudel, all
the code is open source under the GPL-3.0 License.

9. ACKNOWLEDGMENTS
Thanks to the Strudel and wider Tidal, live coding, we-

baudio and free/open source software communities for in-
spiration and support. Alex McLeans work on this project
is supported by a UKRI Future Leaders Fellowship [grant
number MR/V025260/1].

References
Faust - Programming Language for Audio Applications and

Plugins. (2016) 2022. C++. GRAME. https://github.
com/grame-cncm/faust.

Jack, Olivia. (2022) 2022. Hydra. https://github.com/
ojack/hydra.

Lan, Qichao. (2020) 2022. Chaosprint/Glicol. Rust. https:
//github.com/chaosprint/glicol.

Mclean, Alex. 2020. Algorithmic Pattern. In Proceedings
of the International Conference on New Interfaces for
Musical Expression, 265--270. Birmingham, UK. https:
//zenodo.org/record/4813352.

McLean, Alex. 2020. Feedforward. In Proceedings of New
Interfaces for Musical Expression. Birmingham. https:
//zenodo.org/record/6353969.

McLean, Alex, Raphaël Forment, Sylvain Le Beux,
and Damián Silvani. 2022. TidalVortex Zero.
In Proceedings of the 7th International Confer-
ence on Live Coding. Limerick, Ireland: Zenodo.
https://doi.org/10.5281/zenodo.6456380.

Ogborn, David. (2016) 2022. Dktr0/WebDirt. JavaScript.
https://github.com/dktr0/WebDirt.

Ogborn, David, Jamie Beverley, Luis Navarro del Angel,
Eldad Tsabary, and Alex McLean. 2017. Estuary:
Browser-Based Collaborative Projectional Live Coding
of Musical Patterns. In Proceedings of the International
Conference on Live Coding, 11. Morelia.

Roberts, Charles, and Joann Kuchera-morin. 2012. Gibber:
Live Coding Audio in the Browser. In In Proceedings of
the 2012 International Computer Music Conference.

Solomon, Mike. (2021) 2022. Purescript-Ocarina. Pure-
Script. https://github.com/mikesol/purescript-ocarina.

SuperDirt. (2015) 2022. SuperCollider. musikinformatik.
https://github.com/musikinformatik/SuperDirt.

Toussaint, Godfried. 2005. The Euclidean Algorithm
Generates Traditional Musical Rhythms. In In Proceed-
ings of BRIDGES: Mathematical Connections in Art,
Music and Science, 4756. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.62.231.

https://strudel.tidalcycles.org
https://strudel.tidalcycles.org
https://github.com/tidalcycles/strudel
https://github.com/grame-cncm/faust
https://github.com/grame-cncm/faust
https://github.com/ojack/hydra
https://github.com/ojack/hydra
https://github.com/chaosprint/glicol
https://github.com/chaosprint/glicol
https://zenodo.org/record/4813352
https://zenodo.org/record/4813352
https://zenodo.org/record/6353969
https://zenodo.org/record/6353969
https://doi.org/10.5281/zenodo.6456380
https://github.com/dktr0/WebDirt
https://github.com/mikesol/purescript-ocarina
https://github.com/musikinformatik/SuperDirt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.231

	Introduction
	Porting from Haskell
	Representing Patterns
	Making Patterns
	Pattern Example
	Ways to make Sound
	Future Outlook
	Links
	Acknowledgments
	References

