
Exploring Jazz Standards with Web Visualisation for
Improvisation Training

Maximos
Kaliakatsos-Papakostas

School of Music Studies
Aristotle University of

Thessaloniki
maxk@mus.auth.gr

Konstantinos Velenis
School of Music Studies

Aristotle University of
Thessaloniki

kvelenis@mus.auth.gr

Konstantinos Giannos
School of Music Studies

Aristotle University of
Thessaloniki

kongiannos@mus.auth.gr

Emilios Cambouropoulos
School of Music Studies

Aristotle University of
Thessaloniki

emilios@mus.auth.gr

ABSTRACT
The availability of music data is increasing, along with the
increase in computer capabilities, internet bandwidths and
enhancement of web-related technologies. This increase cre-
ates an overload of information. While methods that allow
exploration and retrieval of music evolve to compensate for
this overload, such methods focus on commercial services
and mainly involve community-driven data processing. This
paper presents a methodology that focuses on the direction
of content-based exploration of music material in symbolic
form, for facilitating the retrieval of Jazz standards for mu-
sic improvisation training. The objective is to allow users to
visualise a large dataset of Jazz standards with colourful 3D
representations, while setting checkpoints on specific pieces
for making the exploration more efficient. The underlying
methods employ harmonic similarity metrics, which is an im-
portant factor of Jazz improvisation training, and the pre-
sented implementation incorporates custom web technolo-
gies that improve the educational perspective of the music
playback experience. Evaluation of the UI and UX provides
pointers for future improvements.

1. INTRODUCTION
Improvisation is an integral part of the typical Jazz stud-

ies curriculum. Learning chord types and chord progression
patterns, scales and tonalities are only some of the key har-
monic elements that become useful for creating a palette
with available tools for a Jazz (or any) improvisor. It is often
suggested to listen to music and study genre-specific pieces
to familiarise oneself with the style in question [18]. Having
a tool that assists with this exploratory process of expanding
one’s repertoire would greatly improve the learning curve of
a Jazz student in improvisation. This is the challenge ad-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, July 6–8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

dressed by the paper at hand: to take advantage of the ben-
efits offered by the increase of available data in music and
create important opportunities for making music education
more engaging, effective and adapted to the specific needs
and interests of both music teachers and students. In some
cases, however, data availability becomes overwhelming and
methods become necessary for helping users to retrieve data
they need.

In huge datasets, identifying the user needs is not insignif-
icant; some starting point of user preferences can be help-
ful for developing algorithms that present users with por-
tions of data that might be relevant. Typically, music rec-
ommendation systems implement these functions through
community-based similarity metrics, e.g., using collabora-
tive filtering [15], and/or techniques for calculating similar-
ity distances from the pieces’ content, e.g., using feature
extraction with neural networks [25]. Such systems usually
operate under music streaming services, like Spotify or Pan-
dora, and they are tailored to suggest tracks. Approaches
based on community-driven aggregations, however, are not
necessarily effective for music education, because in some
cases the numbers of users and data entries are not always
sufficiently large – but neither can data be too little. Such
an example is the case of jazz standards and improvisation
training. Here, it is often that musicians with diverse and in-
dividual backgrounds, become students at jazz, with already
obtained specializations in playing other styles of music. In
this example, it is important for them or their teachers to
be able to explore available data and find the jazz standards
that are best suited for each individual student, based on
the content of each piece.

The use case scenario is that the user (student or teacher)
can quickly browse through data, having as checkpoints one
or two jazz standards that they are familiar with. During
the exploration, the users need to be able to quickly select
and listen to a real-time rendered jazz trio accompaniment
piece. Additionally, all the pieces need to be available dur-
ing the exploration, as well as organized visually in such a
way, where “similar” pieces are placed closer together. “Sim-
ilarity” is a commonly used concept in the discourse of music
recommendation or large music databases. It often requires

a context in order to be able to determine claim whether
two objects are similar [10, 9]. When dealing with musi-
cal pieces, determining similarity is a very complex process,
as it can be a very demanding task to recall musical pieces
with a commonality, especially for a music student who is
inexperienced.

Some approaches to incorporate content-based explo-
ration of large musical datasets include Every Noise at
Once project by EchoNest 1, a scatterplot is plotted where
all possible musical genres found in Spotify are organ-
ised in a 2-dimensional map. They describe one dimen-
sion as organic versus mechanical/electric and the other as
dense/atmospheric versus spiky/bouncy. Other attempts vi-
sualise a database on a 2D space with regards to assigned
moods and genres [27]. A different approach proposes a
Self-Organising Map constructed by a neural network fol-
lowing perceived sound similarity patterns [23]. An inno-
vative interface arranges music databases in 3-dimensional
virtual landscapes [16, 17]. According to a clustering of mu-
sic pieces, virtual islands are generated each dedicated to a
musical genre; close distances correspond to similar pieces
belonging to the same style, and different ones are separated
by large distances. They offer several modes, including the
possibility for the user to listen to some specific songs, or
to see typical words describing the music and explicit genre
tags, or related images. A similar visualisation user interface
has been recently proposed, alternating the virtual islands
with city tower blocks [24].

Apart from the features related to the musical signal that
are detrimental for similarity associations, there are ele-
ments found in the music score that are also relevant in
this process. Such data ranges from information about the
used notes, pitches, rhythm, tonalities, to chords and chords’
functions, among others. In the harmony domain, the chord
representation schema that is the most prevalent is the one
used in Music Information Retrieval Evaluation eXchange
(MIREX) [1] following the systematic syntax proposed by
Harte [13, 12]. More recently, another representation has
been developed which tackles more complicated pitch com-
binations accounting for idiom-independency [3, 2] and more
detailed consonance/dissonance gradations [8], the General
Chord Type (GCT). Additionally, there are studies with
regards to modelling the functional element of tonal har-
mony [20, 4]. All this encoded information can be translated
as features for harmonic similarity purposes [22, 5]. Chord
progressions have been compared in terms of their distance
to some tonic [6, 7], in terms of their alignment [11], or a
generative grammar approach [5].

Although a great variety of exploring large music datasets
exists, most of these methods are tailored to listeners and
not students that learn how to perform a piece or some style
of music. Typically, in Jazz music practices, it is expected
to know a large array of standards, however, for an inex-
perienced student, this task is complicated and difficult to
delve into. The purpose of this paper is to examine an ar-
chitecture which enables a visually feasible exploration of
Jazz standards. It supports setting checkpoints on specific
pieces, familiar to the user, by employing harmonic simi-
larity metrics, the user will be allowed to effortlessly browse
the dataset of Jazz standards. Also, this architecture can be
generalised to specialised large (musical or other) databases

1https://everynoise.com

that can incorporate sequential data. This paper describes
a 3D and RGB visualisation method that is based on com-
bination of existing methods for sequential data and dimen-
sionality reduction, emphasizing on the architecture, along
with a custom CSV protocol accompanied by a custom web
player.

2. METHOD DESCRIPTION
An overview of the processes and systems that lead to the

audiovisual results is illustrated in Figure 1. Three distinct
parts are involved: a) Preprocessing is the first step, where
chord chart data are rendered to 3D coordinates and RGB
values and to a CSV protocol based on MIDI that preserves
chord information (root, type and position); b) Server is
the system that hosts and serves the visualisation and CSV-
MIDI to the UI; and c) Client is the web interface that
hosts visualisation and CSV-MIDI playback. Red arrows in
Figure 1 show user interaction for selecting a piece, based
on 3D and RGB visualsation of data, and system responses
to it, which results in listening to the selected piece.

2.1 Preprocessing
The preprocessing step is necessary in the current imple-

mentation for avoiding intense computation on generating
graphics and music data. Regarding the visualisation part,
except from the computation intensity aspects, there are
also open scientific questions regarding the reduction of rep-
resentation of entire chord charts to 3D data. The paper
at hand incorporates and presents a novel method for such
a reduction, however, the focus is not on evaluating the re-
duction per se; this paper focuses on the framework, i.e., the
“3D and RGB Rendering” should be considered as a generic
placeholder for such methods. The same holds for the “Jazz
Trio CSV Rendering”: any method can be considered that
complies with the protocol presented herein.

2.1.1 Visualisation data preperation
Purpose of the visualisation step is to generate visualisa-

tions of a large music data base of jazz standard chord charts
(1065 items) where each individual chart is represented by
a coloured point in a 3D space. The position and color of
point needs to be musically relevant, taking under consider-
ation all aspects of music represented in a chart, e.g., chords,
position of chords, time signature, tempo, tonality, etc. The
available chart data are represented in string format as in
the following example:

style~Open Swing,tempo~160,tonality~C,bar~4/4,c c
hord~C\u03947@0.0,bar~4/4,chord~B\u00f87@0. c
0,chord~E7b9@2.0,bar~4/4,chord~Am7@0.0,chor c
d~D7@2.0,bar~4/4,chord~Gm7@0.0,chord~C7@2.0 c
,bar~4/4,chord~F7@0.0,bar~4/4,chord~Fm7@0.0 c
,chord~B-7@2.0,bar~4/4,chord~Em7@0.0,chord~ c
A7@2.0,bar~4/4,chord~E-m7@0.0,chord~A-7@2.0 c
,bar~4/4,chord~Dm7@0.0,bar~4/4,chord~G7@0.0 c
,bar~4/4,chord~C\u03947@0.0,chord~A7b9@2.0, c
bar~4/4,chord~Dm7@0.0,chord~G7@2.0,end

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The method that has been developed for this application,
integrates all information of the chart strings. An overview
of the method is shown in Figure 2. This method involves a
neural network with:

• two consecutive dense layers (256 and 512 units, Selu
activation) connected to

ClientPreprocessing Server

Jazz Chord
Charts

3D &
RGB Rendering

Jazz Trio CSV
Rendering

Visualisation

User

Visualisation data

CSV-MIDI data
CSV Player

Find by
name

Chord labels
during playback

Figure 1: Overview of systems and processes. Red arrows indicate forwarding of events and data after user interaction.

• one Long Short-Term Memory (LSTM) [14] layer with
128 units connected to

• two consecutive dense layers (first with 128 units and
the second with size-of-dictionary units).

This network learns to generate all chart strings in the
database autoregressively, character by character. After
training on a string that comprises a concatenation of all
chart string, each chart string is passed separately from the
network. After that, the internal cell states (128 values) and
the hidden states (128 values) are concatenated, leading to
a 256-dimensional representation of each chart string.

The next step is to generate a 3D reduction of the 256-
dimensional representation of each chart; this is performed
with the t-SNE algorithm [26]. The resulting 3D representa-
tions create clusters of charts that are not, however, clearly
visible in the resulting web page. To this end, an additional
step is proposed, the color clustering of points with the aid
of distinct colors differentiation; these clusters are computed
with the k-means algorithm [19]. Additionally, it is proposed
to allow the user to adjust the granularity of clustering, and
therefore the size of the similarly colored clusters, by hav-
ing prepared clustering results from iterative applications of
k-means for incremental numbers of clusters (from 2 to 20).
The RGB values of the color that represents each cluster, is
computed as a function of the 3D coordinates of the cluster
centroid. All visualisation data (i.e., 3D coordinates from
t-SNE and RGB cluster color values from k-means) a com-
puted on the preprocessing stage and are readily available
on the server. The implementation details on how the UI is
built, are given in Section 2.2.1

2.1.2 CSV-MIDI rendering
Chart information needs to be rendered to a jazz trio or-

chestration, i.e., to specific notes for drums, bass and pi-
ano. This is performed by employing an implementation
the Genius Jam Tracks (GJT)2 music generation algorithm.
GJT is an iOS application that generates backing tracks of
given or user-generated jazz chord charts. Those algorithms
are using AI and human played or annotated music data
for generating jazz trio renderings in different harmonic and
rhythm complexities. Harmonic complexity changes the un-
derlying chords in a given jazz chart; similarly to the way

2https://geniusjamtracks.com/

a jazz musician performs substitutions of chords, GJT in-
creases the harmonic pluralism in a given chord progression
as the harmonic complexity increases, leading to more un-
expected chord substitution. Increasing rhythm complexity
changes the palette, the duration and the frequency that
polyrhythms occur, i.e., the engagement of instruments in
rhythmic patterns that “drift” from the tactus related to the
time signature of the piece. Harmonic and rhythm complex-
ities are defined by two respective integers with a minimum
value 1 and maximum 5.

The exact algorithm of GJT is proprietary and, also, out-
side the scope of this paper. Regarding the implementation,
which is the subject of interest in this paper, an implementa-
tion of the GJT trio rendering module has been integrated in
a python wrapper that has endpoints for receiving requests
about the title of the piece to be rendered, along with two in-
tegers for the desired harmonic and rhythm complexity. The
responses to such requests are CSV files that contain infor-
mation about notes, chords, bar-related information includ-
ing time signature, style (e.g., swing, mambo, bossa nova
etc.), section (e.g., A or B) and score-related information
including tonality and tempo. A custom protocol has been
designed and proposed for specifying the form of the in-
formation included in this CSV file for the application un-
der examination. This protocol expands the standard MIDI
protocol to include information about aspects of the chart
that are necessary for conveying to the user chart-related in-
formation in real-time during playback; e.g., to show what
chord corresponds to the notes that are being played at any
instance.

Table 1 presents the specifications of the protocol (called
CSV-MIDI) with examples. The identifiers in note event
information refer to the instrument and/or their function
in the piece. The available values (in the context of the
presented jazz trio application) are: Piano, Bass, Drums,
Metro and Precount. Metro refers to metronome events that
are rendered as drums notes, if the user selects to activate
metronome ticks, while Precount is also rendered as drums
notes. Precount, if activated by the user, is an introductory
drums part that starts before the actual piece, preparing
the user for the exact initiation time of the piece. Overall
chart information, always in the first row of the CSV file,
includes information about the precount length (in quarter
note length units); if the user deactivates precount, playback

Preprocessing Server

3D-RGB
transformation

States-based transformationTraining

OutputInput

LSTM-based
architecture

Jazz Chord
Charts

Character-level
sequence learning

chart 1 string
chart 2 string

chart N string

...

chart 1 states
chart 2 states

chart N states

...

LS
TM

-b
as

ed

ar
ch

ite
ct

ur
e 3D t-SNE

Iterative
K-means

3D
Coordinates

RGB Class
ValuesNx256

Figure 2: Preprocessing pipeline for generating 3D and RGB visualisation data for the server out of jazz chord string sequences.

Table 1: CSV-MIDI protocol and examples.
Overall chart information - first row

Spec. Tonality Style Time sig. precount lgth. Tempo
Example C Swing 4/4 8 130
Bar event information

Spec. Id.∼Index@onset in piece Style Time sig. Section Tempo
Example Bar∼0@0.00 Swing 4/4 A 130
Chord event information

Spec. Identifier Label Root-type expression Onset in piece Onset in chart
Example Chord Dm7 D[0_3_7_10] 496 112
Note event information

Spec. Identifier Pitch (MIDI) Onset in piece Duration Velocity (MIDI)
Example Piano 84 486 0.639583 71

begins directly at the beginning of the piece, i.e., from the
time instance indicated by precount length. Details about
the implementation of the player that reads and plays back
CSV-MIDI files are given in Section 2.2.2.

2.2 Client-Server
The user is able to explore music pieces on the visualisa-

tion component of the client, select a piece to listen (having
selected desired complexity levels for harmony and rhythm)

2.2.1 Visualisation implementation
UI was developed using javascript, HTML and CSS with

freely available additional libraries for optimised interac-
tion (i.e., selectize.js to add search options, Bootstrap 4
framework for styling the menu and plotly.js for interactive
plotting of the data). Visualisation and music playback
(CSV-MIDI) data are fetched from the server using na-
tive javascript (XMLhttpRequest()) which is wrapped
with a function send_request_get_response(url,
return_function) that is used for flexible parametrization
of requests to the server. The url argument represents the
url where the desired JSON object is being served and the
return_function argument represents the function that
processes the JSON object; declaring the return function for
each request is necessary, since different manipulation was
necessary for different requested data (e.g., for updating
the plot or the playback file).

The data plotting is based on the plotly.js library, provid-
ing the user with interaction capabilities such as zooming,

rotation, scrolling and presenting information for each song
via a tool-tip on the mouse hover event. Upon successful
completion of the data plotting, the user, by clicking on the
desirable song on the plot, can choose a song to load on the
player and to retrieve useful music information such as the
song’s tempo, style, rhythm and tonality. The UI also pro-
vides piece selection from a dropdown menu for highlight-
ing two different songs into the plot thus creating check-
points for facilitating the exploration of graph areas around
and/or between two jazz standards that the user feels com-
fortable in terms of improvisation. The player UI consist of
the play/stop button and five boxes that render in real-time
the current chord and the next four chord sequences, giv-
ing the user the possibility of playing along with the chosen
song.

2.2.2 CSV-MIDI player
A custom player has been implemented that is based on

a metronome mechanism that activates events according to
their onset in piece (according to the protocol described in
Section 2.1.2). Note events are played using proper sound-
fonts for each instruments from the WebAudioFont3 while
chord events, when triggered by the metronome, are redi-
rected to the chord display component (see Section 2.2.1).
In the current implementation, no information is processed
from bar events. The metronome is a simple clock mech-
anism that transforms broadcasts a CustomEvent approxi-

3https://github.com/surikov/webaudiofont

mately every 100ms (sensitive to the inherent inaccuracy of
setTimeInterval). A timer starts with zero time when the
user presses the “Play” button and the CustomEvent broad-
casts the time that elapsed from the beginning of playback
continuously, in quarter length multiples, computed as sec-
onds times tempo value over 60.

The player listens to the events broadcasted by the
metronome and keeps track of the row index in the CSV-
MIDI file. When the time received by the metronome
quarter-note time has progressed further that the time in-
dicated in the “Onset in piece” column of the event of the
current CSV-MIDI row, the row index starts increasing in-
crementally and events of these rows are activated until an
event with greater onset value than the current received time
is reached. Activation of note events is implemented by play-
ing the note included in the “Pitch” column, with the indi-
cated “Velocy” and with the defined “Duration”, using the
proper soundfont indicated by the “Identifier” column. Ac-
tivation of chord events is implemented by redirecting the
chord “Label” to the chord display component of the UI.

3. RESULTS
The final application, being in a prototype version, has

been evaluated based on the Nielsen’s usability heuris-
tics [21]. According to these, the software must comply with
ten fundamental principals discussed below. It will be neces-
sary to evaluate a more mature version of the system, when
it becomes available, in real-world educational conditions.
The reader can examine the implementation on the web 4,
where the method is applied in a set of 1065 jazz standards
that are included in the Genius Jam Tracks commercial iOS
application. The code can be found on github 5.

Visibility of system status: When all components are
loaded, every component of the system is ready to use. The
system presents no significant changes in its status, whatever
the user input. Even in music playback mode, all compo-
nents can be used; in this case, the play button switches to
a stop button, clearly showing that the system status is in
playback mode and the user is forced to press stop before
pressing play again (possibly for another song). Further-
more, the system contains explanatory tags for each inter-
action element.

Match between system and the real world : The UI compo-
nents involve commonly used terms in English (e.g. “Har-
monic Complexity”), or commonly known music jargon (e.g.,
bpm - beats per minute - for tempo) and describes its func-
tionality in plain words, familiar to the user’s language e.g.
“Select.”

User control and freedom: Allowed user actions include
the selection of two points/pieces on the map and playback
of a piece and each action the user perform is rewritable.
The ways that the user can change the outcome for such
actions are trivial (e.g., select another piece on the map or
“None” and press stop), while there is always the widely-
known browser refresh button, for bringing the system back
to its initial status.

Consistency and standards: Consistency is preserved by
incorporating short and explanative descriptions in English
on the UI, about the necessary actions to perform allowed

4http://155.207.188.7:5000/
5https://github.com/maximoskp/jazz standards
visualization.git

tasks. Standard practices in mouse-based navigation of 3D
graphs (e.g., scroll to zoom in/out) are inherited directly
from the employed library (plotly), while standard UI com-
ponents are used for selecting (dropdown menus) and play-
ing (buttons) pieces. The user interface describes it’s func-
tions with common verbal phrases.

Error prevention: The only errors that can occur is when
the user tries to press the play button when no piece is
selected and when the user try to change the song, the har-
monic or rhythmic complexity while a song is playing. These
actions create a clear alert message with instructions.

Recognition rather than recall : The role of the two drop-
down menus for piece selection is to mark specific positions
on the map as checkpoints, for relieving the user from the
need to painstakingly keep track of where specific pieces are
when rotating or zooming in/out.

Flexibility and efficiency of use: The goal of the tool is to
allow all users, regardless of their experience level in using
the system, to explore the graph of jazz standards. The user
interface has shortcuts for the advanced user e.g. zoom and
turn the chart by rolling the mouse pad. A shortcut is intro-
duced for increased efficiency regarding mouse-based navi-
gation: by shift-clicking on a point/piece, playback starts
immediately.

Aesthetic and minimalist design: The user interface is de-
signed in a minimal manner allowing the user to concentrate
to the function of the application.

Help users recognize, diagnose, and recover from errors:
The system informs the user with verbal error messages that
are easily understandable, explaining the nature if the prob-
lem.

4. CONCLUSIONS
This paper has presented an implementation for the explo-

ration of a collection of jazz standards, with a focus on jazz
improvisation training. Jazz standards are presented in a 3-
dimensional mapping that results from a machine learning
procedure, which processes harmonic annotations extracted
from jazz standard charts to compute similarities between
pieces. The visual component is integrated with a music
player, which employs a custom representation for render-
ing chart chords to jazz trio music (piano, bass and drums).
The developed representation incorporates note and chord-
related information, allowing the presentation of the active
chart chord on the user interface while the music plays. The
user interface is evaluated according to heuristic criteria.

A necessary future step is the evaluation of the user in-
terface, along with the effectiveness of an overall approach
to jazz standard exploration in the context of jazz improvi-
sation training. Furthermore, alternative visualisation tech-
niques could be explored, including not only different data
illustrations (e.g., 2D instead of 3D) but also altogether dif-
ferent methods for data processing. Such methods include,
among others, the development of similarity metrics that
offer coherent insight, since the LSTM-based approach that
presented in this paper, functions as a black box.

4.1 Acknowledgments
This research has been co-financed by the European Re-

gional Development Fund of the European Union and Greek
national funds through the Operational Program Compet-
itiveness, Entrepreneurship and Innovation, under the call
RESEARCH - CREATE - INNOVATE. Project Acronym:

Figure 3: Overview of the software UI.

MusiCoLab, Project Code:T2EDK-00353

5. REFERENCES
[1] A. M. Barbancho, I. Barbancho, L. J. Tardón, and

E. Molina. Database of Piano Chords: An Engineering
View of Harmony. Springer, 2013.

[2] E. Cambouropoulos. The harmonic musical surface
and two novel chord representation schemes. In
Computational music analysis, pages 31–56. Springer,
2016.

[3] E. Cambouropoulos, M. A. Kaliakatsos-Papakostas,
and C. Tsougras. An idiom-independent
representation of chords for computational music
analysis and generation. In ICMC, 2014.

[4] T.-P. Chen, L. Su, et al. Functional harmony
recognition of symbolic music data with multi-task
recurrent neural networks. In ISMIR, pages 90–97,
2018.

[5] W. B. De Haas, M. Robine, P. Hanna, R. C.
Veltkamp, F. Wiering, et al. Comparing harmonic
similarity measures. In 7th International Symposium
on Computer Music Modeling and Retrieval, pages
299–315, 2010.

[6] W. B. De Haas, R. C. Veltkamp, and F. Wiering.
Tonal pitch step distance: a similarity measure for
chord progressions. In ISMIR, pages 51–56, 2008.

[7] W. B. De Haas, F. Wiering, and R. C. Veltkamp. A
geometrical distance measure for determining the
similarity of musical harmony. International Journal of
Multimedia Information Retrieval, 2(3):189–202, 2013.

[8] K. Giannos and E. Cambouropoulos. Symbolic
encoding of simultaneities: Re-designing the general
chord type representation. In 8th International
Conference on Digital Libraries for Musicology, pages

67–74, 2021.

[9] R. L. Goldstone. The role of similarity in
categorization: Providing a groundwork. Cognition,
52(2):125–157, 1994.

[10] N. Goodman. Seven strictures on similarity. reprinted
in m. douglas and d. hull. How classification works:
Nelson Goodman among the social sciences, pages
12–23, 1972.

[11] P. Hanna, M. Robine, and T. Rocher. An alignment
based system for chord sequence retrieval. In
Proceedings of the 9th ACM/IEEE-CS joint conference
on Digital libraries, pages 101–104, 2009.

[12] C. Harte. Towards automatic extraction of harmony
information from music signals. PhD thesis, 2010.

[13] C. Harte, M. B. Sandler, S. A. Abdallah, and
E. Gómez. Symbolic representation of musical chords:
A proposed syntax for text annotations. In ISMIR,
volume 5, pages 66–71, 2005.

[14] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[15] D. Kluver, M. D. Ekstrand, and J. A. Konstan.
Rating-based collaborative filtering: algorithms and
evaluation. Social Information Access, pages 344–390,
2018.

[16] P. Knees, M. Schedl, T. Pohle, and G. Widmer. An
innovative three-dimensional user interface for
exploring music collections enriched. In Proceedings of
the 14th ACM international conference on Multimedia,
pages 17–24, 2006.

[17] P. Knees, M. Schedl, T. Pohle, and G. Widmer.
Exploring music collections in virtual landscapes.
IEEE multimedia, 14(3):46–54, 2007.

[18] D. Liebman, P. Markowitz, V. Juris, and B. Reich. A
chromatic approach to jazz harmony and melody.

Advance music Rottenburg am Neckar, 1991.

[19] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA, 1967.

[20] J. P. Magalhaes and W. B. de Haas. Functional
modelling of musical harmony: an experience report.
ACM SIGPLAN Notices, 46(9):156–162, 2011.

[21] J. Nielsen. Enhancing the explanatory power of
usability heuristics. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems,
pages 152–158, 1994.

[22] K. S. Orpen and D. Huron. Measurement of similarity
in music: A quantitative approach for non-parametric
representations. Computers in music research, 4:1–44,
1992.

[23] A. Rauber, E. Pampalk, and D. Merkl. The
som-enhanced jukebox: Organization and visualization
of music collections based on perceptual models.
Journal of New Music Research, 32(2):193–210, 2003.

[24] M. Schedl, M. Mayr, and P. Knees. Music tower
blocks: Multi-faceted exploration interface for
web-scale music access. In Proceedings of the 2020
International Conference on Multimedia Retrieval,
pages 388–392, 2020.

[25] A. Van den Oord, S. Dieleman, and B. Schrauwen.
Deep content-based music recommendation. Advances
in neural information processing systems, 26, 2013.

[26] L. Van der Maaten and G. Hinton. Visualizing data
using t-sne. Journal of machine learning research,
9(11), 2008.

[27] R. van Gulik, F. Vignoli, and H. van de Wetering.
Mapping music in the palm of your hand, explore and
discover your collection. In Proceedings of the 5th
International Conference on Music Information
Retrieval. Queen Mary, University of London London,
2004.

