Koryphaios

A Patchworked Compositional Environment
for Distributed Music Systems

Aliénor Golvet
STMS Ircam-CNRS-Sorbonne Université
Paris, France
alienor.golvet@ircam.fr

Etienne Démoulin
Ircam, Production Department
Paris, France
Etienne.Demoulin@ircam.fr

ABSTRACT

In this paper, we present Koryphaios, an environment that aims to
facilitate composition in distributed music systems. This environ-
ment, rather than a monolithic and all-in-one solution, proposes to
favor interoperability between our own platform (i.e. soundworks)
and existing tools widely used by contemporary music composers
and musicians. More precisely, our aim was to design an environ-
ment where the composer could use the tools they already know
and master (e.g. the Bach library for Max/MSP)), to create musi-
cal pieces rendered on web-based distributed systems composed of
multiple devices such as smartphones or nano-computers. First,
we present our design methodology and overall architecture of the
proposed environment. Second, we showcase some of the mu-
sical possibilities that it currently offers. Finally, we describe a
novel and low-level extension of our framework aimed at facili-
tating communication and interoperability between our web-based
framework and existing computer music software (i.e. Max/MSP,
Ableton Live). The Koryphaios environment is open—sourcﬂ and
released under the BSD-3-Clause license.

CCS Concepts

*Applied computing — Sound and music computing; Perform-
ing arts; sHuman-centered computing — Interactive systems
and tools;

Keywords
Web Audio, Distributed Music Systems, Authoring Tools

1. INTRODUCTION

The past decade has seen important developments of distributed
systems dedicated to artistic and music practices. Indeed, the

Uhttps://github.com/ircam-ismm/koryphaios

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2022, December 6-8, 2022, Cannes, France.

© 2022 Copyright held by the owner/author(s).

Luciano L. Barbosa
Composer
Paris, France
lucianoleitebarbosa@gmail.com

Benjamin Matuszewski
STMS Ircam-CNRS-Sorbonne Université
Paris, France
benjamin.matuszewski@ircam.fr

development of Web APIs, such as WebSackeﬂ and the Web Audio
AP together with the recent spread of handheld devices and em-
bedded hardware (e.g. Raspberry Pi), has opened new possibilities
for designers, researchers and artists to engage, use and manipulate
the network as a primary material into their work [6L[21]].

However, despite the growing number of artwork, concerts
and installations that have been proposed along the years, it can
be argued that such approaches and compositional techniques
are far from reaching widespread adoption. We postulate that
one of the possible reasons for this state of affairs is the lack
of high-level and ready to use composition environments that
1) lean on existing composer’s skills and practices, and 2) take
into account the specificities (e.g. network, number of devices)
of distributed systems. Indeed, while on the one hand we have
frameworks dedicated to build distributed music systems [4}[15]
that lack high-level tools oriented toward composition, on the other
hand we have software and libraries dedicated to composition [3}/8]]
that are not primarily oriented toward the specificities of the Web
platform and of network-based approaches.

Composing for distributed systems therefore remains a difficult
task that generally ends up with ad-hoc systems and idiosyncratic
solutions. The difficulties one must face are twofold: 1) tackle
complex design, architectural and development questions and 2)
reduce the unbounded creative possibilities afforded by the system
to define a creative space that can be artistically manipulated. In
this regard, we consider with Magnusson that “In new musical
instruments created with general and diverse building blocks,
the rationale for creating high-level constraints is primarily to
engender an identity, a musical world that is simple, intuitive, and
direct” [[14)]. To put in other words, when dealing with computer
music environments, creativity arises from a set of carefully
designed constraints and affordances encoded in the software that
maps a defined space for musical expression.

In this paper, we propose to approach this problem by creating
bridges between existing tools (i.e. Max/MSP and soundworks)
and to improve their interoperability and ease of use in a common
patchworked workbench, rather than proposing an integrated and

Zhttps://tools.ietf.org/html/rfc6455
3https://www.w3.org/TR/webaudio/

https://github.com/ircam-ismm/koryphaios
https://tools.ietf.org/html/rfc6455
https://www.w3.org/TR/webaudio/

monolithic solution. Indeed, contemporary music composers being
generally familiar with the Max/MSP environment, we decided to
build upon their existing practices and skills to foster the possibili-
ties of our Web-based distributed music frameworks. Additionally,
such an approach aims to put back the tools of composition and
creation in the hands of the composers rather than relying on a de-
velopper as an intermediary agent, therefore leaving more time and
cognitive space for the creative process rather than on solving tech-
nical issues.

The soundworks framework [[15,|16] is a web-based full stack
framework that aims to facilitate the prototyping and creation of
networked multimedia applications. The main objectives of the
framework are threefold: 1) help the scaffolding of applications,
2) provide a simple way to maintain a coherent and distributed
state of the application in real-time, 3) provide a possibility of
extension by the implementation of a plugin system. However,
while soundworks has successfully been used in a variety of
applications and artistic pieces, the framework does not provide
any dedicated interface for computer assisted composition, which
required us to program ad-hoc solutions, therefore impeding the
composers’ agentivity. Additionally, soundworks lacked a simple
and easy to use solution to inter-operate with existing tools using
protocols widely used in computer music software programs such
as OSC. The application and underlying component described in
this paper represents a first step to fill these gaps.

In this project, we also considered it important to approach
our question from different perspectives within a heterogeneous
team composed of persons with multiple backgrounds, skills and
activities. Finally, while we recognize that the environment as
described here, necessarily embodies some aesthetic and composi-
tional perspectives of one single composer (i.e. our co-author L.
Barbosa), we hope the genericity and extensibility of the proposed
system could prove to be interesting for other composers and
artists as well.

After a short review of the related works and a presentation of
our design methodology (Sections [2] and [B)), we will describe in
Section [] the design choices and overall architecture of our envi-
ronment. Then, we will showcase in Section [5] some of the artis-
tic and musical possibilities it unfolds. Finally, we will describe
in Section [f] a novel component—that lies at the heart of the pro-
posed environment—dedicated to facilitating communications be-
tween soundworks and Max/MSP.

2. RELATED WORKS

In this section we present several tools dedicated to computer-
assisted composition that have been proposed over the years. We
then present the choice we made amongst these software for our
own application.

A number of dedicated software and tools (e.g. Bach and Cage
[3], MaxScore [12]]) have been created, often with the help of, or by
composers themselves, to manipulate symbolic musical data and
scores. For example, OpenMusi(ﬂ [I8] has been developed at IR-
CAM since the end of the 1990s. It uses a graphical interface and
offers a large range of functionalities for algorithmic composition
and usage of digital signal processing. [1].

Another example is ossia scorg’} Born from the i-score software
which has been developed since the late 1990s at LABRI [5]]. The

Uhttps://openmusic-project.github.io/
>https://ossia.iof

software focuses on the sequencing of multimedia events and on the
construction of interactive scenarios. It benefits from the embed-
ding of multiple programming languages and its support for a large
number of communication protocols (OSC, websocket, etc...) [9].

More recently, the Bach package for Max/MSPE] has been
proposed by Agostini et. al [3]. Bach (and its brother package
Cage [2]) provides various objects, including graphical interfaces,
made for performing low and high-level operations on lists of
musical data. Bach has been heavily inspired by OpenMusic and
both environments share a lot of functionalities, but while the latter
is more advanced and provides more possibilities and processing
power in some contexts, Bach benefits from the ability to operate
with other elements in the Max/MSP environment.

Out of all these options we decided to work with the Bach library.
We wanted to create a tool as accessible as possible, and a large
number of composers are already familiar with Max/MSP and use
it in their works. Also, as one of our goals was to develop a more
fluid and user-friendly communication interface between the two
software, we think the architecture developed in our application
could serve as an interesting model that could be declined to other
Max/MSP packages (e.g. score following, MuBu [17], ...), either
in combination with Bach or not.

3. DESIGN METHODOLOGY

We choose to inscribe our methodological approach in the
framework of Meta-Design [10,|11]. We indeed consider com-
position, and more generally artistic creation, as fundamentally
ill-defined problems in which use cases cannot be fully anticipated
at design time. In addition, we consider with Fischer and Giaccardi
that “if systems cannot be modified to support new practices, users
will be locked into old patterns of use”. For these reasons, we
believe such an approach could prove to be useful for the design of
creative and interactive applications in which novelty, exploration
and serendipity are very important aspects. Therefore our goal is
not to propose a rigid solution to the problem of networked music
composition but rather to develop a design space to unfold a wide
range of novel approaches and solutions.

In our view, Meta-Design could be summarized by three impor-
tant characteristics. First, as it can’t be completely designed prior
to use, the application must be designed to evolve, and moreover
to co-evolve with its users. Second, the application should support
and provide a learning path from simple user to expert user and
ultimately to co-designer of the application. Finally, this process
takes place in a model called Seed-Evolving Growth-Reseeding
(SER), in which software development is performed during the
Seed and Reseeding phases, while the Evolving Growth phase
is dedicated at observing and documenting how users adopt and
appropriate the application. While the application we present
in this paper is still in its early stage, we expect it to provide
both a Seed and some support for a first Evolving Growth phase,
potentially providing material for a future Reseeding phase.

To tackle these objectives, the development of our application
has been guided from the start together with one of our co-author,
the composer Luciano Leite Barbosa. We deliberately ignored all
questions of interaction and participation except the one of the
composers facing such distributed systems, therefore considering
the system as a mere audio projection tool. In this frame, one of our
first objectives was to re-create and re-implement a piece composed

6hllps://www.bachprojeanf:t/

https://openmusic-project.github.io/
https://ossia.io/
https://www.bachproject.net/

by Luciano in 2018, Color Fields for accordion, smartphones and
electronics (cf. Fig. [I), into a more interactive and versatile
compositional workbench. We also asked him to develop a pool of
examples with a variety of compositional techniques as well as to
propose new features he thought he could need to further simplify
his compositional process for distributed music performance. We
iteratively developed the first version of Koryphaios with the intent
to make all these examples and use-cases fully working.
Alongside these goals, we also asked Luciano to test every version
of our application and to deliberately push it to the limits. Indeed,
as Tahiroglu et al. note, “Musicians often use musical instruments
in ways that the original designers never intended, probing for
hidden affordances” [[20]. We also regularly organized test sessions
in the studio to test the application under more realistic conditions
with a larger number of mobile phones. These test sessions were
not only useful to detect technical issues but were also opportuni-
ties to discuss with Luciano about new features or modifications.
It allowed us to readjust the course of development to incorporate
unanticipated elements, which pushed us to design our software
architecture in terms of modularity and flexibility to foster rapid
testing and addition of new features.

Figure 1: Premiere of Color Fields by Jean-Etienne Sotty at the
CENTQUATRE-PARIS, 2018.

Another design goal was to provide an environment that hides
some low-level aspects (e.g. networking, message routing) to the
users, but still provide several entry points at its domain level (e.g.
audio synthesis, mapping). As such, a large part of Koryphaios
is conceived with the idea that it could provide a “a background
against which situated cases, coming up later, can be interpreted”
[11]], an application that is able to translate the creative endeavor
of its users in the language of a network of mobile devices. This
approach represents an attempt to lower the technical wall that ex-
ists between composers and the network of sound-producing mo-
bile devices, to facilitate the process of co-adaptivity between them.
Objectives of modularity and openness guarantee that the network
will adapt to the many idiosyncrasies of its users but in return, we
hope that the relationship with the network (with its specific capac-
ity to question traditional music boundaries [|6]) created through
Koryphatos could influence composers to reinvent their practice.

4. DESIGN OVERVIEW

Guided by these objectives, we developed a soundworks-based
application for composing distributed music pieces using the Bach
library in Max/MSP. As an overview, Koryphaios is built around
a local network of devices, at the center of which lies a Node.js
server to which Max/MSP and the mobile devices can connect.

The Node.js server receives the score information from Bach and
Max/MSP though OSC and dispatches this information to the con-
nected Web client through WebSocket channels (cf Fig. 2).

Soundworks
clients
Max/MSP patch
)
HE= = o 0
chord dict server “0&6
| 1 messages = o2 dict
- — 1 o
[fri—o) ————————> >
osc Ce=e) WebSocket o ‘))
2N
7 R

Figure 2: Diagram of the communication between the different parts
of Koryphaios.

In the following section we present the application from a de-
sign perspective. We start by presenting the composition interface
available as a Max/MSP patch. We then present how the applica-
tion produces music out of an array of mobile devices by detailing
the communication process over the server and the custom audio
engine we developed using the Web Audio API. Next, we present
a variety of functionalities the application provides for monitoring
and control to facilitate its usage both in studio and in concert situ-
ations. Finally, we detail several features aimed at fostering its ap-
propriation and customization by users, potentially opening doors
for future evolutions.

4.1 An Interface for Composition

From the point of view of the composer, our application is pri-
marily seen as an interface for composing distributed music per-
formances through a Max/MSP patch (Fig. 3). The core element
of the patch is a bach.roll object provided by the Bach library.
A bach.roll is presented as an interactive score sheet which you
can edit to place musical notes. Each note can be associated with
arbitrary metadata (i.e. using “slots”) of different types (e.g. en-
veloppe breakpoints, modulation parameters, text, filenames). As
the score contained in the bach.roll object is played in real-time,
its output notes are collected by Koryphaios’ kp.to_soundworks
object and formatted as a Max/MSP dictionary. The user can freely
define which data is to be collected from the bach.roll object and
to which parameters in Koryphaios they are mapped to by sending
a list of parameters to one of the outlet of the kp.to_soundworks
object. The dictionary then created contains all the desired data for
sound synthesis over different synthesizers (e.g. AM, FM) devel-
oped using the Web Audio API, for instance: synthesizer to use, fre-
quency, velocity, duration, envelopes, synthesizer parameters, etc.

We designed Koryphaios’s Max/MSP objects so that lower-lever
coding from the composer can be avoided. Any note data sent
out by the bach.roll object is automatically formatted to be con-
sumed by the rest of the application.

4.2 The Audience as a Speaker Array

Each note information is sent and parsed from the Max/MSP
patch to the Node.js soundworks server through the generic
soundworks . shared-state object built on top of OSC and pre-
sented in Section [f] Upon reception on the server-side, the notes
are tagged with a synchronized timestamp and dispatched to all
connected clients for rendering using Web Audio synthesizers. By
default, the application currently includes different dispatch strate-
gies: sendAll (all notes received are sent to all connected clients at

Koryphaios

Frequency, velocity, duration and other data from bach to soundworks.

Create or import an lill and route it to connected devices through soundworks.

read an Il
ey [oauee] sor

add markers to choose synths

4 ;

| Visualize data from llils to Soundworks in real-time.

bach.playkeys cents breakpoints velocity duration [slot 1] [slot 10] [slot 3] slot 4] [slot 6] [slot 7] @out m

dict.pack frequency: detune: velocity: duration: envelope: synthType: amModFreq: amModDepth: fmHarmonicity: fmModindex: @name chord

frequency: [281.21][315.65] [631.30] [1318.51]

detune: [[0.00 0.000.00] [1.00 25.00 0.00]] [[0.00 0.000.00] [1.00 -25.00 0.00]][[0.00 0.00 0.00] .|
velocity: [-2.80][-0.28][-10.25] [-24.01] open to adjust settings
duration: [5.33][5.70][3.61][1.48]

envelope: [[0.00 -5.440.00][0.41-19.44 0.00] [1.00-70.00 0.00]][[0.00 -0.78 0.00] [0.39 -16.330...

Open to access
various controls

synttiType: [1[1111]
amModFreq: [1[1[11]
amModDepth: [1{1(1(]
fmHarmonicity: [1[111[]

Figure 3: Example of the main composer interface in Max/MSP using
the Bach library in Koryphaios.

the same time), randomSpread (the n notes of a chord are split be-
tween n random groups of clients of the same size), randomPoint
(any incoming chord is sent to a single randomly-chosen client).

Upon reception of the time-tagged note by the client, the latter
creates an instance of the specified synthesizer (predefined or user-
defined), and schedule its rendering using a synchronized scheduler
created thanks to the @ircam/ syncﬂlibrary, which achieves clock
synchronization up to 5 ms [[13]]. By default, the application pro-
poses 5 types of generic synthesizers: a basic sine synth, an AM
synth, a FM synth, an audio buffer player and a granular synth.

The synthesizer instances are finally piped through master buses
for balance and volume controls.

Velocity : Sine synth
enveloppe [EMM audio bus

§ sine synin

Frequency: Lo Velocity ' AM synth

Detune enveloppe: | v+ [RREReAi enveloppe [El audio bus

Velocity: KRy - . Judie
Velocity enveloppe: f»” r === === =R RS =i Master audio

Duration: 5 Note ! bus

Synth type: '\ Velocity H FM synth

Extra parameters: enveloppe | audio bus

Figure 4: Graph of the audio path within the application. Upon
reception of the score information, a Note object is instantiated,
containing a synthesizer instance and a velocity enveloppe. The Note
is connected to the corresponding synthesizer’s bus which is connected
to the master bus. Finally the output of the master bus is sent to the
audioContext’s destination.

4.3 Contexts, Control and Feedback

The application has been designed to be used both in the stu-
dio and in concert situations. To fulfill the multiple and sometimes
contradictory requirements of these different contexts, we decided

7hltps://gilhub.com/ircam— ismm/sync

to provide multiple access to the same functionality as well as com-
plementary information from different entry points.

For example, alongside the Max/MSP interface, we developed a
browser-based controller interface. This interface is composed of
different parts useful both for monitoring and control:

e A text box that logs any incoming note on the server, which is
useful to monitor the proper functioning of the application both
in working and in concert situations.

e Buttons to switch between available dispatch strategies for the
incoming notes on the fly.

e Master and synthesizer-specific bus controls containing each a
mute button and a volume slider (cf. Fig. EI) The Master also
exposes two sliders for controlling the frequencies of a low-pass
filter and a high-pass filter. All these controls are also available in
the Max/MSP patch and their visual display is synchronized over
the network. To simplify the control and use of these different
interfaces in concert situation, we also implemented possibilities
of control over a MIDI device either in the Max/MSP patch (us-
ing the built-in MIDI map assignment) or directly in the browser
using a MIDI map assignment interface developed using the Web
MIDI API.

Finally, we implemented a concert mode that provides a series
of interfaces that guide the public through the performance:

1. Upon connection to the web page of the applications, the par-
ticipant is brought to a volume test page in which they are
asked to set the volume of their phone to a comfortable level.
While mainly technical, this step can also be considered and
used by the composer as a real introductory part of the piece.

2. This step is followed by a waiting screen showing the names
of the piece and of the composer, prompting them to wait for
the performance to begin.

3. Upon starting the performance in the controller interface,
participants are automatically brought to the main playing
interface in which the audio engine is connected to their de-
vice’s output and reception of notes from the server is acti-
vated. We also included a simple visualization that displays
the current energy of the sound produced by the participant’s
device through a full-screen animated gray scale.

4. Once the performance has ended, participants are brought to
the end page thanking them for their participation.

4.4 Appropriation and Evolutionary Growth

To support the evolution of the application in the hands of its
users, Koryphaios provides various possibilities for customization,
inclusion of user-made components and sharing of information.

Koryphaios allows advanced users familiar with JavaScript to
program custom implementations of several levels of the applica-
tion. Thanks to soundworks’ scripting plugirﬂ, user-made scripts
can be created and modified on the fly, without having to restart
the application or the network. Since user-made scripts are stored
locally as a single file they can also be easily shared among users.
At the time of writing, the application only supports user-made syn-
thesizers and dispatch strategies but we plan to make the widest
range of technical aspects customizable including the visualization
animation when playing sound in the performance screen and the

§ https://github.com/collective- soundworks/soundworks- plugin-scripting

https://github.com/ircam-ismm/sync
https://github.com/collective-soundworks/soundworks-plugin-scripting

master bus Master controls :

mute

volume - dB Mute :

owpass - Hz
12843.14 | Low pass freq : _I
High pass freq : .I

Sine controls :

highpass - Hz

2694.573

sine bus

nute

Mute : X

volume - dB

AM controls :

Mute :

Volume : _I

G [0S FM controls :

volume - dB

mute
Mute :

Figure 5: A part of the controller interface: audio bus controls in the
browser (left) and in Max/MSP (right)

volume - dB

sound to be played during the testing phase in concert mode.
Script creation and edition is made possible by using text editors
available in the controller interface in the browser (cf. fig[g). Upon
creation of the script, any user-made component is treated as any
other component in the application. For instance, a user-made
synth can be called up by its name in the bach.roll object and
a dedicated audio bus with GUI in the controller interface is dy-
namically created. As explained before, the mappings between the
bach.roll slots and the user-defined synths’ parameters can also
be defined at runtime in the Max/MSP patch by sending specific
messages to the kp . to_soundworks object.

plugin scripting
synthesizers
create script (emd + s):

select square delete square

open the console to see possible syntax errors when editing

C
constructor(
.audioCont:

buffer = audioContext.createBuffer(2, audioContext.s
(var channel channel < buffer.number0fChannels; c

nowBuffer uffer.getChannelData(channel);
(var i = 0; i < buffer.length; i++

nowBuffering[i] = Math.random() * 2 - 1;

._noise = audioContext.createBufferSource();
._noise.buffer = buffer;

Lfilter = BiquadFilterNode(audioContext) ;
.filter.type = 'bandpass';
.filter.frequency.value = 22
.filter.Q.value = 100;

.mod0sc = audioContext.createOscillator();
.modosc. frequency.value = 5;

.modGain = audioContext.createGain();
.modGain.gain.value =

._osc = audioContext.createOscillator();
._osc.type = 'sine';

.ws = new WaveShaperNode (audioContex+)-
Ws.curve = akeDistortionCurve
.ws.oversample = '2x';

Figure 6: A user-made synthesizer in the scripting interface in the
browser.

This process of appropriation by users also extends to more “so-
cial” aspects surrounding the application. To this end, we also cre-
ated an information repository in the form of a wiki on the github
repository of the application. It already contains documentation
and tutorials on several aspects of Koryphaios as well as the de-
scription of the example patches developed by Luciano L. Barbosa
(cf section|§])‘ We hope this knowledge base will grow and develop
as users may share their own components, musical examples and
ideas.

5. MUSICAL EXAMPLES

In this section, we present several musical examples created

within Bach that showcase the compositional possibilities opened
by the application.
First, we present two simple case-studies created during the de-
sign and development of the application. Second, we describe the
first sketch of a sound installation, Refraction and third, we present
Color Fields, a piece composed in 2018 and rewritten using Ko-
ryphaios. All these musical examples have been created by our
co-author Luciano L. Barbosa, and explore distributed synthesis
techniques that expand the familiar notion of additive synthesis by
taking into account the spatialization of each frequency. As a sound
can be created or recreated through several sources (e.g. smart-
phones or other connected devices), the possibilities of distribution
of frequencies through devices are therefore numerous, including
random distribution, single or multiple frequencies per device, or-
ganization of devices into groups, etc. The resulting sound has an
intrinsic immersive quality, as a high number of sound sources are
used and these sources can be easily spread in the concert space.

5.1 Case Studies

A first example of the possibilities of Koryphaios, leveraging
also on the Cage library for Max/MSP, is to read a sound anal-
ysis and resynthesize sounds directly with smartphones. In the
following example (see Fig. [7), the object bach.readsdif is
used to read an sdif file of a sound analysis, which is displayed
in the bach.roll. A number of symbolic transformations, such
as time stretching (using the cage.timestretch object) or fre-
quency shifting (using the cage.fshift object) can be applied to
this resynthesis. All these transformations can be tested, rendered
and listened to in real-time through connected devices.

read sound analysis add or change envelopes filter sequences

bach.readsdif @auto 1
cage.sdif.chordseq.toroll amplitude envelope g
24 6
bach.scale 0 1 80 120 //’\ i
@

Figure 7: Max/MSP example patch of additive resynthesis of sound
analysis using Koryphaios.

More complex and generative processes can also be handled by
Koryphaios. The example shown in Fig. [§]shows the possibilities of

using generative material in Bach and sending it to soundworks in
real-time for audio rendering. This simple generative patch creates
a new sequence when the cursor arrives at the marker generate
seq, using random values to create a new harmonic sequence.

generate seq

sequence control start

“ 0, G No. of seq press "a" to generate a sequence

press "q" to play and trigger auto-generate
notes per chord “ current seq

press "s” lo stop
pitch duration vel onsets env
min max min max min max min max select env type
| |) |

e e BTN ST TR

generate sequence

N iR el
K
1%

H
H
H
H
H
3

Figure 8: Max/MSP example patch of generative music using
Koryphaios.

5.2 Refraction

The sound installation Refraction is an example of a piece cre-
ated directly using Koryphaios. The piece is an installation for
smartphones that are spread out in the performance room and that
includes the participation of the audience. Its main compositional
materials are additive synthesis and FM synthesis, with occasional
use of AM synthesis, where the sonic result can be envisioned as
a distributed synthesis technique in which the rendering of each
component is distributed in space amongst devices.

The installation consists of three bach.roll objects that are
linked to one another through markers, playing independently and
overlapping at times. During the compositional process, the fre-
quency materials were input freely on the bach.roll and Ko-
ryphaios allowed immediate feedback of the resulting sound. Each
note on the bach.roll (see Fig. [J) contains basic data such as
pitch, velocity and duration. The slots are used to carry additional
data including amplitude envelopes, amplitude modulation values
for modulating frequency and tremolo depth, frequency modula-
tion values for harmonicity and modulation indices, and type of
synthesizer (e.g. sine wave, am or fm) to be used.

press 's' to stop press 'q’ to play.

[rint] rsiop T o
e of epentons B
efault 3 times)
- W
e R
o] m
T play-nstaliation

Figure 9: Patch of the Refraction installation.

5.3 Color Fields

Color Fields, dedicated to Jean-Etienne Sotty, was composed in
2018 during the Cursus program at IRCA It was written for
XAMP microtonal accordion [|19]], smartphones, electronics and in-
cluded audience participation through the use of mobile devices.

9hltps://youlu.be/4GuYtPejijI

The electronics were conceived to be diffused mainly through
the audience’s smartphones, with the aim of spreading the sound
throughout the hall and having audience members participate in the
sound production of the work. This feature allowed interesting pos-
sibilities of sound masses and harmonic blend between the soloist
on stage and the sound coming from the devices of the audience.

The piece used additive synthesis as its main compositional ma-
terial, and each frequency was assigned to a single device from
the audience, randomly distributed among the smartphones of con-
nected audience members. The frequency material was created
through a number of processes carried out in the OpenMusic soft-
ware, such as sound analysis and transformation of the resulting
data, and exported to Bach. Other composition techniques used in
the piece included free manipulation of harmonies directly within
the bach.roll object.

In the first version of the piece, using ad-hoc OSC communica-
tions and protocol between Bach and soundworks, frequency and
velocity values for each smartphone were hardcoded in advance in
flat files directly read by the soundworks server. Each event in the
main patch would trigger a bach.roll containing markers that con-
trolled the start of each harmony stored in soundworks. Only the
envelope values were sent from Bach to soundworks in real-time,
handling the overall volume of the synthesis distributed through the
devices of the audience. In order to organize the movement of dif-
ferent harmonic fields, the synthesis data was assigned to different
groups of smartphones. Such architecture, with data spread be-
tween the Max/MSP patch and soundworks, was however difficult
to test and change, making the compositional process slow, cum-
bersome and error prone.

bach.unpacknote =
v [riooe

g
|
dg
H
i

22221000 005 syrivooume s1 oroup syt
erd s o oo | o e Il oo o |

Figure 10: Concert patch of the first version of Color Fields in
Max/MSP.

As discussed in Section [3] being able to recreate Color Fields
(see the first patch version in Fig. [I0) within Koryphatos was one
of our main goals from the beginning. As a result, we consider
the new updated version of the piece rewritten using Koryphaios
to be both more efficient and versatile as the synthesis data and
parameters are fully contained in the bach.roll and can therefore
be manipulated in real-time and from a single place.

In this new version shown in Fig. [T1] each event of the piece
stores one or more bach.rolls that are in direct communication
with soundworks through the bach.roll’s playout outlet. Each
bach.roll connects to a send object that routes the data to a sub-
patch containing the soundworks component. Finally, soundworks
receives values of frequency, velocity, duration and envelope and
propagates them to its smartphone clients, which carry out the syn-
thesis themselves. AM and FM synthesis parameters are included
directly in the bach.roll, unlike the first version of the piece. The
update both simplified the patch and increased its stability, validat-
ing also that Koryphaios was able to handle the complex harmonic
structures of Color Fields, such as dense chords and resynthesis.

https://youtu.be/4GuYtPejijI

i

m%m e e

Figure 11: Max/MSP patch of the novel version of Color Fields,
rewritten in Koryphaios.

6. REUSABLE COMPONENT

In this section, we present the soundworks.shared-state
componenﬂ for Max/MSP, a low-level module developed to fa-
cilitate and improve interoperability between soundworks and
Max/MSP, and on top of which Koryphaios has been built. First
we present the technical details of the component and then describe
some of its possible use-cases outside Koryphaios.

6.1 soundworks.shared-state for Max/MSP

The soundworks.shared-state component has been devel-
oped to facilitate the creation of musical applications relying on
both Max/MSP and soundworks. The main objective of this compo-
nent is to provide an extension of the soundworks’s SharedState
abstraction [|15 ﬂ in order to seamlessly synchronize states with
Max/MSP Dict objects through OSC communication. As illus-
trated in Fig. [T2} the global state, owned by the server, can be ac-
cessed and modified from both a Max/MSP patch and a soundworks
client, any modification being propagated to all attached clients
which can therefore trigger updates based on the new state of the
distributed application.

Max/MSP Node.js Server Web Client
[l] [] [
[Global state Inputs / Events.

motion ot otc. [touen otk

Web Sockets

Global state
2

Rendering

(%)

Figure 12: Data flow of state synchronization between Max/MSP and
soundworks using the soundwork.shared-state object.

An important attention has been given in providing an API on
both sides that 1. is similar enough to be intuitive for users and 2.
that take into account the idiosyncrasies of the Max/MSP platform
and of the JavaScript language. Also, some ad-hoc bindings have
been implemented to blur the discrepancies between the primitives
exposed by the two languages. For example, the component seam-
lessly takes care of the conversion between the JavaScript boolean
or null values, which have no direct correspondence in Max/MSP,
to more idiomatic types (respectively integer and null symbol
in the Max/MSP side).

In its current implementation the component suffers from two
main limitations. First, it only allows the subscription to unique

10 Available in https://github.com/collective-soundworks/soundworks-max
1 http://collective-soundworks.github.io/soundworks/common.SharedState.html

and global states created by the soundworks server, meaning for ex-
ample that there is currently no way to subscribe to dynamic states
created and deleted by clients. This limitation, more than a tech-
nical issue, takes its root in the very different paradigms between
Max/MSP where everything is statically defined and the more dy-
namic JavaScript paradigm. We are currently investing to mitigate
this limitation. Second, the OSC protocol generally implemented
on top of the UDP protocol does introduce de facto the limitations
of UDP: unreliable message delivery and limited size of the mes-
sage. These two limitations indeed impede some use-cases such as
sharing audio analysis or recordings of multimodal data. We plan to
provide an alternative underlying protocol, for example using Web
Socket or TCP as the transport channel, to support such use-cases.

6.2 Example Use

Beyond Koryphaios, the soundworks.shared-state object
has already been used in several demonstrators and applications.
For example, we successfully used it in Max for Live devices within
the Playgrounam application designed with the composer Garth
Paine, allowing the composer to create, record and replay Live clips
controlling some distributed parameters of the application.

Once the question of the UDP limitations discussed above is han-
dled, we also plan to use the component in conjunction with the
MuBu [17]] package for Max/MSP. Such link could open interest-
ing rapid prototyping perspectives in several areas such as concate-
native synthesis 18| or gesture design [[7]], for which all the build-
ing blocks and algorithms are not yet available in the JavaScript
ecosystem.

7. CONCLUSION AND FUTURE WORKS

In this paper, we introduced Koryphaios, an application for net-
worked music composition. Koryphaios is built on top of and aim at
creating a bridge between two existing libraries: the Bach packages
for Max/MSP that provide tools for computer assisted composition
and the soundworks framework which is dedicated to the devel-
opment of distributed multimedia applications. In this work we
followed a user-centered and meta-design approach, emphasizing
and promoting the heterogeneous nature of our team composed of
researchers, developers, computer-music designers and composers.

Koryphatos is designed around multiple connected parts. The
first one is a composition interface in a Max/MSP patch, which
at its core is a bach.roll object that sends out note data that
is encoded and sent to the rest of the application via OSC com-
munication. The second one is a soundworks application that,
upon reception of the note data, dispatches them to the connected
devices for Web Audio rendering. The application also provides
functionalities for monitoring and control in a concert context
available both in a Max/MSP patch and in a dedicated page in
the browser. Koryphaios was designed with appropriation and
customization by its users in mind. It thus provides options for the
development of user-made components, potentially opening for
their sharing between users. We then presented different examples
using a variety of compositional techniques (distributed additive
synthesis, generative music, spectral analysis and resynthesis) that
shows the flexibility of Koryphaios for composing in a distributed
context. Finally we introduced a novel low-level component, on
top of which Koryphaios is built, created to simplify commu-
nications and maintain coherent states between Max/MSP and
soundworks.

The current version of Koryphaios leaves room for improvement

12https:// ‘github.com/ircam-ismm/playground

https://github.com/collective-soundworks/soundworks-max
http://collective-soundworks.github.io/soundworks/common.SharedState.html
https://github.com/ircam-ismm/playground

and evolution. Future works include a better integration of user-
defined components in the Max/MSP components. For example,
due to current limitations of the soundworks.shared-state
object, audio buses dedicated to user-defined synths cannot be
controlled from the Max/MSP patch and the user can only rely on
the browser interface in such cases. Also, the current implemen-
tation of soundworks.shared-state suffers from limitations
concerning the size of the messages sent to soundworks. We plan
to investigate solutions by relying on a different communication
protocol. We would also like to expand the options for user
customization. We intend to provide more options for scripting
by allowing customization of technical aspects such as the visual
rendering during performance and the sound to be played during
the testing phase of the performance.

Despite these current limitations, we think Koryphaios has the
potential to provide an interesting tool to explore novel compo-
sitional techniques within distributed music systems, leveraging
on existing knowledge and skills of contemporary composers. As
such, we hope feedback and idiosyncratic appropriations of the ap-
plication by new users will help us strengthen and further develop
the application.

8. ACKNOWLEDGMENTS

This work has been conducted in the framework of the SO(a)P
Innovation Project Unit funded by Ircam. The soundworks frame-
work has been initiated in the CoSiMa research project funded
by the French National Research Agency (ANR, ANR-13-CORD-
0010) and further developed in the framework of the Rapid-Mix
Project from the European Union’s Horizon 2020 research and in-
novation program (H2020-ICT-2014-1, Project ID 644862). We
would like to thank our colleagues at IRCAM for their precious
contributions to the project.

9. REFERENCES

[1] C. Agon, G. Assayag, J. Bresson, and M. Puckette, editors.
The OM Composer’s Book. Volumel. Collection
Musique/Sciences. Ircam - Centre Pompidou, Editions
Delatour France, Paris, 2006.

[2] A. Agostini, E. Daubresse, and D. Ghisi. Cage: A
High-Level Library For Real-Time Computer-Aided
Composition. In Proceedings of the International Computer
Music Conference (ICMC), Athens, Greece, 2014.

[3] A. Agostini and D. Ghisi. A Max Library for Musical
Notation and Computer-Aided Composition. Computer
Music Journal, 39(2):11-27, June 2015.

[4] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative
Performance For The Masses, Handling Instrument Interface
Distribution Through The Web. In Proceedings of the
International Conference on New Interfaces for Musical
Expression, Daejeon, Korea, 2013.

[5] A. Allombert, M. Desainte-Catherine, and G. Assayag.
Iscore: A system for writing interaction. In Proceedings of
the 3rd International Conference on Digital Interactive
Media in Entertainment and Arts - DIMEA "08, page 360,
Athens, Greece, 2008. ACM Press.

[6] F. Bevilacqua, B. Matuszewski, G. Paine, and N. Schnell. On
Designing, Composing and Performing Networked
Collective Interactions. Organised Sound, 26(3):333-339,
Dec. 2021.

[7] F. Bevilacqua, N. Schnell, N. Rasamimanana, B. Zamborlin,
and F. Guédy. Online Gesture Analysis and Control of Audio

[8

—_—

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

Processing. In B. Siciliano, O. Khatib, F. Groen, J. Solis, and
K. Ng, editors, Musical Robots and Interactive Multimodal
Systems, volume 74, pages 127-142. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

J. Bresson, C. Agon, and G. Assayag. OpenMusic: Visual
programming environment for music composition, analysis
and research. In Proceedings of the 19th ACM International
Conference on Multimedia - MM ’11, page 743, Scottsdale,
Arizona, USA, 2011. ACM Press.

J.-M. Celerier. Authoring Interactive Media : A Logical &
Temporal Approach. PhD thesis, Université de Bordeaux,
2018.

G. Fischer, D. Fogli, and A. Piccinno. Revisiting and
Broadening the Meta-Design Framework for End-User
Development. In F. Paterno and V. Wulf, editors, New
Perspectives in End-User Development, pages 61-97.
Springer International Publishing, Cham, 2017.

G. Fischer and E. Giaccardi. Meta-design: A Framework for
the Future of End-User Development. In H. Lieberman,

E. Paterno, and V. Wulf, editors, End User Development,
volume 9, pages 427-457. Springer Netherlands, Dordrecht,
2006.

G. Hajdu and N. Didkovsky. Maxscore: Recent
Developments. In Proceedings of the International
Conference on Technologies for Music Notation and
Representation, Montréal, Canada, 2018. Zenodo.

J.-P. Lambert, S. Robaszkiewicz, and N. Schnell.
Synchronisation for Distributed Audio Rendering over
Heterogeneous Devices, in HTMLS. In Proceedings of the
2nd Web Audio Conference (WAC-2016), Atlanta, USA,
2016.

T. Magnusson. Designing Constraints: Composing and
Performing with Digital Musical Systems. Computer Music
Journal, 34(4):62-73, Dec. 2010.

B. Matuszewski. A Web-Based Framework for Distributed
Music System Research and Creation. Journal of the Audio
Engineering Society, 68(10):717-726, Dec. 2020.

N. Schnell and S. Robaszkiewicz. Soundworks — A
playground for artists and developers to create collaborative
mobile web performances. In Roceedings of the Web Audio
Conference (WAC’15), Paris, France, 2015.

N. Schnell, A. Robel, D. Schwarz, G. Peeters, and

R. Borghesi. MuBu & Friends - Assembling Tools for
Content Based Real-Time Interactive Audio Processing in
Max/MSP. In International Computer Music Conference
(ICMC), Montréal, Canada, 2009.

D. Schwarz. Corpus-Based Concatenative Synthesis. I[EEE
Signal Processing Magazine, 24(2):92—-104, Mar. 2007.
Conference Name: IEEE Signal Processing Magazine.

J.-E. Sotty and F. Vicens. L’ accordéon microtonal XAMP :
Gestation, fabrication et évolution d’un nouvel instrument.
La revue du Conservatoire, 5, 2017.

K. Tahiroglu, T. Magnusson, A. Parkinson, I. Garrelfs, and
A. Tanaka. Digital Musical Instruments as Probes: How
computation changes the mode-of-being of musical
instruments. Organised Sound, 25(1):64-74, Apr. 2020.

B. Taylor. A History of the Audience as a Speaker Array. In
Proceedings of the International Conference on New
Interfaces for Musical Expression, Copenhagen, Denmark,
2017.

	Introduction
	Related Works
	Design methodology
	Design Overview
	An Interface for Composition
	The Audience as a Speaker Array
	Contexts, Control and Feedback
	Appropriation and Evolutionary Growth

	Musical Examples
	Case Studies
	Refraction
	Color Fields

	Reusable Component
	soundworks.shared-state for Max/MSP
	Example Use

	Conclusion and Future Works
	Acknowledgments
	References

