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Abstract: Cloud Computing and Cloud Platforms have become an essential resource for businesses,
due to their advanced capabilities, performance, and functionalities. Data redundancy, scalability,
and security, are among the key features offered by cloud platforms. Location-Based Services (LBS)
often exploit cloud platforms to host positioning and localisation systems. This paper introduces a
systematic review of current positioning platforms for GNSS-denied scenarios. We have undertaken
a comprehensive analysis of each component of the positioning and localisation systems, including
techniques, protocols, standards, and cloud services used in the state-of-the-art deployments. Fur-
thermore, this paper identifies the limitations of existing solutions, outlining shortcomings in areas
that are rarely subjected to scrutiny in existing reviews of indoor positioning, such as computing
paradigms, privacy, and fault tolerance. We then examine contributions in the areas of efficient
computation, interoperability, positioning, and localisation. Finally, we provide a brief discussion
concerning the challenges for cloud platforms based on GNSS-denied scenarios.

Keywords: cloud platform; GNSS-denied scenarios; localisation; positioning; systematic review

1. Introduction

Over the last two decades, positioning based on Global Navigation Satellite System
(GNSS) constellations has become an indispensable tool for human beings. GNSS-based
positioning has been used in many different areas including precision agriculture [1],
autonomous navigation [2], and emergency and rescue systems [3]. Despite the advantages
of GNSS, its performance tends to degrade in adverse outdoor environments such as urban
canyons or areas of particularly dense foliage [4]. In such environments, the positioning
error may significantly increase. Furthermore, the signals remain largely unavailable in
indoor environments.

Over the last few years, multiple technologies have emerged to provide positioning ser-
vices to GNSS-denied environments [5,6], for instance, Bluetooth [7], IEEE 802.11 Wireless
LAN (Wi-Fi) [8], Pseudolites [9], Ultra Wideband (UWB) [10], ultrasound [11], Visible Light
Communication (VLC) [12], and ZigBee [13], among others. The technologies used most
frequently for indoor localisation and positioning are Bluetooth Low Energy (BLE) [14–16]
and Wi-Fi [8,17–19] for their availability, cost, usability, and scalability, among others. Al-
though each of these technologies have strengths and weaknesses, none has emerged as an
alternative to GNSS for indoor spaces.

Many positioning solutions have been proposed to achieve better performance (e.g.,
accuracy, availability, reliability, etc.) in indoor environments. Some of these solutions
consider Cloud Computing (CC) or similar computing paradigms in order to reduce the
power consumption on wearable devices and avoid processing overhead. Furthermore, the
CC supports different kinds of services such as Infrastructure as a Service (IaaS), Platform as
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a Service (PaaS), and Software as a Service (SaaS) [20]. Thus, they are capable of providing
services with high performance and quality, low latency, geographic redundancy, and security.

In addition, advances in telecommunications have brought us new and efficient tech-
nologies like 5G, which will assist in surpassing the current limitations (e.g., latency, con-
nectivity, data rate, etc.) of wireless communications. This technology includes three main
characteristics, first, enhanced Mobile Broadband (eMBB), second, provides Ultra-Reliable
Low Latency Communications (URLLC), and third, permits massive Machine Type Com-
munications (mMTC). These components will improve the reliability in communication
which is indispensable for mobile devices including wearable and Internet of Things (IoT)
devices. This digital transformation arrives alongside changes in the Cloud architecture,
using new computing paradigms—CC, Edge Computing (EC), Fog Computing (FC), and
Mist Computing (MC)—and applying technologies such as slicing and Network Functions
Virtualization (NFV). Helping to ensure high reliable Cloud platforms, as well as to provide
reliable Cloud-based indoor positioning and localisation.

Several survey/review articles about indoor positioning and localization have been
published in the last few years. However, they mostly emphasised on the technologies,
techniques and algorithms for providing positioning indoors [5,6,9,21] and on the role of
Indoor Positioning Systems (IPSs) in IoT applications, such as smart cities and smart trans-
portation. Given the rapid development of computing paradigms, devices (smartphones,
wearables, IoT, among others) and applications with LBS components, make necessary to
perform a systematic review with a new point-of-view oriented to the positioning platforms
and the way to interact with them. To the best of our knowledge, this is the first review
dealing with indoor positioning and the aforementioned components.

This article thus provides a systematic review of Cloud-based indoor positioning
platforms, current challenges and future trends. Moreover, this work introduces the reader
to key concepts related to computing paradigms, indoor positioning using mobile devices
(e.g., smartwatches, IoT devices, etc.), network protocols and standards used in IPS.

The remainder of this paper is organised as follows. Section 2 gives a general overview
of the current surveys and reviews done in the last four years. Section 3 introduces the
research methodology used to find the relevant articles together with a description of
the systematic review undertaken. Section 4 presents the results from the Systematic
Review. Section 5 provides a brief discussion of the main findings, current challenges, and
future trends. Section 6 gives a possible validation threats. Finally, Section 7 presents the
conclusions of this review.

2. Related Work

This section presents a general view of current indoor positioning surveys and their
primary objectives. Brena et al. [22] focused their review on the classification of positioning
technologies. This review offered an analysis of technologies’ accuracy and coverage area,
and discussed the pros and cons of each. The authors successfully identified some future
trends, such as the use of crowd-sourcing data to update and enhance localisation systems
and the lack of privacy and security in IPS. Similarly, Mendoza-Silva et al. [9] provided
an extensive analysis of standard technologies and techniques used in IPS. Moreover, the
authors provided a systematic study of IPS solutions published between 2015 and 2019
as well as in [23]. In contrast, Soewito et al. [23] only focused on classifying the articles
according to two parameters, accuracy and implementation.

The survey introduced by Kunhoth et al. [24] slightly differs from the previous reviews
by including indoor navigation systems and technologies based on computer vision, visible
light, and other novel positioning technologies. Hameed and Ahmed [25] based their survey
in positioning applications, analysing services such as routing, map data, route selection,
accuracy, coverage area, and cost. Ngamakeur et al. [26] offered an analysis of device-free
indoor localization and tracking in multi-environments. In this survey, the authors provided
a discussion of performance evaluation under the following parameters: accuracy, precision,
robustness, scalability, among others. This review also focused their analysis on techniques
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for localization and tracking, for instance, human detection, identification, and counting.
Simões et al. [21] focused their work on positioning technologies for visually impaired
people, this work also provides a classification of current technologies and techniques in
similar way that [5,6,9,26].

The increased interest in IoT and ubiquitous connectivity promote the development
of techniques and methods for IoT devices. These methods and techniques have been
examined in several surveys. For instance, Khelifi et al. [5] emphasized the importance of
localisation systems in cutting-edge IoT applications such as smart cities. In this survey,
the authors provided a new classification of Indoor Location System (ILS) as distributed,
centralized, and interactive systems. Additionally, the authors stressed out the need of
integrating green computing in services development, i.e., developing computationally
efficient IPSs without sacrificing accuracy. Shit et al. [27] conducted a review based on
Location of Things (LoT), providing an extensive analysis of current localisation techniques
in IoT infrastructure. In contrast with a previous work, this review included in their analysis
techniques based on machine learning.

Zafari et al. [6] analysed IPS/ILS in terms of energy efficiency, cost, range, time
response (latency), availability and other parameters. Moreover, they included a review of
current systems and foresee the future challenges. Liu et al. [28] focused their survey in
Channel State Information (CSI)-based IPS methods and techniques. This work provided
an extended analysis of algorithms, including deterministic, probabilistic and Machine
Learning (ML) algorithms. Obeidat et al. [29] also placed special emphasis in current
techniques, technologies, and algorithms used in IPSs, as well as their pros and cons. In
other reviews [21,30], the authors discussed particular topics related to indoor positioning
and localisation. For example, Saeed et al. [30] discussed the Multidimensional Scaling
(MDS) based on indoor and outdoor positioning techniques. The authors analysed the
application of MDS on different networks, such as mobile networks (e.g., 5G), applications,
and even different environments.

In addition to the cited reviews and surveys, there are many other research works
highly relevant for indoor positioning and localisation. Some of them provide an extensive
and deep analysis of very specific topics as, for instance, the evaluation of pedestrian
localisation systems [31]. Bousdar Ahmed et al. [31] provided discussion on benchmarking
datasets, simulators, record & replay, and the theoretical performance limits. Despite those
topics being relevant for indoor positioning evaluation, they are out of the scope of this
review, which is focused on platforms providing positioning services.

Table 1 introduces a summary of the comparison between the current surveys and
reviews from 2017 to 2021. Most of the surveys offered a comprehensive discussion of
technologies, techniques, and methods used in IPS. Additionally, some authors provided a
brief discussion of current challenges from the point of view of indoor positioning technologies,
techniques, environment, devices, and security and privacy. For instance, there are challenges
related to multipath effects, line of sight, signal interference in IoT networks, energy efficiency,
synchronization, crowded environments, among others. However, many authors agree that
the environment is one of the principal challenges for IPS given its high complexity [5,6,22]. In
either case, the positioning system have to be carefully evaluated under different conditions
in order to test its performance, robustness, flexibility, precision, and accuracy [26].

As can be observed in Table 1, mobile devices have become robust enough to process
indoor positioning information. Nevertheless, there are still multiple challenges related to
energy consumption, cloud computing and IPS, battery life, security, and privacy that have
not been fully dealt with on them.

Computing paradigms (CC, EC, FC, MC) bring multiple advantages, such as high
computing and storage resources, and extend services provided by current applications,
and allow straightforward integration between systems. These computing paradigms
have not been the case of study in recent surveys and reviews of indoor positioning and
localization. Similarly, standards and protocols have not been part of these reviews, in spite
of being crucial for current IPS/ILS.
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Table 1. Comparison to other reviews and surveys.

Approach

Article Year Applications Technologies Techniques Methods Cloud-Based Device-Based Standards Protocols

[22] 2017 7 3 3 3 7 3 7 7
[27] 2018 3 3 3 3 U 3 7 7
[25] 2018 3 3 7 7 7 3 7 7
[23] 2018 7 3 3 7 7 3 7 7
[5] 2019 3 3 3 3 U 3 7 7
[9] 2019 7 3 3 3 7 3 7 7
[6] 2019 3 3 3 3 U 3 7 3

[30] 2019 3 3 3 3 7 3 7 7
[28] 2019 7 7 3 3 7 3 7 7
[24] 2020 3 3 3 3 7 3 7 7
[21] 2020 3 3 3 3 7 3 7 7
[26] 2020 3 3 3 3 7 7 7 7
[29] 2021 3 3 3 3 7 3 7 7

our review 3 3 3 3 3 3 3 3

U There is no cloud or other computing paradigm analysis, but they are mentioned in the survey or review for
their relation with the IoT.

3. Research Method

This section introduces the procedure and methodology used to identify studies
relevant to this systematic review. The methodology has been selected for its clear procedure
which can be easily reproduced by other researchers, to comprehensively analyse the
published research, identify current trends, and detect the unexplored research lines on a
particular topic.

As part of the systematic review we used the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) guidelines [32], consisting of a twenty-seven item
checklist together with a flow diagram divided into four parts (identification, screening,
eligibility, and included).

3.1. Research Questions

Setting the right research questions is a key stage of any systematic review, as it is
paramount importance to identify the main objectives of the analysis. We conducted this
review with the following main research question (MRQ):

MRQ What are the possible gaps or issues in Cloud Platforms for positioning and naviga-
tion in GNSS-denied environments?

This main question is generic, therefore, we broke it down into the following specific
research questions (RQ):

RQ1 Are the main computing paradigms used in current indoor positioning platforms?

This research question permits to identify if the current indoor positioning platforms
are using the main computing paradigms. This question allows us to determine
future trends regarding indoor positioning platforms and computing paradigms.

RQ2 What network protocols do the current platforms use to provide reliable services?

This question addresses the need to know which network protocols are used in the
current indoor positioning platforms. Additionally, this research question helps to
identify strengths and weaknesses of the used communication protocols in the scope
of indoor positioning.

RQ3 Do the current platforms permit heterogeneous positioning technologies for GNSS-
denied scenarios?

This research question allows us to determine the current platforms’ flexibility to
support diverse position technologies.
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RQ4 Do the current platforms adapt to different scenarios?

As the diversity of indoor scenarios are currently considered a main challenge for
providing positioning indoors, this research question helps to identify the limitations
of the current systems.

RQ5 What were the improvements done in similar studies?

This research question aims to identify the main contribution of the studies analysed
and the current challenges in indoor positioning platforms.

RQ6 How is the standardization aspect dealt with on different platforms?

Standardization is key to providing a more reliable and high-quality indoor posi-
tioning platform. Thus, this research question aims to identify if the current systems
consider the existing standards for IPS in different dimensions.

3.2. Keywords

The number of research studies relating to indoor positioning has increased exponen-
tially over the years. Thus, it is important to define clear search queries and strategies to
pinpoint the most relevant publications related to the topic of this systematic review. We
therefore proceed with the identification of keywords related to the research topic and
its objectives. The keywords were chosen according to the infrastructure, environment,
and system.

Table 2 shows the keywords we have chosen in the research process. The wildcard
pattern (* in the queries) means any number of characters. In our queries we introduced
them to identify some related concepts that have the same prefix (e.g., position, positioning,
positions, etc.)

Table 2. Keywords related to the topic research.

Keyword Infrastructure Keywords Environment Keywords System

Cloud Computing Indoor * Position *
Edge Computing Location
Fog Computing Localisation

MIST Computing
Platform

Wildcard asterisk (*) represents any group of characters.

3.3. Query

Once keywords are defined, the next step is to give form to the search query which
will be used to find relevant works. This query was used in two well-known search engines
Web Of Science and SCOPUS using the advanced search of each site.

Web Of Science Query:
TS=((((( cloud OR edge OR fog OR mist ) AND ( computing OR paradigm )
OR platform ) AND ( indoor* OR gnss-denied ) AND ( position* OR location
OR localisation ))) Timespan: 2015-2021

SCOPUS Query:
TITLE-ABS-KEY((((( cloud OR edge OR fog OR mist ) AND ( computing
OR paradigm )) OR platform ) AND ( indoor* OR gnss-denied )
AND ( position* OR location OR localisation )))
AND ( LIMIT-TO ( PUBYEAR , 2021 ) OR LIMIT-TO ( PUBYEAR , 2020 )
OR LIMIT-TO ( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 )
OR LIMIT-TO ( PUBYEAR , 2017 ) OR LIMIT-TO ( PUBYEAR , 2016 )
OR LIMIT-TO ( PUBYEAR , 2015 ))
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Both queries will return a list of works (conference papers, journal papers, books,
among others). Despite the fact that many of the retrieved records are related to the research
topic, some of them do not meet the requirements of this review.

3.4. Study Selection

The results retrieved from the previous search has to go through a process described
in PRISMA diagram and checklist document. This step includes identifying all relevant
studies, removing duplicate records, and defining inclusion and exclusion criteria. Those
criteria form the basis for the ultimate decision as to which works are included in the
qualitative and quantitative synthesis.

3.4.1. Stage 1: Identification

Both SCOPUS and Web of Science are important databases which index works from
different sources such as IEEExplore, SpringerLink, ArXiv, Wiley Online Library, and others.
Merging the results from both data sets drives to duplicate records which must be removed.
Thus, the retrieved records, along with their bibliography and metadata, are stored using
reference manager software. This software is used to remove duplicate records and classify
the studies obtained from the search engines.

3.4.2. Stage 2: Screening and Selection Criteria

Once we have removed duplicate records, we obtain several unique registries, which
have to be filtered to obtain only relevant publications for this review. Thus, we defined
the following inclusion criteria (IC) and exclusion criteria (EC).

IC1 Full research works written in English

IC2 Research works dealing with platforms supporting positioning

EC1 Works not dealing with any computing paradigm (e.g., Cloud computing) or GNSS-
denied scenarios

EC2 Works not published in peer-reviewed international journals or conference proceedings

EC3 Studies not dealing with wearable devices (we consider smartphones as wearable devices)

Although the term ‘Cloud computing’ has been used since 2007 [33], and indoor
positioning has been studied for many years, we limited this review to articles published
in the last 7 years (from 2015). The decision to select material published between 2015
and 2021 is based on the increase in demand for Cloud services since 2015. According
to CISCO annual reports, we can see an evident increase of Internet usage in the last
6 years. Moreover, data centres’ traffic has increased three-fold from 2.2 Zettabytes in
2015 to 7.1 Zettabytes in 2020 [34–37], meaning that users and companies are increasingly
utilising services hosted in the Cloud.

In order to select only those works that fulfil all the requirements established in
the IC and EC, we proceeded with the manual revision of titles and abstracts for their
subsequent tagging with ACCEPTED for accepted articles and REJECTED + EC for rejected
records. Overall, we selected around 8% of the total number of studies obtained in the
previous stage.

3.4.3. Stage 3: Eligibility

In this stage, we carefully read each remaining study under the consideration of the
main objective of this review and the established IC and EC. If the article reviewed does not
accomplish the requirements established in previous steps, it is excluded from this work.

3.4.4. Stage 4: Included

The studies are categorized according to their conclusions and contributions in the
research field (Cloud-based Indoor Positioning and Localisation). This step is the last filter
in order to select only relevant publications for this review.



Sensors 2022, 22, 110 7 of 45

3.5. Main Figures for the PRISMA Process in the Current Review

Figure 1 shows the flow diagram and the results after following the whole process. A
total of 2369 works (articles, papers, magazines, book) were retrieved from SCOPUS (1642)
and Web Of Science (1458) search engines after executing the defined queries.

First, 2085 unique records were obtained after removing duplicate records. Despite
the overlap between the two search engines, there has been a significant number of work
published in a conference or a journal which was only indexed by one database. However,
this list of research works included mostly unrelated studies—either not dealing with
computing paradigms or GNSS-denied environments—which were filtered during the
initial screening, that means almost 96% of retrieved works. Furthermore, the works not
dealing with wearable devices, representing almost 11% of retrieved works, were also
filtered out.

A total of 158 works were selected after screening the inclusion/exclusion criteria
on the titles and abstracts. Finally, after a full article assessment, only 83 studies fulfilled
all the requirements for this systematic review and, therefore, we included them in our
comprehensive analysis.

Records identified
through

database searching:
SCOPUS: 1642

Records identified
through 

other sources:
Web Of Science: 1558

Records after
duplicates removed:

Total: 2085

Record screened :
Total: 2085

Records excluded:
EC1: 1688, EC2: 0,

EC3: 239

Full text articles
assessed for
eligibility: 158

Full text articles
excluded

with reasons: 75

Studies included in
qualitative synthesis
(meta analysis): 83

Studies included in
quantitative
synthesis

 (meta analysis): 83

Id
en
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Figure 1. PRISMA Flow Diagram.

3.6. Overview of the Selected Studies

Although the search queries provided 2085 works, only 83 of them fulfilled all the
criteria established in this work and were, therefore, analysed (see Figure 1). The tem-
poral distribution of the selected works is shown in Figure 2, where the type of article is
also differentiated.
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Figure 2. Number of studies related to Cloud-based indoor positioning per year.

Most of the selected articles were published in conferences with 49 research works,
followed by 33 studies in different journals (e.g., IEEE, ACM and SpringerLink) and just
one magazine article. In recent years (2019 and 2021) , the works published in journals
have been significantly increasing, reaching a ratio conference/journal of 1:0.8 in 2020. In
2021, the number of articles has decreased compared to the previous years (last update:
November 2021). Overall, there is an upward trend in the last seven years.

The numbers of 2021 may not be fully conclusive as the databases were still indexing
papers from 2021 after we performed the search. Moreover, the exceptional events which
occurred during 2020–2021 may have negatively impacted on the research in the studied
topic. Strict lockdowns around the world have reduced empirical testing and research,
many conferences on related topics have been cancelled, and some research teams have
focused on side topics such as contact tracing.

3.7. Data Extraction

During this process, we collected all the relevant information from each of the 83 selected
studies. This information includes computing paradigms used in current indoor position-
ing platforms (RQ1), network protocols (RQ2), position technologies (RQ3), testing and
deployment areas (RQ4), main goals and improvements achieved by the authors (RQ5),
and the standards used by researchers in their systems (RQ6). The main outputs of this
process are reflected in Section 4, whereas the main features extracted from the analysis can
be found in Table A1 included in the Appendix A.

4. Results

This section will analyse the key information extracted from the 83 selected studies
(see Section 3.7) in order to answer the five defined research questions (see Section 3.1)

4.1. Computing Paradigms Used in Current Indoor Positioning Platforms (RQ1)

The exponential growth of devices connected to the Internet has led to the development
of new computing paradigms providing ubiquitous computing, security & privacy, and
low latency, among others. These computing paradigms are currently used in IPSs to
improve the Location-Based Services (LBS) in terms of Quality of Service (QoS) and Quality
of Experience (QoE) to the end-user. Despite IPSs having been studied for decades, the
new computer paradigms have been only exploited over the last few years (see Figure 2).

We have identified six computing paradigms in the 68 analysed research studies,
which are described in the following paragraphs:

4.1.1. Cloud Computing (CC)

This computing paradigm provides different services by extending the computing
resources, storage and network capabilities to the Internet [38]. These services are offered
through remote resources located in large data centres. They are characterized by their
high computational and storage resources [39], on-demand services, redundancy, among
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relevant features. Here we can distinguish three main models listed by the National
Institute of Standards and Technologies (NIST), which are SaaS, PaaS, and IaaS. Thus, the
management tasks can be distributed between the IPS developers and the Cloud provider.

In SaaS, everything is managed by the service provider. For instance, the well-known
Google platform provides many different services (e.g., storage, monitoring, etc.) without
any technical effort from the user’s side.

In PaaS, the application and data are managed by the user [38] but the remaining
services are managed by the Cloud provider. For example, IBM provides these services for
deploying native applications on the Cloud.

IaaS has four services—virtualization, storage, server, and networking—maintained
by the Cloud provider. For instance, Microsoft Azure offers servers, storage, networking,
and data centres managed by itself. These primary models are used as a basis for a
positioning/localisation service [40,41], which the architecture is based on PaaS.

There are other models or Cloud services proposed by current research studies, such
as Indoor Navigation as a Service (iNaaS) [42]. As the name implies, iNaaS provides
navigation services to other indoor applications. Thus, the beacon’s information collected by
the mobile device (i.e., the list of Received Signal Strength Indicator (RSSI) and identifiers) is
sent to the Cloud service in order to get the navigation information. Moreover, positioning
evaluation services are also deployed on the Cloud [43], so developers can test their data
sets and their indoor positioning solutions under certain standards such as the ISO/EC
18305 standard “Test and Evaluation of localisation and Tracking Systems.” [44].

Despite the wide range of Cloud services and functionalities, most of the research
studies used Cloud Computing for its high computational and storage capabilities. Many
positioning algorithms are time- and resource-consuming. Developers therefore often
prefer to migrate these processes to the Cloud to run positioning/localisation, navigation,
tracking algorithms [7,45–49]. Moreover, when the IPSs have to manage multiple and
large environments, low profile devices are unable to store that level of information. The
Cloud is therefore used to store indoor positioning information such as Wi-Fi radio maps,
Point-of-Interests (POIs), map layers [50–53].

Additionally, developers, companies, or researchers can opt for using Private, Public,
Community, or Hybrid Cloud. The services deployed in the public Cloud can be accessible
for everyone that require them, for example, Google services (e.g., Gmail, Google drive,
etc.) Private Cloud infrastructure is exclusively for a specific entity (single organization)
and its users, similar to on-premises infrastructure. Community Cloud is characterized by
their sharing of services between different organizations. And, hybrid Cloud is simply the
combination of the aforementioned Cloud types [38].

To deploy IPS on the Cloud allows the provision of more stable and reliable services.
Hence, the Cloud providers work under a Service Level Agreement (SLA), and their data
centres must accomplish high-quality standards (TIER, ANSI/BICSI 002-2019, etc.) and
fulfil different requirements such as geo-redundancy, high availability, and power outage
protection in order to obtain the corresponding certifications.

Figure 3a shows the basic schema of CC, where end-devices are connected to the
Cloud through the Internet.

4.1.2. Mobile Cloud Computing (MCC)

This paradigm combines CC and MC. The main purpose is to move the most de-
manded computational process from the mobile/wearable devices to the Cloud in order
to optimize the use of local resources [54]. It avoids processing large amounts of data in
the user’s device. However, this kind of implementation is also susceptible to different
issues such as delays in communication, security and privacy, etc. Moreover, it cannot
work offline, being Internet connectivity a must. Despite its limitations, Mobile Cloud
Computing (MCC) is widely used because many services are provided through mobile
devices. Therefore, many researchers have implemented their platforms by using this
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computing paradigm in order to provide commercial solutions, open-source systems [55],
and academic research platforms [56].

Cloud Computing
(CC)

End-Device

Cloud Computing
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Mobile/IoT Devices

Position
Technologies

FOG Computing (FC)

Mobile/IoT Devices

Position
Technologies

FOG Computing (FC)

Mobile/IoT Devices
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Figure 3. Current Cloud-based IPS/ILS architectures: (a) Cloud Computing (CC), (b) Mobile
Cloud Computing (MCC), (c) Fog Computing (FC), (d) Edge Computing (EC), (e) Multi-access
Edge Computing (MEC), (f) Mobile-Fog-Cloud, (g) Mobile-Mist-Fog, (h) Mobile-Edge-Cloud,
(i) Mobile-MEC-Cloud.

Due to the mobility required for indoor positioning applications, the use of mobile
devices or wearables is required. However, many mobile devices are resource-constrained,
therefore, some positioning techniques cannot be executed on those devices. According to
Khan et al. [57], MCC has four main objectives related to performance, energy-consumption,
constrain devices, and multi-objective MCC model.

For instance, Huang et al. [58] proposed a new IPS, which offer a low energy con-
sumption without affecting the position accuracy. The low energy consumption is obtained
by dividing the environment into multiple sub-areas and applying state controls in each
region. Noreikis et al. [59] developed an efficient Augmented Reality (AR) navigation
system, which aims to provide an efficient service in terms of performance and energy con-
sumption. Given that vision-based indoor navigation systems consume more energy than
other technologies, such as BLE, Wi-Fi, or UWB, it is necessary to run some tasks outside
of the mobile device. Therefore, in [59], the computing-intensive process was migrated to
the Cloud to offer an efficient navigation system. Moreover, the authors proposed a new
algorithm to reduce the image sample frequency, which maintains the position accuracy.
The researchers improve the system performance and reduce the energy consumption,
considering these systems as multi-objective MCC model.

Similarly, Silva and Wimalaratne [11] designed a wearable belt with vision and sonar
sensors to provide navigation services for people who require assistance devices, such as
visually impaired persons. In this case, the authors use the advantages of Google Cloud to
process the environment’s images, allowing the process to be offloaded to the Cloud.

Figure 3b shows the general architecture of MCC used in the analysed studies, where
the mobile devices (including smartphones, wearables, and IoT devices) are connected to
the Internet through wireless communications such as Wi-Fi or mobile network services.
In order to determine the user position, the mobile device requires the assistance of po-
sitioning technologies (explained in detail in Section 4.3), such as Wi-Fi, UWB, and BLE.
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Sometimes the researcher combines these positioning technologies with Inertial Measure-
ment Units (IMU) sensors (accelerometer, gyroscope, etc.) in a tight or loose coupling
sensor fusion approach.

4.1.3. Fog Computing (FC)

In the last decade, the number of wearable and IoT devices on the market has increased
exponentially. Taking into account that many of those devices use position, location,
navigation, or tracking services, the use of FC confers an advantage for IPS. Hence, FC
was designed to decentralize the computational load, provide low latency for real-time
applications [16] and massive device connectivity [60]. This paradigm is increasingly
utilized for latency aware services, such as indoor navigation services.

In order to exploit the advantages of this computing paradigm, Sciarrone et al. [61]
implemented the Smart Probabilistic FingerPrinting (P-FP) algorithm in the FC platform. It
allowed to reduce the computational load, and therefore, the energy consumption in the
mobile device. When the user’s device falls below a certain battery level, the computation
of the P-FP algorithm is distributed into the near devices, significantly reducing the energy
consumption (the energy saving was more than 80%).

As mentioned earlier, FC permits massive device connectivity. In this fashion, Li et al. [62]
make the BeDI repository system a reliable and scalable Fog implementation. This system
was developed to give support to positioning systems, providing fast response to hundreds
of thousands of devices. Similarly, in crowdsourcing data collection, many devices are
connected to the IPS/ILS sending a significant amount of data to the platform waiting for a
fast response. However, the service performance may be degraded due to the high data
traffic in the network. To avoid it, Li et al. [63] used FC to reduce the computational load
and store historical information. Additionally, due to the low latency provided by this
computing paradigm, it is suitable for real-time indoor positioning applications such as the
application proposed by Pesic et al. [16].

4.1.4. Mist Computing

Although Mist computing is a relatively new computing paradigm, it has already
been used in many architectures in cooperation with other computing paradigms. This
computing layer is located close to the endpoints. Its main approach is to extend FC
capabilities with the help of IoT devices, which is why it is also known as “Things Comput-
ing” [38]. However, its computational and storage resources are greater than FC resources.
In the analysed studies this computing paradigm is combined with FC [64] (see Figure 3g).
Battistoni et al. [64] set a mesh network of Mist nodes, where different process take place,
such as data analysis, pattern search, predictions, etc. Some of these tasks use ML tech-
niques applied to indoor positioning to determine the user position and occupancy in
challenge environments, among others.

4.1.5. Edge Computing

This computing layer is geographically close to the end-user, and it is characterized for
its low latency, real-time data access, storage, and computational capabilities (small data
centres) [38,60,65,66]. It helps to provide scalable networks and platforms. In the current
studies, we find two types of architectures that use EC. The first one is device-EC (see
Figure 3d), where certain processes are migrated from the mobile device to the Edge. For
instance, ref. [67] used the EC to estimate the user location, update the probability positions
from the Received Signal Strength (RSS) measurements obtained from the user device.
Additionally, the EC is in charge of storing the data collected in the local database. The
authors mention some advantages of using this computing paradigm, first, lower latency
than using CC, an improved position estimation, and its support for other analysis based
on the user location.

Ben Ali et al. [68] distributed the computational load of their system between the
mobile device and the EC. Being Edge-SLAM a system based on visual technology, the
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computational load that has to support the mobile device is greater than other technologies,
as we mentioned before. Thus, only the tracking process is running in the user device,
and the remaining processes are executed in the EC. As a result, the authors reduced the
mobile device’s energy consumption with a minimal decrease in the map accuracy and
the trajectory taken by the user. Fazio et al. [69] used the EC to process the navigation
information, moreover, they analyse the impact of ML on the EC.

Given the massive device connectivity to the EC, in order to process positioning
information, it can be susceptible to multiple attacks. This can cause severe security &
privacy issues, which have to to be minimized as much as possible. In view of these issues,
Zhang et al. [70] proposed a novel method based on the differential privacy-preserving
mechanism. This proposed lightweight mechanism not only guarantees the privacy during
the training stage of Wi-Fi fingerprinting, but also the accuracy of the indoor localisation.
Similarly, Liu and Yan [71] implement a security layer to the EC, but it is addressed to
outsourced ILS. The authors mentioned that similar implementation for the CC are not
suitable for this paradigm, and therefore, they used the concept of backdoor in ML to
design a new verification schema.

The second architecture (see Figure 3h) combines the advantages of CC and EC. In
such a way, the heavy processes are executed either on the Edge or the Cloud. For instance,
Liu et al. [72] process the tracking information on the Edge and the Cloud is used to
find the best path for the user (navigation). This system is specially designed for contact
tracing applications, such as the applications used for social distance. In the same fashion,
Liu et al. [72] process location information on the Edge, and store the processed data in
the Cloud.

4.1.6. Multi-Access Edge Computing

This paradigm uses Multi-access Edge Computing (MEC) servers near the mobile base
station, which provide multiple services to the end-user (including enterprise customers)
such as IoT, AR, catching, location services, among others [38,60]. Current IPS/ILS use two
types of architectures based on MEC, the first one is mobile-MEC (see Figure 3e) and the
second one combines MEC and CC (see Figure 3i). This paradigm is also involved in the
deployment of the new mobile technology 5G by offloading certain process on it [73].

As an example of the first architecture (mobile-MEC), Horsmanheimo et al. [74] used
MEC to run positioning services. Moreover, this proposal system has been built by using
the 5G testbed infrastructure provided by Espoo. Correspondingly, Li et al. [75] pointed
out the need of using servers with high capabilities to run ML algorithms. Additionally,
the authors mentioned that the use of local server would change progressively with the
emergence of MEC.

To illustrate the second architecture, Carrera V. et al. [76] used both the CC and
MEC. MEC is used in order to process all the information related to the tracking of users
and provide real-time localisation. Meanwhile, the Cloud is used to store the location
information for future analysis. As a result, the authors obtained a tracking error of 0.44 m.

4.2. Network Protocols Used in Current Cloud-Based Indoor Positioning Platforms (RQ2)

Network protocols are one of the principal components to guarantee the interoperabil-
ity and communication between systems and devices regardless of the vendor and structure.
These protocols operate in different layers of the Open System Interconnection (OSI) model
or similar models, exchanging information between upper and lower layers or vice versa.

These protocols can be either proprietary or open protocols. Both have pros and cons
that must be carefully analysed according to the needs of the application. In this section,
we will report the protocols used in the analysed studies. We divided the used protocols
into four main groups, communication, security, IoT protocols and other protocols used in
the current studies.
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4.2.1. Communication Protocols

Cloud-based indoor positioning systems can use different protocols to establish and
maintain the communication between the Cloud (or other computing paradigms) and the
user device. Given the heterogeneity of devices used by both users and service providers,
the use of protocols is essential to avoid problems in the communication and provide a
common language between them. Nowadays, many protocols have been developed for
new, reliable, and efficient communications. However, the traditional protocols are still
widely used in multiple services.

As part of the TCP/IP protocol suite, we have HyperText Transfer Protocol (HTTP)/
Hypertext Transfer Protocol Secure (HTTPS), which is an application layer protocol (OSI
model). HTTP is responsible for exchanging information between the web client and the
web server. In the studies analysed, developers or researchers use the REpresentational
State Transfer (REST) architecture style to exchange data between the client and the server
over HTTP [43,45,54,55,77–80], but REST is not restricted to this protocol. The use of REST
architecture style allows establishing a stateless communication by using Uniform Resource
Identifiers (URIs) and HTTP verbs (get, post, put, and delete) [81]. For instance, Ref. [82]
use a REST Application Programming Interface (API) for a seamless connection between
the client and the web server. Thus, when the user reaches a place, the location is updated
by using the REST API service.

Another example is given in [80], where the authors propose a new shopping plat-
form based on IoT solutions. According to the diagram presented by the authors, the
communication between the IoT devices and the back end is done using the HTTP proto-
col and REST architecture style. Current applications or services which implement REST
architecture style (RESTful web services and RESTful APIs) are commonly used in many
applications. Thereby, Raspopoulos et al. [79] mentioned that the use of RESTful API
and other components allow a straightforward development and integration between
applications. However, some researchers have migrated from HTTP protocol to websocket
protocol [76,83], given that it overcomes some common problems of using HTTP as a
transport protocol (e.g., multiple underlying Transport Control Protocol (TCP) connections
between the client and server, constant monitoring of the client connection to track replies,
among others). This protocol was used to establish the communication between the client
and the positioning server.

As part of the communication protocols, OpenFlow is also used in the current studies.
It represents the communication between the OpenFlow switch and the controller by
exchanging three types of messages, controller-to-switch, symmetric, and synchronous [84].
Guo et al. [85] installed OpenWrt and Open vSwitch on wireless routers, turning them into
virtualised routers. They are used to communicate the virtualised routers with the Fog
layer through the OpenFlow protocol.

Another protocol used in the reviewed articles is OBject EXchange (OBEX). OBEX
protocol thus allows to exchange data and control messages between devices through a
wireless communication [86]. For instance, this protocol is used in [62] to exchange the
position information between the Lbeacons and mobile devices.

The User Datagram Protocol (UDP) protocol is commonly used as well in indoor posi-
tioning platforms. However, unlike of TCP, UDP is not connection-oriented. Given that
wearables (wristbands, smartwatches, smart glasses, etc.) and IoT devices are energy-
constrained, they require lightweight protocols to transmit data [87]. Thus, UDP is rapidly
growing in popularity between these devices. For example, Chen et al. [88] use the UDP
protocol to transmit the collected data (RSS and Media Access Control (MAC) address)
from the wristband to the server where the user position is estimated.

4.2.2. Security Protocols

Nowadays, security and privacy issues are the biggest concerns both for the academy
and the industry. These are also an issue for indoor positioning applications, especially
when they are on a Cloud-based platform. Given that some sensitive information of the
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users is sent to the Cloud in order to estimate the user position, it can be intercepted by
unauthorized people or suffer from location spoofing attacks [89,90]. Moreover, wireless
communications are susceptible to multiple attacks, in the case of indoor positioning,
the attacker can emit corrupted RSS values in order to affect the process to estimate the
user’s position.

To ensure the secure communication between the user device and the Cloud, many
researchers have implemented the security protocols in their communications. For instance,
Biehl et al. [91] used the Transport Layer Security (TLS) protocol to ensure the communication
between the client and the Cloud server. In such a way, the authors are able to transmit
the user position through a secure channel by encrypting the communication, making
it difficult for an unauthorized third party to understand the transmitted data. TLS is a
cartographic protocol which are also known as SSL/TLS protocol, where Secure Sockets
Layer (SSL) is the previous version of TLS.

In order to guarantee confidentiality, security, and integrity, TLS protocol use two
extra protocols the TLS handshake protocol and TLS record protocol. TLS record protocol
is responsible for the confidentiality by using symmetric key cryptography and a keyed
Message Authentication Checksum (MAC), whereas TLS handshake protocol carried out
the session negotiation [92].

4.2.3. IoT Protocols

Given the high proliferation of IoT devices in the industry that use positioning ser-
vices, it is necessary to have protocols which provide reliable communication between
these devices. This is the case of Message Queuing Telemetry Transport (MQTT), which is a
Machine to Machine (M2M) lightweight IoT protocol. It has three components—the broker,
subscriber, and publisher [81]. The publisher is any device (client) that sends messages
through the MQTT broker, and the subscriber is the client connected to the broker interested
in a specific message. Here, the broker is responsible for dispatching the messages between
the clients. This protocol is widely used by devices that require low power consumption,
narrow bandwidth, and small data package [7,93].

MQTT has been used by [7,16,46,56,64,94,95] in their indoor positioning/localisation
platforms. For instance, Chatzimichail et al. [95] used this protocol to perform encrypted
real-time communication between the modules. Navya et al. [94] used to communicate the
edge nodes with the main node. In [7], the MQTT dispatches the RSS values collected by
the clients to upper layers subscribed to the broker.

Extensible Messaging and Presence Protocol (XMPP) is another IoT protocol used in
the retrieved studies from the systematic review. XMPP is an open and decentralized
messaging protocol that allows exchanging messages between the clients regardless of
the operating system [81]. Kulshrestha et al. [96] used this protocol to provide reliable
communication between the portable sensing units (PSU) and the XMPP server and vice
versa in order to compute the top-k queries.

4.2.4. Other Protocols

These protocols are used to support particular services provided by the ILS, for
instance, the Location-to-Service Translation Protocol (LoST) protocol, which is used to
determine or locate the nearest Public Safety Answering Point (PSAP) according to the
geographical position of the user [97,98].

4.3. Do the Current Platforms Permit Heterogeneous Positioning Technologies for GNSS-Denied
Scenarios? (RQ3)

In order to determine the position in GNSS-denied scenarios, it is necessary to combine
technologies, techniques, and algorithms. These combinations will help us to acquire
different levels of accuracy in the position estimation. However, the component selection
depends on the precision required in a specific environment and its complexity. While
the robotic industry requires a highly accurate position, a school does not need high
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position accuracy to find classrooms. Nowadays, there are multiple technologies used
for positioning and localisation based on radio frequency, magnetic field, light, sound,
infrared, sensor fusion, among others. All of these technologies provide a different range
of precision. Thus, some of these technologies offer centimetre-level accuracy while others
still offer a few meters of accuracy [72,99,100].

Technologies featured in the studies analysed have been classified into five main
categories; radio frequency (RF) technologies, inertial sensors, computer vision, sound,
magnetic field, and optical technologies. Additionally, techniques and algorithms used in
each study will be listed in this section. Many of these techniques have been analysed in
the surveys and reviews cited in Section 2.

4.3.1. Radio Frequency Technologies

Nowadays, many technologies based on radio frequency have been deployed in
multiple environments, both indoor and outdoor. Although some of these technologies
were not designed for positioning and localisation services, they are currently used to
accomplish this, for instance, Wi-Fi.

IEEE 802.11 Wireless LAN (Wi-Fi)

Wi-Fi is part of the IEEE 802.11 standards family. Many indoor positioning/localisation
solutions are based on this technology for its low cost, and because it is already deployed
in many places, both indoor and outdoor [101]. Moreover, Wi-Fi is supported by a large
variety of devices such as mobile phones, laptops, among others [6,45].

In order to estimate the user position by using Wi-Fi technology, researchers and
developers use different techniques such as fingerprinting [73,102], which is based on the
RSS measurements. Fingerprinting is divided into two phases, the offline phase, where
the radio map is formed from the collected RSS values and the online phase, where the
incoming fingerprint is compared with the fingerprints in the radio map. From the RSS
values we can also determine the user position by using signal propagation models (e.g.,
Path Loss Model [75]).

The performance of Wi-Fi fingerprinting is reduced when there are thousands of RSS
values and multiple floors and buildings in the dataset. That is why some authors have
proposed to reduce the radio map [102] or taking only a portion of the radio map [103] to
improve the performance on huge Wi-Fi fingerprinting datasets. Another technique used
in analysed studies along with Wi-Fi is Time of Arrival (ToA), which uses the signal time
of flight to estimate the distance between the transmitter and the receiver. For instance,
Lemic et al. [8] stored row data of both ToA and Wi-Fi fingerprints in the dataset, which
were used to evaluate indoor positioning algorithms.

As a result of using Wi-Fi technology in indoor positioning applications, the authors ac-
quired different location accuracy levels. For instance, Pericleous et al. [103] got an average
location error of 1 m (approximately) on their indoor localisation service. Chen et al. [88]
acquired a mean positioning error of 2 m by combining fuzzy logic and genetic algorithms.

Bluetooth

Bluetooth is used for short-range communication between devices, becoming one of
the most used technologies worldwide, for instance, in wireless mouse, headphone, among
others. The last versions of Bluetooth (v4.0 and v5.0) provide low energy consumption,
which is why they have been broadly used in power-constraint devices. Unlike the previous
versions, Bluetooth protocol 5.0 supports different data rates (125 kbps, 500 kbps, 1 Mbps,
2 Mbps), and it is capable of transmitting information up to 400 m [104].

Li et al. [7] mentioned in their study that Bluetooth 5.0 will help to overcome two main
problems associated with the location prediction done by traditional propagation models.
Thus, Bluetooth 5.0 will improve the accuracy and the system’s stability.

Currently, BLE is being used in many indoor positioning platforms both with wear-
ables and IoT devices [105]. Generally, the researchers implement IPS/ILS based on BLE
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by deploying beacons, ibeacons [50], or custom BLE devices in the environment [106].
However, it is not always needed to deploy beacons in the environment. For example, if we
need to determine the distance between two individuals, it is only required the mobile user
devices equipped with Bluetooth, i.e., using the RSSI of BLE advertisements for measuring
relative distances.

There are two protocols based on BLE, the first one was developed by Apple, namely
iBeacon, and the second is the Google version, known as Eddystone. These protocols were
designed to provide proximity services by using four regions immediate (0 m≤ distance≤ 1 m),
near (1 m < distance ≤ 3 m), far (3 m < distance ≤ 50 m), and unknown (device not ranged)
region [6,82]. However, the signal might be affected by the environment, and therefore,
the proximity accuracy as well. Thus, the use of filtering techniques (e.g., Kalman filter
(KF), Winsorization, Trimmed Mean, etc.) is necessary to reduce the errors inherent to this
technology [80,95,107].

The proximity is based on the RSS values, which can be calibrated by the user. Similarly,
the user can set the advertising package frequency in order to reduce or increase the time
between the broadcast of each message. The iBeacon advertising message contains a
constant preamble of 9 B long (e.g., flags, type, companyID, etc.), UUID 16 B long, minor,
and major 2 B long each, and finally, the measured power RSSI 1 B long [50,82].

Many indoor positioning techniques used for Wi-Fi can be also used for Bluetooth,
such as fingerprinting, ToA, among others. A common method used with Bluetooth is
trilateration [95,105,107], it consists of determining the position by using three reference
points and the distance. Multilateration relies on the time difference in the arrival of signals
to various base nodes, in this case access points. We also have triangulation, which unlike
trilateration, uses the angles instead of the distance to determine a point of position [9,22].

The accuracy achieved by using BLE ranges from a few centimetres to a few metres.
For instance, [46] obtained less than 2.6 m in an area of 600 m2 and 19 beacons deployed on
it. Ref. [7] achieved 0.86 m location accuracy in an area of 12 m × 16 m and combining KF,
Long short-term memory (LSTM) + Tri (Multi-Weighted-Centroid).

Ultra Wideband (UWB)

UWB is a RF technology with wide spectrum of frequency and high bandwidth
(−10 dB bandwidth > 500 MHz and centre frequency > 2.5 GHz) [10]. There are two
specifications of UWB which are small centre frequency and relative large bandwidth [5],
these two characteristics make UWB suitable for different purposes such as to go through
different materials [6]. Moreover, it may operate with high data rate and a very low
power level.

Given the high-accuracy provided by this technology, it has been used in some indoor
positioning solution both open-source [55] and commercial solutions (e.g., Insoft) . For
example, Barua et al. [10] used UWB technology due to its high accuracy in real-time. As
this system is designed for people with dementia, high accuracy in real time is a must,
that is why they combined UWB + EC + ML (Support Vector Machine (SVM) + k-Nearest
Neighbor (k-NN)) in order to analyse patterns in their behaviour linked to their mobility.

Carrera V. et al. [76] mentioned the robustness of UWB against multi-path effects,
a standout feature when compared to other RF technologies. In this study, the authors
combined UWB and MEC. Similar to Barua et al. [10], three ML algorithms were used—
KStart, Multilayer Perceptron (MLP), and CART. As a result, this system (InTrack) acquired
an average tracking of 0.59 m, which is better than commercial solutions according to
the authors.

As we can see, the authors prefer UWB for highly accurate and reliable solutions,
where real time is required. Along with it, the use of ML algorithms were used in these
applications. Thus, two well-known algorithms were used, including k-NN, which is used
for classification and regression problems. k-NN searches the nearest observation in order
to predict or classify the new observation based on the other observations. SVM is also
used for classification and regression but it uses hyperplanes [10]. CART is the classification
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and regression tree algorithm which consists of dividing a node into sub-nodes repeatedly
choosing always the best option.

Cellular/Mobile Networks

This technology is based on cellular base-stations, which provide a long coverage area.
Here, there are four standards used in the current studies 2G, 3G, 4G, and in last years
5G [74,96,108]. The improvements of each standard along the years permit to achieve better
position estimation. Thus, with 5G technology is expected to have a more accurate position
estimation than previous technologies such as 3G or 4G.

In the analysed studies, the authors combined cellular, Wi-Fi, BLE, and Radio Fre-
quency Identifier (RFID) in order to provide a more accurate solution. For instance,
Santa et al. [73] developed an indoor-outdoor positioning system which supports five
technologies Wi-Fi, BLE, cellular, Near-field Communication (NFC), and Global Position-
ing System (GPS), in this case the position estimation is done in MEC nodes. Despite
combining five technologies the positioning error was around 4.61 m.

In the same fashion, Kulshrestha et al. [96] developed a real-time surveillance system
capable of tracking individuals mobile devices. In the proposed system, the authors
combined three technologies, GPS, cellular, and Wi-Fi, to provide a robust solution for
indoor and outdoor environments. This system was tested in a real environment—a festival
that took place in India. The authors were able detected crowded places, average visiting
frequency, number of individuals with a high level of accuracy. Additionally, the authors
used k-NN to detect the location of outliers, NP-Hardness and a novel algorithm, namely
Latest Locations Retrieval (LLTR), to select the number of personal sensing units (PSUs)
needed to find the last location of a person.

IEEE 802.15.4—Zigbee

Zigbee is a standard for Wireless Sensor Network, which is highly scalable and has
an ultra-low power consumption. In the last release, Zigbee supports Centralized and
Distributed Security Network. This technology has gained widespread popularity in smart
environments due to its low cost and power efficiency [22].

Generally, multiple Zigbee nodes are deployed in an environment as a network in
order to determine the device position. For instance, Li et al. [62] deployed Lbeacons which
contain Bluetooth and Zigbee components. In this kind of implementations, one node is
the coordinator, which manages the Zigbee network connection, and is also responsible for
collecting data from the nodes. Chen and Huang [13] used a network of Zigbee as the main
indoor positioning technology.

Radio Frequency Identifier (RFID)

RFID is a RF-based technology which operates in low frequency (30 kHz to 500 kHz), high
frequency (10 MHz to 15 MHz), Very High Frequency (VHF), Ultra High Frequency (UHF)
(850 MHz to 950 MHz, 2.4 GHz to 2.5 GHz, 5.8 GHz), and microwave frequency [6,109]. In
general, a full solution for indoor positioning based on RFID technology consist of three
main components, tags to identify the device, which requires a reader called interrogator
to know the tags information, and RFID antennas [110]. RFIDs are classified into three
types, active, passive, and semi-passive. Active RFID uses a local power supply that
keeps powered the microchip and the antenna. Moreover, active RFID transmits its ID
periodically. Passive RFID can operate without a power supply, and the semi-passive uses
a tiny battery to power the micro chip [109].

As example of passive RFID system can be found in Fang et al. [110]. The authors
deployed a full passive RFID indoor localisation solution. In this system, the RFID antenna
reads the tags data, and the reader transmits the collected information to the host computer.
The proposed system achieved an average accuracy rate of 88.1%. In the same fashion,
Datt et al. [111] used this technology to provide navigation services for visually impaired
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people. In this case, it is important an accurate solution that provides information about
the environment in real time, such as obstacles or people around.

4.3.2. Magnetic Field

Magnetic fields are used for indoor positioning and navigation systems as they proved
to be stable over the time and the IPS does not require any additional infrastructure
deployed in the environment. Nowadays, current mobile devices are already equipped
with sensors to measure alterations in the magnetic field. Moreover, this technology has
been used in several indoor positioning solutions, including commercial solutions as
mentioned in Brena et al. [22]. Similar to Wi-Fi or BLE, fingerprinting technique is also
used with this technology because each scenario presents different levels of intensity (i.e.,
the ferromagnetic materials used in the buildings and other material distributed in the
environments generate unique magnetic conditions).

For example, Liu et al. [112] developed a geomagnetism-based indoor navigation
system, which combines fingerprinting technique, particular filter (PF), and Dynamic time
warping (DTW). First, the geomagnetic signals are stored in a database in order to form
the fingerprint dataset. In the online phase is performed the matching stage where the
incoming signal is compared with the stored signal, to estimate the user position by using
PF algorithm or DTW algorithm and k-NN for path selection.

4.3.3. Inertial Technology

This technology uses inertial sensors such as gyroscope, acceleromenter, and mag-
netometer to estimate the user position. The assembly of these inertial sensors is called
IMU. Inertial technology tends to accumulate errors that are proportional to the travelled
distance; the greater the distance, the greater the error [22]. For this reason, this technology
is commonly combined with other technologies like Zigbee, Wi-Fi, and/or BLE [52,55,113],
among others. For example, in Carrera V. et al. [76], UWB and inertial sensors are combined
to provide a highly accurate tracking system. As a result, the authors achieved an average
tracking error of 0.44 m.

In Nikolovski et al. [83], the authors use the accelerometer and gyroscope for falling
detection. The analysed system combined different techniques to reduce the noise produce
by the environment or by the sensors themselves. Thus, multiple filtering techniques have
been used in this article, such as particle filter and KF. As a result, the authors provided a
reliable system for Ambient-Assisted living.

Dead Reckoning (DR) is a common technique used with IMU, this technique used the
previous position to estimated the current user or device position. When this technique is
oriented to pedestrians, it is called Pedestrian Dead Reckoning (PDR),which is frequently
used in navigation systems along with other technologies. Thus, with PDR we can estimate
the user orientation, detect steps, and estimate the step length. For instance, in [59] were
combined two techniques, PDR and image-based technique for localization, navigation,
and path finding. As as result, the authors provided a seamless and energy efficient indoor
navigation solution.

4.3.4. Computer Vision-Based Technology

This technology is based on images obtained from cameras that are processed in order
to detect different objects in the environment [22]. Current indoor navigation platforms use
this technology along with AR techniques in order to provide information of the environ-
ment [59,114]. Given the significant demand for computing resources, most of the processes
are moved from mobile devices to the Cloud [115] as we saw in previous paragraphs.

Computer vision-based technology is also used with wearable devices such as smart
glasses. For example, Ref. [11] combined vision and sonar sensors in a wearable belt, which
is used to identify object or obstacles detected with the sonar sensor. Once the images are
capture by the device, they are uploaded to the Cloud server for image processing. Fuzzy
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Logic is the main technique used by the authors, this technique helps to determine the
object proximity (near, far, medium) and other inferences.

Unlike technologies like Wi-Fi and BLE, with computer vision it is possible to achieve
decimetre-level accuracy, for instance, in [115] the authors acquired a localisation error
of 60 cm (approx.) in an area of 7.2 m × 5.2 m. Additionally, the researchers tested their
system in three different scenarios of different sizes and obtained similar results.

Simultaneous Localization and Mapping (SLAM) is a well-known algorithm used
along with computer vision-based technology but is not limited to this technology [9].
SLAM algorithm is used to reconstruct the ground covered by extracting some features
from images obtained from computer vision-based technologies (Visual-SLAM) [24]. For
instance, Ref. [68] combined ORM-SLAM with EC, splitting the computing load between
the mobile device and the EC. Thus, the tracking process is done in the mobile device and the
local mapping and loop closing in the Edge. This combination allows optimizing the mobile
resources with a minimum increment in the positioning error and the map reconstruction.

4.3.5. Sound-Based Technologies

Sound-based technologies are divided into two main groups ultrasound and audible
sound. Ultrasound uses frequencies greater than 20 kHz, which is not perceptible for the
human ear. Meanwhile, audible sound operates with frequencies less than 20 kHz [6].
Ultrasound is used to detect object or obstacles in the environment. Due to that its speed is
slower than other technologies, the time of flight between the transmitter and receiver can
be measured [22].

In [11], the authors used ultrasonic sensor to detect obstacles in indoor environments.
In this study, two ultrasonic sensors have been used and integrated using a KF. As we
can see in previous paragraphs, this technology can be fused with computer vision-based
technology in order to provide navigation assistance for visually impaired persons.

4.3.6. Optical Technologies

Optical technologies have increased their popularity in IPS, given their low power
consumption and rapid switched on and off intervals [22]. The most common optical-
based technologies are VLC and infrared. VLC is gaining popularity for IPS, as it is not
susceptible to electromagnetic interference and it provides high-precision positioning and
it is low-cost [12]. However, the ambient light might affect its performance, among other
factors. That is why different techniques and standards have been developed to overcome
these challenges with VLC. For instance, IEEE 802.15.7 is a standard that defines MAC and
physical layer (PHY) layers for short-range optical communications.

Similarly, unmodulated light is used for indoor navigation and localisation using light
sensors to measure the light intensity. In this case, the ambient light is sensed through
light sensors detecting light intensity variations. For instance, in [116] the authors combine
unmodulated luminaries with inertial sensors in order to provide an accurate indoor navi-
gation solution. This study aims to determine the light intensity provided by unmodulated
luminaries distributed in the environment. Thus, in this study, the peak of light intensity is
associated with a virtual graph to determine the navigation path between luminaries with
an accuracy of 90% (approx.)

Table 3 summarises the technologies analysed in this section together with their group,
range, accuracy, and power consumption. As can be seen in this table, each technology
has its pros and cons, for instance, cellular networks have a wide coverage area, but their
accuracy is low. Conversely, UWB provides high accuracy, but its coverage is limited
to 10–20 m.
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Table 3. Features of the Indoor Positioning technologies.

Group Technology/Feature Max. Range Accuracy * Power Cons.

Cellular [117] 500 m–80 km a <50 m [9] Moderate-low
Wi-Fi [118] < 100 m b average > 1 m [67,88,103] Moderate
Bluetooth [7,58,104] v2.1–4.0→ 100 m, v5.0→ 400 m average > 1.5 m [46,58] Low

RF UWB [9] 10–20 m median < 50 cm [9] Low
Zigbee [117] 100 m median < 5 m [9] Low
RFID 200 m median < 3 m [110] Low

Optical Light - - Low

Vision Camera - average ≈ 20 cm [68] High

Sound Ultrasound [6] <20 m median < 10 cm [9] Low
Audible Sound - - Low

Inertial sensors Gyroscope, accelerometer, etc. - <5 m [110] c Low

Magnetic Field - - median < 5 m [9] Low

* Accuracy reported in the analysed studies and surveys. This error can vary in function of the techniques and
algorithm used by the authors. a Depends on the standard (2G, 3G, 4G, 5G), b it depends on the variant IEEE
802.11a, IEEE 802.11b, IEEE 802.11g, etc., c increases as a function of the distance walked.

4.4. Do the Current Platforms Adapt to Different Scenarios? (RQ4)

The indoor scenario is considered a highly complex environment for positioning, lo-
calisation and navigation purposes, given the diversity of space distributions (rooms, open
areas, corridors), building materials, obstacles distribution, and other mobility restrictions.

Thus, different factors have to be considered prior to the deployment of a particular IPS
in multiple environments, such as technologies available, the size of the area, the number
of floors, the cost, and the accuracy required, among many other factors. That is why some
authors have implemented their solution in new locations based on previous experiences
and assumptions. Currently, many of the proposed solutions have been deployed and
tested in shopping malls [45], universities [46], libraries [119], residence buildings [16],
among other public large areas.

In order to deploy an indoor positioning solution in different environments, we have
considered three main aspects related to namely the platform (software), the environment,
and the client device, which are addressed in the following paragraphs.

4.4.1. Platform

Section 4.1 addressed the computing paradigms used in the studies analysed. As
we can observe, the developed systems were deployed by using different computing
paradigms such as the CC, EC and FC. Some of them correspond to well-tested IPS/ILS
that have been used by many organizations. For instance, AnyPlace [55] is an open-source
indoor navigation platform, which is available online for free, and it can be used in many
environments, including industrial ones.

Each indoor positioning platform has differing requirements in terms of software and
hardware, and they are specified in their documentation. These requirements are essential
to the proper operation of the system. The deployment of these platforms are becoming
less complex due to the fact that the authors use Cloud services such as those provided
by Amazon, Google, or other companies. For instance, Terán et al. [48] and P. Álvarez and
N. Hernández and Fco Javier Fabra and M. Ocaña [45] used some services provided by
Amazon such as S3 Service, Amazon API Gateway, AWS Lambda, Amazon Dinamo DB,
and Amazon Machine Learning.

Additionally, these platforms have to be adaptable to both new and old indoor posi-
tioning technologies. Thus, if the indoor positioning platform only supports one technology,
it will take more time to adapt it to new scenarios where that specific technology is not
deployed or cannot be deployed. Current commercial solutions try to provide a wide range
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of supported technologies to be used in different environments together with heteroge-
neous technologies.

4.4.2. Environment

Some of the studies analysed tested their indoor positioning and localisation plat-
forms in a single scenario [48,58,72], other platforms were tested in more than one sce-
nario [55,82,119], including outdoor environments [120]. Thus, the experimental area might
differ from a few square meters to several hundreds of square meters in each reviewed ar-
ticle. For example, P. Álvarez and N. Hernández and Fco Javier Fabra and M. Ocaña [45]
tested their Cloud-based location and tracking system in a scenario of 562,000 m2,
Liu et al. [116] implemented their indoor navigation platform in three environments, a
supermarket of 1000 m2, a shopping mall of 20,000 m2 and an office building of 800 m2.
Sujin et al. [121] evaluated their system in an area of 144 m2.

The diversity of indoor environments has led some researchers to carry out a previous
environment survey [56] to train their applications with ML algorithms and fingerprinting
technique (or similar methods) [7,56]. For instance, Noreikis et al. [59] attempted to take a
video from the venue to form 3D point Cloud. It is required to provide localisation and
navigation services in a new environment. In contrast, the navigation service developed by
Konstantopoulos et al. [42] does not require a training stage to be used in a new scenario, it
only needs the POIs, the predefined routes and the information provided by the beacons
(RSS values) to provide the navigation service.

4.4.3. Client

In this case, the client-side is linked to the mobile devices. In the analysed studies, the
researchers used smartphones, wearable, and IoT devices were used to collect information
about the environment and display the information related to the location, position, route,
among others. Thus, the authors have developed applications for those devices which allow
the interaction between the user and different service. Therefore, these mobile applications
process, exchange, and consume services from the IPS/ILS and third-party services such
as Google maps. The data can be exchanged through APIs [40,50–52,54,55,77–79,114,120],
web services [48], or simple http(s) request [102], allow an straightforward integration.

Since these applications are easy to install in many of the current Operating System
(OS) (Android, iOS, Windows), they can be used in any environment with their own indoor
positioning platform after minor changes. For example, Facchinetti et al. [54] developed a
mobile android application, namely “IPSOS assistant”, which is used to guide people in
case of emergency such as users’ injuries, and paths to emergency exits, among others. This
application consumes some Google services (e.g., maps, Google Cloud Messaging (GCM))
and the services provided by the SOS server. The communication between the application
and the server is done through a REST API service. Thus, most of the configuration is done
on the server-side. Similarly, Raspopoulos et al. [79] developed a mobile app that interacts
with the Cloud platform using an API.

4.5. What Improvements Were Done in Similar Studies (RQ5)

Each research study is focused on improving and solving current gaps in a specific
research field, in this case in Cloud-based indoor positioning platforms. This research field
combines different areas such as Cloud Computing (CC), indoor and outdoor positioning,
signal processing, and software architecture. It should also be noted that some of the
analysed articles are focused on more than one objective. That is why we can find many
goals linked to each of the mentioned areas. To address this research question, we have
created a framework with sixteen items summering each study’s main improvements.

It is important to highlight that we do not use position and localisation as synonyms,
as those terms have different meanings. However, some of the articles did use those terms
interchangeably. Sithole and Zlatanova [122] define four terms: position, location, place,
and area, where the position is an exact point in the space denoted by a coordinate (x,y,z or



Sensors 2022, 22, 110 22 of 45

latitude and longitude), whereas location is a small physical space, for instance, room A-123,
Geotec Laboratory, etc. As we can see, these two terms express two different meanings, and
they should be used appropriately in the articles.

• Efficient Computation [45,48,52,61,68,74,85,94,102,115]: It consists of improving the
methods or algorithms used in mobile devices and the Cloud in order to decrease
the use of computational resources. To reduce the computational load in mobile
devices, the authors offload specific processes to the Cloud or other computational
paradigms (see Section 4.1). Moreover, researchers have proposed some optimiza-
tions to traditional algorithms and databases in order to improve their efficiency and
time response.

• Interoperability [54,78,79,95]: It is the capability to interact with other systems, plat-
forms, or devices through its interfaces. Thus, they can exchange information si-
multaneously, allowing them to integrate with each other and provide synchronous
communication. This is especially valuable in light of the heterogeneity of the de-
ployed IPS, and the need for position and localisation services in other areas such
as healthcare systems, i.e., if an ILS only shares the estimated position and does not
provide interfaces to share raw data, these raw data cannot be integrated into a sensor
fusion approach.

• Position [55,56,58,74,85,123]: The articles studied proposed different technologies,
techniques, and methods to reduce the error in the position estimation (see Section 4.3).
Additionally, the use of computing paradigms (e.g., CC, FC, MCC, EC) have been
used in some articles to support the positioning process.

• Usability [8,13,39,40,43,77,79,80,83,96,97,106,111,124]: It is linked to the user experi-
ence providing a platform easy to use that satisfy the user’s requirements. For instance,
Yeh et al. [39] developed a Cloud platform for parking services (e.g., search parking
places, reservation, navigation), providing a useful and efficient system to end-users
which satisfies the need for parking systems. Additionally, some of the applica-
tions or frameworks are oriented to developers or users in general who have limited
knowledge of positioning systems and programming, allowing fast development of a
new application.

• Localisation [7,10,16,42,58,72,75,76,82,107,110,114,121,125,126]: Similar to position, lo-
calisation aims to provide better localisation accuracy by combining different tech-
niques, technologies, and algorithms. In the current studies, localisation techniques
have been used to locate people in different environments such as shopping malls,
universities, hotels, among others.

• Cost [45,67,88,94,105]: The cost is one of the prime considerations when researchers
and companies develop their indoor positioning platforms. That is why technologies
like Wi-Fi and BLE have been chosen, despite their poor accuracy compared to, for
instance, UWB. Moreover, the use of Cloud Computing (CC) offers pay-as-you-go,
enabling users to pay only for the services and resources procured.

• Navigation [11,46,55,59,69,99,111,112,120,127]: Many of the current studies are fo-
cused on improving or providing navigation service. For instance, to provide nav-
igation services for shopping malls or select the best route to emergency exits. The
navigation service is also used to choose the least congested route to a particular place.

• Scalability [62,110,120,123]: It is the ability of increasing the capacity of the platform
in terms of operational area, position technologies supported or number of concurrent
users without inhibiting the performance. Only four works have analysed/considered
this dimension in their platforms.

• Low latency [64,106,111]: This is a critical point in time-sensitive networks, and it is
related to the delay in the data transmission. It is the time that it takes a message to
go from the source to the target. It is specially required for real-time communications.
Thus, in order to provide real-time indoor positioning/localisation/navigation appli-
cations, the authors use different technologies, techniques and computing paradigms
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(see Sections 4.1 and 4.3) in order to reduce the latency, for instance, FC is used for
facing the latency problems caused by the large number of connections to the IPS.

• Energy efficiency [58,59,103,116,128]: Several measures have been taken to reduce
the energy consumed while performing a task. However, the main method used in
the current studies is to offload certain processes from the mobile device to comput-
ing paradigms. This allows the use of IPS in low-profile devices such as IoT and
wearable devices.

• Reliability [8,110]: To provide reliable positioning and localisation information in a
variety of environments with a minimum of errors, providing a high-quality service.
However, providing reliable systems is not easy given the complexity of IPS/ILS. For
instance, the authors of [110] implemented their system at a building construction site
in three scenarios in order to test the accuracy, latency, and system reliability, obtaining
a precision of 85% and accuracy of 88%, approximately. Ref. [8] developed a reliable
localization web platform providing remote access to numerous users.

• Tracking: It determines the current user position in real-time with minimum delays. In
order to provide tracking services, the authors use certain algorithms and technologies.
For example, Sujin et al. [121] used a stochastic model, namely the Markov model,
which is used for device tracking.

• Evaluation: It is one of the important aspect for indoor positioning platforms in order
to determine the performance and if it fulfils all the technical and user requirements.
This evaluation could be carried out in simulated environments or real environments
following a specific standard similar to the platform developed by Haute et al. [43].

• Privacy [70]: Given that some of the information collected to train positioning and
localisation models might contain sensitive data, the authors provide some mecha-
nism to protect the privacy of the user information during the process in any of the
computing paradigms. For instance, Zhang et al. [70] applied differential privacy to
Edge-based IPS. This research aims to protect user information when it is used to train
positioning localisation models in the EC.

• Security [63,71,91,119,129]: Various techniques, protocols, or devices have been devel-
oped over the year to protect user information. Thus, protocols like HTTPS are widely
used to provide safe data transfer. Moreover, other mechanisms have been adopted to
determine anomalies during the data collection and verify security issues in indoor
positioning platforms.

4.6. How Is the Standardization Aspect Focused on Different Platforms? (RQ6)

The standardisation provides a common language to interact between different sys-
tems, which is highly relevant when we have to integrate heterogeneous systems. More-
over, it enhances the interoperability between devices and systems of multiple vendors.
Nevertheless, not all the platforms for positioning and localisation follow the standards
established by the standardisation entities. Nowadays, different standard organisations
provide guidelines for products, services, education, process, and other fields of interest.

This research question addresses four components of indoor positioning/localisation
platforms, which are listed below:

4.6.1. Maps

There are multiple standards for indoor and outdoor maps which establish a set of
rules and a common framework, allowing for the exchange of spatial information under
the same “language” or format. It includes coordinate reference systems, indoor and out-
door space representation, feature representation, map visualization, among others [130].
Open Geospatial Consortium (OGC) have provided different standards with the aim of
making geospatial information accessible for everyone, allowing the interoperability be-
tween geographical systems under technical guidelines. As part of OGC standards we
have the IndoorGML, which is focused on Extensible Markup Language (XML) schemes
for indoor spatial information. Thus, we can represent indoor topographic space, sensor
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spaces, connection points through XML tags, for instance, <xs:element name="Geometry3D"
type="gml:SolidPropertyType"/> . In similar a way, Indoor OpenStreetMap provides a
complete framework for modelling indoor maps which includes buildings, POIs, con-
nections, indoor elements, among others. For example, Indoor OpenStreetMap uses the
following tags for representing indoor environments, door=yes/hinged/sliding/no , ca-
pacity=* , entrance=yes , etc. Additionally, some authors used Building Information
Modeling (BIM) [106,110] tools to model and manage building information enabling easy
collaboration and sharing data about buildings and civil engineering works. BIM is under
the International Organization for Standardization (ISO) 19650.

Some of the studies analysed take into account or use the current standards.
Ref. [77] developed a platform for managing indoor and outdoor spaces and geolocat-
ing. The authors followed the OGC standards and the OpenGIS specifications to de-
velop their platforms. They also specified the geodetic system supported by their plat-
form (GGRS87 or EGSA87 and WGS84 [95]). In most of the cases, third-party maps are
used in their applications, for instance, Google Maps [40,54,80,82,99,111,120], or custom
maps [46,50,67,74,88,95,119,121].

4.6.2. Position Technologies

Section 4.3 provided a review on the position technologies used on the research studies.
Most of them are under specific standards, for instance, Wi-Fi under the family standard
IEEE 802.11, Bluetooth standard IEEE 802.15.1, UWB built upon the standard IEEE 802.15.4z,
Zigbee built upon the standard IEEE 802.15.4, RFID has several standards including ISO
18000 and EPCglobal.

4.6.3. Evaluation Methods

In order to evaluate IPS/ILS, the ISO provided and standard namely ISO/IEC 18305:2016
Information technology—real-time locating systems—Test and evaluation of localisation and
tracking systems [44]. This standard contains different metrics for Localization and Tracking
System (LTS), privacy and security considerations, performance metrics, which was thought
of as guideline to standardize IPS and has been largely discussed by the indoor positioning
community [131,132]. This standard mentions the importance of evaluation in IPS, to know if
the platform fulfils all the user’s requirements. Upon this standard [43] developed a platform
devoted to comparing test indoor positioning solutions.

4.6.4. Software Architecture

Software Architecture is related to the software design, structure, its components
and the relation between them. It has to be considered as the foundation of any soft-
ware development, given that it directly affects the quality and reliability of the soft-
ware. Current studies have considered some of of the software architecture, such as
methodologies, software architecture patterns (e.g., Model–view–controller (MVC) and
Model–view–viewmodel (MVVM)), Service Oriented Architecture (SOA), monolithic, Mi-
croservice Architecture (MSA) and Cloud native architecture. The IEEE 42020-2019—
ISO/IEC/IEEE International Standard—Software, systems and enterprise—Architecture
processes [133] provides a full description of software architecture, definitions, process,
implementation, and other relevant information.

As part of the software architecture, the authors used different software design ar-
chitecture patterns, but in some cases, it is not mentioned or described in the research
study. For instance, SOA was used in [42,54,78], this architectural pattern is oriented to
develop services that work together to automate processes. In such a way, each service
has a specific function or task in the business process, reducing the software’s complexity.
Mpeis et al. [55] used the MSA patter to develop their indoor navigation platform. MSA
use small independent microservices, which have their interfaces to communicate with
other services over standard lightweight protocols (e.g., MQTT, XMPP). Generally, this
kind of architecture is used for large and complex solutions. For instance, Netflix, Uber, and
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Amazon applications are developed using this architectural pattern [134]. Cloud-native
architecture is used by [40,46,48,59,97] to be deployed in the Cloud. Thus, these indoor po-
sitioning/localisation/navigation platforms take advantage of Cloud computing or similar
computing paradigms.

5. Discussion of the State of the Art

The six research questions addressed systematically throughout Section 4, using the
methodical procedure laid out in Section 3. This section summarizes the systematic review’s
main findings, discussing current challenges and future trends.

5.1. Computing Paradigms and Improvements (RQ1 and RQ5)

Section 4.1 reviewed all of the computing paradigms used in the analysed research
works. Here, we can distinguish six computing paradigms used in indoor position-
ing/localisation platforms, being CC and MCC the most popular ones, with 35 and 24 arti-
cles, respectively.

Moreover, the CC has been used in combination with other computing paradigms
like EC, FC, and MEC (see Figure 4). As discussed in previous sections, positioning and
localisation services are increasingly utilised in different areas and environments thus
demanding ever greater computational resources. Therefore, robust equipment is required
to bring a high-quality service.
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Figure 4. Use of computing paradigms per year.

Despite the CC advantages, there are some issues regarding latency and security &
privacy. These issues led some researchers to employ alternative computing paradigms. For
instance, FC was used in 12 research studies (see Figure 5) in order to allow massive device
connectivity providing a fast response to the end-user. Similarly, FC is used to offload some
computational processes from the mobile devices to this paradigm. As a complement of FC
we have MIST computing, which extends the FC capabilities as mentioned in Section 4.1.4.
In the same fashion, EC and MEC provide lower latency than CC, bringing increased
storage and computational capabilities.

Given that some of the algorithms used to estimate user position or localisation are
extremely demanding of computational resources, it is almost impossible to run them in
low-profile devices such as wearable devices (e.g., smartwatches, smart glasses). The greater
the complexity of the algorithm, the more computational resources are required. Thus,
offloading these heavy processes to the computing paradigms reduce the computational
load in mobile devices. Therefore, the battery life may be significantly affected when
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indoor positioning applications are running on them, because data collection (sensing) and
communications are still needed.
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Figure 5. Computing paradigms and studies analysed main goals.

In the last seven years, the use of computing paradigms has increased in this research
area. However, the state of the art of computing paradigms has been employed less in com-
parison to CC and MCC. With the massive device connectivity of IoT and mobile devices, it
is necessary to use these computing paradigms, which are capable of supporting hundreds
and thousands of devices connected to them, providing low latency communications.

Figure 5 shows the goals achieved in each analysed study divided by computing
architectures used by the authors. Most of the analysed works deal with improving
localization/positioning accuracy (17 + 8, 25 papers total), efficient computation (16), navigation
(12), and usability (17). On the other hand, relevant goals as cost, evaluation, functionality,
latency, privacy, reliability, scalability, security or tracking appear in 7 or less papers.

From this figure, we can also see that the computing paradigms are somehow corre-
lated to the specific goals. For instance, the analysed research studies that use CC and MCC
are chiefly oriented towards usability. FC and MEC-based are focused on providing efficient
computation, and EC-based concentrates on providing an accurate localisation.

In the current research studies, the authors attempt to achieve more than one objective
in some cases, such as providing an accurate and low-cost indoor positioning solution
or providing reliable and scalable indoor positioning platforms. Although some data are
processed in the Cloud or other computing paradigms, security and privacy are not the
primary concern. As shown in Figure 5, security and privacy are under-researched topics,
addressed in only 7 and 4 articles respectively.

5.2. Network Protocols RQ2

Network protocols are a fundamental part of Cloud-based indoor positioning plat-
forms, allowing communication between devices and systems, and enabling secure and
fast communications. Section 4.2 analysed the protocols implemented in the literature
reviewed, separating the network protocols into four categories: communication proto-
cols, security, IoT and other protocols (see Figure 6 (left)). As discussed, the authors may
choose the protocols according to the system requirements. For instance, if the platform
is oriented to wearable and IoT devices, it is indispensable to use lightweight protocols
such as MQTT, UDP and XMPP. Otherwise, the traditional protocols can prove more than
suitable for IPS/ILS.

To provide security and privacy in communication between the client and the posi-
tioning server, the authors use SSL/TLS protocols. However, it can be time- and energy-
consuming given the processes carried out by these protocols (e.g., TLS handshake), which
could not be suitable for some IoT devices. Although some security and privacy algorithms
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have been proposed in the literature, they are not standards protocols, and were designed
for computing paradigms such as the EC and not for power-constrained devices.

Selecting the most appropriate network protocol is a critical factor in the provision of
reliable and efficient indoor positioning solutions, which fulfil all the user requirements,
including security and privacy.
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Figure 6. Network protocols, standards and adaptability to new environments.

5.3. Indoor Positioning Technologies (RQ3)

A wide range of indoor positioning technologies have been used and tested in the
analysed literature (see Figure 7), being the predominant RF-based technologies such as
Wi-Fi, which was used in approximately 67% of the reviewed studies. Although Wi-Fi is
not the best solution in terms of positioning accuracy, it is the most suitable given that Wi-Fi
Access Points (APs)/routers are already deployed almost everywhere for communication
purposes. In the second place, we have Bluetooth-based indoor positioning solutions
(31 articles), which provide a lower error than Wi-Fi, and their cost is relatively low.
Moreover, in the case of BLE, it also provides low power consumption being used by many
power-constrained devices.
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Figure 7. Indoor positioning technologies used in current studies.

However, technologies like UWB and camera provide a lower positioning error than
BLE and Wi-Fi (see Section 4.3). These technologies have been less used in the reviewed
studies. In the case of UWB, it is necessary for some extra hardware to be deployed in
the environment in order to estimate the user position. Moreover, not all the user devices
support UWB technology, becoming a limitation for its implementation. However, in the
case of camera-based, most mobile phones are already equipped with high-resolution
cameras, but these camera-based solutions require more computational resources as image
processing has attached a huge computational burden.
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Hybrid solutions (i.e., sensor fusion combining multiple technologies such as RF,
sound, inertial sensors, etc.) has become a hot topic in recent years. As we can see in
Figure 7, 20% of the analysed studies combined more than one technology to provide a
highly accurate solution or provide a wide range of options to the end-user. Commercial
and open-source solutions tends to offer indoor navigation and positioning systems which
support Wi-Fi, BLE, UWB, and other technologies, for example, AnyPlace [55].

Here we can distinguish that inertial sensors are used to support other technologies
like Wi-Fi, BLE, and camera-based, being the third more used technology which appears
in 15 articles. However, it tends to accumulate errors that are proportional to the walked
distance. That is why some filters (e.g., KF or particle filter) have been applied to reduce
the error when this technology is used.

Similar to technologies, the authors of the analysed articles used numerous techniques
and positioning algorithms to reduce the positioning error. However, the most used
positioning technique is still fingerprinting, as we can observe in Table A1 included in the
Appendix A. Out of algorithms used to estimate the user or device position, many are
based on ML algorithms such as SVM, k-NN, and LSTM. Here, refs. [48,56,94,112].

5.4. Cloud-Based Indoor Positioning Platforms—Scenarios (RQ4)

As we mentioned in Section 4.4, the indoor environment is one of the most complex
scenarios for positioning, localisation, and navigation systems. This leads to large position-
ing errors in the position estimation. That is why multiple technologies, techniques, and
methods have been developed in order to tackle positioning indoors. The current solutions
have to be adaptable and flexible to be used in heterogeneous scenarios.

To provide adaptable indoor positioning/localisation solutions, we have to consider
three essential aspects. The first one is the system (platform), which should be easy to
deploy in any Cloud or on-premise environment with minor modifications. Moreover, these
platforms have to support the most common indoor positioning technologies and extend
their capabilities to new technologies and services. As we can see in previous sections,
many of these platforms offer Cloud-based positioning services such as navigation and
positioning services. In this case, it is not necessary to deploy them in other Cloud platforms
or locally; just consume their services, for instance, under the model pay-as-you-go.

The second aspect is focused on GNSS-denied environments. In Section 4.4, we can
see that most of the platforms have been tested in heterogeneous environments, including
universities, hospitals, malls, offices, among others. These environments have different
characteristic and different necessities in terms of accuracy, time-response, among others.
Thus, GNSS-denied scenarios are widely studied previous the deployment of any indoor
positioning technology.

The last point is related to the client-side if the indoor positioning applications can run
in any OS (e.g., Android, iOS, windows). Currently, most of the applications developed
for indoor positioning can be installed in different devices and OS. These devices are used
to collect indoor information (e.g., RSS values, images, sensor data, etc.) and show the
position or localisation results to the user. Additionally, some platforms also offer solutions
for wearable and IoT devices, avoiding additional developments from the client side.

5.5. Standardization (RQ6)

It is of paramount importance to develop systems following international standards
(ISO, IEEE, etc.). This is the way to obtain a straightforward integration between systems
and components, i.e., reaching interoperable IPS/ILS able to collaborate under an advanced
sensor fusion umbrella. It has also been proven that following standards enables a faster
technological innovation as well as a higher quality in provided services and products.

In Section 4.6, we analysed how the standardization aspect is addressed in the re-
viewed articles. Given that indoor positioning platforms are formed of different com-
ponents, we analysed four components related to maps (indoor and outdoor), position
technologies, evaluations methods, and software architecture. In spite of the different
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standards for indoor maps (IndoorGML, Indoor OpenStreetMap, Indoor Mapping Data
Format) and the efforts done by the community to promote them [130], the current studies
do not mention the use of any of them. However, standards like OGC and BIM have been
used in some of the reviewed articles.

Similarly, the use of standards to test and evaluate localisation systems has used or
mentioned in only one article. In spite of standards like ISO/IEC 18305:2016 [44] provided
a full guideline and metric to evaluate the performance of indoor localisation and tracking
systems. Moreover, it provides some considerations about security & privacy, indoor
scenarios, reporting requirements, and others.

In the case of software architecture standards, the analysed articles are more focused
on software architecture patterns. Here we can identify three design patterns SOA, MSA,
and Cloud-native architecture (see Figure 6). Each of these design patterns has advantages
and disadvantages, and the developers have to select the best approach for a given indoor
positioning solution. Given that most of the platforms are deployed in the Cloud, the
developers should take advantage of all the benefits it provides.

Although the use of standards has to be the cornerstone of any application or system,
including IPS/ILS, not all the analysed articles provide information about which standard
was used in their applications.

5.6. Current Challenges

In this section will be described current challenges obtained from the analysis from
the primary studies. Some challenges are related to computing paradigms, scenarios,
and standardization.

5.6.1. Challenges Related to Computing Paradigms

Security and privacy are a crucial concern in the computing paradigms CC, EC, FC,
MCC, and MIST computing. Given that these computing paradigms support massive
device connectivity, the risk of security and privacy issues increases. However, the number
of studies that addressed this topic were approximately 13%, and around 6% of it was
oriented to CC and MCC. The remaining 7% was focused to EC and FC. However, there
are many open questions regarding this hot topic and Cloud-based indoor positioning
platforms. For instances, how to efficiently detect anomalies during data collection. How to
ensure the sensitive data collection for positioning and localisation purposes, among others.

5.6.2. Challenges Related to Software

Software architecture design is essential in any application or system. This will
determine the robustness, scalability, fault tolerance, usability, interoperability, and other
characteristics of high-quality systems or platforms. In the current analysed studies, we can
observe that the authors are focused on many of these characteristics of design software.
However, some characteristics are still missed, for instance, fault tolerance which is related
to the time response and service recovery in case of failure in one or more components
without stopping the service.

Additionally, we can see that computing paradigms are becoming more and more
used in indoor positioning and localisation system, given the high capabilities. This leads
us to think about the flexibility of the current indoor positioning/localisation systems to be
deployed in one or many computing paradigms, including the capability of distributing
specific modules according to the computing layer used. This would involve a redesign of
many platforms to be adapted to new computing paradigms.

5.6.3. Challenges Related to Standardization

Although there are some standards available for indoor positioning localisation sys-
tems (e.g., ISO/IEC 18305:2016 [44] and IndoorGML). It is not easy to find out information
about them in the analysed studies. The standardization of indoor position and localisation
systems is one of the main concerns in both academy and industry. That is why some
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standards have been developed, which lead to interoperable and well-tested systems under
rigorous guidelines.

However, standardization is not only related to mapping, communication technologies
and evaluation standards. Here, it is important to consider the standards used for software
development and interoperability, such as using the standard ISO/IEC/IEEE 42010 Systems
and software engineering—Architecture description. In such a way, it will permit the fast
development of reliable and quality indoor positioning and localisation systems.

5.7. Future Trends

Both applications based in ILS/IPS and Cloud-based solutions are being used more
and more in the last few years. For instance, during the COVID-19 pandemic have been
developed numerous frameworks and applications for contact tracing. These applications
aim to protect people by informing them if they have been in contact with people with
COVID-19 or exposed to this virus. Thus, contact tracing application determines the prox-
imity between people in indoor and outdoor environments by using Bluetooth technology
and mobile devices.

Additionally, LBS are becoming more used in many applications and research fields,
including e-health, sports activities, rescue systems, social networking, autonomous navi-
gation, among others. As noted earlier, this leads to having million of devices connected
and consuming positioning, localisation, and navigation services. Thus, the current trend
is to use computing paradigms to give support indoor positioning and localisation systems.
Moreover, the use of hybrid localisation technologies (sensor fusion) is evident in current
research as they provide better positioning results.

Despite of most of the positioning and localisation services being used in mobile
devices (e.g., smartphones, tablets), there is also an increasing trend towards its use in
wearable and IoT devices. However, the developed applications for these devices have to
be as efficient as possible to consume less power and computational resources.

6. Threats To Validity

This section is devoted to discussing the threats to validate the current empirical
systematic review. Thus, we have considered the following aspect to validate.

6.1. Methodology Selection

The PRISMA model was selected to report this review, as it is a well-defined and
systematic procedure which provides a replicable and reproducible review. The findings
of the reviewed literature are presented together with a discussion of the current state of
Cloud-based indoor positioning platforms, challenges, and future trends. The full list of
studies selected is available to be evaluated by any person interested in this review and
its results.

6.2. Primarily Studies Selection

Following the selection of the methodology, we defined a research query to run
through two well-known search engines Web of Science and SCOPUS. By using these
research engines, we avoided the danger of discarding indexed publications of different
journals such as IEEE, ACM, and Springer, among others, minimizing the risk of obtaining
different results. We also defined a general research query to include all relevant results. As
a result, we obtained several records for its further process and revision. Section 3 describes
the whole process to make the results replicable.

6.3. Selection of Studies

In order to select the research studies for this systematic review, we proceeded with
the manual revision of titles and abstracts, tagging them with ACCEPTED and REJECTED
labels. This selection was made on the basis of the inclusion and exclusion criteria estab-
lished in Section 3. there was a risk of relevant articles being excluded due to the inclusion
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criteria and the quality evaluation in Section 3, stage 3 and 4. However, to avoid validation
issues, we followed the guidelines established in the PRISMA model.

Our review only covered articles from 2015 to 2021 which related to Cloud-based
indoor positioning systems and other computing paradigms which differ from mobile
computing. Additionally, we selected only those articles related to mobile devices including
wearable and IoT devices. We discarded robots and unmanned autonomous vehicle and
other not connected with the research topic. We believe that the risk of an external validation
threat is low under these conditions.

6.4. Replicability

This work can be easily replicated by following the steps described in Section 3.
However, the number of primary records may vary due to the potential for publication of
further research papers on the topic. For instance, papers written in 2021 may be published
in the early months of 2022.

7. Conclusions and Future Directions

This paper has presented a systematic review of the current studies relating to Cloud-
based indoor positioning and localisation platforms and similar computing paradigms. We
have analysed the varying components which form these platforms, such as computing
paradigms, technologies, network protocols, and standards and scenarios. We used the
PRISMA model as the basis of our review in order to provide a replicable work and report
studies’ main findings. Here, we have defined different research questions that had been
answered along with the article in various sections.

This systematic revie, has demonstrated a growing trend in the use of computing
paradigms in IPS/ILS from 2015 to 2021. These computing paradigms provide ubiquitous
computing, low latency, high computational and storage resources, and have consequently
proved a hot topic in many research fields. This was the primary factor in our decision to
analyse the use of multi computing paradigms (CC, FC, EC, MEC) within indoor position-
ing and localisation systems.

Additionally, we have observed that using different technologies, methods, and algo-
rithms, and combinations of these can help us acquire reliable position accuracy and reduce
computation time. Nevertheless, there is not a specific technology for indoors, prevailing
Wi-Fi over the other technologies such as UWB, BLE, Zigbee, etc. However, Wi-Fi was not
designed for positioning purposes.

It is also essential to highlight the use of standards (ISO/IEC 18305, IndoorGML, etc.),
including terminology, error metrics, data format, environment description, and other
information described in the standards. This will reduce the integration time with other
systems, but it will also improve the positioning systems.

We can conclude that it is necessary to develop modular indoor positioning and
localisation platform which fulfil all the standards in each of its components. Moreover,
these platforms should be capable of adapting to different indoor positioning technologies
and scenarios with minimal effort from the client side.
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CC Cloud Computing
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MEC Multi-access Edge Computing
ML Machine Learning
mMTC massive Machine Type Communications
MCC Mobile Cloud Computing
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MVC Model–view–controller
MVVM Model–view–viewmodel
MQTT Message Queuing Telemetry Transport
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NFV Network Functions Virtualization
NIST National Institute of Standards and Technologies
OBEX OBject EXchange
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OSI Open System Interconnection
PaaS Platform as a Service
PDR Pedestrian Dead Reckoning
P-FP Probabilistic FingerPrinting
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PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses
QoE Quality of Experience
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REST REpresentational State Transfer
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RFID Radio Frequency Identifier
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
SaaS Software as a Service
SIP Session Initiation Protocol
SLA Service Level Agreement
SOAP Simple Object Access Protocol
SOA Service Oriented Architecture
SLAM Simultaneous Localization and Mapping
SSL Secure Sockets Layer
SVM Support Vector Machine
TCP Transport Control Protocol
TDoA Time Difference of Arrival
TLS Transport Layer Security
ToA Time of Arrival
UDP User Datagram Protocol
UHF Ultra High Frequency
URI Uniform Resource Identifier
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UWB Ultra Wideband
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VHF Very High Frequency
VR Virtual Reality
Wi-Fi IEEE 802.11 Wireless LAN
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
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Appendix A. Parameters Analised

Table A1. Parameters analysed in the articles obtained from the systematic review (2015–2021).

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[39] 2015 RFID N/A 3 3 N/A N/A N/A N/A

[83] 2015 Inertial Sensors,
Camera Fusion techniques Filter-base (low and high-

pass filter) 3 7 N/A N/A WebSocket, HTTP N/A

[43] 2015 N/A Range based, Range
free, Fingerprinting N/A 3 7 N/A Mean error 2.82 m to

4.26 m REST ISO/ICE 18305:2016

[8] 2015 Wi-Fi Fingerprinting, ToA LQI, Pompeiu-Hausdorff 3 7

22.5 m2, 11 m2

and 5 m2 per
point

Mean error 2.82 m to
4.26 m HTTP, API N/A

[40] 2016 Bluetooth N/A N/A 3 3 N/A N/A HTTP, API Cloud-native

[127] 2016 N/A Path planing Multi access Point (MaP
algorithms) 3 7 N/A N/A N/A N/A

[110] 2016 Wi-Fi, RFID Proximity N/A 3 7

32 m × 12 m
and 21 m ×
20 m

Accuracy 88.1% N/A BIM

[61] 2016 Wi-Fi Fingerprinting Probabilistic-
Fingerprinting (P-FP) 3 7 N/A N/A N/A N/A

[77] 2016 Bluetooth N/A N/A 3 3 N/A N/A REST API OGC
[78] 2016 N/A N/A k-NN 3 7 N/A N/A REST API SOA
[135] 2016 ZigBee Multilateration N/A 3 7 N/A N/A REST API N/A

[102] 2017 Wi-Fi Fingerprinting k-NN 3 7 N/A N/A HTTPS N/A

[50] 2017 Bluetooth Proximity, Finger-
printing k-NN 3 7 N/A N/A API N/A

[97] 2017 Wi-Fi, Mobile Net-
work

Statistical Approxi-
mation, AAL N/A 3 3 N/A N/A LoST Cloud-native

[123] 2017
Wi-Fi, Inertial Sen-
sors, Bluetooth,
Mobile Network

Deep Learning,
Signal visualization,
Scene Analysis,
Triangulation

N/A 3 3 N/A
COEX env. Mean
error 4.16 m, Store
3.54 m

N/A N/A
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Table A1. Cont.

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[67] 2017 Wi-Fi Probabilistic,
Bayesian theory N/A 3 7

62.22 m ×
10.23 m

Average error from
1 m to 2 m N/A N/A

[120] 2017

Bluetooth, Inertial
Sensors, Mobile
Network, Wi-Fi,
Camera

Path planning N/A 3 3

Indoor 175 m2,
Outdoor
15 km, 125 m2

1–3 m API

[106] 2017 Bluetooth N/A N/A 3 7 N/A N/A N/A BIM
[111] 2017 Camera, RFID ToF N/A 3 3 N/A NA N/A N/A
[121] 2017 N/A Probabilistic Markov 3 7 12 m × 12 m N/A N/A N/A

[59] 2017 Camera, Inertial
Sensors

Image Based, Struc-
ture from Motion
(SfM) technique,
Path planning

N/A 3 3 150 m2 1 m N/A Cloud-native

[41] 2017 Wi-Fi, Bluetooth Fingerprinting, ML,
Trilateration SVM 3 7 N/A Average distance er-

ror 11.48 ft. N/A N/A

[136] 2017 N/A ML Genetic Algorithm 3 3 N/A Accuracy > 98% Spanish Inquisition Proto-
col (SIP) N/A

[105] 2018 Bluetooth
Geometric ap-
proach, triangula-
tion

N/A 3 7 N/A N/A N/A N/A

[62] 2018 ZigBee, Bluetooth
Proximity,
Waypoint-based
navigation

N/A 3 7 3 m OBEX, BR/EDR N/A

[119] 2018 Bluetooth, Wi-Fi Probabilistic N/A 3 7
8 m× 8 m and
44 m × 44 m

Maximum error
5.94% N/A N/A

[88] 2018 Wi-Fi
Fuzzy logic, Trilat-
eration, Fingerprint-
ing

Genetic algorithms 3 7 N/A Mean error ≈ 2.11 m
± 0.6 m UDP/IP and TCP/IP N/A

[42] 2018 Bluetooth Proximity N/A 3 7 N/A N/A HTTP SOA

[73] 2018 Wi-Fi, Bluetooth,
RFID, Cellular

Fingerprint, Proxim-
ity N/A 3 3 N/A Mean error 4.62 m ±

0.31 m HTTP/OpenFlow N/A

[52] 2018 Bluetooth, Inertial
Sensors

ML, image process-
ing

Brute-Force Marching
and ORB descriptors 3 7 N/A N/A HTTP, API N/A

[48] 2018 Bluetooth ML k-NN, SVM 3 3 64 m2 1 m Web Service Cloud-native
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Table A1. Cont.

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[124] 2018 N/A N/A N/A 3 3 N/A N/A N/A N/A
[137] 2018 N/A N/A Hidden Markov Model 3 7 N/A N/A N/A N/A

[53] 2018 Camera, Ultra-
sound inertial Sensors N/A 3 7 Accuracy > 97% N/A N/A

[45] 2019 Wi-Fi ML Support Vector Regres-
sion 3 7

In a mall,
2500 m2, and
562,000 m2

N/A RestFUL web service API N/A

[72] 2019 Wi-Fi, Bluetooth,
ZigBee N/A RACIL algorithm 3 7

Exp. 100 m2,
Real 2 m ×
40 m

Simulated 0.2 m to
1.1 m, Real 0.4 m to
1.6 m

N/A N/A

[103] 2019 Wi-Fi ML, Fingerprinting
Multi-Objective Evolu-
tionary Algorithm, W
k-NN

3 7 N/A Average error 1 m N/A N/A

[91] 2019 Wi-Fi, Bluetooth, Proximity N/A 3 7 N/A N/A TLS N/A

[16] 2019 Bluetooth, Wi-Fi ML LSTM 3 7

68 m × 16 m,
34 m × 16 m,
26.5 m × 16 m,
19 m × 16 m

N/A MQTT N/A

[99] 2019 Bluetooth, Wi-Fi,
Inertial Sensors

Fingerprinting,
PDR, Map Matching Particle Filter 3 7 N/A Mean error 2.34 m N/A N/A

[70] 2019 Wi-Fi ML ELM-based 3 7
12 m × 6 m,
8.7 m × 55 m 15 m N/A N/A

[64] 2019 Bluetooth Proximity N/A 3 7 N/A N/A MQTT, Mosquito N/A
[85] 2019 Wi-Fi Probabilistic Motley Keenan 3 7 N/A N/A OpenFlow N/A

[112] 2019
Wi-Fi, Inertial
Sensors, Geomag-
netic

Deterministic
k-NN, Dynamic Time
Warping (DTW),PF
(Particle Filter)

3 7 N/A 5 cm N/A N/A

[116] 2019 Light, Inertial Sen-
sors N/A Peak Intensity detection,

IIR, Filter, DTW 3 7

1000 m2,
20,000 m2,
800 m2

Accuracy 98% N/A N/A

[74] 2019 Wi-Fi Neural Networks,
Image Based Genetic Algorithm 3 3 ≈4 km 1 m to 5 m MQTT N/A
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Table A1. Cont.

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[95] 2019 Bluetooth
ML, Probabilis-
tic, Winsorization
technique

Trimmed mean 3 3
10 m × 4 m,
20 m × 2 m 1 m MQTT, HTTP WGS84

[125] 2019 Wi-Fi Triangulation N/A 3 7 120 m× 120 m <5.09 m N/A N/A

[76] 2019 UWB,Inertial
Sensors,Wi-Fi ML, Markov N/A 3 7 39 m × 18 m Accuracy 90% WebSocket, HTTP N/A

[54] 2019 Wi-Fi, Inertial Sen-
sors Proximity Nearest-checkpoint iden-

tification 3 3 N/A N/A HTTPS, REST API SOA

[75] 2019 Wi-Fi Experience-based Heuristic algorithm,
GBOMD, EBOP 3 7 N/A N/A N/A N/A

[79] 2019 Wi-Fi Fingerprinting k-NN, etc. 3 7 N/A N/A REST API N/A

[128] 2019 Wi-Fi, Inertial Sen-
sors N/A

Light-Weight Magnetic-
Based Door Event Detec-
tion method

3 7 N/A Detection accuracy
90% N/A N/A

[56] 2019 Wi-Fi Fingerprinting W k-NN 3 7 42 m × 12 m Average error 3.8 m MQTT, HTTP N/A
[58] 2019 Bluetooth N/A Bounding Box Algorithm 3 7 36 m × 36 m Average error 1.55 m N/A N/A

[82] 2020 Bluetooth Proximity N/A 3 3 42.5 m2 Mean accuracy 97.7% API, HTTP N/A
[80] 2020 Bluetooth N/A N/A 3 3 N/A N/A HTTP, Rest N/A
[46] 2020 Bluetooth Proximity N/A 3 7 N/A ≈2.6 m MQTT Cloud-native

[94] 2020 Audible Sound ML k-NN, SVM, Naïve Bayes
(NB) 3 7 - Accuracy 71% MQTT N/A

[7] 2020 Bluetooth ML, Trilateration N/A 3 7 12 m × 16 m RMSE 0.86 m MQTT N/A
[63] 2020 Wi-Fi Markov model N/A 3 7 N/A N/A N/A N/A
[114] 2020 Camera AR technique N/A 3 3 N/A N/A API N/A

[11] 2020 Camera, Ultra-
sound

Fuzzy logic, image
processing N/A 3 3 N/A N/A N/A N/A

[13] 2020 ZigBee N/A
Oriented FAST and Ro-
tate BRIEF (ORB) algo-
rithm

3 7 N/A N/A N/A N/A
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Table A1. Cont.

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[10] 2020 UWB ML, image process-
ing

Brute-Force Marching
and ORB descriptors 3 7

10 m× 10 m×
3.3 m N/A N/A N/A

[68] 2020 Camera Visual-SLAM N/A 3 7 N/A Mean error ≈ 20 cm N/A N/A

[69] 2020 Bluetooth ML, Proximity, Tri-
lateration, LSTM, RNN 3 3 N/A N/A N/A N/A

[107] 2020 Bluetooth ML N/A 3 3

2.50 m ×
3.29 m, 2.50 m
× 1.00 m,
2.34 m ×
2.21 m, 5.60 m
× 7.80 m,
1.60 m ×
5.60 m

Average error
35.23 cm ± 11.86 cm MQTT N/A

[96] 2020 Wi-Fi, Bluetooth,
Mobile Network N/A k-NN, k-d Tree 3 3 1.48 km2 N/A WebSocket, XMPP N/A

[55] 2020
Wi-Fi, Inertial Sen-
sors, Bluetooth,
UWB

ML N/A 3 3 N/A N/A SSL, RestFUL API MSA

[126] 2020 Wi-Fi ML, Fingerprinting Manifold Alignment al-
gorithm 3 7 68.9 ft× 52.5 ft N/A N/A N/A

[71] 2020 N/A ML, Fingerprinting k-NN, SVM, NN, RF,
MLP 3 7 N/A N/A N/A N/A

[115] 2020 Camera ML DNN 3 3

42 m × 37 m,
17 m × 13 m,
8 m × 5 m

60 cm HTTP N/A

[49] 2020 Wi-Fi
multidimensional
spatial similarity
(MDSS), k-NN

N/A 3 7 10 m × 10 m Positioning error
from 0.037 to 0.269 m N/A N/A

[108] 2020 Mobile Network eMBB, mMTC,
URLLC N/A 3 7 N/A N/A N/A Cloud-native
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Table A1. Cont.

Article Year Technology Technique Algorithm

In
do

or

O
ut

do
or

Area Metric/Error Protocol(S)/Interfaces Standard

[138] 2021 Bluetooth ML ANN-SVM, KWNN 3 7 N/A Accuracy > 91% N/A N/A
[66] 2021 Wi-Fi Fingerprinting kNN, RLAEW 3 7 N/A Mean error 2.67 m N/A N/A
[139] 2021 Wi-Fi Fingerprinting Reputation Mechanism 3 7 N/A N/A N/A N/A

[65] 2021 Wi-Fi Fingerprinting Dynamic Routing Algo-
rithm of CapsNet 3 7 N/A Average localization

error 7.93 m N/A N/A

[12] 2021 Light N/A Visible Light Positioning
algorithm 3 7 3.3 m× 3.15 m Positioning error

from 3 to 6 m HTTP N/A

[140] 2021 Wi-Fi N/A classical multidimen-
sional scaling (CMDS) 3 7 2400 m2 80 percentil 3 m N/A N/A

[113] 2021 Inertial Sensors Pattern matching
technique Dijkstra’s algorithm 3 7 N/A mean error 7.39 m HTTP, API N/A

[141] 2021 Bluetooth N/A Levenber-Marquardt al-
gorithm 3 7

5 m × 5 m ap-
prox. Mean error < 1.7m N/A N/A
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